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A B S T R A C T

Recent studies of nonlinear metamaterials have shown interesting wave propagation phenomena including the
birth of soliton, tunable bandgap, acoustic nonreciprocity and broadband energy harvesting. However, most
studies are limited to nonlinear mechanical metamaterials and their applications in the short-wavelength limit.
There is no study of nonlinear electromechanical metamaterials at the long-wavelength limit. The present
work fills this gap through investigating a metamaterial with nonlinear local electromechanical resonators.
An approximate analytical solution for the dispersion relations is obtained by the method of multiple scales
(MMS). This analytical solution is used to study the role of different system’s mechanical and electromechanical
parameters on the band structure. Other important nonlinear wave propagation characteristics are deduced
by exploring the spectro-spatial features through different signal processing methods of the numerical results.
The output voltage results demonstrate a significant wave distortion and frequency shift, particularly at the
long-wavelength limit and other wavelength limits. The numerical results also show the birth of solitary waves
and significant increase in the output voltage. Computational study via COMSOL Multiphysics and physical
experiments are carried out to qualitatively demonstrate the theoretical findings. The overall observations
suggest that the proposed nonlinear electromechanical metamaterial can enhance sensing and increase the
operation range of electromechanical diode.
1. Introduction

Recent studies have shown that artificially engineered structures
an offer exceptional properties that cannot be obtained by conven-
ional homogeneous structures [1]. These structures are usually called
etamaterials. The exciting properties of metamaterials include, but
re not limited to: negative stiffness, negative mass, negative Poisson’s
atio, and negative density (i.e., negative is associated with the effective
arameter not to the parameter itself) [2]. The study of mechanical
etamaterial was initially motivated by the development within the
ptics community [3]. Then, it was extended for acoustics [4] and elas-
ic wave applications [1]. The unique characteristics of the mechanical
etamaterial allow it to control noise and vibration, harvest energy,
nable non-reciprocal wave propagation devices, and non-destructive
esting.
For vibration attenuation applications, metamaterials draw their

nteresting properties from periodicity [5] (i.e., phononic crystals) or
hrough the embedded local resonators [6]. Periodic structures of-
er a low-frequency bandgap where waves with a wavelength near
he lattice constant cannot propagate through the structure [5,7–11].

∗ Corresponding author.
E-mail address: obarry@vt.edu (O. Barry).

This bandgap results from Bragg scattering. However, the limitations
associated with the lattice dimension limit the application to large
structures, and thus controlling smaller size structures requires different
engineering configurations. This limitation can be overcome by em-
bedding local resonators in locally resonant metamaterials by mode
hybridization. This configuration showed the ability to attenuate waves
with wavelengths much larger than the lattice constant [6]. Also, in
the presence of periodicity, locally resonant metamaterials can form
bandgaps due to Bragg scattering and mode hybridization depending on
the structure and local resonators parameters [12]. Yet bandgaps can
be generated without Bragg scattering at a very low local resonator’s
frequency. Therefore, locally resonant metamaterials can also offer
a frequency bandgap even in the absence of periodicity [13]. It is
noteworthy that multiple tuned frequency bandgaps can be obtained
by utilizing different resonance frequency local resonators [14,15].

With increasing amplitude of a wave propagating in an inherently
nonlinear medium, the linear equation cannot adequately describe
the problem, and nonlinear terms need to be considered. Nonlinear
metamaterials can be handled using different techniques depending on
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the strength of nonlinearity. For weak nonlinearity, perturbation meth-
ods can be utilized to obtain an approximate converging closed-form
solution [16,17]. For example, Narisetti et al. utilized the Lindstedt-
Poincare technique to obtain dispersion relation in discrete metas-
tructure [18,19]. The obtained nonlinear dispersion relations were
also demonstrated experimentally in [20]. Moreover, the method of
multiple scales (MMS) can handle more complex problems that include
nonlinear interaction of multiple waves [21]. MMS can better ad-
dress the problem by reducing the required efforts associated with the
algebra. Also, MMS is more convenient in handling higher-order per-
turbation [22]. These perturbation techniques can be further extended
or 2D metamaterials [23–26]. On the other hand, strong nonlinearity
n metamaterial can be treated by other techniques like homotopy
nalysis [27–29]. In addition to the accuracy obtained by consider-
ng nonlinear metamaterial, nonlinear metamaterials show interest-
ng wave propagation phenomena beyond those observed in linear
etamaterials, such as solitons [30,31], non-reciprocal wave prop-
gation [32,33], second harmonic generation [34,35], and tunable
andgaps [36]. Furthermore, locally resonant nonlinear metamaterials
ave demonstrated that additional chaotic bandgaps can broaden the
solation band through nonlinear local resonators [37], or bridging
oupling between nonlinear local resonators [38]. Other forms of non-
inearity in the local resonator have also demonstrated improvement
n the bandgap size. For instance, impact based [39] and bistable [40]
ocal resonators can broaden the conventional bandgap associated with
inear resonator. Improvement in the bandgap size in nonlinear meta-
aterials was also demonstrated through electromechanical [41] and
lectromagnetic [35,42] interactions.
The study of nonlinear metamaterials has been limited to obtaining

he cut-off frequency through deriving the dispersion relations or inves-
igating solitary waves at a short-wavelength limit. These investigations
o not reveal the essential characteristics of the nonlinear wave prop-
gation in metamaterials. Therefore, several studies in the literature
mployed spectro-spatial analysis to provide a better understanding
f these essential properties [43–47]. Spectro-spatial features can pro-
ide detailed information on the local wave properties (e.g., solitary
aves) or global wave properties (e.g., dispersion curves). Studies on
pectro-spatial analyses have included studies on nonlinear periodic
hains [43], nonlinear locally resonant metamaterial [44], and locally
esonant metamaterial with multiple local resonators with nonlinear-
ty stemming from the chain or resonators [45–47]. These studies
emonstrated the birth of solitary waves at short-wavelength limit, a
ignificant frequency conversion at medium-wavelengths for transient
xcitation, and no effect of nonlinearity at long-wavelength limit in the
ase of the nonlinear chain [46]. Moreover, the investigations revealed
hat wave distortion could be obtained at all wavelength limits in the
ase of nonlinear resonator depending on the resonance frequency of
he nonlinear local resonator [45–47]. These frequency shifts indicate
hat such nonlinear metamaterial can enable the design of acoustics
iodes.
In addition to the superior performance of metamaterial in vibra-

ion attenuation, recent studies were motivated by the wide plateau
and of frequencies in metamaterials to harvest energy [48]. The
nergy harvesting can be realized by installing electromechanical res-
nators instead of conventional local resonators for simultaneous en-
rgy harvesting and vibration attenuation [49]. Although earlier con-
ideration of electromechanical coupling was to generate piezoelectric
andgap through the added stiffness [41,50–54], recent investigations
howed the possibility of harvesting additional energy through this
oupling [48,49,55,56]. These investigations were conducted exper-
mentally on locally resonant phononic plates [48] and 2D meta-
aterials [57], or theoretically on discrete systems [49], continuous
ystems [55], and coupled internal resonators [56].
To the best of our knowledge, recent studies on metamaterials for

imultaneous energy harvesting and vibration mitigation were limited
o investigating the linear problem. Only our previous work in [58]
2

considered the effect of nonlinearity in such a problem. However,
the nonlinearity in our previous work stems only from the nonlinear
chain. This restricts the effect of nonlinearity for only short-wavelength
limits, thus limiting the system applications to frequencies in this
region (e.g., acoustics diodes, significant frequency shift). There is a
gap in the literature in extending nonlinear metamaterial’s applications
to frequencies at all wavelength limits in the presence of nonlinear
electromechanical resonator for simultaneous energy harvesting and
vibration reduction. Therefore, for the first time, we investigate a
metamaterial with local electromechanical resonators with nonlinearity
stemming from the resonator in the present study to fill this gap. This
is also motivated by our previous work that has shown the possibility
of significant frequency shifts at all wavelength limits in locally res-
onant metamaterial with nonlinearity in the conventional mechanical
resonator [45]. In this paper, we employ analytical and different nu-
merical signal processing techniques to investigate the local and global
properties of the nonlinear wave features in the proposed metamaterial.
The former is demonstrated through MMS to obtain a closed-form
solution for the band structure. The latter is demonstrated through
investigating the spectro-spatial features of the numerical results to
reveal the birth of solitary waves, existing of significant frequency shift
for non-reciprocal wave propagation applications, exploring the type of
wave distortion, and validating the analytical results by reconstructing
the band structure. These spectro-spatial analyses include spatial wave
profile, spectrograms of Short term Fast Fourier Transform (STFT), and
contours of 2D Fast Fourier transform (2D FFT). Parametric analyses are
also conducted to study the effect of nonlinearity and electromechan-
ical coupling parameters on the nonlinear wave propagation features
in terms of wave amplitude and harvested power. Finally, we compu-
tationally and experimentally demonstrate the presence of significant
frequency shift at the long-wavelength limit in the proposed structure.

The rest of the current study is organized as follows: In Section 2,
we present a mathematical model for the proposed metamaterial with
nonlinear local electromechanical resonators. This is followed by the
derivation of an analytical solution for the band structure. Then, we dis-
cuss the analytical findings in terms of the effect of different parameters
on the bandgap size in Section 3. In Section 4, we study the spectro-
spatial features of the output voltage wave by several signal processing
techniques to reveal more important features of the nonlinear wave
propagation phenomena in the proposed structure. Next, spectro-spatial
analyses are used to validate our analytical solution in Section 5.
The observed significant frequency shift is demonstrated computation-
ally using COMSOL Multiphysics in Section 6, and experimentally in
Section 7. Finally, we summarize our findings in the conclusion section.

2. Mathematical model

The proposed metamaterial with embedded nonlinear electrome-
chanical local resonators is depicted in Fig. 1. The metamaterial consists
of an infinite chain of cells with mass 𝑀 . These cells are connected by
a linear spring with stiffness 𝐾. A local nonlinear electromechanical
resonator with an effective mass 𝑚𝑝 is embedded in each cell. The
nonlinearity in the resonator stems from a nonlinear spring with an
effective linear stiffness 𝑘1, and cubic nonlinear stiffness 𝛼̄. A linear
viscous damping is assumed in the local resonator 𝐶2 and chain 𝐶1
stiffness. The electromechanical local resonator is modeled as a beam
sandwiched by piezoelectric layers with coupling coefficient 𝜃 and
capacitance 𝐶𝑝. This resonator is shunted to a load resistor 𝑅, and it
harvests a voltage, 𝑣̄𝑛. If the displacement of the 𝑛th cell is defined as
𝑢𝑛, and the displacement of the electromechanical resonator is defined
as 𝑌𝑛, then the governing equations of motion for each cell with its local
resonator can be written as [47,49,59]

𝑀 ̈̄𝑢𝑛 +𝐶1(2 ̇̄𝑢𝑛 − ̇̄𝑢𝑛+1 − ̇̄𝑢𝑛−1) +𝐾(2𝑢̄𝑛 − 𝑢̄𝑛+1 − 𝑢̄𝑛−1) +𝑚𝑝( ̈̄𝑦𝑛 + ̈̄𝑢𝑛) = 0 , (1)

̈ ̇ 3 ̈
𝑚𝑝𝑦̄𝑛 + 𝐶2𝑦̄𝑛 + 𝑘1𝑦̄𝑛 − 𝜃𝑣̄𝑛 + 𝛼̄𝑦̄𝑛 = −𝑚𝑝𝑢̄𝑛 , (2)



M. Bukhari and O. Barry International Journal of Non-Linear Mechanics 147 (2022) 104226

𝛺

𝛼

𝑣
𝛼
d
t
w
t

𝑢

𝑦

𝑣

h
t
o
t

(

(

w
t
i
𝑜

𝐷

𝛺

𝛼

𝑜

𝐷

Fig. 1. A schematic for the proposed metamaterial with nonlinear local electromechanical resonators.
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𝑅𝐶𝑝 ̇̄𝑣𝑛 + 𝑣̄𝑛 + 𝑅𝜃 ̇̄𝑦𝑛 = 0 , (3)

where 𝑦̄𝑛 = 𝑌𝑛 − 𝑢̄𝑛 is the relative displacement of the electrome-
chanical resonator. The dimensionless version of these equations can
be expressed as

𝑢̈𝑛 + 𝜖𝜇1(2𝑢̇𝑛 − 𝑢̇𝑛+1 − 𝑢̇𝑛−1) + 2𝑢𝑛 − 𝑢𝑛+1 − 𝑢𝑛−1 + 𝑘̄𝛺2
0(𝑦̈𝑛 + 𝑢̈𝑛) = 0 , (4)

2
0 𝑦̈𝑛 + 𝜖𝜇2𝑦̇𝑛 + 𝑦𝑛 − 𝛼1𝑣𝑛 + 𝜖𝛼𝑦3𝑛 = −𝛺2

0 𝑢̈𝑛 , (5)

2𝑣̇𝑛 + 𝑣𝑛 + 𝛼3𝑦̇𝑛 = 0 , (6)

where 𝜔2
𝑛 = 𝐾∕𝑀 , 𝜔2

𝑑 = 𝑘1∕𝑚𝑝, 𝑘̄ = 𝑘1∕𝐾, 𝑢𝑛 = 𝑢̄𝑛∕𝑈0, 𝑦𝑛 = 𝑦̄𝑛∕𝑦0,
𝑛 = 𝑣̄𝑛∕𝑉0, 𝜖𝛼 = 𝛼̄𝑈2

0 ∕𝐾, 𝛺0 = 𝜔𝑛∕𝜔𝑑 , 𝜖𝜇1 = 𝐶1𝜔𝑛∕𝐾, 𝜖𝜇2 = 𝐶2𝜔𝑛∕𝐾,
1 = 𝜃𝑉0∕𝑘1, 𝛼2 = 𝑅𝐶𝑝𝜔𝑛, and 𝛼3 = 𝑅𝜃𝜔𝑛𝑦0∕𝑉0. It is noteworthy that the
ots are related to the time derivative in term of the nondimensional
ime, 𝜏 = 𝜔𝑛𝑡. To obtain an approximate analytical solution using MMS,
e expand our solution by power series and keep only the first order
erms as:

𝑛(𝑡, 𝜖) = 𝑢𝑛0(𝑇0, 𝑇1) + 𝜖𝑢𝑛1(𝑇0, 𝑇1) + 𝑜(𝜖2) , (7)

𝑛(𝑡, 𝜖) = 𝑦𝑛0(𝑇0, 𝑇1) + 𝜖𝑦𝑛1(𝑇0, 𝑇1) + 𝑜(𝜖2) , (8)

𝑛(𝑡, 𝜖) = 𝑣𝑛0(𝑇0, 𝑇1) + 𝜖𝑣𝑛1(𝑇0, 𝑇1) + 𝑜(𝜖2) . (9)

In addition, we keep the time scales 𝑇0 and 𝑇1 and neglect any
igher time scales at this order of perturbation where 𝑇0 = 𝜏 is the fast
ime scale, and 𝑇1 = 𝜖𝜏 is the slow time scale. With the introduction
f multiple time scales, the derivative operators will also get perturbed
o

̇ ) = 𝐷0 + 𝜖𝐷1 +⋯ , (10)

̈ ) = 𝐷2
0 + 2𝜖𝐷0𝐷1 +⋯ , (11)

here 𝐷0 and 𝐷1 denote the partial derivative with respect to the fast
ime scale and slow time scale, respectively. Substituting Eqs. (7)–(11)
nto Eqs. (4)–(6) and separating the coefficients of 𝜖0 and 𝜖1 yields
𝑟𝑑𝑒𝑟 𝜖0

2
0𝑢𝑛0 + 2𝑢𝑛0 − 𝑢(𝑛−1)0 − 𝑢(𝑛+1)0 + 𝑘̄𝛺2

0𝐷
2
0(𝑦𝑛0 + 𝑢𝑛0) = 0 , (12)

2
0𝐷

2
0𝑦𝑛0 + 𝑦𝑛0 − 𝛼1𝑣𝑛0 = −𝛺2

0𝐷
2
0𝑢𝑛0 , (13)

2𝐷0𝑣𝑛0 + 𝑣𝑛0 + 𝛼3𝐷0𝑦𝑛0 = 0 , (14)

𝑟𝑑𝑒𝑟 𝜖1

2
0𝑢𝑛1 + 2𝑢𝑛1 − 𝑢(𝑛−1)1 − 𝑢(𝑛+1)1 + 𝑘̄𝛺2

0𝐷
2
0(𝑦𝑛1 + 𝑢𝑛1)

= −2𝑘̄𝛺2
0𝐷0𝐷1(𝑦𝑛0 + 𝑢𝑛0) − 2𝐷0𝐷1𝑢𝑛0 − 𝜇1𝐷0(2𝑢𝑛0 − 𝑢(𝑛−1)0 − 𝑢(𝑛+1)0) ,
(15) n

3

2
0𝐷

2
0𝑦𝑛1 + 𝑦𝑛1 − 𝛼1𝑣𝑛1 = −𝛺2

0𝐷
2
0𝑢𝑛1 − 2𝛺2

0𝐷0𝐷1𝑢𝑛0

− 2𝛺2
0𝐷0𝐷1𝑦𝑛0 − 𝛼𝑦3𝑛0 − 𝜇2𝐷0𝑦𝑛0 , (16)

2𝐷0𝑣𝑛1 + 𝑣𝑛1 + 𝛼3𝐷0𝑦𝑛1 = −𝛼2𝐷1𝑣𝑛0 − 𝛼3𝐷1𝑦𝑛0 , (17)

It can be noted from Eqs. (12)–(14) that (𝜖0) equations are corre-
pond to the linear equations and all the nonlinear terms appear at
he equations corresponding to higher order of 𝜖 as excitation terms.
herefore, there will not be any difficulty to handle these equations.
aving established these equations at different order of 𝜖, next we
resent the linear dispersion relations.

.1. Linear dispersion relations

To obtain the linear dispersion relation, the equation set at order 𝜖0
s sufficient. The solution of this set can be expressed as

𝑛 = 𝐴𝑒𝑖(𝑛𝑘−𝜔𝜏) , (18)

𝑛 = 𝐵𝑒𝑖(𝑛𝑘−𝜔𝜏) , (19)

𝑛 = 𝐶𝑒𝑖(𝑛𝑘−𝜔𝜏) . (20)

ubstituting Eqs. (19)–(20) into Eq. (14) leads to

−𝑖𝛼2𝜔𝐶 + 𝐶 − 𝑖𝛼3𝜔𝐵 = 0 . (21)

Rearranging Eq. (21) yields

𝐶 = 𝛤𝐵 , (22)

where 𝛤 is defined as

𝛤 =
𝑖𝛼3𝜔

1 − 𝑖𝛼2𝜔
. (23)

Similarly, one can solve for 𝐵 by introducing Eqs. (18)–(19) and
Eq. (22) into Eq. (13) to get

𝐵 = 𝐾𝜔𝐴 , (24)

where 𝐾𝜔 can be expressed as

𝐾𝜔 =
𝛺2

0𝜔
2

1 − 𝛼1𝛤 −𝛺2
0𝜔

2
, (25)

From Eqs. (12), (22), (24), the dispersion relation of the metamaterial
ith local electromechanical resonator can be written as:

𝜔2 + (2 − 2 cos 𝑘) − 𝑘̄𝛺2
0𝜔

2(1 +𝐾𝜔) = 0 . (26)

e emphasize that the above dispersion relation leads to 5 roots for
with electromechanical coupling instead of 4 for the system without
lectromechanical coupling. Also, only 4 out of these 5 roots carry a
onzero real part.
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2.2. Nonlinear dispersion relation

To obtain the approximate analytical solution (i.e., nonlinear fre-
quency correction coefficient), we need to solve the nonlinear problem
at order 𝜖1. In particular, the solvability condition should be deter-
mined in order to guarantee the convergence of our approximate
solution.

Multiplying Eq. (17) by 𝛼1 and collecting the coefficient of 𝑣𝑛1 on
he left-hand side yields

𝛼2𝐷0 + 1)𝛼1𝑣𝑛1 = 𝛼1[−𝛼3𝐷0𝑦𝑛1 − 𝛼2𝐷1𝑣𝑛0 − 𝛼3𝐷1𝑦𝑛0] . (27)

To eliminate 𝑣𝑛1 from Eq. (16), we multiply Eq. (16) by (𝛼2𝐷0 + 1) and
substitute Eq. (27). After rearrangement, Eq. (16) becomes

(𝛼2𝐷0 + 1)(𝛺2
0𝐷

2
0 + 1) + 𝛼1𝛼3𝐷0]𝑦𝑛1 = −(𝛼2𝐷0 + 1)[𝛺2

0𝐷
2
0𝑢𝑛1

+ 2𝛺2
0𝐷0𝐷1(𝑢𝑛0 + 𝑦𝑛0) + 𝛼𝑦3𝑛0 − 𝜇2𝐷0𝑦𝑛0] − 𝛼2𝛼1𝐷1𝑣𝑛0 − 𝛼1𝛼3𝐷1𝑦𝑛0 .

(28)

To eliminate 𝑣𝑛1 and 𝑦𝑛1 for Eq. (15), we multiply Eq. (28) by 𝑘̄𝛺2
0𝐷

2
0

nd Eq. (15) by [(𝛼2𝐷0 + 1)(𝛺2
0𝐷

2
0 + 1) + 𝛼1𝛼3𝐷0], and substitute the

resulting equation into Eq. (15) yields

(𝛺2
0𝐷

2
0 + 1)(𝛼2𝐷0 + 1) + 𝛼1𝛼3𝐷0]((1 + 𝑘̄𝛺2

0)𝐷
2
0𝑢𝑛1 + 2𝑢𝑛1 − 𝑢(𝑛−1)1

− 𝑢(𝑛+1)1) − 𝑘̄𝛺2
0𝐷

2
0(𝛼2𝐷0 + 1)𝛺2

0𝐷
2
0𝑢𝑛1

= [(𝛺2
0𝐷

2
0 + 1)(𝛼2𝐷0 + 1) + 𝛼1𝛼3𝐷0]( − 2𝐷0𝐷1𝑢𝑛0 − 2𝑘̄𝛺2

0𝐷0𝐷1(𝑢𝑛0 + 𝑦𝑛0)

− 𝜇1𝐷0(2𝑢𝑛0 − 𝑢(𝑛−1)0 − 𝑢(𝑛+1)0)) + 𝑘̄𝛺2
0𝐷

2
0

− (𝛼2𝐷0 + 1)(−2𝛺2
0𝐷0𝐷1(𝑢𝑛0 + 𝑦𝑛0) − 𝛼𝑦3𝑛0 − 𝜇2𝐷0𝑦𝑛0)

+ 𝛼1𝛼2𝐷1𝑣𝑛0 + 𝛼1𝛼3𝐷1𝑦𝑛0] .

(29)

The solvability condition can be obtained by substituting the linear
solution Eqs. (18)–(20) into Eq. (29) as

[(𝛺2
0𝐷

2
0 + 1)(𝛼2𝐷0 + 1) + 𝛼1𝛼3𝐷0]((1 + 𝑘̄𝛺2

0)𝐷
2
0𝑢𝑛1 + 2𝑢𝑛1 − 𝑢(𝑛−1)1

− 𝑢(𝑛+1)1) − 𝑘̄𝛺2
0𝐷

2
0(𝛼2𝐷0 + 1)𝛺2

0𝐷
2
0𝑢𝑛1

= ([(−𝛺2
0𝜔

2 + 1)(−𝑖𝛼2𝜔 + 1) − 𝑖𝛼1𝛼3𝜔](2𝑖𝜔𝐴′ + 2𝑖𝜔𝑘̄𝛺2
0(1 +𝐾𝜔)𝐴′

+ 𝑖𝜇1𝜔𝐴(2 − 2 cos 𝑘)) − 𝑘̄𝛺2
0𝜔

2[(𝑖𝜔𝛼2 − 1)(2𝑖𝛺2
0𝜔𝐴

′(1 +𝐾𝜔)

− 3𝛼𝐴2𝐴̄𝐾3
𝜔 + 𝑖𝜇2𝜔𝐾𝜔𝐴) + 𝛼1𝛼2𝐾𝜔𝛤𝐴′ + 𝛼1𝛼3𝐾𝜔𝐴

′])𝑒𝑖(𝑛𝑘−𝜔𝜏) + NST .

(30)

where NST refers to the non-secular terms.
Next, to obtain a convergent solution, the secular terms (i.e., co-

efficient of 𝑒𝑖(𝑛𝑘−𝜔𝜏), which leads to unbounded solution) must be
eliminated. Therefore, the solvability condition can then be written as

[(−𝛺2
0𝜔

2 + 1)(−𝑖𝛼2𝜔 + 1) − 𝑖𝛼1𝛼3𝜔](2𝑖𝜔𝐴′ + 2𝑖𝜔𝑘̄𝛺2
0(1 +𝐾𝜔)𝐴′

+ 𝑖𝜇1𝜔𝐴(2 − 2 cos 𝑘)) − 𝑘̄𝛺2
0𝜔

2[(𝑖𝜔𝛼2 − 1)(2𝑖𝛺2
0𝜔𝐴

′(1 +𝐾𝜔)

− 3𝛼𝐴2𝐴̄𝐾3
𝜔 + 𝑖𝜇2𝜔𝐾𝜔𝐴) + 𝛼1𝛼2𝐾𝜔𝛤𝐴′ + 𝛼1𝛼3𝐾𝜔𝐴

′] = 0 .

(31)

Introducing the polar form (𝐴 = 1
2𝑎𝑒

𝑖𝑏 where 𝑎 and 𝑏 are real functions
of 𝑇1) and the complex values in Cartesian form (i.e., 𝐾𝜔 = Re[𝐾𝜔] +
𝑖 Im[𝐾𝜔], and 𝛤 = Re[𝛤 ] + 𝑖 Im[𝛤 ]) in Eq. (31) leads to

− 𝑎𝑒𝑖𝑏𝛼2𝜇1𝛺
2
0𝜔

4 + 𝑎 cos 𝑘𝑒𝑖𝑏𝛼2𝜇1𝛺2
0𝜔

4 + 1
2
𝑎𝑒𝑖𝑏𝑘̄

(

𝑖Im[𝐾𝜔]

+Re[𝐾𝜔]
)

𝛼2𝜇2𝛺
2
0𝜔

4 − 𝛼2𝛺
2
0
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔4

+ 3
8
𝑎3𝑒𝑖𝑏𝑖𝛼𝑘̄

(

𝑖Im[𝐾𝜔] + Re[𝐾𝜔]
)3 𝛼2𝛺

2
0𝜔

3 − 𝑖𝑎𝑒𝑖𝑏𝜇1𝛺
2
0𝜔

3

+ 𝑎 cos 𝑘𝑒𝑖𝑏𝑖𝜇1𝛺2
0𝜔

3 + 1
2
𝑎𝑒𝑖𝑏𝑖𝑘̄

(

𝑖Im[𝐾𝜔] + Re[𝐾𝜔]
)

𝜇2𝛺
2
0𝜔

3

− 𝑖𝛺2
0
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔3 − 3
8
𝑎3𝑒𝑖𝑏𝛼𝑘̄

(

𝑖Im[𝐾𝜔] + Re[𝐾𝜔]
)3 𝛺2

0𝜔
2

+ 𝑎𝑒𝑖𝑏𝛼2𝜇1𝜔
2 − 𝑎 cos 𝑘𝑒𝑖𝑏𝛼2𝜇1𝜔2 + 𝑎𝑒𝑖𝑏𝛼1𝛼3𝜇1𝜔

2 − 𝑎 cos 𝑘𝑒𝑖𝑏𝛼1𝛼3𝜇1𝜔2

+ 𝑘̄𝛼 𝛺2 (𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔2 + 𝑘̄
(

𝑖Im[𝐾 ] + Re[𝐾 ]
)

2 0 𝜔 𝜔

4

× 𝛼2𝛺
2
0
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔2 − 1
2
(𝑖Im[𝛤 ] + Re[𝛤 ])𝑘̄

(

𝑖Im[𝐾𝜔] + Re[𝐾𝜔]
)

× 𝛼1𝛼2𝛺
2
0
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔2 + 𝑘̄𝛼1𝛼3𝛺
2
0
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔2

+ 1
2
𝑘̄
(

𝑖Im[𝐾𝜔] + Re[𝐾𝜔]
)

𝛼1𝛼3𝛺
2
0
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔2

+ 𝛼2
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔2 + 𝛼1𝛼3
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔2 + 𝑎𝑒𝑖𝑏𝑖𝜇1𝜔

− 𝑖𝑎 cos 𝑘𝑒𝑖𝑏𝜇1𝜔 + 𝑖𝑘̄𝛺2
0
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔 + 𝑖𝑘̄
(

𝑖Im[𝐾𝜔] + Re[𝐾𝜔]
)

× 𝛺2
0
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔 + 𝑖
(

𝑒𝑖𝑏𝑎′ + 𝑎𝑒𝑖𝑏𝑖𝑏′
)

𝜔 = 0 . (32)

Upon separating the real and imaginary parts, the following equa-
tions can be obtained

𝑓 + 𝑔𝑎′ + ℎ𝑎𝑏′ = 0 , (33)

𝑙 − ℎ𝑎′ + 𝑔𝑎𝑏′ = 0 , (34)

here the coefficients

= −1
2
𝜔
(

𝛼2𝜔
(

𝛺2
0
(

𝑘̄
(

𝛼1(−Im[𝛤 ])Im[𝐾𝜔] +
(

𝛼1Re[𝛤 ] − 2
)

Re[𝐾𝜔] − 2
)

+2𝜔2) − 2
)

+ 2𝛺2
0 𝑘̄Im[𝐾𝜔] − 𝛼1𝛼3𝜔

(

𝛺2
0 𝑘̄

(

Re[𝐾𝜔] + 2
)

+ 2
))

, (35)

ℎ = 1
2
𝜔
(

𝛺2
0
(

𝑘̄
(

Re[𝐾𝜔]
(

𝛼1𝛼2Im[𝛤 ]𝜔 − 2
)

+𝜔Im[𝐾𝜔]
(

𝛼2
(

𝛼1Re[𝛤 ] − 2
)

− 𝛼1𝛼3
)

− 2
)

+ 2𝜔2) − 2
)

, (36)

𝑓 = 1
8
𝑎𝜔2 (𝛼2

(

𝜔𝛺2
0 𝑘̄

(

3𝑎2𝛼Im[𝐾𝜔]3 − 9𝑎2𝛼Im[𝐾𝜔]Re[𝐾𝜔]2

+4𝜇2𝜔Re[𝐾𝜔]
)

+ 8𝜇1(cos 𝑘 − 1)
(

𝜔2𝛺2
0 − 1

))

+𝛺2
0 𝑘̄

(

9𝑎2𝛼Im[𝐾𝜔]2Re[𝐾𝜔] − 3𝑎2𝛼Re[𝐾𝜔]3 − 4𝜇2𝜔Im[𝐾𝜔]
)

−8𝛼1𝛼3𝜇1(cos 𝑘 − 1)
)

, (37)

= 1
8
𝑎𝜔

(

𝜔𝛺2
0 𝑘̄

(

3𝑎2𝛼Im[𝐾𝜔]3 + Im[𝐾𝜔]
(

4𝛼2𝜇2𝜔2 − 9𝑎2𝛼Re[𝐾𝜔]2
)

−9𝑎2𝛼𝛼2𝜔Im[𝐾𝜔]2Re[𝐾𝜔] + 𝜔Re[𝐾𝜔]
(

3𝑎2𝛼𝛼2Re[𝐾𝜔]2 + 4𝜇2
))

+8𝜇1(cos 𝑘 − 1)
(

𝜔2𝛺2
0 − 1

))

. (38)

Among these coefficients, only 𝑙 and 𝑓 depends on the oscilla-
ion amplitude 𝑎. To obtain the slow-flow equations, one can solve
qs. (33)–(34) to get

′ =
𝑙ℎ − 𝑓𝑔
𝑔2 + ℎ2

, (39)

𝑎𝑏′ = −
𝑔𝑙 + 𝑚ℎ
ℎ2 + 𝑔2

. (40)

Consequently, the slow-flow equations of the system can be written as

𝑎′ = 𝑐0𝑎
3 + 𝑐1𝑎 , (41)

𝑎𝑏′ = 𝑐2𝑎
3 + 𝑐3𝑎 , (42)

where 𝑐0, 𝑐1, 𝑐2 and 𝑐3 are constants and depend on the system
parameters. It is to be noted here that these slow-flow equations are
not linear functions of 𝑎. Consequently, determining the nonlinear
frequency correction term for the nonlinear frequency is not straight
forward. First, we will consider the case of no damping (i.e., 𝜇1 =
𝜇2 = 0). This yields 𝑐1 = 𝑐3 = 0. since the value of 𝑐2 is significantly
larger than 𝑐0 for common energy harvester parameters, as shown in
Fig. 1, one can safely assume the change in 𝑎 with slow time scale 𝑇1 is
zero, which further implies 𝑎′ = 0 and, consequently, the amplitude is
constant 𝑎 = 𝑎0. Finally, the nonlinear frequency correction factor can
be expressed as

𝑏′ = 𝑐 𝑎2 , (43)
2 0
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and integrating this factor with respect to the slow time scale 𝑇1
yields

𝑏 = 𝑐2𝑎
2
0𝑇1 . (44)

On the other hand, when light linear viscous damping is considered
(i.e., 𝑚𝑢1 ≠ 0 and 𝜇2 ≠ 0), the values of 𝑐1 and 𝑐3 are not zero anymore.
Yet, the value of 𝑐0 is still significantly smaller than the values of 𝑐1,
𝑐2, and 𝑐3. Therefore, one can integrate Eq. (41) as

𝑎 = 𝑎0𝑒
𝑐1𝑇1 , (45)

while

𝑏′ = 𝑐2𝑎0𝑒
2𝑐1𝑇1 + 𝑐3 . (46)

It should be noted that, in the case of light damping, the wave
amplitude decays slowly. Therefore, the nonlinear correction term 𝑏′

is not constant and can be interpreted as an instantaneous shift in the
dispersion curves.

For both cases, the nonlinear dispersion relation can be expressed
as

𝜔nl = 𝜔 − 𝜖𝑏′ , (47)

and it varies at each time instant in the case of light damping.
Next, we will consider the local stability of the wave solution.

The amplitude given in Eq. (41) has either three fixed points (𝑎∗ =
0,±

√

−𝑐1∕𝑐0 for 𝑐0 > 0) or only one fixed point (𝑎∗ = 0, for 𝑐0 < 0). It
hould be noted that 𝑐1 is always positive. In addition, 𝑐0 is positive for
requencies in the acoustics mode, while it is negative for frequencies in
he optical modes. The local stability near each fixed point (i.e., small
erturbation) can then be evaluated based on the sign of 𝜆 raising from

𝑑
𝑑𝑎

𝑎′|𝑎∗ = 3𝑐0𝑎∗
2 + 𝑐1 = 𝜆 (48)

For the case of the acoustic mode, the system has a stable fixed point
t 𝑎∗ = 0 and two unstable fixed points at 𝑎∗ = ±

√

−𝑐1∕𝑐0. Since we only
onsider small values of 𝑎 in the case of weak nonlinearity, one can
afely assume that the system is stable and the amplitude eventually
pproaches zero. This is because 𝑐1 ≫ 𝑐0; therefore, |

√

−𝑐1∕𝑐0| ≫ 0,
hich indicates that the unstable fixed points are far away from the
onsidered range of weak nonlinearity. On the other hand, the only
ixed point in the case of the optical mode is always stable.
Since only the first order perturbation is considered in the current

tudy, the multiple scales solution is always a stable solution for the
mall amplitude excitations [22].

. Analytical bandgap parametric study

To investigate the effect of resonator’s nonlinearity in the presence
f electromechanical coupling on the band structure, we vary some
lectromechanical and nonlinear parameters (i.e., 𝜖𝛼𝑎2, 𝜃, and 𝑅) while
ther system parameters are held as constants. The fixed parameters
re chosen based on [58,59] as 𝑘̄ = 1, 𝜔𝑛 = 𝜔𝑑 = 100 rad/sec,
1 = 106 N∕m, and 𝐶𝑝 = 13.3 × 10−9 F. It is noteworthy that we focus
n the nonlinear band structure since the discussion about the linear
and structure can be found in [58]. Moreover, we validate our results
n Sec. 5 by reconstructing the band structure from the 2D Fast Fourier
ransform (2D-FFT). Since the effect of viscous linear damping on the
and structure have been investigated in prior works [60], we will
ocus our attention on the effect of nonlinearity and electromechanical
oupling on the band structure, which is the main contribution of the
urrent work. Therefore, we set 𝜖𝜇1 = 𝜖𝜇2 = 0 in this section.
Before presenting the results, it is worthy to define the different

wavelength limits. Since wavelength and wavenumber are inversely
proportional to each other, the long-wavelength limit is defined at low
5

values of wavenumbers (i.e., 𝑘 ∼ 𝜋∕9 in Section 4) within the first
irreducible Brillouin zone (i.e., 𝑘 ∈ [0, 𝜋]). On the other hand, the
short-wavelength limit is associated with high values of wavenumbers
(i.e., 𝑘 ∼ 7𝜋∕9 in Section 4). In addition, at a moderate value of
wavenumber, we define the medium-wavelength limit (i.e., 𝑘 ∼ 𝜋∕2
in Section 4).

The band structure of different system parameters is depicted in
Fig. 2. The effect of weak nonlinearity on the band structure is demon-
strated in Fig. 2(a). The results indicate that softening nonlinearity
shifts the dispersion curves down while hardening nonlinearity shifts
the dispersion curves up. However, this shift varies over the wavelength
and the different modes. For instance, the shift is more pronounced at
the short-wavelength limit in the acoustics mode. On the other hand,
the shift can be observed at all wavelength limits in the optical mode
with more shift at the long-wavelength limit. This observation in the
shift in the optical mode at the long-wavelength limit can only be
observed in the case of a nonlinear resonator, unlike the nonlinear
chain case where the nonlinearity has no effect at the long-wave length
limit. Since the shift is more dominant at short–/long-wavelength
limits in the acoustics/optical modes, one can deduce that the effect
of nonlinearity is concentrated near the resonance frequency of the
nonlinear electromechanical local resonator and degrades gradually
with mistuning.

For typical weak electromechanical coupling (𝜃 = 10−10 N/m),
the electromechanical coupling has no effect (i.e., altering the band
structure or the size of bandgap) on the band structure as demonstrated
in Fig. 2(b). This indicates that the proposed metamaterial can be
employed for simultaneous energy harvesting and vibration reduction
applications. However, the attenuation level inside the bandgap is de-
graded due to this coupling [58]. On the other hand, the band structure
of the system changed significantly at very strong electromechanical
coupling (i.e., 𝜃 ≥ 10−2) as shown in Fig. 2(c). In particular, the
acoustics and optical modes start merging into one dispersion curve
with increase in the electromechanical coupling. Moreover, some real
frequencies appear at frequencies higher than the optical mode range in
the absence of the electromechanical coupling. The strong electrome-
chanical coupling also affects the attenuation level inside the bandgap
significantly, as shown in Fig. 2(d). Also, the attenuation at higher
frequencies increases with increasing electromechanical coupling as
both mode merges into one dispersion curve. Although with strong
mechanical coupling the dispersion curves merge into one dispersion
curve, the effect depends significantly on the shunted resistor. For
instance, the dispersion curves gradually merge into one dispersion
curve as the resistor increases for electromechanical coupling of 𝜃 =
10−1 N/V, as shown in Fig. 2(e). In addition, the resistor affects the
attenuation level inside the bandgap frequencies. At higher frequencies
in the presence of strong electromechanical coupling, increasing the
resistor’s value leads to reducing the range of the wavenumber’s values.
Consequently, we observe a reduction in the attenuation level inside the
bandgap frequencies, as shown in Fig. 2(f). To elaborate this further, ex-
citing the system by a wave with a frequency within the bandgap leads
to complex values of wavenumbers. Substituting these complex values
in Eq. (18) will produce an exponentially decaying component that
prevents the wave from propagating through the structure. This decay
(the attenuation level) increases with increasing values of wavenumber.
Therefore, reducing the values of wavenumber with increasing the
shunted resistor reduces the attenuation level inside the bandgap [61],
as depicted in Figs. 2 (d) and (f).

4. Spectro-spatial analyses

The obtained analytical solutions are useful in determining the
effect of nonlinearity on dispersion curves and obtaining the cut off
frequency (i.e., the limit of acoustics/optical modes frequencies). How-
ever, it fails to get other important characteristics of the propagating
nonlinear waves. Therefore, we conduct spectro-spatial analyses to
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Fig. 2. Effect of different parameters on the system band structure: (a) The effect of nonlinearity without electromechanical coupling; (b) The effect of weak electromechanical
coupling with hardening nonlinearity, 𝜃 = 10−10 N/V; (c) The effect of strong coupling with hardening nonlinearity (real), 𝑅 = 107 Ω; (d) The effect of strong coupling with
hardening nonlinearity (imaginary), 𝑅 = 107 Ω; (e) The effect of resistor with strong coupling with hardening nonlinearity (real), 𝜃 = 10−1 N/V; (f) The effect of resistor with
strong coupling with hardening nonlinearity (imaginary), 𝜃 = 10−1 N/V.
reveal more interesting features of the nonlinear waves that propagate
through a metamaterial with nonlinear electromechanical resonator.
In the present study, we focus our analyses on the harvested voltage
from the nonlinear harvester. We numerically integrate a chain with
500 cells with the same parameters defined in the previous section.
The chain is initially subjected to transient wave packets defined by
the following set of equations

𝑢 (0) = 1 (𝐻(𝑚−1)−𝐻(𝑚−1−𝑁 2𝜋∕𝑘))(1−cos(𝑚𝑘∕𝑁 )) sin(𝑚𝑘) , (49)
𝑚 2 𝑐𝑦 𝑐𝑦

6

𝑢̇𝑚(0) =
1
2
(𝐻(𝑚 − 1)

−𝐻(𝑚 − 1 −𝑁𝑐𝑦2𝜋∕𝑘))( − 𝜔𝑛𝜔∕𝑁𝑐𝑦 sin(𝑚𝑘∕𝑁𝑐𝑦) sin(𝑚𝑘)

− 𝜔𝑛𝜔(1 − cos(𝑚𝑘∕𝑁𝑐𝑦)) cos(𝑚𝑘)) ,

(50)

𝑦𝑚(0) = 𝐾𝜔𝑢𝑚(0) , (51)

𝑦̇ (0) = 𝐾 𝑢̇ (0) , (52)
𝑚 𝜔 𝑚
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Fig. 3. Spatial profile of output voltage, 𝑅 = 107 Ω, 𝜃 = 10−8 N/V, 𝜖𝜇1 = 𝜖𝜇2 = 0: (a) Acoustics mode 𝑘 = 𝜋∕9; (b) Optical mode 𝑘 = 𝜋∕9; (c) Acoustics mode 𝑘 = 𝜋∕2; (d) Optical
mode 𝑘 = 𝜋∕2; (e) Acoustics mode 𝑘 = 7𝜋∕9; (f) Optical mode 𝑘 = 7𝜋∕9.
𝑣𝑚(0) = 𝛤𝐾𝜔𝑢𝑚(0) , (53)

where the subscript 𝑚 denotes the initial condition of the 𝑚th cell, 𝑁𝑐𝑦
is the number of cycles and it is set to 7 in the present study, and 𝐻(𝑥)
is the Heaviside function.

4.1. Spatial profile of propagating waves

In this subsection, we investigate the output voltage spatial wave
profile for different types of nonlinearities and at different wavelength
7

limits, as depicted in Fig. 3. At the long-wavelength limit in the
acoustics mode, the results indicate that the harvested voltage wave is
not distorted by the nonlinearity (i.e., output wave has the same profile
in the linear and nonlinear chains) as shown in Fig. 3(a). Moreover,
the output wave has a low amplitude since the excitation frequency
is away from the resonance frequency of the local resonator/harvester.
On the other hand, the wave gets severely distorted due to nonlinearity
at the long-wavelength limit in the optical mode, as shown in Fig. 3(b).
For linear metamaterial, the wave is not distorted at all, although
its amplitude gets amplified because the excitation frequency is close
to the local resonator/harvester frequency. However, nonlinearity in
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Fig. 4. Spectrograms of the STFT for the output voltage in the acoustics mode 𝑅 = 107 Ω, 𝜃 = 10−8 N/V, 𝜖𝜇1 = 𝜖𝜇2 = 0: (a) Linear chain in the medium-wavelength limit, the
utput wave is dispersive; (b) Hardening nonlinear chain in the medium-wavelength limit, the output wave is localized; (c) Softening nonlinear chain in the medium-wavelength
imit, the output wave is dispersive; (d) Linear chain in the short-wavelength limit, the output wave is dispersive; (e) Hardening nonlinear chain in the short-wavelength limit, the
utput wave is localized; (f) Softening nonlinear chain in the short-wavelength limit, the output wave is dispersive.
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he local resonator leads to a significant wave distortion for both,
oftening and hardening nonlinearities. This distortion leads to a signif-
cantly frequency conversion, as we will show in the following sections.
his observation raises attraction to metamaterial with nonlinear elec-
romechanical harvester due to the achieved wave distortion at the
ong-wavelength limit which cannot be obtained by other nonlinear
ystems like the nonlinear chain [44]. Indeed, this wave distortion can
ead to a significant frequency shift (as we will show in the subsequent
ections) and thus enabling the design of mechanical or electromechan-
cal diodes that can be operated at the long-wavelength limit. Although
he harvested power by the nonlinear resonator is slightly lower than
he harvested power by the linear resonator case, the amplitude of the
onlinear wave has a level similar to that of the input signal.
At medium-wavelength limit in the acoustics mode (see Fig. 3(c)),

he output wave becomes dispersive (i.e., stretched over the cells with
ower amplitude) for the linear local resonator case since the dispersion
urve at this wavelength limit has a variable slope [62]. However,
onlinearity in the resonator results in distorting the output wave. This
istortion appears as an increase in the amplitude due to hardening
onlinearity. Indeed, the wave has one dispersive component with low
mplitude and one traveling localized amplitude with high amplitude,
nlike the linear wave, where it has only one dispersive component. In
ddition, the wave becomes more dispersive in the case of softening
onlinearity. This distorted wave is even more dispersive than the
inear wave in terms of lower amplitude and stretches more over the
hain. In the optical mode (see Fig. 3(d)), the nonlinearity distorts the
ave in mainly three components for both hardening and softening
onlinearity, unlike the linear case, which has only one component.
t is noteworthy that the linear output voltage waves appear to have
mplitude higher than the input amplitude in the presence of the
nergy harvester; however, the linear wave that propagates through the
hain is usually dispersive at this wavelength limit and has amplitude
ower than the input signal in the absence if the energy harvester [45].
At short-wavelength limit in the acoustics mode (see Fig. 3(e)), the

ffect of nonlinearity becomes more pronounced in terms of stretching
he linear dispersive wave further due to the softening nonlinearity or

he developed localized amplitude due to the hardening nonlinearity as s
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ompared to the medium-wavelength limit in Fig. 3(c). Moreover, one
an also observe another traveling localized component with amplitude
ower than the main localized component and higher than the disper-
ive component. However, Fig. 3(f) demonstrates that this effect is not
hat significant in the optical mode at the same wavelength limit since
he resonance frequency of the nonlinear resonator is away from this
egion [45]. Nevertheless, the wave is still more dispersive with lower
mplitude in the case of softening nonlinearity while it has traveling
ocalized high amplitude component in the case of the hardening chain.

.2. Images of STFT of the propagating waves

In order to reveal more important characteristics of the propagating
oltage wave through the proposed metamaterial, we monitor the
hange of the output voltage wave features over the spatial domain
y determining the STFT of the signal. Then, we plot the spectrograms
f the resulted signal after the processing, and the input signal with
pplying a Hann window with the size of the input burst. The window
s applied to confine the short spatial components over the space. This
indow is highlighted on the spectrograms between two horizontal
ashed lines.
For signals in the acoustics mode, we plot the spectrograms in

ig. 4. Since the nonlinearity has no effect on the output wave at
ong-wavelength limit in this mode, we did not show the spectrograms
f this signal. At medium-wavelength limit, the output voltage wave
s dispersive in the linear metamaterial, as shown in Fig. 4(a). Thus,
he output wave has an amplitude significantly lower than the input
ignal and is stretched over the chain. However, the output signal has
nly one component. In the presence of the hardening nonlinearity
ig. 4(b), the wave becomes severely distorted and is split into two
omponents; one is localized and contains most of the energy content,
nd the other is stretched and has low energy content. On the contrary,
he softening nonlinearity stretches the output wave further, as shown
n Fig. 4(c). The energy content of this wave is distributed over only one
omponent. Furthermore, some of the energy content appears outside
he Hann window that contains the input signal,indicating that the

everity of the distortion resulted from the softening nonlinearity. For
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Fig. 5. Spectrograms of the STFT for the output voltage at the long-wavelength limit in the optical mode 𝑘 = 𝜋∕9, 𝑅 = 107 Ω, 𝜃 = 10−8 N/V, 𝜖𝜇1 = 𝜖𝜇2 = 0: (a) Linear case, no wave
distortion; (b) Softening nonlinearity, significant wavenumber/frequency shift; (c) Hardening nonlinearity, significant wavenumber/frequency; (d) Stronger hardening nonlinearity,
significant wavenumber/frequency.
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signals at a short-wavelength limit in the acoustics mode, the results
indicate that the output voltage wave in the linear case has energy
content higher than that at medium-wavelength limit, as shown in
Fig. 4(c). This is because the excitation frequency is closer to the local
electromechanical resonator frequency in the short-wavelength limit
case. This energy is confined within one component and stretches over
the chain more severely than the case of medium-wavelength limit.
As of the case of the medium-wavelength limit, similar distortion is
observed at the short-wavelength limit for hardening and softening
nonlinearities, as shown in Fig. 4(d)–(f). However, this distortion is
more severe at the short-wavelength limit. For instance, unlike the
case of linear chain Fig. 4(d), the hardening nonlinearity splits the
output wave into three components (see Fig. 4(e)); the first is localized
and contains most of the energy content (solitary wave), the second is
dispersive (stretched over the cells) and has very low energy content,
and the third is also localized with medium energy content. Although
the latter can be observed at small values of resonator nonlinearity,
it can only be observed at large values of nonlinearity in the case of
the nonlinear chain [58] where a unique solitary wave is developed.
On the contrary, the softening nonlinearity stretches the output voltage
wave further over the chain (i.e., as compared to the linear case at the
medium and short-wavelength limits and softening nonlinear case at
medium-wavelength limit), as shown in Fig. 4(f). This stretch results in
significant output wave energy content out on the window of the input
signal.

We plot the spectrograms at the long-wavelength limit of the optical
mode in Fig. 5. We focus on this region since one of the interesting char-
acteristics of the proposed metamaterial is to realize severe distortion
and significant frequency shift of the output signal by the nonlinearity
in this region. For the linear case (see Fig. 5(a)), although the output
voltage wave is amplified due to the tuning between the excitation
frequency and the resonance frequency of the local resonator, the wave
is not distorted since it is completely confined within the window of
the input signal. However, the presence of nonlinearity in the local
resonator distorts the output wave significantly. For instance, softening
nonlinearity splits the wave into multiple components with different
energy content distribution, as shown in Fig. 5(b). Most of these com-

ponents lie outside the Hann window of the input signal. This indicates s

9

that a significant frequency/wavenumber shift can be obtained by
softening nonlinearity in the local resonator at the long-wavelength
limit. Hardening nonlinearity also results in severe wave distortion
at the long-wavelength limit, as shown in Figs. 5 (c) and (d). The
esults demonstrate that the output signal is stretched over a wide range
f frequency/wavenumber and distributed mainly within two main
omponents. The energy content of these components is distributed
lmost equally with high energy content in both components. It is note-
orthy that the energy content of components in the case of hardening
onlinearity is higher than the case of softening nonlinearity. Increasing
he nonlinearity (see Fig. 5(d)) results in stretching (distorting) the
utput voltage wave further; however, the energy content becomes
ower. The observed significant frequency shift at the long-wavelength
imit in the optical mode indicates that the proposed system can be
sed in designing electromechanical diode. This interesting frequency
onversion cannot be achieved by nonlinearities stemming from the
tiffness between the chain’s cells [44,58].
Furthermore, we study the effect of nonlinearity on the output volt-

ge wave at medium and short-wavelength limits in the optical mode.
he spectrograms of these cases are depicted in Fig. 6. At medium-
avelength limit, we observe that the wave is not distorted in the
inear case, and its component lies completely inside the window of the
nput signal, as shown in Fig. 6(a). However, nonlinearity of the local
esonator results in a severe wave distortion; thus the emergence of a
ignificant frequency/wavenumber shift, as shown in Figs. 6 (b) and (c).
oreover, nonlinearity splits the output wave into three main compo-
ents; one is completely inside the window of the input signal with low
nergy content, and two outside this window. One of those two compo-
ents having most of the energy content is observed above/below the
nput frequency range in the case of hardening/softening nonlinearity
hile the other has low energy content, but it is still higher than the
nergy content of the first component inside the window. This compo-
ent lies below/above the window in the case of hardening/softening
onlinearity. The significant frequency shift at this wavelength limit
i.e., medium-wavelength limit) demonstrates that the proposed meta-
aterial can also be used to design an electromechanical diode that
perates within the medium-wavelength limit. Therefore, the proposed

tructure can be used at the long and medium-wavelength limits, unlike
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Fig. 6. Spectrograms of the STFT for the output voltage in the optical mode 𝑅 = 107 Ω, 𝜃 = 10−8 N/V,𝜖𝜇1 = 𝜖𝜇2 = 0: (a) Linear chain in the medium-wavelength limit, no
significant wavenumber/frequency shift; (b) Hardening nonlinear chain in the medium-wavelength limit, significant wavenumber/frequency shift; (c) Softening nonlinear chain in
the medium-wavelength limit, significant wavenumber/frequency shift; (d) Linear chain in the short-wavelength limit, the output wave is dispersive; (e) Hardening nonlinear chain
in the short-wavelength limit, the output wave is localized; (f) Softening nonlinear chain in the short-wavelength limit, the output wave is dispersive.
the case of nonlinear chain where it can only be utilized at medium-
wavelength limit. At the short-wavelength limit in the optical mode,
the output voltage wave is stretched over the chain in the linear case,
as depicted in Fig. 6 (d). Indeed, the wave is dispersive, although
it has a high amplitude resulting from frequency tuning. The effect
of the nonlinearity at this wavelength limit appears as localizing the
wave in the case of hardening nonlinearity (see Fig. 6(e)), and further
stretching of the output signal in the case of the softening nonlinearity
(see Fig. 6(f)). However, this effect is not significant (i.e., as compared
to the results at the same wavelength in the acoustics mode) since the
frequency in this region is away from the resonance frequency of the
nonlinear local electromechanical resonator [45].

Finally, we consider the effect of damping on the observed fre-
quency shift at the long-wavelength limit. To demonstrate that, we plot
in Fig. 7 the STFT for different values of damping for each type of
nonlinearity (i.e., hardening and softening). For hardening nonlinearity
(Figs. 7(a)–(c)), the results indicate that metamaterials with light damp-
ing can still show significant frequency shift since some of the energy
content appears outside the window of the input frequency, as depicted
in Fig. 7(b). However, the energy content in the presence of damping
is lower (as compared to the case of no damping shown in Fig. 7(a))
since the wave’s amplitude decays over the chain and the wave is
evanescent. Increasing the damping further results in faster decaying in
the wave amplitude along the chain. Therefore, the output wave does
not have a significant energy content at the output cell, as shown in
Fig. 7(c). Similar observations can be deduced in the case of softening
nonlinearity (Figs. 7(d)–(f)). In particular, significant frequency shift
can be observed in the case of light damping (Fig. 7(e)), while the wave
decays rapidly at higher values of damping (Fig. 7(f)).

4.3. Contour plots of 2D FFT of the propagating wave

In order to reconstruct the band structure, demonstrate the role of
nonlinearity on the dispersion curves, demonstrate the frequency shift
further, and investigate the birth of solitary waves, we plot the contour

plots of 2D FFT of the propagating wave in Figs. 8–10.
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For the acoustics mode, we only show the results at short and
medium-wavelength limits since the nonlinearity has no effect at the
long-wavelength limit in this mode. For the linear case at the medium-
wavelength limit (see Fig. 8(a)), the contour plot indicates that the
dispersion curve has a non-constant slope (nonlinear curve), and thus
the wave is dispersive [62]. Hardening nonlinearity changes the dis-
persion curve significantly and makes its slope almost constant (linear
curve), as shown in Fig. 8(b). This indicates the birth of solitary
wave due to hardening nonlinearity [62]. On the other hand, softening
nonlinearity bends the dispersion curve further to make the slope more
nonlinear; therefore, the resulting wave is more dispersive, as depicted
in Fig. 8(c). At the short-wavelength limit in the acoustics mode, the
contour plot of the linear case indicates that the dispersion curves have
a variable slope (nonlinear curve), and the wave is dispersive, as shown
in Fig. 8(d). However, the bend is more pronounced in this case as
compared to the medium-wavelength limit case, and thus the curve is
more nonlinear and the stretch of this wave is more severe. Fig. 8(e)
presents the contour plots in the case of hardening nonlinearity. The
results demonstrate the birth of solitary localized wave due to bending
the curve toward fixed slope curve. Moreover, the results indicate the
birth of another solitary wave below the main solitary localized wave
with lower energy content. Fig. 8(f) shows the contour plot in the case
of softening nonlinearity. It can be deduced that softening nonlinearity
bends the dispersion curve to become more nonlinear (variable slope),
and thus the output wave is more stretched over the chain. It is
noteworthy that although the effect of nonlinearity at short-wavelength
limit is similar to the effect at medium-wavelength limit, the effect
in the case of short-wavelength limit is more severe. This can also be
deduced from the analytical results in the previous section and can be
explained by the closeness of the frequencies within short-wavelength
limit from the resonance frequency of the nonlinear local resonator.

Unlike the acoustics mode, the nonlinearity distorts the output
wave at the long-wavelength limit in the optical mode. We present the
contour plots of 2D FFT at small wavenumbers (i.e., long-wavelength
limit) in the optical mode in Fig. 9. Fig. 9(a) shows the contour plot
for the linear case. The results indicate that the energy of the contour

plot is concentrated within the frequency of the input signal. Therefore,
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Fig. 7. Spectrograms of the STFT for the output voltage in the optical mode 𝑅 = 107 Ω, 𝜃 = 10−8 N/V: Hardening nonlinearity in (a) 𝜖𝜇1 = 𝜖𝜇2 = 0; (b) 𝜖𝜇1 = 𝜖𝜇2 = 0.001; (c)
𝜖𝜇1 = 𝜖𝜇2 = 0.01; and softening nonlinearity in (d) 𝜖𝜇1 = 𝜖𝜇2 = 0; (e) 𝜖𝜇1 = 𝜖𝜇2 = 0.001; (f) 𝜖𝜇1 = 𝜖𝜇2 = 0.01.

Fig. 8. Contour plots of the 2D FFT for the output voltage in the acoustics mode 𝑅 = 107 Ω, 𝜃 = 10−8 N/V, 𝜖𝜇1 = 𝜖𝜇2 = 0: (a) Medium-wavelength limit, linear case; (b)
Medium-wavelength limit, hardening nonlinearity; (c) Medium-wavelength limit, softening nonlinearity; (d) Short-wavelength limit, linear case; (e) Short-wavelength limit, hardening
nonlinearity; (f) Short-wavelength limit, Softening nonlinearity.
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Fig. 9. Contour plots of the 2D FFT for the output voltage at the long-wavelength limit in the optical mode 𝑘 = 𝜋∕9, 𝑅 = 107 Ω, 𝜃 = 10−8 N/V, 𝜖𝜇1 = 𝜖𝜇2 = 0: (a) Linear
case, no wave distortion; (b) Softening nonlinearity, significant wavenumber/frequency shift; (c) Hardening nonlinearity, significant wavenumber/frequency; (d) Stronger hardening
nonlinearity, significant wavenumber/frequency.
no wave distortion is observed in the linear case. However, softening
nonlinearity results in sever distortion since the energy content in the
contour plot of the signal appears over a wide range of frequencies
other than the input excitation frequency (i.e., appears at wide portion
of the dispersion curve) as plotted in Fig. 9(b). Moreover, hardening
nonlinearity results also in significant frequency conversion at this
wavelength limit. For instance, the results in Fig. 9(c) show that the
corresponding dispersion curve is stretched over wide range of frequen-
cies. Therefore, the propagating wave appears at frequencies different
than the input frequency. The effect of increasing nonlinearity on the
contour plots is shown in Fig. 9(d). The results indicate that increasing
the nonlinearity increases the stretch of frequency component over a
wider range of frequencies.

Next, we show the contour plots of 2D FFT at medium and short-
wavelength limits in the optical mode. Fig. 10(a) show the contour
plot of the linear case at medium-wavelength limit. The results indicate
that the frequency content of the contour plot is concentrated around
the input frequency. Therefore, no frequency shift is observed in the
linear case. However, hardening nonlinearity in the local resonator
results in significant frequency shift since the energy of the contour
plots is mainly concentrated in three regions as shown in Fig. 10(b).
This is not surprising since we have already observed these three
component in Fig. 6(b). Two of these regions appear away from the
original frequency of the input signal and have energy content higher
than the energy content of the component within the input frequency
range. Moreover, the upper component has a fixed slope; therefore, it
represents a localized (solitary) wave. Similar frequency shift is also
observed in the case of softening nonlinearity as shown in Fig. 10(c).
The energy content is also split into three components; however, the
component of most energy content exists near the lowest point of the
dispersion curve unlike the case of hardening nonlinearity. For waves at
short wave length limit, the contour plots of the linear case (depicted in
Fig. 10(d)) demonstrate that the dispersion curve has a variable slope.
Therefore, the wave is dispersive and stretched over the chain. Since
this frequency region is away from the resonance frequency of the local
electromechanical resonator, the effect of nonlinearity is not significant
in this region as compared to the short-wavelength limit in the acoustics
mode. Yet, the slight effect appears as localizing the energy component
12
in the case of hardening nonlinearity (Fig. 10(e)) and stretching the
energy component over the dispersion curve (i.e., the output signal has
frequency components other than the input signal frequency) in the
case of softening nonlinearity as shown in Fig. 10(f).

5. Analytical results validation using reconstructed dispersion
curves from 2D FFT of the numerical results

In the previous section, we have shown that nonlinear dispersion
curves can be reconstructed from the contour plots of 2D FFT of the
numerical results. In this section, the numerical dispersion curves are
used to check the validity of the obtained analytical solution and ascer-
tain its limitation. At short-wavelength limit in the acoustics mode, the
analytical results indicate that the effect of nonlinearity is the highest in
this mode. The contour plot in this region indicates that the analytical
results can predict the cut-off frequency for 𝜖𝛼𝑎2 ≤ 0.03, as shown in
Fig. 11(a). In particular, the main solitary wave (which has most of
the energy content) is almost confined within the analytical nonlinear
dispersion curve. It is noteworthy that the dispersive component of
the signal (which has low energy content) coincides with the linear
dispersion curve. The error becomes more significant with increasing
nonlinearity and our analytical solution fails to predict the cut-off
frequency in this region with stronger nonlinearity, as depicted in
Fig. 11(b). For better prediction of the cut-off frequency, higher order
perturbation should be considered. The analytical results also indicate
that the effect of nonlinearity is more pronounced at long-wavelength
limit in the optical mode. In this region, our approximate solution also
fails to predict the exact cut-on frequency, as shown in Figs. 11 (c) and
(d). This can be explained by the significant frequency shift observed
at the long-wavelength limit discussed in the previous sections. In
the short-wavelength limit in the optical mode, the analytical results
slightly overestimate the cut-off frequency, as shown in Figs. 11 (e)
and (f). This error increases with increasing nonlinearity although the
effect of nonlinearity is minimal at this wavelength limit in the optical
mode as demonstrated in the analytical and spectro-spatial results. It
is noteworthy that although our analytical solution fails to predict the
exact cut-off frequencies at some regions, it can provide an insights
about the regions most affected by nonlinearity. This conclusion was
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Fig. 10. Contour plots of the 2D FFT for the output voltage in the optical mode 𝑅 = 107 Ω, 𝜃 = 10−8 N/V, 𝜖𝜇1 = 𝜖𝜇2 = 0: (a) Medium-wavelength limit, linear case; (b)
Medium-wavelength limit, hardening nonlinearity; (c) Medium-wavelength limit, softening nonlinearity; (d) Short-wavelength limit, linear case; (e) Short-wavelength limit, hardening
nonlinearity; (f) Short-wavelength limit, Softening nonlinearity.
supported by the spectro-spatial analyses discussed in the previous
section. For instance, the analytical results show that the effect of
nonlinearity is more pronounced at the long-wavelength limit in the
optical mode. Similarly, the spectro-spatial analyses of the numerical
results demonstrated that the effect of nonlinearity in this region is the
most significant due to the severe wave distortion.

6. Computational demonstration of significant frequency shift us-
ing COMSOL multiphysics

In order to further demonstrate the significant frequency shift ob-
served at the long-wavelength limit, we simulate a nonlinear periodic
structure using COMSOL Multiphysics. We followed [63] in modeling
our nonlinear structure; we model our resonator as unbuckled beam
instead of buckled (curved) beam since we focus on studying cubic
nonlinearity only. A schematic diagram of the unit cell is depicted
in Fig. 12. The unit cell is assumed to be excited in the longitudinal
direction (e.g., 1D model). First, we conduct stationary analyses to
check the nonlinear stiffness of the local resonator in our model. We
apply a static force at the middle point of the resonator and record the
displacement as the force varies. The material is selected to be Alu-
minum which has a density of 2700 kg/m3 and a modulus of elasticity
of 69 GPa. The out of plane thickness for the proposed structure is
4.8 mm. The displacement–force curve obtained by COMSOL is plotted
in Fig. 13. To obtain the stiffness coefficient, we fit the data using
MATLAB curve fitting tool. Using a formula with a linear and cubic
term, we obtain the linear stiffness as 18.19 N/mm and the nonlinear
cubic stiffness as 12.01 N/mm3 with R-squared value near 1. The
nonlinear displacement–force function for the local resonator is shown
in Fig. 13. This function indicates that our assumption about weak cubic
nonlinearity in the proposed model is valid. Therefore, our design is
qualitatively equivalent to the original model that we investigated in
the previous sections. It is noteworthy that we neglect the piezoelectric
layer in the model since we only consider the weak electromechanical
coupling case where its effect was shown to be negligible through this
paper and in the literature [58]. However, the piezoelectric layer will
be considered in the experimental demonstration in the next section.
13
Since the goal of the current study is to demonstrate the significant
frequency shift in the long-wavelength limit (i.e., frequencies associ-
ated with relatively small wavenumbers), the corresponding frequency
range of interest needs to be determined. We obtain first the linear band
structure of the unit cell using COMSOL Multiphysics and plot it in
Fig. 14. The waves propagating in the longitudinal direction are plotted
in red stars. The bandgap for the longitudinal waves is observed around
the linear in-plane natural frequency (the in plane natural frequency
was determined in COMSOL Multiphysics and it is equal to 543.64 Hz)
and highlighted in the shaded area in the figure. Particularly, the
bandgap is located between 504.6–544.5 Hz. Therefore, the frequencies
corresponding to the long-wavelength limit in the optical mode can be
determined in the frequency region just above the bandgap. The fre-
quency of interest in the current study is confined within the green box
highlighted in Fig. 14. To further demonstrate the bandgap, we deter-
mine the transmissible curve of a chain consists of 50 cells and excited
in the longitudinal direction. The transmission diagram is depicted in
Fig. 15 and indicates clearly a significant drop in the transmissibility
around the bandgap frequencies. Similarly, we highlight the frequency
region of interest that corresponds to the long-wavelength limit in the
optical mode inside the green window in Fig. 15. These frequencies
are located just above the bandgap generated by mode hybridization
due to local resonator. It is noteworthy that several studies in the
literature have proved that the effect of nonlinearity in this region due
to chain nonlinearity is negligible in this region [44], unlike the case
of nonlinear local resonators investigated in the current study.

After demonstrating the bandgap in the infinite and finite structure
(i.e., 50 cells chain), we conduct further nonlinear time dependent
analyses using COMSOL Multiphysics. We excite the system by an input
wave at a frequency, which lies within the long-wavelength limit (a
frequency just after the bandgap in the optical mode). We selected this
frequency to be 𝜔=600 Hz and defined the input wave as

𝑢0 =
𝑈0
2
(𝐻(𝑡) −𝐻(𝑡 − 2𝜋𝑁𝑐𝑦∕𝜔))(1 − 𝑐𝑜𝑠(𝜔𝑡∕𝑁𝑐𝑦))𝑠𝑖𝑛(𝜔𝑡) (54)

where 𝐻(𝑡) is the Heaviside function, and 𝑁𝑐𝑦 is the number of cycles
in the input wave and it is equal to 30 in the current simulations.
We first excite the system by a low wave amplitude 𝑈 = 10 μm to
0
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Fig. 11. Validation of the analytical results using the reconstructed dispersion curves from 2D FFT 𝑅 = 107 Ω, 𝜃 = 10−8 N/V, 𝜖𝜇1 = 𝜖𝜇2 = 0: (a) Acoustics mode, 𝑘 = 7𝜋∕9, 𝜖𝛼𝑎2 = 0.03;
(b) Acoustics mode, 𝑘 = 7𝜋∕9, 𝜖𝛼𝑎2 = 0.06; (c) Optical mode, 𝑘 = 𝜋∕9, 𝜖𝛼𝑎2 = 0.01; (d) Optical mode, 𝑘 = 𝜋∕9, 𝜖𝛼𝑎2 = 0.03; (e) Optical mode, 𝑘 = 7𝜋∕9, 𝜖𝛼𝑎2 = 0.03; (f) Optical
mode, 𝑘 = 7𝜋∕9, 𝜖𝛼𝑎2 = 0.06.
investigate the behavior in the linear regime. The spectrogram of the
short term Fourier transform for the temporal domain is depicted in
Fig. 16(a). The results indicate that the output wave has frequency
content within the input frequency range. However, a frequency com-
ponent with very low energy content appears at frequency above
the input frequency range. This component is developed due to the
extremely weak nonlinearity at this level of input wave’s amplitude.
Next, we excite our structure by a large amplitude wave 𝑈0 = 100 μm
to reach the weekly nonlinear regime. The spectrogram of the output
wave is shown in Fig. 16 (b). The results indicate the existence of high
14
energy frequency components at frequency away from the input signal
frequency. These components are generated by the appearance of sec-
ond harmonic due to the nonlinearity in the local resonator [34]. This
demonstrates a significant frequency shift at the long-wavelength limit,
which corroborates the analytical observations in the previous sections.
Increasing the vibration amplitude further will result in further migra-
tion of the energy content to frequency components away from the
input frequency component and diminishing the energy content of the
linear component (i.e., component with frequency equal to the input
frequency).
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Fig. 12. A schematic for unit cell model simulated in COMSOL Multiphysics, 𝐿 = 69 mm, 𝐻 = 22 mm, ℎ = 1 mm, 𝑑 = 2.75 mm, 𝐿𝑚 = 6.5 mm, 𝐻𝑔 = 5 mm.

Fig. 13. Determining the resonator nonlinear stiffness for the model; displacement–force curve measured in COMSOL and fitted curve.

Fig. 14. Band diagram of the structure by applying periodic boundary condition in COMSOL Multiphysics. Only the Brillouin zone of the longitudinal waves is considered here.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

15
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o

Fig. 15. Transmission diagram of a structure consisting of 50 cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
Fig. 16. Spectrogram of the short term Fourier transform for the output wave: (a) Linear regime 𝑈0 = 5 μm; (b) Nonlinear regime 𝑈0 = 50 μm.
7. Experimental demonstration of significant frequency shift

A metastructure prototype consists of 50 cells (i.e., single cell is
shown in Fig. 12) was fabricated from Multipurpose 6061 Aluminum
Sheet with a thickness of 4.8 mm. A thin piezoelectric layer was in-
stalled on the resonator embedded in the last cell to simulate the weak
electromechanical coupling and monitor the harvested voltage. To
simulate a free condition at the top and the bottom, the metastructure is
suspended using fishing wires, as shown in Fig. 17. The first cell of the
metastructure is glued to an electromagnetic shaker (LDS V408) that is
driven by an amplified signal generated through the analyzer (Polytec
DAQ) according to the input wave profile defined in Eq. (54). This
signal is further amplified using an amplifier (LPA100). The response
of the free end of the structure is recorded using Polytec Laser Doppler
Vibrometer (Polytec PSV-500). In addition, the piezoelectric layer is
shunted to a load resistor (2.2 MΩ) and the voltage is recorded using
a DAQ system.

We first determine the transmission of the metastructure to obtain
the range of frequencies of interest (i.e., the long-wavelength limit,
frequencies related to small wavenumbers) that needs to be applied
to the structure to demonstrate the significant frequency shift demon-
strated in the current study. A burst random signal with 15 averages
is used to obtain the transmission curve. The obtained transmission
curve is shown in Fig. 18 and compared with COMSOL results. From
the figure, it can be observed that there is a clear local resonance
transmission dip at around 462 Hz. Due to some imperfection in the
16
manufacturing process, the experimental attenuation dip is slightly
different from that of the computational with around 9% percentage
error. This shift in the frequency value can also be attributed to gluing
the structure to the shaker unlike the free-free boundary conditions
used in the computational simulations. Moreover, this shift might also
be attributed due to the holes made in the structure in order to facilitate
the manufacturing process. Based on this, we also anticipate shifting the
long wavelength limit to a lower frequency region. Although there are
small quantitative discrepancies between the designed analytical model
and the fabricated structure, both models are qualitatively equivalent
since they both demonstrate a local resonant bandgap. Consequently,
one can follow the analyses presented in the previous section to lo-
cate the range of frequencies of interest (i.e., the long-wavelength
limit, frequencies related to small wavenumbers) in the current study.
Therefore, one can safely locate the frequencies corresponding to the
long-wavelength limit in the optical mode in the region of frequencies
just above the bandgap upper boundary. A portion of this frequency
region is highlighted inside the green window in Fig. 18. Therefore, we
select 530 Hz as an excitation frequency to demonstrate the frequency
shift in the long-wavelength limit.

Next, we applied an input wave with a frequency of 530 Hz and
30 cycles to the structure and measure the harvested voltage. The
measured voltage is further analyzed by determining the short term
Fourier transform of the signal, as shown in Fig. 19. At low amplitude
input signal (i.e., 0.05 V, 0.1269 g), the results indicate that the
harvested voltage is confined within the input frequency region and no
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Fig. 17. Experimental setup of the metastructure prototype: (a) Shaker, (b) prototype, (c) amplifier, (d) analyzer, (e) laser doppler, (f) shunted circuit.
Fig. 18. Experimental transmission diagram of a structure consists of 50 cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
frequency shift can be observed, as depicted in Fig. 19(a). This indicates
that the metastructure is excited in the linear regime where the effect
of nonlinearity is negligible. However, when we increase the input
voltage to 0.5 V, multiple frequency components appear at frequencies
different from the input frequency range with a significant energy
content, as shown in Fig. 19(b). Indeed, this clearly demonstrates the
significant frequency shift at the long-wavelength limit due to resonator
nonlinearity when the system is excited in the nonlinear regime. In ad-
dition, this observation supports the qualitative agreement between the
17
design computational model and the fabricated structure in locating the
long-wavelength limit region and the dominant source of nonlinearity,
which is the local resonator nonlinearity. This is because the effect of
nonlinearity due to chain nonlinearity is negligible in this region and it
cannot lead to any frequency shift [44,64], unlike the frequency shift
obtained by the experimental results here. Hence, the experimental
observation corroborates qualitatively both the analytical and compu-
tational findings i.e., the emergence of significant frequency shift in the
long-wavelength domain. The observed significant frequency shift may
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Fig. 19. Spectrogram of the short term Fourier transform for the measured output voltage: (a) Linear regime 0.05 Volt; (b) Nonlinear regime 0.5 Volt.
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e attributed by second harmonic generation due to the nonlinearity
n the local resonator [34]. Therefore, these components with shifted
requency content can be utilized to design the electromechanical diode
hen coupled to a linear chain.

. Conclusion

In this paper, we investigated a metamaterial with nonlinear local
lectromechanical resonators for simultaneous energy harvesting and
ibration attenuation. The metamaterial consists of a chain of masses
onnected by linear springs. A weakly nonlinear electromechanical res-
nator was coupled to each cell and shunted to a load resistor to harvest
nergy. The model of the electromechanical resonator was reduced
o an equivalent nonlinear spring–mass system with an equivalent
apacitance of the piezoelectric element and an equivalent coupling
oefficient. An approximate closed-form solution for the dispersion
elation was obtained by MMS. The analytical results indicated that
he effect of nonlinearity is more pronounced at frequencies close to
he resonance frequency of the electromechanical resonator. There-
ore, it can appear at all wavelength limits, unlike the case of chain
onlinearity, where the effect of nonlinearity was concentrated at the
edium-wavelength limit only. Moreover, the results demonstrated
hat weakly electromechanical coupling has no effect on the bandgap
ize and dispersion curves. The electromechanical coupling affects only
he attenuation level inside the bandgap without changing its size.
herefore, the proposed system can also be employed in energy har-
esting applications without degrading the obtained bandgap size. On
he other hand, a very strong electromechanical coupling can lead to a
ignificant change in the band structure and merge the apart acoustics
nd optical mode into one dispersion curve.
To reveal more important characteristics of the nonlinear wave

ropagation in the proposed structure other than the cut-off frequen-
ies, we conducted signal processing techniques on the numerical re-
ults to investigate the spectro-spatial features. The spatial wave profile
f the signals demonstrated that propagating waves are subjected to se-
ere wave distortion at all wavelength limits in the case of the nonlinear
lectromechanical resonator. In general, the effect of softening nonlin-
arity appears as a wave stretching over the chain, while the effect
f hardening nonlinearity appears as traveling localized component.
he severity of wave distortion was significant at excitation frequencies
lose to the resonance frequency of the electromechanical resonator.
n the acoustics mode, it was demonstrated that the traveling localized
omponent has a harvested voltage higher than the linear case, thus
ardening nonlinearity of the resonator can enhance sensing. The STFT
lso demonstrated the wave localization/stretching due to the hard-
ning/softening nonlinearity at the medium and the short-wavelength

imits in the acoustics mode and at the short wave length limit in (

18
the optical mode. However, the results demonstrated a significant fre-
quency shift at medium-wavelength limit in the optical mode for both
types of nonlinearity. In particular, the output frequency components
of the wave appeared at frequencies different than the input frequency
and the energy content was concentrated into multiple component.
Unlike the case of nonlinear chain, the nonlinearity in the electrome-
chanical resonator surprisingly showed a significant frequency shift at
long-wavelength limit in the optical mode. This frequency shift can ex-
tend the application of metamaterials to the long-wavelength region in
addition to medium and short-wavelengths. Furthermore, we obtained
the contour plot of 2D FFT to numerically reconstruct the dispersion
curves. In addition to demonstrating the significant frequency shift,
the results demonstrated that hardening nonlinearity has a localized
component with a fix slope. This indicated that the localized traveling
component is a solitary wave. Furthermore, we employed the contour
plots to validate our analytical solution. The results demonstrated the
limitations of the obtained analytical solution. Although our analytical
solution showed a limitation in predicting the cut-off frequency, it
can be effectively used in obtaining the most affected regions and
wavelength limits by nonlinearity. Finally, we proved qualitatively the
existence of significant frequency shift computationally using COMSOL
Multiphysics and experimentally. We designed a cell with week cubic
nonlinearity. Upon exciting a chain of 50 cells at the long-wavelength
limit, we were able to show a significant frequency shift in this limit
with large amplitude waves.
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