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A B S T R A C T

Locally resonant metamaterials have recently drawn the attention of many researchers due to
their capability in controlling low-frequency waves by forming a bandgap resulting from mode
hybridization. Although linear acoustics of these metamaterials have been extensively explored,
only a little is known about their nonlinear acoustics. This work investigates the nonlinear
acoustics of a 1D discrete strongly nonlinear locally resonant metamaterial under impulsive
force excitation. The metamaterial is modeled as a chain of linearly grounded masses connected
by essential strong nonlinearity (purely cubic nonlinearity), and embedded by linear local
resonators. Numerical investigations demonstrate the existence of different families of traveling
breathers that depend on the coupling coefficient between the local resonator and its holding
cell. One of these families is reported for the first time in the current work due to the existence of
multiple fast frequencies in its profile. Although the investigated system is undamped, numerical
simulations demonstrate that the breather arrest is controlled by certain parameters of the
system. In the limit of small energy levels, the complexification averaging method (CX-A) is
utilized with the help of numerical observations to demonstrate some aspects of the nonlinear
acoustics of the system. Particularly, analytical analysis is used to determine the nonlinear band
structure of the system. The outcome indicates the presence of two energy-dependent nonlinear
propagation zones (PZs) (i.e., acoustics and optical) and three complementary attenuation zones
(AZs) for the infinite lattice case. In addition, the different families of traveling breathers in the
semi-infinite lattice are investigated analytically and compared to their corresponding numerical
results.

1. Introduction

Mechanical metamaterials are artificially engineered structures that can offer unique dynamical properties, which cannot be
bserved in conventional homogeneous structures. They are usually engineered in special material constitution and cell patterns [1].
The study of mechanical and acoustic metamaterials was motivated by their analogy within the optical materials community for
electromagnetic and optical wave propagation [2]. When properly designed, metamaterials consist of periodic cells that can reflect
propagating waves due to Bragg scattering [3]. Particularly, waves with wavelengths close to the lattice constant get attenuated in
the structure, which leads to significant vibration isolation at low-frequency excitation [4–9]. However, the restriction associated
with the size of the cell limits the application of Bragg scattering in vibration isolation to large structures. For vibration isolation in
smaller structures, researchers have suggested introducing local resonators in metamaterials to attenuate waves with wavelengths
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Fig. 1. An example of traveling breather in strongly nonlinear lattices investigated in [29]. The response of the 21st cell is shown here for normalized input
mpulsive force of 0.3.

uch larger than the lattice constant [10]. Indeed, isolation zones in the band structure open up due to the hybridization of
ocal resonances of each unit cell [11]. Since low-frequency local resonators can be excited by long-wavelength waves, mode
ybridization can lead to vibration isolation regardless of Bragg scattering. This indicates that periodicity is not a constraint in
ocally resonant metamaterials, and hence, aperiodic locally resonant metamaterials can still attenuate waves [12]. In addition,
eriodic locally resonant metamaterials can control waves due to either Bragg scattering or mode hybridization. However, the
ominant reason behind the isolation zone formation in these structures is determined by the resonator parameters [13]. Locally
esonant metamaterials can also open up several isolation zones to control different frequency regions by using different multiple
ocal resonators inside the cell [14,15].
Beyond these interesting dynamical properties of metamaterials, introducing nonlinearity intentionally in metamaterials can

eveal important features that can further broaden the use of metamaterials in many engineering applications. Examples of these
eatures are nonreciprocal wave propagation [16,17], gap solitons [18], envelope and dark solitons [19], and tunable band
tructures [20,21]. In addition, grounded strongly nonlinear 1D lattices (metamaterials) support traveling or standing discrete
reathers under specific parameters of the system [22–24], a phenomena with no counterpart in corresponding linear metamaterials.
iscrete breathers are developed in grounded nonlinear metamaterials due to balancing between nonlinearity and dispersion.
herefore, the emergence of traveling or standing localized oscillatory wavepackets (i.e., discrete breathers) becomes possible in
hese nonlinear metamaterials [25–28]. Traveling breathers are traveling oscillatory wavepackets with spatially localized envelopes
nd energy (amplitude) dependent speeds. In other words, they are governed by a fast-varying oscillatory signal confined within
ocalized, slowly modulated envelopes [24]. These breathers travel undistorted through the lattice. Breathers can be generated due
o shock [29] or periodic excitation [30]. Example of these breathers was reported in grounded linear oscillators coupled by nearly
on-linearizable cubic stiffnesses, as shown in Fig. 1. These breather are realized close to the upper boundary of the nonlinear,
nergy-dependent pass band of the lattice [29].
Analytical investigations of granular chains employed the method of Complexification-Averaging (CX-A) to obtain an approximate

low modulation equation for the traveling envelope of the breather in the form of discrete nonlinear p-Schrodinger equation
DNLPS) [24]. The asymptotic method also led to the discrete nonlinear Schrodinger equation (DNLS) for the particular case of
eak cubic nonlinearity in lattices [31]. The birth of discrete breathers in numerous nonlinear systems and granular lattices has
een extensively investigated in the literature analytically, numerically, and experimentally [22–24,30,32]. These systems include
he homogeneous one-dimensional (1D) ordered granular chain [22–24,30,32], 1D essential strongly nonlinear discrete lattices [29],
oda [33], Ablowitz–Ladik [34], and Klein–Gordon lattices [35–38]. The investigations of these nonlinear systems were focused
rimarily, if not completely, on Hamiltonian lattices, where the dissipation of traveling breathers along the lattice was neglected.
ndeed, the presence of dissipation sources in these lattices can change the dynamics of traveling breathers from stationary to
on-stationary and eventually lead to a breather arrest for impulse excitation in the absence of a sustained external source of
nergy [39]. Therefore, the dissipation source substantially alters the governing mathematical physics and the nonlinear wave
ropagation characteristics in the problem. Despite the extensive studies of discrete breathers in 1D nonlinear lattices, investigations
f the effect of linear local resonators on traveling breather propagation and arrest in strongly nonlinear (sonic vacuum) grounded
etamaterials are rare in the literature. This is the focus of the current study. Indeed, only a few investigations highlighted the
onlinear dynamics (i.e., discrete breathers, solitary waves, and kinks) of 1D locally resonant granular ordered (i.e., woodpile
tructure) lattices in the presence and absence of precompression [40–47]. The aforementioned studies have also demonstrated
ome interesting phenomena like nanopteron (non-decaying tails) in locally resonant granular structures [48–53]. Outside granular
rder lattice studies, only stationary bright breathers and oscillating kinks were demonstrated in locally resonant nonlinear lattices
n sonic vacuum [54]. Therefore, traveling discrete breathers, breather arrest, and multiple fast frequency breathers have not been
eported in the literature. We aim to investigate these areas in the current study.
In this work, we investigate the acoustics of a semi-infinite (i.e., a very long chain that demonstrates the features of infinite chain)

D essentially nonlinear locally resonant grounded chain. The current system qualitatively differs from systems in the literature since
2
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Fig. 2. A schematic of the 1D essential nonlinear locally resonant lattice.

he chain consists of an infinite number of linearly grounded oscillators. In addition, these oscillators are connected to each other
y an essential nonlinear stiffness (nonlinearizable) with a purely cubic force–displacement profile. Inside each cell, there is an
mbedded local resonator connected to the cell by a linear stiffness. The goal of this study is to investigate the effect of a local
esonator on the formation of traveling discrete breathers in this lattice due to an impulse excitation applied to one of the lattice
oundaries. The problem is first investigated numerically in order to highlight the behavior of discrete breather propagation and
rrest in such a system. The numerical results are also analyzed to determine the dynamical features of the discrete breathers.
ased on the numerical observations, the complexification-Averaging method [55,56] is then applied to the system to obtain an
pproximate analytical solution for the propagation zones, attenuation zones, and discrete breathers. Furthermore, to check the
ccuracy of the analytical findings, direct numerical simulations are used to validate the derived approximate analytical solution.
his paper is organized as follow: In Section 2, the analytical model of the investigated system is described. Then, numerical
imulations are conducted to realize breather propagation and arrest in Section 3. In Section 4, numerical simulations are employed
to obtain an approximate analytical solution for the breather profile and the PZs. Finally, the main findings and observations are
summarized with a discussion on the nonlinear acoustics in the studied system.

2. Model of the 1D essential nonlinear locally resonant metamaterial

A schematic of the 1D essential nonlinear locally resonant chain is depicted in Fig. 2. The chain consists of 𝑁 number of cells of
ass 𝑀 . The cells are connected by an essential nonlinear stiffness (nonlinearizable) and is considered as purely cubic nonlinearity
ith a coefficient of 𝛼. Further, each cell is grounded by a linear spring with a coefficient of 𝑘𝑙. Inside each cell, a local linear
echanical resonator with a mass of 𝑚 is coupled to the cell (large mass) by a linear stiffness 𝑘. When the chain is excited by an
mpulsive force at the first cell, the governing equations of motion for this lattice are

𝑀 ̈̄𝑢1 + 𝑘𝑙 𝑢̄1 + 𝛼(𝑢̄1 − 𝑢̄2)3 + 𝑘(𝑢̄1 − 𝑦̄1) = 𝐹0𝛿(𝑡) (1a)

𝑚 ̈̄𝑦1 + 𝑘(𝑦̄1 − 𝑢̄1) = 0 (1b)

𝑀 ̈̄𝑢𝑛 + 𝑘𝑙 𝑢̄𝑛 + 𝛼[(𝑢̄𝑛 − 𝑢̄𝑛−1)3 + (𝑢̄𝑛 − 𝑢̄𝑛+1)3] + 𝑘(𝑢̄𝑛 − 𝑦̄𝑛) = 0 (1c)

𝑚 ̈̄𝑦𝑛 + 𝑘(𝑦̄𝑛 − 𝑢̄𝑛) = 0 (1d)

𝑀 ̈̄𝑢𝑁 + 𝑘𝑙 𝑢̄𝑁 + 𝛼[(𝑢̄𝑁 − 𝑢̄𝑁−1)3] + 𝑘(𝑢̄𝑁 − 𝑦̄𝑁 ) = 0 (1e)

𝑚 ̈̄𝑦𝑁 + 𝑘(𝑦̄𝑁 − 𝑢̄𝑁 ) = 0 (1f)

where 𝑛 = 2, 3,… , 𝑁 − 1, 𝑢̄𝑛 denotes the large mass dimensional displacement of the 𝑛th cell, 𝑦̄𝑛 is the absolute dimensional
isplacement of the local resonator in the 𝑛th cell, and 𝑢̄𝑛(0−) = 𝑦̄𝑛(0−) = ̇̄𝑢𝑛(0−) = ̇̄𝑦𝑛(0−) = 0. It is noteworthy that the dots
enote to the derivative with respect to the dimensional time, 𝑡. The impulsive excitation force is applied to the first cell with an
ntensity of 𝐹0, with the lattice being initially at rest. The duration of this impulse is assumed infinitesimally short, such that it
an be defined as an initial velocity applied to the first cell (i.e., ̄̇𝑢1(0+) = 𝐹0∕𝑀). To nondimensionalize Eq. (1), we introduce the
ollowing parameters: 𝜔2

𝑛 = 𝑘𝑙∕𝑀 , 𝜏 = 𝜔𝑛𝑡, 𝐶2 = 𝑘𝑙∕𝛼, 𝑢𝑛 = 𝑢̄𝑛∕𝐶, 𝑦𝑛 = 𝑦̄𝑛∕𝐶, 𝑘𝑟 = 𝑘∕𝑘𝑙, and 𝛾 = 𝑚∕𝑀 . Upon substituting the new
arameters, Eq. (1) can be re-written in the non-dimensional form as

𝑢′′1 + 𝑢1 + [(𝑢1 − 𝑢2)3] + 𝑘𝑟(𝑢1 − 𝑦1) = 0 (2a)

𝛾𝑦′′ + 𝑘 (𝑦 − 𝑢 ) = 0 (2b)
3
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𝑢′′𝑛 + 𝑢𝑛 + [(𝑢𝑛 − 𝑢𝑛−1)3 + (𝑢𝑛 − 𝑢𝑛+1)3] + 𝑘𝑟(𝑢𝑛 − 𝑦𝑛) = 0 (2c)

𝛾𝑦′′𝑛 + 𝑘𝑟(𝑦𝑛 − 𝑢𝑛) = 0 (2d)

𝑢′′𝑁 + 𝑢𝑁 + [(𝑢𝑁 − 𝑢𝑁−1)3] + 𝑘𝑟(𝑢𝑁 − 𝑦𝑁 ) = 0 (2e)

𝛾𝑦′′𝑁 + 𝑘𝑟(𝑦𝑁 − 𝑢𝑁 ) = 0 (2f)

𝑢1(0+) = 𝑦1(0+) = 𝑢𝑛(0+) = 𝑦𝑛(0+) = 𝑢′𝑛(0+) = 𝑦̇1(0+) = 𝑦′𝑛(0+) = 0; 𝑢′1(0+) =
𝐹0

𝑀𝜔𝑛𝐶
≡ 𝐼0 (2g)

where the primes denote the derivative with respect to the non-dimensional time, 𝜏. It is noteworthy that we redefined the impulsive
xcitation forced in Eq. (1) as initial velocity in Eq. (2). The non-dimensional model will be analyzed numerically and analytically
n the subsequent sections to investigate the effect of local resonators on discrete breathers.

. Numerical results

In this section, we investigate the current system numerically to demonstrate some of the interesting characteristics of nonlinear
ave propagation. These numerical observations further motivate us to carry out the analytical study, presented in the subsequent
ection. However, to get some insight into the system behavior, we first present the effect of different system parameters on the
ystem’s frequency.

.1. Linearized system frequencies

The linearized system of equations i.e., Eq. (2) indicates that the system has two fast frequencies as the linearized chain generates
pair of decoupled cells with two degree of freedom systems. The values of these frequencies depends on the local resonator
arameters 𝛾 and 𝑘𝑟. If 𝜔 represents the fast frequencies of the system, then these frequencies can be determined by solving the
ollowing characteristic equation

𝛾𝜔4 − (𝑘𝑟 + 𝛾 + 𝑘𝑟𝛾)𝜔2 + 𝑘𝑟 = 0 (3)

Solving the above characteristic equation yields two frequencies 𝜔2 > 𝜔1 > 0, which further depend on local resonator parameters
and 𝑘𝑟. The variation of these two frequencies are shown in Fig. 3(a) for different values of 𝛾 and 𝑘𝑟. From Fig. 3(a), we can observe

the existence of two different modes when 𝛾 is not zero. The resonance frequencies of the system span the propagation zones in the
band structure as we vary 𝑘𝑟. Indeed, the case of 𝛾 = 0 represents the 1D essential discrete chain with no local resonators investigated
n [29]. As 𝛾 attains a nonzero value, an isolation zone opens up between the two modes due to mode hybridization [11], where no
aves can propagate. This gap increases with increase in 𝛾, which shows a good agreement with the results of linear locally resonant
hains reported in the literature [13]. Furthermore, for smaller values of 𝑘𝑟, the first mode (corresponding to 𝜔1) is close to the rigid
body motion mode, where both the resonator and the chain move in phase. On the other hand, the second mode (corresponding to
𝜔2) is close to unity which represents the fast frequency of the 1D essential discrete chain with no local resonators. In this mode, the
resonator and the holding mass are out of phase. As we further increase 𝑘𝑟, a transition between the modes can be observed. This
transition happens at smaller values of 𝑘𝑟 as 𝛾 decreases. For larger values of 𝑘𝑟, the results indicate that the first mode becomes
asymptotic in the isolation zone’s lower boundary, which is close to the fast frequency of the 1D essential discrete chain with no
local resonators. Whereas the second mode keeps increasing to high frequencies with increasing 𝑘𝑟.

The frequency ratios of the two modes are depicted in Fig. 3(b) for different values of 𝛾 and 𝑘𝑟. The results demonstrate that
the ratio has absolute minima at a relatively moderate value of 𝑘𝑟. This value of 𝑘𝑟 increases with increasing 𝛾, such that it occurs
near 𝛾∕𝑘𝑟 ≈ 1. Around this region, there is a transition in the system behavior as we will demonstrate in the subsequent sections.

3.2. Traveling breathers

After determining the system’s fast frequencies, we numerically integrate our nonlinear system given in Eq. (2). Upon applying
a small impulse on a semi-infinite lattice (i.e., 100 cells), a traveling breather is born in cells away from the free boundary, where
the transient wave is initiated. Traveling breathers in the semi-infinite lattice with different values of 𝑘𝑟 are shown in Fig. 4. In
particular, the relative displacement of the 10th–11th, 15th–16th, 20th–21st, and 25th–26th cells are shown in the left windows
in the figure. The relative displacements of these cells are plotted on the same scales; however, they are shifted along the 𝑦-axis in
the figures for the sake of clarity. Note that the chosen cells are also away from the other free boundary (i.e., cell 𝑁) to avoid the
appearance of any reflective waves in the selected time window. Zoomed-in windows for the relative displacement of the 20th-21st
cells for different values of 𝑘𝑟 are shown in the right windows in Fig. 4. We emphasize that the rest of the analysis is carried for
𝛾 = 0.1 unless stated. The results indicate the presence of traveling breathers in the 1D locally resonant essential nonlinear lattices
for different values 𝑘 , i.e., the coupling between the cell and its local resonator. These breathers take the form of a fast frequency
4
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Fig. 3. Frequencies of the linearized system of Eq. (2) with varying local resonator parameters: (a) solution of Eq (3); (b) ratio of the high frequency to low
requency.

ave confined within a slowly modulated envelope. Some of the residual of the transient wave appears as a wake wave following
he primary breather. These residuals of the transient wave are also called tails. These breathers are generated due to balancing
etween the linear dispersion in the essential nonlinear and linearly grounded lattices with no counterpart in linear lattices.
For a small impulsive excitation (𝐼0 = 0.5), the results in Fig. 4 show that the breathers travel at different speeds depending on

he value of 𝑘𝑟. For instance, at a very low value of 𝑘𝑟 i.e., 𝑘𝑟 = 0.01 (Fig. 4(a)) breathers travel at a speed higher than breathers
ith a value of 𝑘𝑟 near the transition zone highlighted in Fig. 3(b) (i.e., Fig. 4(b) for 𝑘𝑟 = 0.1). As mentioned earlier, for a very

small value of 𝑘𝑟 (i.e., low coupling between the local resonator and the holding cell), the behavior of the system is similar to
the 1D essential discrete chain with no local resonators. This is further evidenced by the single fast frequency breather shown
in the zoomed-in window in Fig. 4(b). However, traveling breathers can travel with several dominant fast frequencies within the
slowly varying envelope inside the transition zone for 𝑘𝑟 = 0.1, where the linearized system frequencies are close to each other, as
shown in Figs. 4(c)–(d). The presence of multiple fast frequency components within the slowly modulated envelope is due to the
coupling between the local resonator and the nonlinear cells. Note that no counterpart was reported previously for the case of 1D
essential discrete chain with no local resonators or granular 1D structures. As 𝑘𝑟 increases beyond the transition zone (Fig. 4(e)),
traveling breathers become faster than the breathers inside the transition zone. In addition, in this case, the dominant fast frequency
has a single frequency component, unlike breathers within the transition zone, as shown in Fig. 4(f). These breathers are similar in
behavior to the 1D essential discrete chain with no local resonators. It should be noted that the numerical integration was conducted
using MATLAB built-in integrator ODE89 with the relative tolerance of 10−12 and the absolute tolerance of 10−12. It has to be noted
here that using a lower-order integrator may result in inaccurate results where the energy decays over time in such a conservative
system. To check the accuracy of our numerical simulations, we plot the total energy in the chain over time and observed that it is
a constant for our conservative system. However, these results are not shown in the paper for the sake of brevity.

To further investigate the nature of strongly nonlinear acoustics, we determine the frequency content of the traveling breather in
all three above defined zones based on the value of 𝑘𝑟. Particularly, we determine the wavelet transform of the relative displacement
𝑢20−𝑢21 (shown in the right windows of Fig. 4) and plot the results in the left windows of Fig. 5. In addition, we plot the corresponding
instantaneous envelope of the traveling breather using the numerical Hilbert transform in the right window of Fig. 5. For a low value
of 𝑘𝑟 i.e., Fig. 5(a), the wavelet transform indicates an increase in the energy content as the breather passes through the neighboring
oscillators and reaches its maximum value in the first phase. The energy content of this case is confined within a single frequency
component that is slightly higher than the frequency corresponding to the second mode as shown in Fig. 3(a) and has no significant
energy content corresponding to the first lower fast frequency. The dominant component has a higher frequency due to the nature of
hardening nonlinearity in the lattice. Also, the energy content at this value of 𝑘𝑟 coincides with the nonlinear lattice mode (second
mode) without any significant contribution of the local resonator (first mode) on the nonlinear acoustics of the system. Moreover,
the energy content appears at a frequency near the breathers frequency of the 1D essential discrete chain with no local resonators
since it is slightly above unity, which represents the linear fast frequency of the chain without local resonator (i.e., 𝑘𝑟 = 0). Therefore,
the dynamics of the chain is dominant in this case for low values of 𝑘𝑟. During the second phase, residuals with low energy contents
appear at a frequency near the fast frequency of the linearized system (close to unity) refer to the tail of the passing traveling
breather. The envelope of the traveling breather in this case (i.e., 𝑘𝑟 = 0.01) consists of a single slow frequency component similar
to the 1D essential discrete chain with no local resonators, as depicted in Fig. 5(b).

On the other hand, with no counterpart in the 1D essential nonlinear lattice without local resonators and 1D granular lattices,
increasing 𝑘𝑟 eventually leads to developing a breather with multiple fast frequency components as 𝑘𝑟 gets into the transition zone.
For instance, two dominant energy contents appear at different frequency ranges, as shown in Fig. 5(c). One is slightly higher than
the first mode frequency of the linearized system, and the other is slightly higher than the second mode frequency of the linearized
system. Other harmonics also appear with lower energy intensities. This supports the above observations of traveling breathers
5
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Fig. 4. Traveling breather formation in the system with 100 cells of 𝛾 = 0.1 and subjected to 𝐼0 = 0.5: (a) 𝑘𝑟 = 0.01; (b) zoomed window of the 𝑢20 − 𝑢21
isplacement for 𝑘𝑟 = 0.01; (c) 𝑘𝑟 = 0.1; (d) zoomed window of the 𝑢20 − 𝑢21 displacement for 𝑘𝑟 = 0.1; (e) 𝑘𝑟 = 1; (f) zoomed window of the 𝑢20 − 𝑢21 displacement
or 𝑘𝑟 = 1.

raveling breather shows multiple slow frequency components in the envelope, as shown in Fig. 5(d). Therefore, the local resonators
ead to a different family of breathers when 𝑘𝑟 is tuned within the transition zone. This new family of breathers is significantly
ifferent from those observed in 1D discrete and granular nonlinear lattices. We emphasize here that the observed two-frequency
olution of the traveling breathers in the transition zones will be used to drive the analytical study of the nonlinear acoustics in the
ext section.
6
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v

Fig. 5. Frequency content and slowly varying envelope profile of breathers in different zones of 𝑘𝑟: (a) wavelet transform of 𝑢20 − 𝑢21 for 𝑘𝑟 = 0.01; (b) slowly
arying envelope of 𝑢20 − 𝑢21 for 𝑘𝑟 = 0.01; (c) wavelet transform of 𝑢20 − 𝑢21 for 𝑘𝑟 = 0.1; (d) slowly varying envelope of 𝑢20 − 𝑢21 for 𝑘𝑟 = 0.1; (e) wavelet
transform of 𝑢20 − 𝑢21 for 𝑘𝑟 = 1; (f) slowly varying envelope of 𝑢20 − 𝑢21 for 𝑘𝑟 = 1.

Increasing 𝑘𝑟 further leads to the different behavior of the traveling breathers in the system. Note that when 𝑘𝑟 is above the
transition zone, traveling breathers’ energy content becomes confined within a single fast frequency component and not multiple
components like the transition zone cases. This is evident by the wavelet transform of the breather signal observed in Fig. 5(e) for
𝑘𝑟 = 1. Also, the peak frequency is slightly higher than unity in this case. This observation indicates that the first mode frequency
becomes the dominant fast frequency of the traveling breather, while the component of the second mode frequency is negligible.
7
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Therefore, increasing 𝑘𝑟 leads to a transition of the fast frequency of the traveling breather from the second mode frequency (i.e., like
1D essential nonlinear lattice without local resonator) to the first mode frequency of the linearized system (i.e., mode resulted from
local resonator embedding). This further implies that the system must go through a transition between these two modes where both
vibration modes contribute to the nonlinear acoustics. It should be noted that the frequency content in the third scenario (𝑘𝑟 is
above the transition zone) is slightly higher than the first mode frequency, while it is well below the second mode frequency. This is
again contributed by the nature of the hardening nonlinearity in the system. In the high 𝑘𝑟 zone, the numerical envelope consists of
a single slow frequency component similar to the low 𝑘𝑟 case and 1D essential nonlinear lattice without local resonators, as plotted
in Fig. 5(f).

The observations drawn above indicate the presence of three different scenarios that determine the behavior of the traveling
breather in the system. Therefore, the values of 𝑘𝑟 can be split into three different zones; low 𝑘𝑟 zone, high 𝑘𝑟 zone, and a transition
one in between. These observations will be used to analyze the system analytically in the next section. However, before proceeding
urther, we explore the system dynamics in the transition zone, which are presented in the next subsection.

.3. Modal exchanges in different zones of parameter 𝑘𝑟

For the first time, our numerical analyses indicate the presence of traveling breathers with multiple fast frequency components
ithin the transition zone of a 1D essential nonlinear locally resonant lattice. This multiple-frequency breather has no counterpart
mong previously investigated discrete breathers in 1D essential nonlinear discrete or granular lattices. However, the boundaries of
his transition and how the energy is distributed between the system’s fast frequencies have not been discussed yet. We will discuss
hese points in this subsection.
As noted earlier, the single fast frequency breather becomes a multiple fast frequency breather when 𝑘𝑟 enters the transition

zone. For a lattice subjected to an impulsive force with an intensity of 𝐼0 = 0.5, a single fast frequency breather propagates through
he lattice for the values of 𝑘𝑟 approximately below 0.09. Fig. 6(a) shows a single frequency breather for 𝑘𝑟 = 0.08, which is
lightly below 𝑘𝑟 = 0.09. However, around 𝑘𝑟 = 0.09, the breathers start to propagate with multiple fast frequency components,
s depicted in Fig. 6(b). Therefore, the lower boundary of the transition zone can approximately be specified around 𝑘𝑟 = 0.09
or this impulsive force intensity. As we further increase 𝑘𝑟, breathers inside the transition zone becomes multiple fast frequency
reathers. For instance, Fig. 6(c) demonstrates a multiple fast frequency breather at 𝑘𝑟 = 0.15. However, increasing 𝑘𝑟 slightly above
𝑘𝑟 = 0.15 results in a single fast frequency component in the breather, as shown in Fig. 6(d) for 𝑘𝑟 = 0.16. This indicates that the
upper boundary of the transition zone is approximately around 𝑘𝑟 = 0.15 for this impulsive force intensity. It should be noted that
all breathers within the transition zone show multiple fast frequency components inside the transition zone (i.e., 0.08 ⪅ 𝑘𝑟 ⪅ 0.16).

Interestingly, numerical results show the dependence of the transition zone boundaries on the input impulsive force intensity.
Particularly, the lower end of the transition zone can be shifted towards relatively lower values of 𝑘𝑟 with reducing the input
impulsive force intensity. For instance, reducing the impulse intensity to 𝐼0 = 0.1 leads to the appearance of multiple fast frequency
reather at values of 𝑘𝑟 below the transition zone limit demonstrated for 𝐼0 = 0.5, as shown in Fig. 6(e). However, a decrease in
he input impulsive force intensity shrinks the upper boundary of the transition zone. Indeed, when reducing the impulse intensity
t 𝑘𝑟 = 0.15, only a single fast frequency component becomes dominant in the breather profile (see Fig. 6(f)). As compared to the
revious results, breathers have shown the presence of multiple fast frequency components in their profile at this value of 𝑘𝑟 (see
ig. 6(c)). Consequently, increasing the input impulsive force intensity leads to shifting both boundaries of the transition to higher
alues of 𝑘𝑟, while reducing it yields shifting the boundaries to lower values of 𝑘𝑟.
The above results have demonstrated that the dominant fast frequency mode in the traveling breather transits from the fast

requency of the chain to the fast frequency of the locally resonant chain with increasing 𝑘𝑟. Through this transition, a breather
xperiences a transition zone at specific values of 𝑘𝑟 determined by the input impulsive intensity. To determine how the energy is
ransferred between these modes, the energy content of each fast frequency of the system needs to be tracked inside the transition
one.
Inside the transition zone, we collect a sample of traveling breather, particularly 𝑢50 − 𝑢51. This breather travels with multiple

ast frequency components, as depicted in Fig. 7(a). To explore its frequency content, we plot the wavelet transform of this signal in
ig. 7(b). The wavelet transform is plotted over the propagation zones determined by the linear normal mode (LNM) for the in phase
otion of the chain and the nonlinear normal mode (NNM) for the out of phase motion of the chain. These propagation zones will be
iscussed in detail in the next section. The results indicate that the breather consists of two dominant frequencies close to the upper
oundaries of the two propagation zones. Since these frequencies are not well separated, we apply the wavelet-bounded empirical
ode decomposition (WBEMD) to decompose the signal [57]. Upon applying the WBEMD, the signal can be decomposed into the
ominant frequency components. The low frequency component is shown in Fig. 7(c), while its wavelet transform is depicted in
ig. 7(d). The wavelet of this component indicates that most of the maximum energy content is close but above the upper boundary
f the low-frequency propagation zone with few components outside this range resulting from numerical artifacts. However, these
omponents have energy content much lower than the dominant component of low frequency. Consequently, the breather of this
omponent is not purely a single fast frequency breather, as shown in Fig. 7(c). On the other hand, the other frequency component
ith high frequency is plotted in Fig. 7(e). The wavelet transform of this signal indicates that the maximum energy content is close
o the upper boundary of the upper propagation zone, as shown in Fig. 7(f). Following the same procedure, all signals within the
ransition zone are decomposed using WBEMD.
Next, we plot the instantaneous numerical envelope of the decomposed signal using the Hilbert transform amplitude in Fig. 8 for
8

ifferent values of 𝑘𝑟. It should be noted that the contribution of high-frequency components in the instantaneous envelope due to
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Fig. 6. Boundaries of the transition zone and the effect of impulse intensity: (a) 𝑘𝑟 = 0.08, 𝐼0 = 0.5; (b) 𝑘𝑟 = 0.09, 𝐼0 = 0.5; (c) 𝑘𝑟 = 0.15, 𝐼0 = 0.5; (d) 𝑘𝑟 = 0.16,
0 = 0.5; (e) 𝑘𝑟 = 0.08, 𝐼0 = 0.1; (f) 𝑘𝑟 = 0.15, 𝐼0 = 0.3.

umerical artifacts are filtered out to obtain meaningful curves. Therefore, a third-order Butterworth filter with a cutoff frequency
f 0.05 rad/sec is applied to all signals for consistency. For a value of 𝑘𝑟 near the lower boundary of transition zone, the component
f the fast frequency mode corresponding to the lower mode (Fig. 8) has relatively a low energy amplitude as compared to the high-
requency components. This indicates that the dominant fast frequency starts shifting at this instant from the high fast frequency
bserved at very low values of 𝑘𝑟 to the low fast frequency. Yet the high fast frequency is still dominant here. As 𝑘𝑟 increases to the
mid of the transition zone, both fast frequency components appear at the same order, as shown in Fig. 8. Indeed, the low and high
9
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Fig. 7. Decomposing the signal using WBEMD, 𝑘𝑟 = 0.115 and 𝐼0 = 0.5: (a) breather before decomposition; (b) wavelet transform of the breather before
decomposition; (c) low frequency component of the breather; (d) wavelet transform of the low frequency component; (e) high frequency component of the
breather; (f) wavelet transform of the high frequency component.

fast frequencies contribute almost equally to the traveling breather signal around the mid of transition zone. However, the low fast
frequency component becomes dominant as 𝑘𝑟 leaves the transition zone. For instance, the low fast frequency component (Fig. 8)
as an amplitude significantly higher than the high fast frequency component as 𝑘𝑟 approaches the upper boundary of the transition
one. The contribution of each fast frequency mode inside the whole transition zone is plotted in Fig. 9. The results demonstrate
hat the energy is transferred from the high fast frequency mode to the low fast frequency mode as 𝑘 increases inside the transition
10
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Fig. 8. Breather envelope of the decomposed signal using Hilbert transform for the low and high frequency components at different values of 𝑘𝑟 inside the
ransition zone with 𝐼0 = 0.5.

Fig. 9. Energy transfer between the fast frequency modes as varying 𝑘𝑟.

one. This transition is followed by a single frequency breather in the zone following the transition zone and associated with higher
alues of 𝑘𝑟. The mode shapes in the low and high 𝑘𝑟 zones are shown in the supplementary materials [58] to demonstrate the
hange in the dominant mode shapes based on the value of 𝑘𝑟. Particularly, the high fast frequency breather exhibits an out of
hase motion between the local resonator and cell. Contrary, the low fast frequency breather exhibits an in phase motion between
he local resonator and cell.

.4. Breather arrest

Investigations of 1D discrete nonlinear or granular lattices in the literature were mainly focused on Hamiltonian systems. In
he absence of a sustained external energy source, impulse excitation develops traveling breathers inside these lattices. These
reathers travel through the infinite lattice or to the other end of the semi-infinite lattices in the absence of damping or energy
issipation. When damping is introduced in these lattices, the governing mathematical and physical characteristics of the nonlinear
ave propagation of the problem will be changed significantly. The introduced damping leads to breather arrest and prevents the
ave from propagating through the lattice [39]. In the present study, we investigate 1D strongly nonlinear locally resonant lattices
n the absence of damping and a sustained energy source. Instead, these lattices are excited by a transient impulsive force only,
nlike prior investigations that showed breather propagation in 1D nonlinear lattices in the absence of dissipation source or damping
nder impulsive excitation applied to the free end. In this work, the 1D strongly nonlinear locally resonant lattices, in the absence of
ustained energy and damping sources, show breather arrest when impulsive excitation is applied to the free end. Upon applying an
mpulsive force, the breather propagation and arrest in a semi-infinite chain will be highlighted in spatial–temporal plots for different
alues of 𝑘𝑟 and impulse intensity 𝐼0. For a very low value of 𝑘𝑟, Fig. 10(a) indicates that the breather can propagate through a
semi-infinite lattice as it reaches the other end of the lattice. For this low value of 𝑘𝑟 the system is qualitatively similar to the 1D
11

strongly nonlinear discrete lattice where breathers can propagate. With increase in the value of 𝑘𝑟, the results of a semi-infinite
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Fig. 10. Spatial temporal plots for breather arrest and propagation for: (a) 𝑁 = 100, 𝑘𝑟 = 0.01, 𝐼0 = 0.5; (b) 𝑁 = 100, 𝑘𝑟 = 0.13, 𝐼0 = 0.5; (c) 𝑁 = 200, 𝑘𝑟 = 0.13,
𝐼0 = 0.5; (d) 𝑁 = 300, 𝑘𝑟 = 0.13, 𝐼0 = 0.5; (e) 𝑁 = 200, 𝑘𝑟 = 0.13, 𝐼0 = 0.6; (f) 𝑁 = 200, 𝑘𝑟 = 0.14, 𝐼0 = 0.5.

lattice, consisting of 100 cells, indicate that the breather can propagate through the lattice and reach the other end, as shown in
Fig. 10(b). However, considering a more extended lattice in our simulation (i.e., 200 cells) demonstrates a breather arrest around
cell 134 in the lattice with the same impulse intensity applied to the lattice as depicted in Fig. 10(c). Therefore, the breather cannot
reach the other end of the lattice, and no signal can be sensed at the other end. This phenomenon is first reported in this work for
an undamped-strongly-nonlinear lattice with local resonators and subjected to impulsive excitation. It can also be observed that a
wake wave with lower intensity collides with the traveling breathers near the point where breather arrest is observed. This collision
apparently leads to dynamic instability in the propagating breathers. Interestingly, Fig. 10(d) demonstrates that increasing the length
of the simulated lattice while fixing the impulse intensity does not affect the location of breather arrest. The breather arrest always
occurs at the same location regardless of the length of the chain. However, when we increase the impulse intensity on the lattice
12



Mechanical Systems and Signal Processing 183 (2023) 109623M.A. Bukhari et al.

t

Fig. 11. Location of breather arrest for different values of 𝑘𝑟 and 𝐼0.

with same number of cells and the value of 𝑘𝑟, we observe a change in the location of the breather arrest in 1D lattice as shown in
Fig. 10(e). Finally, we slightly increase the value of 𝑘𝑟 in the simulated lattice and plot the spatial–temporal plots in Fig. 10(f). The
results indicate that the location of the breather arrest also depends on the value of 𝑘𝑟 since it occurs at earlier cells in this case as
compared to other cases as discussed above.

Since the above results have demonstrated the sensitivity of the location of breather arrest on the value of 𝑘𝑟 and the impulse
intensity, we sweep these parameters and record the location of breather arrest as shown in Fig. 11. It should be noted that we limit
our simulations to a semi-infinite lattice consisting of 400 cells; however, breather arrest can occur in longer lattices at different
values of 𝑘𝑟 and 𝐼0. Nevertheless, these chains can be considered too long for many engineering applications, and running the
simulations for these long chains might be beyond the capability of the available machine. In addition, we focused on the values
of 𝑘𝑟 close to the transition zone, where the observed breather can be captured earlier than in other cases. From Fig. 11, it can be
observed that there exist two zones of 𝑘𝑟, where the breather arrest occurs earlier than any other case. The first one occurs near
he lower boundary of the transition zone. This zone has a local minima that gets shifted to the right (i.e., higher values of 𝑘𝑟) with
the increase in the impulse intensity. In particular, decreasing the impulse intensity shifts the location of the breather arrest toward
further cells in the lattice before passing the local minima, while increasing impulse intensity shifts the location of the breather arrest
toward earlier cells in the lattice after passing the local minima. Moreover, the first occurrence of breather arrest shifts towards the
lower values 𝑘𝑟 as the impulse intensity increases. Furthermore, increasing the impulse intensity increases the zone of 𝑘𝑟, where the
breather arrest can be observed in the simulated chain. On the other hand, the second zone of early breather arrest is observed near
the upper boundary of the transition zone. Observations similar to the first zone also held true for the second zone with varying 𝑘𝑟
and 𝐼0. It should be noted that the nonlinear dynamics behind this interesting phenomenon, which is reported for the first time in
this work, are worthy of further investigation. However, this is beyond the scope of the current study and left for future work.

4. Analytical study

In this section, we aim to separate the nonlinear acoustics of the lattice into slow/fast scales using the method of Complexification-
Averaging (CX-A) [55,56]. This step will eventually lead to derivation of the slow-flow equations, which represent the envelope’s
slow dynamics. However, before applying the CX-A method, the linear system needs to be decoupled into two fast frequency
equations. This is presented in the next subsection.

4.1. Decoupling the system

Numerical simulations in the previous section demonstrated that the breather is governed by two fast frequencies. This indicates
that the system’s nonlinear acoustics are governed by two equations that are linearly decoupled. The linear frequency of each of
these equations is one of the fast frequencies. To decouple the linear system, we need to transform the coordinates of the physical
system to the modal coordinates. For this, we first write the linearized system given in Eq. (2) as

𝑢′′𝑛 + 𝑢𝑛 + 𝑘𝑟
(

𝑢𝑛 − 𝑦𝑛
)

= 0

𝛾𝑦′′𝑛 + 𝑘𝑟
(

𝑦𝑛 − 𝑢𝑛
)

= 0
(4)

Therefore, 𝑀 and 𝐾 matrices for the linearized system are

𝑀 =
[

1 0
]

;𝐾 =
[

1 + 𝑘𝑟 −𝑘𝑟
]

(5)
13
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Next, the fast frequencies and the mode shapes can be determined by solving the eigenvalue problem of the normalized stiffness
atrix 𝐾̃

𝐾̃ =𝑀−1∕2𝐾𝑀−1∕2 (6)

As mentioned earlier, these fast frequencies can be obtained by solving Eq. (3); however, this does not provide the information
or the mode shapes. The above eigenvalue problem not only provides the estimates for the fast frequencies but also two mode
hapes 𝑣1 and 𝑣2. These mode shapes lead to the modal matrix 𝑃 = [𝑣1, 𝑣2]. Finally, the transformation between the physical and
he modal coordinates can be expressed as

|

|

|

|

|

𝑢𝑛
𝑦𝑛

|

|

|

|

|

= 𝑆
|

|

|

|

|

𝑟𝑛1
𝑟𝑛2

|

|

|

|

|

=
[

𝑎 𝑏
𝑐 𝑑

]

|

|

|

|

|

𝑟𝑛1
𝑟𝑛2

|

|

|

|

|

(7)

where 𝑆 =𝑀−1∕2𝑃 .
The above modal transformation of the linearized system can further be used to write the full nonlinear system given in Eq. (2)

as

r′′𝑛 +𝐷r𝑛 = 𝑃⊤𝑀−1∕2𝐹
(

r𝑛
)

(8)

here 𝐷 =
[

𝑤2
1 0
0 𝜔2

2

]

, r𝑛 =
[

𝑟𝑛1
𝑟𝑛2

]

, and 𝐹 (r𝑛) is the nonlinear restoring force written in modal coordinates using the

ransformation in Eq. (7).
The final equations of motion of the system in modal coordinates can be written as

𝑟′′𝑛1 +𝑤
2
1𝑟𝑛1 = 𝑎

{

[

𝑎
(

𝑟(𝑛−1)1 − 𝑟𝑛1
)

+ 𝑏
(

𝑟(𝑛−1)2 + 𝑟𝑛2
)]3

+

[

𝑎
(

𝑟(𝑛+1)1 − 𝑟𝑛1
)

+ 𝑏
(

𝑟(𝑛+1)2 + 𝑟𝑛2
)]3

} (9a)

𝑟′′𝑛2 +𝑤
2
2𝑟𝑛2 = 𝑏

{

[

𝑎
(

𝑟(𝑛−1)1 − 𝑟𝑛1
)

+ 𝑏
(

𝑟(𝑛−1)2 + 𝑟𝑛2
)]3

+

[

𝑎
(

𝑟(𝑛+1)1 − 𝑟𝑛1
)

+ 𝑏
(

𝑟(𝑛+1)2 + 𝑟𝑛2
)]3

} (9b)

Eq. (9) shows that the nonlinear system is written in terms of two fast frequencies (i.e., 𝜔1 and 𝜔2) in the modal coordinates.
This system will be utilized in our further analysis using the CX-A method.

4.2. Slow-flow equations

Applying the CX-A method to the modal equations requires transferring the modal variables r𝑛 and r′𝑛 into new complex variables.
These variables represent the complex phase vector and are defined as

𝜓𝑛𝑖 = 𝑟′𝑛𝑖 + 𝑗𝜔𝑖𝑟𝑛𝑖; 𝑛 = 1, 2,… , 𝑁 ; 𝑖 = 1, 2. (10a)

𝜓∗
𝑛𝑖 = 𝑟′𝑛𝑖 − 𝑗𝜔𝑖𝑟𝑛𝑖 (10b)

where 𝑗 =
√

−1, and (.)∗ represents the complex conjugate. These new variables map the modal coordinate into the corresponding
phase-plane for each cell in the lattice. One can use Eq. (10) to write the modal variables as

𝑟𝑛𝑖 =
1

2𝑗𝑤𝑖

(

𝜓𝑛𝑖 − 𝜓∗
𝑛𝑖
)

𝑟′𝑛𝑖 =
1
2
(

𝜓𝑛𝑖 + 𝜓∗
𝑛𝑖
)

𝑟′′𝑛𝑖 =
𝑑𝜓𝑛𝑖
𝑑𝜏

+
𝑤𝑖
2𝑗

(

𝜓𝑛𝑖 + 𝜓∗
𝑛𝑖
)

; 𝑛 = 1, 2,… , 𝑁 ; 𝑖 = 1, 2.

(11)

To partition the governing nonlinear dynamics into slow/fast scales, we introduce a small bookkeeping parameter 𝜖 ≪ 1. This
small parameter can scale the dependent variables with respect to their responses and temporal derivatives. Consequently, the
asymptomatic solution obtained by the CX-A method can be accurate only for sufficiently small relative displacements between the
neighboring cells. Therefore, we also define the fast timescale 𝜏0 = 𝜏, and the slow timescale 𝜏1 = 𝜖2𝜏. Using the small parameter 𝜖
nd the new time scales, the response of the complex variables can be expanded using power series up to the fifth-order as

𝜓𝑛𝑖 = 𝜀𝜓𝑛𝑖0
(

𝜏0, 𝜏1,…
)

+ 𝜀3𝜓𝑛𝑖1
(

𝜏0, 𝜏1,…
)

+ 𝑂
(

𝜀5
)

(12)

It is noteworthy that quadratic terms of 𝜖 do not appear in the leading order terms in the expansion due to the nature of cubic
onlinearity. Since we defined a new set of time-scales, the ordinary derivative with respect to 𝜏 will also be perturbed as

d = d + 𝜀2 d (13)
14
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(

Substituting Eqs. (11)–(13) into Eq. (2), and collecting the terms at order 𝜖 leave us with the following leading order equations

refer to Appendix for more details)
𝑑𝜓𝑛𝑖0
𝑑𝜏0

− 𝑗𝜔𝑖𝜓𝑛𝑖0 = 0 (14)

Solution of the leading order equations can be written as

𝜓𝑛𝑖0 = 𝜙𝑛𝑖(𝜏1)𝑒𝑗𝜔𝑖𝜏0 ; 𝑛 = 1, 2,… , 𝑁 ; 𝑖 = 1, 2. (15)

where 𝜙𝑛𝑖(𝜏1) is a slowly modulated amplitude, which represents an envelope that confines the fast modulated oscillatory term 𝑒𝑗𝜔𝑖𝜏0
oscillating with the fast frequency 𝜔𝑖. To determine the term 𝜙𝑛𝑖(𝜏1), we substitute 𝜓𝑛𝑖0 into the equations corresponding to the next
order, particularly at 𝑂(𝜀3), and average out the fast frequency terms to keep our solution bounded. This step leads to the following
slow-flow equations

𝑑𝜓𝑛11
𝑑𝜏1

+ 𝑎𝛾1 = 0 (16a)

𝑑𝜓𝑛21
𝑑𝜏1

+ 𝑏𝛾2 = 0 (16b)

where 𝛾1 and 𝛾2 are defined in Appendix. These equations govern the slowly varying envelopes of the traveling breathers given in
Eq. (2).

To write the slow-flow equations in more simplified form, we introduce the relative response of the neighboring oscillators
(i.e., 𝛿𝑛𝑖 = 𝜓𝑛𝑖0(𝜏1) − 𝜓(𝑛+1)𝑖0(𝜏1)) in Eq. (16). Therefore, the slow-flow equations can be written in the form of coupled Discrete
Nonlinear p-Schrödinger (DNLpS) equation [31] as

𝑑𝛿𝑛1
𝑑𝜏1

+ 𝑎
[

3𝑎3

(2𝑗𝜔1)3

(

2 |
|

𝛿𝑛1||
2 𝛿𝑛1 −

|

|

|

𝛿(𝑛−1)1
|

|

|

2
𝛿(𝑛−1)1 −

|

|

|

𝛿(𝑛+1)1
|

|

|

2
𝛿(𝑛+1)1

)

+

6𝑎𝑏2
(

2𝑗𝜔2
)2 (2𝑗𝜔1

)

(

2 |
|

𝛿𝑛2||
2 𝛿𝑛1 −

|

|

|

𝛿(𝑛−1)2
|

|

|

2
𝛿(𝑖−1)1 −

|

|

|

𝛿(𝑖+1)2
|

|

|

2
𝛿(𝑖+1)1

)

]

= 0
(17a)

𝑑𝛿𝑛2
𝑑𝜏1

+ 𝑏
[

3𝑏3

(2𝑗𝜔2)3

(

2 |
|

𝛿𝑛2||
2 𝛿𝑛2 −

|

|

|

𝛿(𝑛−1)2
|

|

|

2
𝛿(𝑛−1)2 −

|

|

|

𝛿(𝑛+1)2
|

|

|

2
𝛿(𝑛+1)2

)

+

6𝑏𝑎2
(

2𝑗𝜔1
)2 (2𝑗𝜔2

)

(

2 |
|

𝛿𝑛1||
2 𝛿𝑛2 −

|

|

|

𝛿(𝑛−1)1
|

|

|

2
𝛿(𝑖−1)2 −

|

|

|

𝛿(𝑖+1)1
|

|

|

2
𝛿(𝑖+1)2

)

]

= 0
(17b)

Previous investigations have shown that the DNLp equations reveal interesting nonlinear acoustics in several strongly nonlinear
lattices including different types of breathers [22,24,29,32]. The nonlinear acoustics of the slow-flow equations Eq. (16) will be
further explored in the following subsections to reveal nonlinear wave propagation features.

4.3. Nonlinear band structure

Band structure of infinite discrete periodic linear metamaterials is partitioned into propagation and attenuation zones. In the
far-field, waves get attenuated inside the attenuation zones (AZ), while they can propagate through the structure in the propagation
zones (PZ) [13]. The boundaries of these zones are independent of the input energy in linear mediums. However, works on nonlinear
lattices (e.g., granular structures and discrete nonlinear lattices) have shown the tunability of the cut-off and cut-on frequencies of
the band structure with varying input energy [22–24,29,32]. In this subsection, we aim to investigate the dependency of band
structure boundaries on the input energy in infinite 1D strongly nonlinear locally resonant metamaterials. Infinite metamaterials
are considered at this step for the sake of omitting any reflective waves or disorder, thus the band structure is physically meaningful.
Consequently, the free boundaries of a semi-infinite system (i.e., 1st and 𝑁th cells) are removed, and the index 𝑛 for an infinite
chain is rewritten as 𝑛 = 0,±1,±2,… . Based on our observations in the previous section, where the wave can travel with multiple
fast frequencies, we define an ansatz for traveling waves as

𝛿𝑛1 = 𝐴𝑒𝑗(𝛺1𝜏1−𝑛𝜇) (18a)

𝛿𝑛2 = 𝐵𝑒𝑗(𝛺2𝜏1−𝑛𝜇) (18b)

where 𝐴 and 𝐵 are the dimensionless amplitude of the traveling waves, 𝛺1 and 𝛺2 are the slow frequencies associated with each
fast frequency traveling wave, and 𝜇 is the dimensionless wavenumber. Introducing Eq. (18) into Eq. (17) and performing some
algebraic manipulation yields

𝐴𝛺1 = 𝐴

(

3𝑎4𝐴2

8𝜔3
1

+ 6𝑎2𝑏2𝐵2

8𝜔2
2𝜔1

)

(2 − 2 cos𝜇) (19a)

𝐵𝛺2 = 𝐵

(

3𝑏4𝐵2

3
+ 6𝑎2𝑏2𝐴2

2

)

(2 − 2 cos𝜇) (19b)
15
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Unlike the case of linear lattices, Eq. (18) indicates that the slow frequency is a function of traveling wave amplitude. Indeed,
hese expressions represent a correction for the linear fast frequency of the traveling wave, and they can be used to obtain the
onlinear band structure of the system. It should be noted that the presence of a local resonator in the current system opens up a
ew AZ; hence there are two PZs in the system’s band structure. One associated with the low-frequency range and is usually called
he acoustics PZ, while the other is associated with the high-frequency range and is usually called the optical PZ [11].
Numerical results in the previous section show the presence of three different behaviors of traveling breathers. These behaviors

ere characterized based on the value of 𝑘𝑟. For a sufficiently small value of 𝑘𝑟, only one dominant fast frequency appears in the
traveling breather profile. This fast frequency is 𝜔2, which has an amplitude of 𝐵. Therefore, one can safely assume that 𝐴 ≈ 0 for
lower values of 𝑘𝑟. Then, Eq. (19) becomes

𝛺2 =

(

3𝑏4𝐵2

8𝜔3
2

)

(2 − 2 cos𝜇) (20)

The above expression can be used to predict the optical nonlinear PZ, where the acoustics nonlinear PZ is unaffected and similar
o the linear propagation zone.
On the other hand, numerical results showed that the lower fast frequency 𝜔1 becomes dominant in the traveling breather at

higher values of 𝑘𝑟. Therefore, one can safely assume that 𝐵 ≈ 0 for higher values of 𝑘𝑟. Then, Eq. (19) becomes

𝛺1 =

(

3𝑎4𝐴2

8𝜔3
1

)

(2 − 2 cos𝜇) (21)

In this case, only the acoustics PZ is affected by nonlinearity, while the optical PZ is similar to the linear optical PZ. The approximate
corrected nonlinear frequency of the system can be written as a combination of the fast and slow frequencies as

𝜔̃1 = 𝜔1 + 𝜖2𝛺1 = 𝜔1 +

(

3𝑎4(𝜖𝐴)2

8𝜔3
1

)

(2 − 2 cos𝜇); 𝑘𝑟∕𝜖 ≫ 1;

𝜔̃2 = 𝜔2

(22a)

𝜔̃2 = 𝜔2 + 𝜖2𝛺2 = 𝜔2 +

(

3𝑏4(𝜖𝐵)2

8𝜔3
2

)

(2 − 2 cos𝜇); 𝑘𝑟∕𝜖 ≪ 1;

𝜔̃1 = 𝜔1

(22b)

For high values of 𝑘𝑟, Eq. (22)(a) demonstrates that the nonlinear frequency 𝜔̃1 becomes the same as fast frequency when 𝜇 = 0.
This indicates that the large masses of the cells move in phase (normal mode); thus, the nonlinear stiffness does not go under any
deformation, and define the lower boundary of the acoustics nonlinear PZ as 𝜔̃1𝑙𝑏 = 𝜔1. It should be noted that this boundary
is energy-independent since the nonlinear stiffness is not engaged in the dynamics. On the other hand, the out of phase motion
(normal mode) is associated with 𝜇 = 𝜋; therefore, the nonlinear stiffness between the cells can go under deformation, and the
nonlinear effect becomes dominant. The upper boundary of the acoustics nonlinear PZ is energy-dependent and can be defined as
̃ 1𝑢𝑏 = 𝜔1 +

(

3𝑎4(𝜖𝐴)2

4𝜔31

)

. Furthermore, both boundaries of the optical PZ are energy-independent and equal to the fast frequency
̃ 2𝑙𝑏 = 𝜔̃2𝑢𝑏 = 𝜔2, since this mode does not contribute to the traveling wave in this region of 𝑘𝑟. Particularly, the energy level of this
mode is extremely small as compared to the dominant mode energy level.

For a low value of 𝑘𝑟, Eq. ((22)(b) indicates that both boundaries of the acoustics PZ are energy-independent since the lower
mode has a negligible energy level and does not contribute to the traveling wave profile. The acoustics PZ can be defined in this
case as 𝜔̃1𝑙𝑏 = 𝜔̃1𝑢𝑏 = 𝜔1. However, the behavior of the optical PZ boundaries depend on the type of motion (i.e., 𝜇). For instance,
the in phase motion (normal mode), 𝜇 = 0, indicates that the lower boundary of the optical nonlinear PZ is energy-independent, and
it is equal to the fast frequency 𝜔̃2𝑙𝑏 = 𝜔2. Whereas, the out of phase motion (normal mode), 𝜇 = 𝜋, demonstrates an engagement
of the nonlinear stiffness in the acoustics; thus, the upper boundary of the optical nonlinear PZ is energy-dependent. This boundary
can be defined as 𝜔̃2𝑢𝑏 = 𝜔2 +

(

3𝑏4(𝜖𝐵)2

4𝜔32

)

.
Eq. (22) demonstrates the presence of two separated nonlinear PZs in the range of wavenumber 0 < 𝜇 < 𝜋. The first low-frequency

zone is called the nonlinear acoustics PZ and is defined for frequencies 𝜔̃1𝑙𝑏 ≤ 𝜔̃ ≤ 𝜔̃1𝑢𝑏. The other is a high-frequency zone, which
is called the optical nonlinear PZ and is defined for frequencies 𝜔̃2𝑙𝑏 ≤ 𝜔̃ ≤ 𝜔̃2𝑢𝑏. Depending on the value of 𝑘𝑟, these nonlinear PZs
can be energy-independent and are represented on the frequency–amplitude domain. Consequently, the frequency–amplitude plane
has three nonlinear AZs. The first one is below the acoustics nonlinear PZ with frequency 𝜔̃ < 𝜔̃1𝑙𝑏, the second is confined between
the two nonlinear PZs with frequency 𝜔̃1𝑢𝑏 < 𝜔̃ < 𝜔̃2𝑙𝑏, and the third is located above the optical nonlinear PZ with frequency
̃ > 𝜔̃2𝑢𝑏. Similar to linear AZs, waves cannot be transmitted and get attenuated exponentially as they are associated with complex
wavenumbers in these nonlinear AZs. Note that the waves inside AZs are standing waves in the near-field. However, the size of
these nonlinear AZs depends on the input energy in the frequency–amplitude plane, unlike linear AZs.

To check the accuracy of the asymptotic solution for nonlinear PZs, we will introduce a reduced-order model for the infinite
16

lattice. The reduced-order model is derived based on our observations about the in phase and out of phase normal modes based on
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Eq. (22). These observations are used to characterize the type of motion of neighboring cells in the nonlinear lattice. Specifically,
when 𝜇 = 0, the neighboring cells go under in phase motion. This indicates that

𝑢𝑛 − 𝑢𝑛−1 = −(𝑢𝑛 − 𝑢𝑛+1) (23)

Introducing Eq. (23) in Eqs. (2)(c–d) yields

𝑢′′𝑛 + 𝑢𝑛 + 𝑘𝑟(𝑢𝑛 − 𝑦𝑛) = 0 (24a)

𝛾𝑦′′𝑛 + 𝑘𝑟(𝑦𝑛 − 𝑢𝑛) = 0, (24b)

These equations are a mirror image of the linearized equation given in Eq. (4). Indeed, since the nonlinear stiffness does not
go under deformations, these equations represent a system of linear ordinary differential equations with frequencies equal to the
fast frequencies of the system. The fast frequencies of this reduced order model provides us the lower boundaries of the PZs in the
frequency–amplitude plane for an infinite waveguide.

On the other hand, when 𝜇 = 𝜋, the neighboring cells undergo out of phase motion. This indicates that

𝑢𝑛 − 𝑢𝑛−1 = (𝑢𝑛 − 𝑢𝑛+1) (25)

Substituting Eq. (25) in Eqs. (2)(c–d) yields

𝑢′′𝑛 + 𝑢𝑛 + 2[(𝑢𝑛 − 𝑢𝑛−1)3] + 𝑘𝑟(𝑢𝑛 − 𝑦𝑛) = 0 (26a)

𝛾𝑦′′𝑛 + 𝑘𝑟(𝑦𝑛 − 𝑢𝑛) = 0 (26b)

𝑢′′𝑛−1 + 𝑢𝑛−1 − 2[(𝑢𝑛 − 𝑢𝑛−1)3] + 𝑘𝑟(𝑢𝑛−1 − 𝑦𝑛−1) = 0 (26c)

𝛾𝑦′′𝑛−1 + 𝑘𝑟(𝑦𝑛−1 − 𝑢𝑛−1) = 0 (26d)

The above equations are now nonlinear since the nonlinear stiffness goes under deformation due to the nature of the out of
phase motion.

By defining 𝑣 = 𝑢𝑛 − 𝑢𝑛−1 and 𝑤 = 𝑦𝑛 − 𝑦𝑛−1, and combining the set of equations in Eq. (26), one can introduce a reduced-order
model for the upper boundaries of the PZs in terms of a strongly nonlinear resonator coupled to a linear local resonator as

𝑣′′ + 𝑣 + 4𝑣3 + 𝑘𝑟(𝑣 −𝑤) = 0 (27a)

𝛾𝑤′′ + 𝑘𝑟(𝑤 − 𝑣) = 0 (27b)

The relationship of the frequency–amplitude of the upper boundaries of PZs can be obtained by determining the nonlinear normal
modes (NNMs) of the reduced-order model governed by Eq. (27). In the absence of internal resonance, the NNMs can be determined
analytically by solving the following amplitude–frequency relations [59]

𝐴 =

√

(𝜔̃2 − 𝜔2
1)(𝜔̃

2 − 𝜔2
2)

3(𝜔̃2 − 𝑘𝑟∕𝛾)
(28a)

𝐵 =
𝑘𝑟

𝛾(𝑘𝑟∕𝛾 − 𝜔̃2)
(28b)

Note that Eq. (28)(a) is defined in the interval 𝜔̃ ∈ [𝜔1,
√

𝑘𝑟∕𝛾], which implies that this equation describes the upper boundary
of the acoustics nonlinear PZ. On the other hand, Eq. (28)(b) is defined in the interval 𝜔̃ ∈ [𝜔2,∞], which means this equation
describes the upper boundary of the optical nonlinear PZ. Alternatively, the NNMs can be determined using numerical continuation
following the algorithm developed by [60].

Having established an asymptotic solution for the PZs with its exact counterpart, we compare both solutions to test the validity
of the asymptotic solution. For the low 𝑘𝑟 region, we plot both band structures in Fig. 12(a). The results demonstrate that both
solutions show a very good agreement at low energy levels. However, the asymptotic solutions overestimate the upper boundary of
the optical nonlinear PZ at higher energy levels and start departing from the analytical solution.

For high values of 𝑘𝑟, we plot both solutions in Fig. 12(b). It can be deduced that the asymptotic solution shows a very good
agreement with the exact solution in this region and also at low energy levels. However, increasing the energy level towards 𝜖𝐴 = 0.5
results in some discrepancies between the solutions as the asymptotic solution overestimates the exact solution. The error between
both solutions at high energy levels is attributed to considering only the first leading order in our expansion in Eq. (12). Therefore,
at higher energy levels higher harmonics cannot be ignored and more terms in the asymptotic solution need to be considered for
more accurate results.

After investigating the band structure of the infinite 1D locally resonant metamaterials, we now examine the propagation of
17

breathers in the next subsection.
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Fig. 12. Nonlinear band structure in: (a) the small 𝑘𝑟 zone (i.e., 𝑘𝑟 = 0.01); (b) the large 𝑘𝑟 zone (i.e., 𝑘𝑟 = 1).

.4. Traveling breathers

Traveling breathers can only be realized in certain nonlinear lattices with no counterparts in linear lattices. In this subsection,
e aim to obtain a special class of solution for the coupled DNLpS equation given in Eq. (17) in the form of traveling breathers.
he semi-infinite lattice is assumed to be excited by an impulsive force applied to one of its free ends. We aim to derive an accurate
rediction of the traveling breather based on the asymptotic solution and using analytical and numerical techniques.
Numerical results in the previous section have demonstrated the existence of three types of traveling breathers based on the value

f 𝑘𝑟. In this subsection, we derive an analytical solution for the breather in zones of low and high values of 𝑘𝑟, while we integrate
Eq. (17) numerically to determine the envelope of the breather in the transition zone. Based on the numerical observations, the
envelope of the breather in low and high values of 𝑘𝑟 zones is slowly modulated and propagates with a constant speed. Therefore,
we introduce the below ansatz

𝛿𝑛1 = 𝐴𝑛
(

𝜏1
)

𝑒𝑗𝛺1(𝜏1−𝑛𝑇01) 𝛿𝑛2 = 𝐵𝑛
(

𝜏1
)

𝑒𝑗𝛺2(𝜏1−𝑛𝑇02)

𝐴(𝑛+𝑚)(𝜏1) = 𝐴𝑛
(

𝜏1 − 𝑚𝑇01
)

𝐵(𝑛+𝑚)(𝜏1) = 𝐵𝑛
(

𝜏1 − 𝑚𝑇02
)

𝑛 = 1, 2, 3,…; 𝑚 ∈ Z

(29)

where 𝑇01 and 𝑇02 are the time shift between two consecutive breathers in the high 𝑘𝑟 zone and the low 𝑘𝑟 zone, respectively. It is
noteworthy that the amplitudes, 𝐴𝑛 and 𝐵𝑛, are a function of the slow timescale, which demonstrates the slow modulation of the
reather’s envelope. This observation, along with the time shift and the energy-dependent slow frequency, makes Eq. (29) covers
all aspects of nonlinear acoustics of the system. To avoid the effect of boundaries, a sufficiently long lattice is considered in this
study.

Substituting Eq. (29) into Eq. (17) and separating the real and imaginary components leads to

𝐴′
𝑛 = sin𝛺1𝑇01

(

3𝑎4

8𝜔3
1

(

𝐴3
𝑛+1 − 𝐴

3
𝑛−1

)

+ 6𝑎2𝑏2

8𝜔2
2𝜔1

(

𝐵2
𝑛−1𝐴𝑛−1 − 𝐵

2
𝑛+1𝐴𝑛+1

)

)

(30a)

𝐵′
𝑛 = sin𝛺2𝑇02

(

3𝑏4

8𝜔3
2

(

𝐵3
𝑛+1 − 𝐵

3
𝑛−1

)

+ 6𝑎2𝑏2

8𝜔2
1𝜔2

(

𝐴2
𝑛−1𝐵𝑛−1 − 𝐴

2
𝑛+1𝐵𝑛+1

)

)

(30b)

𝛺1𝐴𝑛 =
3𝑎4

8𝜔3
1

(

cos𝛺1𝑇01
(

𝐴3
𝑛+1 + 𝐴

3
𝑛−1

)

− 2𝐴3
𝑛
)

+ 6𝑎2𝑏2

8𝜔2
2𝜔1

(

cos𝛺1𝑇01
(

𝐵2
𝑛−1𝐴𝑛−1 + 𝐵

2
𝑛+1𝐴𝑛+1

)

− 2𝐴𝑛𝐵2
𝑛
)

(30c)

𝛺2𝐵𝑛 =
3𝑏4

8𝜔3
2

(

cos𝛺2𝑇02
(

𝐵3
𝑛+1 + 𝐵

3
𝑛−1

)

− 2𝐵3
𝑛
)

+ 6𝑎2𝑏2

8𝜔2
1𝜔2

(

cos𝛺2𝑇01
(

𝐴2
𝑛−1𝐵𝑛−1 + 𝐴

2
𝑛+1𝐵𝑛+1

)

− 2𝐴2
𝑛𝐵𝑛

)

(30d)

However, numerical simulations indicate that only the second fast frequency exists in the low 𝑘𝑟 zone, which yields 𝐴𝑛 = 0.
Whereas, the first fast frequency is dominant in the large 𝑘𝑟 zone, indicating that 𝐵𝑛 = 0. By simultaneously solving both cases,
Eq. (30) becomes decoupled and can be written based on the numerical observations as

𝐴′
𝑛 = sin𝛺1𝑇01

(

3𝑎4

8𝜔3
1

(

𝐴3
𝑛+1 − 𝐴

3
𝑛−1

)

)

; 𝑘𝑟∕𝜖 ≫ 1; 𝐵𝑛 = 0 (31a)

𝐵′
𝑛 = sin𝛺2𝑇02

(

3𝑏4

8𝜔3
2

(

𝐵3
𝑛+1 − 𝐵

3
𝑛−1

)

)

; 𝑘𝑟∕𝜖 ≪ 1; 𝐴𝑛 = 0 (31b)

𝛺1𝐴𝑛 =
3𝑎4

3

(

cos𝛺1𝑇01
(

𝐴3
𝑛+1 + 𝐴

3
𝑛−1

)

− 2𝐴3
𝑛
)

; 𝑘𝑟∕𝜖 ≫ 1; 𝐵𝑛 = 0 (31c)
18
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Fig. 13. The slow envelopes of the transient breather center around 𝜏 = 0: (a) 𝑘𝑟 = 0.01, 𝐴𝑛 = 0; (b) 𝑘𝑟 = 1, 𝐵𝑛 = 0.

𝛺2𝐵𝑛 =
3𝑏4

8𝜔3
2

(

cos𝛺2𝑇02
(

𝐵3
𝑛+1 + 𝐵

3
𝑛−1

)

− 2𝐵3
𝑛
)

; 𝑘𝑟∕𝜖 ≪ 1; 𝐴𝑛 = 0 (31d)

After decoupling the equations that describe the slowly modulated envelope based on the targeted zone, we rescale the slow
imescale. Particularly, we introduce the parameter 𝜅1 = sin(𝛺1𝑇01)

(

3
8

)

in Eqs. (31)(a&c) for the case of large 𝑘𝑟 zone, where

̃ = 𝜅1𝜏1. Similarly, we introduce the parameter 𝜅2 = sin(𝛺2𝑇02)
(

3
8

)

in Eqs. (31)(b&d) for the case of small 𝑘𝑟 zone, where 𝜏 = 𝜅2𝜏1.

Therefore, Eq. (31) becomes
d𝐴𝑛(𝜏)
d𝜏

= 𝑎4

𝜔3
1

(𝐴3
𝑛+1(𝜏) − 𝐴

3
𝑛−1(𝜏)); 𝑘𝑟∕𝜖 ≫ 1; 𝐵𝑛 = 0 (32a)

(−1)𝑠𝜅1
[

𝑠𝜋 + (−1)𝑠 sin−1 𝜅1
]

𝑇̃01
𝐴𝑛(𝜏) =

𝑎4

𝜔3
1

(

(−1)𝑠
√

1 − 𝜅21
[

𝐴3
𝑛+1(𝜏) + 𝐴

3
𝑛−1(𝜏)

]

− 2𝐴3
𝑛(𝜏)

)

; 𝑘𝑟∕𝜖 ≫ 1; 𝐵𝑛 = 0 (32b)

d𝐵𝑛(𝜏)
d𝜏

= 𝑏4

𝜔3
2

(𝐵3
𝑛+1(𝜏) − 𝐵

3
𝑛−1(𝜏)); 𝑘𝑟∕𝜖 ≪ 1; 𝐴𝑛 = 0 (32c)

(−1)𝑠𝜅2
[

𝑠𝜋 + (−1)𝑠 sin−1 𝜅2
]

𝑇̃02
𝐵𝑛(𝜏) =

𝑏4

𝜔3
2

(

(−1)𝑠
√

1 − 𝜅22
[

𝐵3
𝑛+1(𝜏) + 𝐵

3
𝑛−1(𝜏)

]

− 2𝐵3
𝑛 (𝜏)

)

; 𝑘𝑟∕𝜖 ≪ 1; 𝐴𝑛 = 0 (32d)

where 𝑠 ∈ N, 𝑇̃01 = 𝜅1𝑇01, 𝑇̃02 = 𝜅2𝑇02, 𝛺1 =
(−1)𝑠𝜅1

[

𝑠𝜋+(−1)𝑠 sin−1 𝜅1
]

𝑇̃01
, and 𝛺2 =

(−1)𝑠𝜅2
[

𝑠𝜋+(−1)𝑠 sin−1 𝜅2
]

𝑇̃02
.

Since 𝜅1 and 𝜅2 are periodic functions, the values of 𝛺1𝑇01 and 𝛺2𝑇02 must be defined as (𝑠𝜋 + (−1)𝑠 sin−1(𝜅1,2)). This definition
avoids any restrictions on the inverse of a periodic function defined from −𝜋∕2 to 𝜋∕2 and its uniqueness, which is not applicable
o 𝜅1,2 in this case and 𝜅1,2 need to be not uniquely defined.
Next, we numerically integrate the advanced-delay nonlinear Eq. (32)a and Eq. (32)c for the small and large 𝑘𝑟 zones,

espectively. To avoid any reflections from the boundaries of the semi-infinite lattice, we simulate a sufficiently long truncated
attice (i.e., 𝑁 = 100) with a free boundary on each end. We also follow the same numerical techniques mentioned in the previous
ection in terms of the type of integrator and the cells at which we analyze the breather. For initial conditions, we set 𝐴1(0+) = 0.5,
1(0+) = 0.5, and sets the initial displacement to rest for all the other cells. The solution of these equations is plotted in Fig. 13 for
alues of 𝑘𝑟 inside the small and large 𝑘𝑟 zones. The results show the slow envelopes for the 49th, 50th, and 51st slowly modulated
mplitudes. These envelopes travel with the same profile shifted with the fixed time shift. For clarity, we shifted the 50th slowly
odulated amplitude such that the 50th slowly modulated amplitude is centered at 𝜏 = 0.
Before comparing the analytical envelopes to the numerical results, we re-scale Eq. (32)(a) and Eq. (32)(c) again by introducing

̄𝑛(𝜏 ∗) = 𝑇̃ 1∕2
01 𝐴𝑛(𝜏), and 𝜏 ∗= 𝑎4𝜏

𝜔31 𝑇̃01
, 𝐵̄𝑛(𝜏 ∗) = 𝑇̃ 1∕2

02 𝐵𝑛(𝜏), and 𝜏 ∗= 𝑏4𝜏
𝜔32 𝑇̃02

. This can transfer Eq. (32)(a) and Eq. (32)(c) into the

following advance-delay differential equations

d𝐴̄𝑛 (𝜏∗)
d𝜏∗

= 𝐴̄3
𝑛
(

𝜏∗ − 1
)

− 𝐴̄3
𝑛
(

𝜏∗ + 1
)

; 𝑘𝑟∕𝜖 ≫ 1; 𝐵𝑛 = 0 (33a)

d𝐵̄𝑛 (𝜏∗)
d𝜏∗

= 𝐵̄3
𝑛
(

𝜏∗ − 1
)

− 𝐵̄3
𝑛
(

𝜏∗ + 1
)

; 𝑘𝑟∕𝜖 ≪ 1; 𝐴𝑛 = 0 (33b)
19
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Fig. 14. Comparison between the asymptotic solution and the numerical simulations for the breather envelope, 𝐼0 = 0.1: (a) 𝑘𝑟 = 0.01; (b) 𝑘𝑟 = 1.

Eq. (33) demonstrates that the envelope reaches its maximum value at d𝐴̄𝑛(𝜏∗)
d𝜏∗ = 0 and d𝐵̄𝑛(𝜏∗)

d𝜏∗ = 0 when it is centered at 𝜏 ∗= 0.
Transferring this condition back to the original scales yields the following interesting conditions

𝑇̃01𝑀2
𝑛𝑎𝜔

3
1

𝑎4
= constant = 0.7975; 𝑘𝑟∕𝜖 ≫ 1; 𝐵𝑛 = 0 (34a)

𝑇̃02𝑀2
𝑛𝑏𝜔

3
2

𝑏4
= constant = 0.7975; 𝑘𝑟∕𝜖 ≪ 1; 𝐴𝑛 = 0 (34b)

where 𝑀𝑛𝑎 = 𝑚𝑎𝑥[𝐴𝑛] and 𝑀𝑛𝑏 = 𝑚𝑎𝑥[𝐵𝑛].
These conditions relate the speed of the breathers to their amplitudes for the given system parameters. So for specific parameters

f the lattice, this relation can represent the dependency of the breather’s speed on the amplitude. Therefore, changing the system
arameters will lead to altering this relation. To compare between the analytical and numerical solutions, one needs to transfer the
ime scale back to the original time scales in Eq. (2). This step requires evaluating the values of 𝜅1 and 𝜅2. Combining Eq. (34) with
he definition of the slow-frequency in Eq. (32)b and Eq. (32)d, one can obtain the following expression for the fast frequency

𝛺1 =
0.4702𝜔3

1𝜅1[𝑠𝜋 + (−1)𝑠 sin−1 𝜅1]𝑀2
𝑛𝑎

𝑎4
; 𝑘𝑟∕𝜖 ≫ 1; 𝐵𝑛 = 0 (35a)

𝛺2 =
0.4702𝜔3

2𝜅2[𝑠𝜋 + (−1)𝑠 sin−1 𝜅2]𝑀2
𝑛𝑏

𝑏4
; 𝑘𝑟∕𝜖 ≪ 1; 𝐴𝑛 = 0 (35b)

By comparing the slow frequency expressions given in Eqs. (20)–(21) to the slow frequency expressions given in Eq. (35), one can
compute the values of 𝜅1 and 𝜅2 numerically. For real non-negative values of 𝜅1 and 𝜅2, we select 𝑠 = 4 throughout our calculations.
Once the time scale is transferred back to the original dimensionless time 𝜏, numerical and asymptotic results can be compared.
20

Considering the low 𝑘𝑟 zone, we plot the numerical solution (Eq. (2)) and the asymptotic envelope (Eq. (32)(c)) in Fig. 14(a).
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The results indicate that our asymptotic solution can accurately capture the slow-flow dynamics of the propagating breather at a
small energy level. However, we anticipate gradual deviation between both solutions as the energy level increases. Moving our
attention to the large 𝑘𝑟 zone, we similarly plot both solutions in Fig. 14(b). It can be deduced that our asymptotic solution can also
fully capture the slow dynamics of the traveling breather in this zone. Before concluding our study, we draw our attention to the
slow dynamics in the transition zone. When both frequency amplitudes 𝐴𝑛 and 𝐵𝑛 contribute to the dynamics, Eq. (30) cannot be
ecoupled and simplified following the approach used in other zones, where only a single frequency mode dominates the dynamics.
nstead, we directly integrate the coupled DNLpS equations given in Eq. (17). The solution of this equation is plotted in Fig. 14(c) and
ompared to the direct numerical integration of Eq. (2). It should be noted that we compare the asymptotic solution to the numerical
imulation’s envelope obtained by Hilbert transform instead of comparing directly to the breather due to the complex dynamics in
his region. The results reveal that both solutions follows the same trend and show relatively good agreement. However, the slow
ynamics are still not fully captured due to the complexity of dynamics in this region, where higher harmonics may contribute to
he dynamics. Therefore, higher-order perturbations need to be considered to reduce the observed error.

. Concluding remarks

In this study, we investigated the nonlinear wave propagation and the nonlinear band structure of a 1D discrete strongly nonlinear
ocally resonant metamaterial when subjected to an impulsive force. The metamaterial was modeled as a lattice consisting of linearly
rounded cells and connected through essential nonlinear stiffness. Inside each cell, a linear local resonator was embedded. This
odel of metamaterial was first investigated numerically to gain insight on the nonlinear acoustics features in the system. Numerical
nalyses demonstrated the birth of traveling breathers in the system. These breathers were characterized into three different families
ased on the coupling coefficient between the local resonator and the holding cell. We observed that the first and the third families
f breathers exist at a small and large coupling coefficient, respectively. Also, these were associated with a single fast frequency
ignal confined within a slowly varying envelope (traveling breathers). The fast frequency of the first family is located inside the
onlinear optical PZ, while it lies inside the nonlinear acoustics PZ for the third family of breathers. Between those two zones of
oupling coefficients, we observed a transition zone, where fast frequencies of the breather start transferring from the nonlinear
ptical PZ to the nonlinear acoustics PZ. Inside the transition zone, we presented, for the first time, a new family of breathers that
ravels with multiple fast frequencies. The boundaries of this transition zone were also determined, and the simulations revealed the
ependence of these boundaries on the input energy. Transferring of energy between the PZs inside this zone was explored using the
BEMD. Numerical investigations also indicated an interesting phenomenon of breather arrest that can be observed in the studied
ystem without any source of dissipation or damping under impulsive force excitation. The location of the breather arrest depends
n the input energy level and the coupling between the local resonator and the holding cell. In addition, we observed that breather
rrest always occurs at the same location irrespective of the length of semi-infinite lattice for the same level of input energy and
oupling coefficient.
Driven by the numerical observations and insights, analytical study was also performed using the CX-A method. Since the

ynamics of the system can be associated with two distinct fast frequencies, we first decoupled the linearized system before applying
he asymptotic analysis. The asymptotic analysis partitioned the dynamics into slow and fast flow components. The slow-flow
quations were utilized to obtain the nonlinear band structure of the infinite model for the lattice. The analysis revealed the presence
f two nonlinear PZs (acoustics and optical) and three nonlinear AZs in the nonlinear band structure. Unlike the linear case, the
pper boundaries of the PZs (associated with the out of phase normal modes) are energy-dependent. Therefore, they can be tuned
ased on the energy level. Asymptotic band structures were compared to the exact band structure of the system. Both results showed
very good agreement at low energy levels; however, they gradually departed from each other with increasing the input energy.
symptotic analysis was also employed to capture the nonlinear acoustics of the traveling breather’s envelopes in all coupling
oefficient zones in a semi-infinite lattice. The obtained breathers were compared to direct numerical results and showed a very
ood agreement in all zones.
The reported traveling breather in 1D discrete strongly nonlinear locally resonant metamaterials paves the way for the use of this

tructure in many interesting applications. For instance, it can be utilized in designing passive energy redirection systems by means
f the Landau–Zener quantum tunneling effect [32]. In addition, the reported new family of breathers that propagates with multiple
ast frequencies paves the way for designing waveguide frequency converters. Finally, the reported breathers can also motivate the
tudy of strongly non-reciprocal acoustical properties using this system [61].
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Appendix. Analytic calculation CX-A

The second order real set governed by Eq. (2) can be transferred into a first-order complex equation by using Eq. (11) as

𝑑𝜓𝑛1
𝑑𝜏

+
𝜔1
2𝑗

(

𝜓𝑛1 + 𝜓∗
𝑛1
)

+
𝜔1
2𝑗

(

𝜓𝑛1 − 𝜓∗
𝑛1
)

= 𝑎

{[

𝑎

(

𝜓(𝑛−1)1 − 𝜓∗
(𝑛−1)1

2𝑗𝜔1
−

𝜓𝑛1 − 𝜓∗
𝑛1

2𝑗𝜔1

)

+ 𝑏

(

𝜓(𝑛−1)2 − 𝜓∗
(𝑛−1)2

2𝑗𝜔2
−
𝜓𝑛2 − 𝜓∗

𝑛2
2𝑗𝜔2

)]3

+

[

𝑎

(

𝜓(𝑛+1)1,−𝜓∗
(𝑛+1)

2𝑗𝜔1
−
𝜓𝑛1 − 𝜓∗

𝑛1
2𝑗𝜔1

)

+ 𝑏

(

𝜓(𝑛+1)2 − 𝜓∗
(𝑛+1)2

2𝑗𝜔2
−
𝜓𝑛2 ⋅ 𝜓∗

𝑛2
2𝑗𝜔2

)]3⎫
⎪

⎬

⎪

⎭

(36a)

𝑑𝜓𝑛2
𝑑𝜏

+
𝜔2
2𝑗

(

𝜓𝑛2 + 𝜓∗
𝑛2
)

+
𝜔1
2𝑗

(

𝜓𝑛2 − 𝜓∗
𝑛2
)

= 𝑏

{[

𝑎

(

𝜓(𝑛−1)1 − 𝜓∗
(𝑛−1)1

2𝑗𝜔1
−

𝜓𝑛1 − 𝜓∗
𝑛1

2𝑗𝜔1

)

+ 𝑏

(

𝜓(𝑛−1)2 − 𝜓∗
(𝑛−1)2

2𝑗𝜔2
−
𝜓𝑛2 − 𝜓∗

𝑛2
2𝑗𝜔2

)]3

+

[

𝑎

(

𝜓(𝑛+1)1,−𝜓∗
(𝑛+1)

2𝑗𝜔1
−
𝜓𝑛1 − 𝜓∗

𝑛1
2𝑗𝜔1

)

+ 𝑏

(

𝜓(𝑛+1)2 − 𝜓∗
(𝑛+1)2

2𝑗𝜔2
−
𝜓𝑛2 ⋅ 𝜓∗

𝑛2
2𝑗𝜔2

)]3⎫
⎪

⎬

⎪

⎭

(36b)

𝑛 = 1, 2,… , 𝑁

here the initial condition can be determined using Eq. (7), and 𝜓01 = 𝜓02 = 𝜓𝑁1 = 𝜓𝑁2 = 0.
In order to partition the dynamics of this problem into slow and fast time scales using the method of multiple scales, one should

substitute Eqs. (12)–(13) into Eq. (36) to obtain

𝜀
[

𝑑𝜓𝑛01
𝑑𝜏0

+
𝜔1
𝑗
𝜓𝑛01

]

+ 𝜀3
[

𝑑𝜓𝑛11
𝑑𝜏0

𝜔1
𝑗
𝜓𝑛11 +

𝑑𝜓𝑛01
𝑑𝜏1

+ 𝑎

{[

𝑎

(

𝜓𝑛01 − 𝜓∗
𝑛01

2𝑗𝜔1

−
𝜓(𝑛−1)01 − 𝜓∗

(𝑛−1)01

2𝑗𝜔1

)

+ 𝑏

(

𝜓𝑛02 − 𝜓∗
𝑛02

2𝑗𝜔2
−
𝜓(𝑛−1)02 − 𝜓∗

(𝑛−1)02

2𝑗𝜔2

)]3

+

[

𝑎

(

𝜓𝑛01 − 𝜓∗
𝑛01

2𝑗𝜔1
−

𝜓(𝑛+1)01 − 𝜓∗
(𝑛+1)01

2𝑗𝜔1

)

+ 𝑏

(

𝜓𝑛02 − 𝜓∗
𝑛02

2𝑗𝜔2
−
𝜓(𝑛+1)02 − 𝜓∗

(𝑛+1)02

2𝑗𝜔2

)]3⎫
⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

+ 𝑂(𝜀5) = 0

(37a)

𝜀
[

𝑑𝜓𝑛02
𝑑𝜏0

+
𝜔2
𝑗
𝜓𝑛02

]

+ 𝜀3
[

𝑑𝜓𝑛12
𝑑𝜏0

𝜔2
𝑗
𝜓𝑛12 +

𝑑𝜓𝑛02
𝑑𝜏1

+ 𝑏

{[

𝑎

(

𝜓𝑛01 − 𝜓∗
𝑛01

2𝑗𝜔1

−
𝜓(𝑛−1)01 − 𝜓∗

(𝑛−1)01

2𝑗𝜔1

)

+ 𝑏

(

𝜓𝑛02 − 𝜓∗
𝑛02

2𝑗𝜔2
−
𝜓(𝑛−1)02 − 𝜓∗

(𝑛−1)02

2𝑗𝜔2

)]3

+

[

𝑎

(

𝜓𝑛01 − 𝜓∗
𝑛01

2𝑗𝜔1
−

𝜓(𝑛+1)01 − 𝜓∗
(𝑛+1)01

2𝑗𝜔1

)

+ 𝑏

(

𝜓𝑛02 − 𝜓∗
𝑛02

2𝑗𝜔2
−
𝜓(𝑛+1)02 − 𝜓∗

(𝑛+1)02

2𝑗𝜔2

)]3⎫
⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

+ 𝑂(𝜀5) = 0

(37b)

With including 𝑂(𝜀5) in the expression, Eq. (37) is exact and equivalent to the original system. However, assuming 𝜀 is small and
mitting higher orders from the expression makes the problem approximate. Now the problem can be represented by a hierarchy
f sub-problems at 𝑂(𝜀) and 𝑂(𝜀3). At order 𝑂(𝜀), the problem can be separated into the set of equations given in Eq. (14). On the
ther hand, with considering the solution of the problem at 𝑂(𝜀) (i.e., Eq. (15), the problem at order 𝑂(𝜀3) can be written as

𝑑𝜓𝑛11
𝑑𝜏0

+
𝑑𝜙𝑛01
𝑑𝜏1

𝑒𝑗𝜔1𝜏0 − 𝑗𝜔1𝜓𝑛11 + 𝑎𝛤 = 0 (38a)

𝑑𝜓𝑛12
𝑑𝜏0

+
𝑑𝜙𝑛02
𝑑𝜏1

𝑒𝑗𝜔2𝜏0 − 𝑗𝜔2𝜓𝑛12 + 𝑏𝛤 = 0 (38b)

where 𝛤 is

𝛤 =

[

𝑎

(

𝜙𝑛01 − 𝜙(𝑛−1)01 𝑒𝑗𝜔1𝜏0 −
𝜙∗
𝑛01 − 𝜙

∗
(𝑛−1)01 𝑒−𝑗𝜔1𝜏0

)

+ 𝑏

(

𝜙𝑛02 − 𝜙(𝑛−1)02 𝑒𝑗𝜔2𝜏0 −
𝜙∗
𝑛02 − 𝜙

∗
(𝑛−1)02 𝑒−𝑗𝜔2𝜏0

)]3

(39)
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To obtain the slow flow equations, one should eliminate the secular terms in order to keep the approximation bounded. Therefore,
e average Eq. (38)(a) over the fast frequency 𝜔1 and Eq. (38)(b) over the fast frequency 𝜔2. This lead to the set of slow flow
quations provided in Eq. ((16), where

𝛾1 = 3𝑎3
(

|𝜓𝑛01 − 𝜓(𝑛−1)01|(𝜓𝑛01 − 𝜓(𝑛−1)01)
(2𝑗𝜔1)3

+
|𝜓𝑛01 − 𝜓(𝑛+1)01|(𝜓𝑛01 − 𝜓(𝑛+1)01)

(2𝑗𝜔1)3

)

+

6𝑎𝑏2
(

|𝜓𝑛02 − 𝜓(𝑛−1)02|(𝜓𝑛01 − 𝜓(𝑛−1)01)
(2𝑗𝜔2)2(2𝑗𝜔1)

+
|𝜓𝑛02 − 𝜓(𝑛+1)02|(𝜓𝑛01 − 𝜓(𝑛+1)01)

(2𝑗𝜔2)2(2𝑗𝜔1)

)
(40a)

𝛾2 = 3𝑏3
(

|𝜓𝑛02 − 𝜓(𝑛−1)02|(𝜓𝑛02 − 𝜓(𝑛−1)02)
(2𝑗𝜔2)3

+
|𝜓𝑛02 − 𝜓(𝑛+1)02|(𝜓𝑛02 − 𝜓(𝑛+1)02)

(2𝑗𝜔2)3

)

+

6𝑎2𝑏
(

|𝜓𝑛01 − 𝜓(𝑛−1)01|(𝜓𝑛02 − 𝜓(𝑛−1)02)
(2𝑗𝜔1)2(2𝑗𝜔2)

+
|𝜓𝑛01 − 𝜓(𝑛+1)01|(𝜓𝑛02 − 𝜓(𝑛+1)02)

(2𝑗𝜔1)2(2𝑗𝜔2)

)
(40b)
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