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ABSTRACT

We present predictions for the evolution of the galaxy dust-to-gas ratio (DGR) and dust-to-
metal ratio (DTM) from z = 0 — 6, using a model for the production, growth, and destruction
of dust grains implemented into the SIMBA cosmological hydrodynamic galaxy formation
simulation. In our model, dust forms in stellar ejecta, grows by the accretion of metals, and is
destroyed by thermal sputtering and supernovae. Our simulation reproduces the observed dust
mass function at z = 0, but modestly underpredicts the mass function by ~x3 at z ~ 1-2. The
z = 0 DGR versus metallicity relationship shows a tight positive correlation for star-forming
galaxies, while it is uncorrelated for quenched systems. There is little evolution in the DGR—
metallicity relationship between z = 0 and 6. We use machine learning techniques to search
for the galaxy physical properties that best correlate with the DGR and DTM. We find that
the DGR is primarily correlated with the gas-phase metallicity, though correlations with the
depletion time-scale, stellar mass, and gas fraction are non-negligible. We provide a crude
fitting relationship for DGR and DTM versus the gas-phase metallicity, along with a public

code package that estimates the DGR and DTM given a set of galaxy physical properties.

Key words: (ISM:) dust, extinction — galaxies: high-redshift — galaxies: ISM.

1 INTRODUCTION

Dust plays a critical role in the physics of the interstellar medium
(ISM) and galaxy evolution. The surfaces of dust grains catalyze a
range of chemical reactions that influence the structure of ISM and
star formation (Hollenbach & Salpeter 1971; Mathis 1990; Wein-
gartner & Draine 2001; Draine 2003; Wolfire et al. 2008; Hollenbach
etal. 2012; Gong, Ostriker & Wolfire 2017), including the formation
of molecular hydrogen and grain-catalyzed recombinations of H*
and C*. The ejection of dust from galaxies can contribute to metal
abundances in the intergalactic medium and offers an additional
cooling channel (Ostriker & Silk 1973; Bouché et al. 2007; Ménard,
Kilbinger & Scranton 2010; Peeples et al. 2014; Peek, Ménard &
Corrales 2015; Vogelsberger et al. 2019), while dust absorption
of far-ultraviolet and optical photons can shape the temperature
structure of the neutral ISM (Goldsmith 2001; Krumholz, Leroy
& McKee 2011; Narayanan et al. 2011, 2012; Narayanan & Davé
2012).

A complex set of physical processes contributes to the evolving
dust content of the Universe. It can be produced via condensation
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of dust grains from the gas-phase metals in the ejecta of asymptotic
giant branch (AGB) stars and supernovae (SNe; Gehrz 1989; Todini
& Ferrara 2001; Nozawa et al. 2003; Ferrarotti & Gail 20006;
Nozawa et al. 2007; Zhukovska, Gail & Trieloff 2008; Nanni
et al. 2013; Schneider et al. 2014), after which it can grow in
the ISM via accretion of gas-phase metals (Dominik & Tielens
1997; Dwek 1998; Hirashita & Kuo 2011; Zhukovska 2014). It
can be destroyed via enhanced non-thermal sputtering in SN blast
waves, thermal sputtering, and via grain—grain collisions (Draine &
Salpeter 1979a, b; Seab & Shull 1983; McKee et al. 1987; Jones,
Tielens & Hollenbach 1996; Bianchi & Ferrara 2005; Nozawa et al.
2007).

Dust properties in galaxies have been intensively studied through
statistics and scaling relations, of which three particularly inter-
esting are dust mass functions (DMFs; Dunne, Eales & Edmunds
2003; Vlahakis, Dunne & Eales 2005; Eales et al. 2009; Dunne
et al. 2011; Clemens et al. 2013; Beeston et al. 2018), dust-to-gas
ratios (DGRs) and dust-to-metal ratios (DTMs) as a function of
galaxy metallicity or stellar mass (Issa, MacLaren & Wolfendale
1990; Lisenfeld & Ferrara 1998; Hirashita, Tajiri & Kamaya 2002;
Draine et al. 2007; Galametz et al. 2011; De Cia et al. 2013, 2016;
Zafar & Watson 2013; Rémy-Ruyer et al. 2014; Sparre et al. 2014;
Giannetti et al. 2017; Wiseman et al. 2017; Chiang et al. 2018;
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Kahre et al. 2018; De Vis et al. 2019). These relationships provide a
convenient method for determining gas masses in galaxies, as well
as providing constraints on the baryon cycle that governs galaxy
evolution at low and high redshifts (e.g. Magdis et al. 2012).

Theorists have commonly used an assumed constant dust-to-
metal ratio in galaxies in order to model the evolving dust content
in hydrodynamic or semi-analytic models of galaxy formation (e.g.
Silva et al. 1998; Granato et al. 2000; Baugh et al. 2005; Lacey et al.
2010; Narayanan et al. 2010; Fontanot & Somerville 2011; Niemi
etal. 2012; Somerville et al. 2012; Hayward et al. 2013; Narayanan
etal. 2015, 2018a, b; Cowley et al. 2017; Katz et al. 2019; Ma et al.
2019). However, there is growing evidence from both integrated
and resolved far-infrared studies of galaxies at both low and high
redshifts that the DGR and DTM in galaxies are not constant, and
may not even be straightforwardly modelled by a simple linear
relationship with a galaxy physical property (such as metallicity).
For example, while the gas-to-dust ratio appears to scale with the
metallicity of galaxies in the local Universe (Dwek 1998; Draine
et al. 2007; Bendo et al. 2010), there may be deviations from this
trend at the lowest metallicities (e.g. Galliano et al. 2005; Galametz
et al. 2011; Rémy-Ruyer et al. 2014; De Vis et al. 2019). Similarly,
the DTG measured by damped Ly-alpha (DLA) and gamma-ray
burst (GRB) absorbers (e.g. De Cia et al. 2013, 2016; Wiseman
etal. 2017) from z = 0.1 to z = 6.3 are similar to those in the Local
group, though drop at metallicities lower than 0.05 Z. Hence, more
sophisticated theoretical modelling of galaxy dust content and its
evolution is needed.

In recent years, galaxy evolution models have progressed from
treating dust as a simple scale factor of the metal mass (see
Somerville et al. 2012 and references therein) to including the
physics of dust formation, growth and destruction in galaxies as
they evolve. The first generation of these sorts of simulations treated
galaxies as one-zone models (e.g. Issa et al. 1990; Dwek 1998;
Inoue 2003; Morgan & Edmunds 2003; Calura, Pipino & Matteucci
2007; Zhukovska et al. 2008; Hirashita & Yan 2009; Asano et al.
2013; Calura et al. 2014; Rowlands et al. 2014; Zhukovska 2014,
Feldmann 2015; De Vis et al. 2017), though more recently a number
of groups have begun to incorporate self-consistent dust physics
on-the-fly into bona fide hydrodynamic models of galaxy formation
and evolution. Bekki (2015), McKinnon, Torrey & Vogelsberger
(2016), and Aoyama et al. (2017) established some of the initial
frameworks for including dust in hydrodynamic galaxy formation
simulations to study the evolution of dust properties in individual
galaxies. Building on this, McKinnon et al. (2017) performed
full-volume cosmological simulations using moving mesh code
AREPO to study dust properties across galaxies over cosmic time,
but were unable to successfully reproduce the DGR-metallicity
relation. Vogelsberger et al. (2019) extended this framework by
implementing high temperature dust cooling channels to study
dust in galaxy clusters and its impact on the intergalactic medium.
Aoyamaetal. (2017,2018) developed a two-grain size model into an
SPH (smoothed particle hydrodynamic) cosmological simulation,
where they studied overall dust properties in a whole cosmological
volume and IGM, while Hou et al. (2019) built on this to add a
phenomenological active galactic nuclei (AGNs) feedback model.
Finally, Popping, Somerville & Galametz (2017) and Vijayan
et al. (2019) have implemented the physics of dust formation,
growth and destruction into semi-analytic galaxy formation models.
The growing interest in modelling dust evolution highlights its
importance in more accurately modelling the observed properties
of galaxies.
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What has been missing thus far is a predictive self-consistent
model for the DGR and DTM in galaxies across cosmic time in
a large-volume cosmological galaxy formation simulation. In this
paper, we aim to develop this model. To do this, we incorporate
into state-of-the-art cosmological hydrodynamic simulation SIMBA
(Davé et al. 2019) a model to track on-the-fly dust formation and
evolution, broadly following the McKinnon et al. (2017) passive
scalar dust algorithm. Here, passive refers to the dust being advected
with the gas, and scalar refers to the dust having a fixed grain-size
distribution.

We include dust production from Type-II SN and AGB stars, and
further growth via accretion of metals, while destruction can occur
from sputtering, consumption by star formation, or SN shocks. We
explore the evolution of the galaxy DMF and the scaling relations of
the DGR and DTM with metallicity over cosmic time. We then build
on this, and investigate the physical drivers of the DGR and DTM
using a machine-learning framework trained by our simulated data
set to understand the scatter in the DGR/DTM-metallicity relation.
We use these tools to develop an algorithm (that we release publicly)
for the dust mass from galaxies without the assumption of an overly
simplistic DGR or DTM. We additionally provide a simple scaling
relation for the DGRs in galaxies.

This paper is organized as follows. In Section 2, we summarize
the SIMBA simulation suite, with a particular focus on the model
for dust formation and evolution. We present the DMFs and scaling
relations between the DGR/DTM and gas phase metallicities in
Section 3. In Section 3.4, we model the underlying physical drivers
of the DGR and DTM, and establish a connection between the
DGR/DTM and various physical properties of galaxies. We then
discuss our results, compare them to other theoretical work, and
discuss potential caveats in Section 4, and conclude in Section 5.

2 METHODOLOGY

2.1 Cosmological simulations

This work utilizes the SIMBA cosmological hydrodynamic simula-
tion. We refer the reader to Davé et al. (2019) for full details, and
we summarize the salient points here.

The primary SIMBA simulation we use here has 10243 dark matter
particles and 1024% gas elements in a cube of 100k~ Mpc side
length, and is run from z = 249 down to z = 0. We assume a
Planck16 (Planck Collaboration et al. 2016) concordant cosmology
of Qn = 0.3, Q4 =0.7, Q, = 0.048, Hy =68 kms~' Mpc™!,
og = 0.82, and ng = 0.97. Our SIMBA run has a minimum
gravitational softening length €, = 0.5h7! kpc, mass resolution
9.6 x 107 Mg, for dark matter particles and 1.82 x 107 Mg, for gas
elements. The system is evolved using a forked version of the GIZMO
cosmological gravity plus hydrodynamic solver (Hopkins 2015), in
its Meshless Finite Mass (MFM) version. This code, modified from
GADGET-3 (Springel 2005), evolves dark matter and gas elements
together including gravity and pressure forces, handling shocks via
a Riemann solver with no artificial viscosity.

Radiative cooling and photoionization heating are modelled using
the GRACKLE-3.1 library (Smith et al. 2017), including metal cooling
and non-equilibrium evolution of primordial elements. An H,-based
star formation rate is used, where the H, fraction is computed
based on the sub-grid model of Krumholz, McKee & Tumlinson
(2009) based on the metallicity and local column density, with
minor modifications as described in Davé, Thompson & Hopkins
(2016) to account for variations in numerical resolution. The star
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formation rate is given by the H, density divided by the dynamical
time: SFR=¢, pu»/tayn, Where we use €, = 0.02 (Kennicutt 1998).
These stars drive winds in the ISM. This form of feedback is
modelled as a two-phase decoupled wind, with 30 per cent of wind
particles ejected hot, i.e. with a temperature set by the supernova
energy minus the wind kinetic energy. The modelled winds have an
ejection probability that scales with the galaxy circular velocity and
stellar mass (calculated on the fly via fast friends-of-friends galaxy
identification). The nature of these scaling relations follow the
results from higher resolution studies in the Feedback in Realistic
Environments zoom simulation campaign (e.g. Muratov et al. 2015;
Anglés-Alcézar et al. 2017b; Hopkins et al. 2014, 2018).

The chemical enrichment model tracks eleven elements (H, He, C,
N, O, Ne, Mg, Si, S, Ca, Fe) during the simulation, with enrichment
tracked from Type-II SNe, Type-Ia SNe, and AGB stars. The yield
tables employed are Nomoto et al. (2006) for SNII yields, Iwamoto
et al. (1999) for SNIa yields, and AGB star enrichment following
Oppenheimer & Davé (2006). Type-Ia SNe and AGB wind heating
are also included, along with ISM pressurization at a minimum
level as required to resolve the Jeans mass in star-forming gas as
described in Davé et al. (2016).

SIMBA incorporates black hole physics. Black holes are seeded
and grown during the simulation via two-mode accretion. The first
mode closely follows the torque-limited accretion model presented
in Anglés-Alcazar et al. (2017a), and the second mode uses Bondi
accretion, but solely from the hot gas component. The accretion
energy is used to drive feedback that serves to quench galaxies,
including a kinetic subgrid model for black hole feedback, along
with X-ray energy feedback. SIMBA additionally includes a dust
physics module to track the life cycle of cosmic dust, which we
describe in the following section.

2.2 Modelling the dust life cycle

In our implementation, dust is fully coupled with gas flows. This
treatment is essentially accurate, as the drift caused by the gas—
dust drag force and the radiative pressure is under-resolved in our
simulations. Additionally, dust grains are assumed to have the same
physical properties with a constant radius a = 0.1 pm and density
o = 2.4gcm™3 (Draine 2003). We ignore dust cooling channels
that will be implemented in future work.

Dust is produced by condensation of a fraction of metals from
SNe and AGB ejecta. We follow the prescription described by
equations (4)—(7) in Popping et al. (2017) that updates the work
of Dwek (1998). In the following, m] 4 refers to the dust mass of
the ith element (C, O, Mg, Si, S, Ca, Fe) prpduced by the jth stellar
process (SNII or AGB stars), whereas m{‘ej refers to the mass of
ejecta from the jth process.

The mass of dust produced by AGB stars with a carbon-to-oxygen
mass ratio C/O > 1 is expressed as

AGB (,,, AGB AGB L
8¢ (mc,ej —0.75movej), i =C
mAGB _
id =

ey

0, otherwise,
where §2CB is the condensation efficiency of element i for AGB
stars. The mass of dust produced by AGB stars with C/O < 1 is
expressed as

0, i=C
AGB __ AGB, AGB  : _
mpg =416 & mi", i =0 @
i=Mg,Si,S,Ca,Fe
(SIAGBmAGB otherwise,

iej

where u; is the mass of element i in atomic mass units. The mass
of dust produced by Type-1I SNe is described as

SNIL, SNII -
o me i =C
SNI _ SNIL SNI & _
myy =416 > SmyG, 1= (6] 3)
i=Mg,Si,S,Ca,Fe
(SiSNHm,-SI;IjH, otherwise,
where 8$N! is the condensation efficiency of element i for SNII.

We choose a fixed dust condensation efficiency §;G5, = 0.2 based

on the computation of Ferrarotti & Gail (2006), and 871, = 0.15
guided by Bianchi & Schneider (2007) to match the low-metallicity
end of the observed z = 0 relation between the DGR and gas-phase
metallicities (Rémy-Ruyer et al. 2014)." We omit the condensation
of Type-Ia SN ejecta, as recent work suggests that Type-la SNe
are not significant sources of dust production (see Nozawa et al.
2011; Dwek 2016; Gioannini et al. 2017). This is different from
McKinnon et al. (2016) and Popping et al. (2017), where Type-
Ia SNe are assumed to have the same condensation efficiency as
Type-1I SNe.

Once dust grains are seeded, they grow by accreting gas-phase
metals. Following Dwek (1998), the growth rate is expressed as

dM, M, M,
().~ () (22) @
dr grow M metal Tacer

where M is the total mass of dust and local gas-phase metals.
Following Hirashita (2000) and Asano et al. (2013), the accretion
time-scale T 18

el Tre f Z
Tacer = Tref (p f) ( ! ) (76) . (5)
P T, Zg

where pg, Ty, and Z, are the local gas density, temperature, and
metallicity, respectively. pref, Tref, and Z,¢ are the reference values
correspondingly. We take p.f = 100 H atoms cm ™3, Tor = 20 K,
and 7.f = 10 Myr in this work.

Dust grains can be eroded by colliding with thermally excited
gas especially in hot haloes (e.g. Barlow 1978; Draine & Salpeter
1979b; Tielens et al. 1994). We adopt the approximation of the
thermal sputtering rate of grain radii derived by Tsai & Mathews
(1995), following McKinnon et al. (2017) and Popping et al.(2017).
The sputtering time-scale is expressed as

al|™ a 107¥ gecm™
~ (0.17 Gyr)
0.1 pm Oq

dr
o\

where w = 2.5 controls the low-temperature scaling of the sputtering
rate and 7, = 2 x 10° K is the temperature above which the
sputtering rate flattens. The growth rate of dust mass due to thermal
sputtering is then calculated by

(%) J— My @)
dt ) /3

Because SN blast waves are not resolved in our simulations,
we implement a subgrid model for dust destruction by SN shocks

Tp=a

Note — because our condensation efficiency for Type-II SNe is tuned to
match the low-Z end of the local DGR-metallicity relation, the z = 0
version of this relationship in the remainder of this paper should be treated
as matching observations by construction, and not as a bona fide prediction.

MNRAS 490, 1425-1436 (2019)
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Table 1. Simulation free parameters.

Parameter Description Value Range accepted by literature
Thermal sputtering
a Grain radius (pum) 0.1 -
o Density of solid matters within grains (g cm ) 24 2.2(graphite), 3.3(silicate)’
Production
fgu]zic/ 0> Condensation efficiency 02fori=C 0.2-1.0°
0 otherwise 0
5o C/0<! 0fori=0 0
0.2 otherwise 0.2-0.8"
e 0.15fori=C 0.15-1.0°
0.15 otherwise 0.15-0.8"
Growth
ot Reference density (g cm™3) 23 x 10722 -
ref Reference temperature (K) 20 -
e Growth time-scale with T = 7! and p = p™ (Myr) 10 2-500¢
Destruction (SNe Shock)
Egn;si Energy per SN (103! erg) 1.0 -
€ The efficiency of destruction by SN shocks 0.3 0.1-0.5¢

Notes. “See Jones et al. (1996).
»See Dwek (1998), McKinnon et al. (2017), and Popping et al. (2017).

“We fix p™f = 2.3 x 10722 g em=3 and 7°f = 20 K. See Dwek (1998), Zhukovska (2014), McKinnon et al. (2017), and Popping et al. (2017).

4See McKee (1989).

(Dwek & Scalo 1980; Seab & Shull 1983; McKee et al. 1987,
McKee 1989). The characteristic time-scale T g is
M,

ey My’

where M, is the local gas mass, ¢ = 0.3 is the efficiency with
which grains are destroyed in SNII shocks (McKee 1989), y is
the local SNII rate, and M is the mass of local gas shocked to at
least 100 kms™', calculated using the Sedov—Taylor solution to a
homogeneous medium of ny = 0.13 H atoms cm ™ (the minimum
SF threshold density of our simulations).

We additionally destroy dust completely in hot winds and
during star formation and AGN X-ray heating (Section 2.1). The
parameters adopted in this simulation is listed in Table 1.

Finally, we note that for the star formation and grain growth
models, we need to provide a total metallicity in solar units. For this,
we assume a solar abundance (Zy = 0.0134) taken from Asplund
et al. (2009).

®

Tde =

2.3 Data analysis — a machine-learning framework

We seek to accurately quantify how galaxy dust properties, particu-
larly the DGR, trace other global galaxy properties. This represents
a regression problem, where from a set of input variables, the
prediction for the DGR is desired that most closely follows what is
predicted directly by the simulation.

We employ machine learning for this regressor, as is now
becoming common for a wide variety of astrophysical applications
(e.g. Ball et al. 2007; Fiorentin et al. 2007; Gerdes et al. 2010;
Carrasco Kind & Brunner 2013; Ness et al. 2015; Kamdar, Turk &
Brunner 2016; Agarwal, Davé & Bassett 2018; Rafieferantsoa, Davé
& Naab 2019). Taking advantage of the large training set offered by
SIMBA simulation of tens of thousands of galaxies, we use machine
learning to relate the galaxy DGR to a set of galaxy properties, i.e.
an N-dimensional vector X, the components of which are the global
galaxy properties as detailed in Section 3.4.

The primary algorithm used in this work is extremely randomized
trees (ERTs; Geurts, Ernst & Wehenkel 2006). ERTs build a large

MNRAS 490, 1425-1436 (2019)

ensemble of regression trees, each of which splits the training set
— here, an (N + 1)-dimensional space comprising of data points
(X, DGR) from 70 per cent of the simulated galaxies — recursively
among one randomly selected subset of the galaxy properties. Each
splitting divides the (N + 1)-dimensional space into two (N + 1)-
dimensional subspaces, and it stops once the resulting subspace
only contains one (X, DGR) point or the user-defined maximum
tree depth is reached, in which case a relation between X and DGR
is established. The estimates produced by all the regression trees
in the ERT ensemble are averaged to build a final map from X to
DGR. We refer readers interested in further details to Geurts et al.
(20006) for the details of splitting and randomization in ERTs. For
this work, we used the implementation of ERTs in the PYTHON
package, SCIKIT-LEARN (Pedregosa et al. 2011).

3 DUST PROPERTIES OVER COSMIC TIME

3.1 Dust mass functions

Fig. 1 shows the redshift evolution of DMF, comparing against the
observational result of Dunne et al. (2003) at z = 2; Eales et al.
(2009) at z = 1; and Dunne et al. (2011), Clemens et al. (2013),
and Beeston et al. (2018) at z = 0. Unlike the comparison presented
in Davé et al. (2019); here, we standardized their results to our
cosmological parameters (cf. Section 2.1) and our assumed dust
mass absorption coefficient « (850 pum) = 0.77 cm® g~

At z = 0, SIMBA agrees well with observed data. Our simulation
underproduces the DMF at the low-mass end, due to our mass
resolution and the minimum mass of identified galaxies (24 baryonic
particles ~24.37 x 10 Mg, baryonic mass). The z = 2 model DMF
underpredicts the observational one by a modest factor of ~3. This
is still much better than early attempts in this area, where galaxies
with My > 108M are hardly produced (e.g. McKinnon et al.
2017). We note that the observational mass function by Dunne et al.
(2003) and Dunne et al. (2011) are from surveys of sub-mm sources
with large beam sizes, which could result in multiple objects being
blended within one beam therefore overestimating their dust masses
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Figure 1. Model DMFs from our cosmological galaxy formation simula-
tions at redshifts z = 0-3 for the full cosmological box, compared against
observed data. When comparing to observational data sets, we select galaxies
within particular redshift bins as follows. For Eales et al. (2009), we plot
data from 0.6 < z < 1.0. For Dunne et al. (2011) and Beeston et al. (2018),
we plot data from 0.0 < z < 0.1. We standardized their results to our
cosmological parameters (cf. Section 2.1) and the dust mass absorption
coefficient « (850 um) = 0.77 cm? g’l.

Pd
- 04 excluding ejected dust

1 2 3 4 5 6 7
1+z

Figure 2. The comoving cosmic dust mass density pq (blue), the comoving
dust mass density excluding dust ejected out of galaxies via galactic winds
(cyan), and the comoving cosmic stellar mass density (red) p, as a function
of redshift. p, = 310p4 at z = 0. For the convenience of comparison, p, is
normalized such that p, = pg atz = 0.

(e.g. Narayanan et al. 2010; Hayward et al. 2013; Narayanan et al.
2015). Beyond this, once we fold in the uncertainties in deriving
dust masses from sub-mm photometry, it is probably premature
to use the high-redshift DMF as a strong constraint on models.
Overall, the DMF predicted by SIMBA broadly agrees with currently
observed determinations, with very good agreement in the overall
DMEF shape. This indicates that SIMBA viably models dust evolution
over cosmic time in galaxies, and sets the stage for examining more
detailed dust-related properties.

Fig. 2 shows the ratio of the comoving cosmic dust mass density
paq and the comoving cosmic stellar mass density p, as a function of
redshift. The cosmic dust (or stellar) mass density is computed by

summing the dust masses M, (or stellar masses M,.) of all gas cells
and dividing by the total comoving volume. We get p, = 310p4 at
z = 0. For the convenience of comparison, p, is normalized such
that p, = pgatz =0.

The cosmic dust mass density rapidly increases from z = 6
by over 1.5 dex. At late times, the dust density flattens as the
global star formation rate falls, the amount of metals available
to be accreted drops, and a quasi-balance is reached among dust
production, growth, destruction, and astration. The evolution of the
dust mass density only slightly lags behind the stellar mass density
at early epochs and catches up with rapid grain growth.

The comoving dust mass density excluding dust ejected out of
galaxies via galactic winds is shown as the cyan line. It increases
monotonically at high redshifts, following the total dust mass
density. At z ~ 2, it starts declining as star formation rates
decline on average with the onset of quenching massive galaxies,
which slows down the metal enrichment and thus limits the grain
growth. Meanwhile the destructive processes remain strong, and
are even enhanced in massive galaxies that harbour little cold gas.
Comparing this trend to the evolution of total dust mass density, we
infer that the destruction of dust ejected to haloes, dominated by
thermal sputtering, is not strong enough to quickly eliminate dust
grains owing to the low-gas density. The wind model may need
to be modified so that dust can be efficiently destroyed during the
decoupled wind phase from galaxies into circumgalactic gas.

3.2 The dust-to-gas ratio

The agreement of our predicted DMFs with observations suggests
that SIMBA represents a plausible dust evolution model. We now
turn to examining the main target relations of our paper, the DGR
and DTM in SIMBA galaxies, in comparison to data.

Fig. 3 shows the hexbin plot of the DGR as a function of gas-
phase metallicity (Zg,s) between z = 0 and 6, compared against the
data points as observed by Rémy-Ruyer et al. (2014) and De Vis
et al. (2019). Hexbins are colour-coded with specific star formation
rates (sSSFR) = SFR/M,.

At z = 0, SIMBA shows a DGR that is in good agreement with
observations. However, we emphasize that our dust model was tuned
to do so via our choice of the dust condensation efficiencies. These
quantities mostly change the Z < 0.2Z, part of the DGR, without
changing the slope much. Hence, the slope of the DGR versus Zg;;
is a robust prediction, as is our predictions for the redshift evolution.

There are two main regimes in the DGR—Zg, plane. The
first regime corresponds to star-forming galaxies, where the DGR
increases with Zg,,. Our models predict a weak evolution of the
DGR-Z,,, relation between z = 0 and 6, as is also predicted by
Popping et al. (2017) using a semi-analytic model. The evolution
of this relation in the DGR-Z,,, plane is mainly driven by the
metal enrichment of galaxies as more galaxies just move along
the sequence to slightly higher Zy,, at lower redshifts. The second
regime corresponds primarily to quenched galaxies and shows low-
DGR values and no correlation with Zg,,. This is driven by AGN
feedback that builds up the quenched galaxy population, in which
dust production is stopped but dust destruction is enhanced by
sputtering in surrounding hot gas. Even though there are no observed
galaxies in this regime, this is likely due to an observational selection
effects rather than an actual lack of galaxies (De Vis et al. 2019).
Finally, we note that the predicted DGR ratios in low-Zg, galaxies
generally lie below the observations. These objects are typically
very gas-rich dwarfs. It is unclear whether they are overly gas-rich
in SIMBA, or else they have too little dust production (or both).
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Figure 3. The relation between DGR and gas-phase metallicity at z =0-6.
For z =1-6, the theoretical data is shown with hexbins colour-coded with
specific star formation rates, while the best fit of z = 0 theoretical relation
with a power law (equation 9) is shown in each panel (for reference) with
green dashed lines. The black dots and crosses in each panel are the z =0
observational data by Rémy-Ruyer et al. (2014) and De Vis et al. (2019),
respectively. For De Vis et al. (2019), we use metallicities derived from ‘S’
calibration of Pilyugin & Grebel (2016).

There may also be observational selection effects that bias in favour
of higher dust masses in such small, faint systems.

We determine a best-fitting power law to the DGR—Zy, relation
in the star-forming regime. We separate the star-forming sequence
from quenched galaxies by applying a density-based spatial clus-
tering of applications with noise (DBSCAN) algorithm (Ester et al.
1996) to galaxies in {DGR, Zgs, sSFR} space. We then fit the
star-forming sequence in the DGR—Z, plane using a power law:

z
log DGR = (2.445 + 0.006) log (7) —(2.029 £ 0.003).  (9)
©

This is quite close to the best-fitting power law to the De Vis
et al. (2019)'s data log DGR = (245 % 0.12)log (£ ) — 2.0 %
1.4), quantitatively confirming the good agreement of the predicted
and observed slopes. Still, the scatter of the best fit is large (o =
0.31 dex), even though the correlation is clear. Better estimates of
the DGR might be obtained by incorporating secondary physical
parameters in addition to Zg,g; we explore this in Section 3.4 using
machine learning.

3.3 The dust-to-metal ratio

In Fig. 4, we apply a similar analysis to the DTM, plotting the DTM
ratio as a function of Z,,, between z = 0 and 6. This relation is
equivalent to the relation between the DGR and Zy,. As discussed
above, our simulation shows only a weak evolution of the DTM
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Figure 4. The relation between dust-to-metal ratio (DTM) and gas-phase
metallicity at z = 0—6. Observational data from high-redshift observations
of DLA and GRB absorbers (De Cia et al. 2013, 2016; Wiseman et al. 2017)
are overplotted. The black dots and crosses in each panel are the z = 0
observational data by Rémy-Ruyer et al. (2014) and De Vis et al. (2019),
respectively.

ratio from z = 6 to 0 and approximately reproduces the result of
Rémy-Ruyer et al. (2014) and De Vis et al. (2019). The DTM ratio
increases rapidly as Z,,, increases at the low-metallicity regime until
it is capped at a roughly constant value ~0.8 when Zg,s > 0.5Z.
For the quenched galaxies, the DTM ratio drops off quickly for the
same reasons as in the DGR case.

Overplotting the z ~ 2—4 data from high redshift observations of
damped lyman alpha (DLA) and gamma-ray burst (GRB) absorbers
(De Ciaetal.2013,2016; Wiseman et al. 2017) against the simulated
data; however, we find a systematic discrepancy at Zg,s < 0.5Z¢,
where the predicted DTM ratios show a much steeper dependence
with metallicity than the observations. The source of this discrep-
ancy is unclear. We note that the nature of these absorbers can be
significantly different from the physical conditions in galaxy discs.
DLAs are thought to arise from the outskirts of gas discs in galaxies
and perhaps even from metal-poor gas in the circumgalactic medium
(Berry et al. 2014). Moreover, these studies measure metallicities
and DTM via abundances acquired from optical/UV absorption-line
spectroscopy, which is different from methods typically used for
galaxies observed in the local Universe (i.e. strong-line calibrations
for metallicities and infrared emission for the dust mass). This
discrepancy thus may reflect a difference in the dust production
versus destruction in different environments or scales, combined
with the selection effect and methodologies of observations. We
defer a more careful comparison of the DGR in these particular
types of objects to future work, but note that there is potentially a
discrepancy at low Z. This also may be responsible for the too-low
DGR at low Z. We note, however, that significantly larger amounts
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Figure 5. The result our best-fitting map from galaxy properties (gas-phase
metallicity Zg,s, gas depletion time-scale T depletion » Stellar mass M, half-
baryonic mass radius Ry 50, gas mass fraction f,, and gas surface density
%) to the DGR at z = 0, using extreme randomized trees (ERT). The ERT
is trained with the training set, denoted by cyan points, which consists of
70 per cent randomly selected star-forming galaxies from SIMBA. Orange
points denote the prediction using galaxy properties of the cross-validation
set that consists of the remaining 30 per cent of the galaxies. The black dots
represent the z ~ 0 observational data by De Vis et al. (2019) for reference.

of dust in low-mass galaxies would steepen the DMF, which may
put our currently viable predictions into conflict with observations.

3.4 Better DGR and DTM prediction via machine learning

We now investigate the physical drivers of the DGR and DTM ratios
in galaxies, as well as their scatter. While equation (9) provides a
rough fit, it is clear that there is correlated scatter, and hence fitting
with more variables should give a tighter relation. To approach this
agnostically in terms of the form and input variables, we employ
a machine learning approach using extremely randomized trees
(ERTs).

We seek to establish a map between a range of physical properties
— namely gas-phase metallicity (Z,,), gas depletion time-scale
(T depletion = My/SFR), stellar mass (M,.), half-baryonic mass radius
(Rv50), gas mass fraction [f, = M,/(M, + M,)], and gas surface
density (X,) — on to the galaxy DGR and DTM ratios. We limit
our analyses to z = O and concentrate our efforts on fitting
the star-forming sequence of galaxies, since quenched galaxies
show little dust and no obvious trend with any physical property
and our relations show little evolution with redshift. It would be
straightforward to apply this methodology to other redshift outputs.

The ERT is set-up using 70 per cent of the selected SIMBA galaxy
sample as a training set, with a maximum depth of 20 levels. We
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Figure 6. Analogous to Fig. 5 but for DTM instead of DGR.

then use the remaining 30 per cent for validation. The algorithm
then generates a mapping between the inputs and the two desired
outputs (DGR and DTM). By using ERT, we also have access to
importance levels, which are determined as the relative depth of a
given input parameter was used for branching the tree.

Fig. 5 shows the fitted relation between the DGR and various
galaxy physical properties. Cyan points show the training set,
and orange points denote the validation set; taken together, they
represent all simulation star-forming galaxies. Observations are
shown from De Vis et al. (2019) as black points.

Comparing to observations, SIMBA reproduces the observed z =
0 DGR values as a function of various galaxy physical quantities
reasonably well. The DGR increases with metallicity and stellar
mass, though less tightly so with the latter. The DGR also drops with
the gas fraction and depletion time, probably reflecting underlying
trends from the stellar mass dependence. The DGR shows no clear
dependence on Rys50 or Xy. For Zg, Taepletions M+, and f;, the
Spearman’s rank correlation coefficients are r = 0.87, —0.63, 0.64,
0.81, respectively, compared to 0.33 for Ry 50 and 0.14 for X,.

Fig. 6 shows the analogous plot for the DTM ratio. The trends
are broadly similar, with DTM increasing with Zg,, and M,,
and decreasing with f; and Tgepieion. This suggests that M., f,
and Tgepletion May provide additional information that will enable
tighter prediction of both the DGR and the DTM. Rank correlation
coefficients are similar to the DGR case.

Since we know the true values for the 30 per cent validation set,
we can examine how well the ERT is able to reproduce these true
values. The quality of fitting is shown in the left-hand panels of
Fig. 7, for the DGR (top panels) and DTM (bottom). We find a very
tight relation with a ~0.15 dex scatter estimated by the mean squared
error (MSE) between the predicted DGR and true (simulated) DGR
of the cross-validation set. This scatter is significantly reduced from
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Figure 7. Top left: ahexbin plot of the predicted DGR derived from physical
properties of galaxies in the cross-validation set DGRpredict and their ‘real’
DGRy from the simulation at z = 0. Top right: Mean squared error (MSE)
of the predicted DGR compared to the ‘real’ DGR as a function of maximum
depths of ERT for both the training set (blue line) and the cross-validation
set (orange dashed line). Bottom panels: Analogous to the top panels but
for DTM. We use an MSE of the training set to measure the bias of the
model (i.e. to what degree can the model fit the real data) and MSE of the
cross-validation set to measure the variance (i.e. how sensitive the model
is to noises). We choose the optimal depth 20 by trading off biases and
variances.
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Figure 8. Left: The relative importance of different galaxy properties
in predicting DGR. Right: The relative importance of different galaxy
properties in predicting DTM. For both DGR and DTM, four most important
properties are Zgas, T depletions fg» and M.

~0.28 dex when only Z; is used, showing that the machine learning
is effective at generating better predictions for the DGR. Similarly,
for the DTM, the scatter is reduced from 0.27 dex when only Zg,,
is used, to 0.14 using the full ERT mapping.

To examine the sensitivity to the ERT tree depth, we show in
the right-hand panel of Fig. 7 the MSE as a function of tree depth.
We see that increasing the tree depth initially greatly improves
predictions, but beyond a depth of 2> 9 levels, there is essentially
no improvement. This is true for both the DGR and the DTM ratio.
At this point, given the sample size and the number of parameters,
there is no more information contained in additional tree levels.
Hence, we find an optimal maximum ERT tree depth of nine levels
for this sample.

Finally, we examine importance levels of the input physical
parameters, as returned by the ERT algorithm, shown in Fig. 8.
At the optimal depth of 9 levels, the left-hand panel shows that the
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DGR appears to be most directly correlated with the metallicity,
followed by the gas fraction. The depletion time and stellar mass
also assist with the fitting at a lower level. As expected, the half-
mass radius and the gas surface density do not contribute significant
information.

The trends are broadly similar for the DTM, as shown in the
right-hand panel of Fig. 8. However, it now appears that the
metallicity, depletion time, and gas fractions all show similar levels
of importance. The stellar mass still shows lower importance, and
Ry 50 and X, are again irrelevant.

In summary, our ERT-based machine learning framework is able
to significantly improve the predictive power for the DGR and DTM
relations. Using only Zg, results in scatters of ~0.3 dex, while
using the ERT-generated mapping reduces the scatter to ~0.15 dex.
The key quantities driving this are the metallicity, gas fraction,
depletion time, and (to a lesser extent) stellar mass, while in SIMBA
the dependencies on the baryonic half-mass radius and gas surface
density are negligible. The map determined via ERT using SIMBA
can be applied by modelers who usually have no information about
dust or do not track dust evolution in a self-consistent way, which
will provide a more accurate estimation of dust mass than that based
on a simple assumption of DGR (or DTM). Alternatively, observers
with information about these global galaxy quantities can utilize
these algorithms to estimate the DGR or DTM in their galaxies.

4 DISCUSSION

4.1 Physical underpinnings

We now take a deeper dive in to the details of the trends of the DGR
with various physical properties, by examining the correlations of
the DGR versus various galaxy physical quantities as shown in
Fig. 5. We focus our discussion on the DGR, as the trends and
interpretations for the DTM ratio are analogous.

In Fig. 5(a), we show the DGR—Z,, relation. At Z < 0.2Z,
the relation is roughly linear, corresponding to an approximately
constant but low DTM (cf. Fig. 6a). While there is a steep increase
from Z~0.2Zgy to Z ~ 0.5Zg, the relation is again roughly
linear at Z > 0.5Z, corresponding to an approximately constant
DTM ~ 0.8 (see Fig. 6a). These three different trends shows three
different regimes of dust enrichment. At lower Z,,, the galaxies
are underevolved and the dust enrichment is dominated by dust
production via condensation of ejecta from late-stage stars. In the
intermediate Zg, regime, dust growth via accreting gas-phase metals
gradually take over the enrichment process. At higher Z,,,, the
growth is extremely strong and the dust mass is mainly determined
by the gas-phase metals available for accretion.

In Fig. 5(c), we show the DGR-M, relation. The relation flattens
after M, > 10°°Mg. This transition follows the flattening of the
metal-metallicity relations above a comparable M, (Tremonti et al.
2004; see fig. 9 in Davé et al. 2019) plus the fact that the DGR
primarily traces the galaxy metallicity as Fig. 5(a) shows. At higher
masses, most galaxies are quenched, so the DGR actually drops and
has a large scatter owing to dust destruction.

In Figs 5(b) and (e), we show the DGR—7 epieiion and DGR—f,
relation, respectively. Galaxies with lower f, and Tgepletion, Which
implies that they are quiescent and highly evolved, tend to have a
higher DGR. The relations are flatter at low f, and 7 gepietion, because
the rapid grain growth due to abundant metals is countered by
enhanced destructive processes, i.e. shock waves from supernovae,
thermal sputtering, and astration. These trends shows the correlation
between DGR and galaxy evolutionary stages that proceeds as star
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formation deplete gas and build up metals. We note, that there are
high-M, (usually high-Z,,) galaxies, whose f, is still relatively high
and whose star formation rates are not highly suppressed, having
a relatively low DGR. A similar situation applies to some low-M,
galaxies. This contributes to the scatter in the DGR—Z,, plane.

We conclude that the DGR (and DTM) can be determined by Zg;s
along with Mx that reflects the chemical enrichment history and
Tsr along with f; that indicates the evolutionary stage of galaxies.
Physically, this suggests that metal enrichment history reflected by
Zgys and M., and evolutionary stages quantified by 7 gepieiion (s€€ also
Asano et al. 2013; Zhukovska 2014; Feldmann 2015) and f, (see
also De Vis et al. 2019) are the main drivers of the scatter in the
DGR—Z,,, plane. Meanwhile, galaxy compactness as quantified by
Ry 50 and X, does not seem to impact the DGR or DTM, showing
that at least in SIMBA dust content is insensitive to galactic structure
— with the caveat that given SIMBA’s ~1 kpc resolution, galactic
structure may not be faithfully modelled in detail.

4.2 Comparison with other models

The DMF and the DGR-Z,,, relation have been studied by cos-
mological hydrodynamic simulations (McKinnon et al. 2017; Hou
et al. 2019) and semi-analytic models (Popping et al. 2017). Like
McKinnon et al. (2017) and Popping et al. (2017), our work predicts
that the DMF increases monotonically from z = 2 to O at the high-
mass end (My 2> 103My,), and is unable to simultaneously match the
z = 0-2 DMEF. Nevertheless, our result appears to have the closest
match to observations to date, underpredicting the z = 2 DMF by
a factor of ~3, which is significantly better than McKinnon et al.
(2017) where galaxies with Mg > 108 M, are hardly produced.
On the other hand, Hou et al. (2019) tracks two types of grains
(small/large) and grain—grain shattering and coagulation. They also
implement a subgrid-model to boost the density of unresolved dense
gas, which is not adopted by our model (therefore we use a short
Trr) and a simple AGN feedback model to suppress star-forming
activity of massive galaxies. They are able to reproduce the non-
monotonic trend of the high-mass-end DMF evolution from z = 2
to 0, which was observed by Dunne et al. (2011). However, they fail
to match the observed DMF at z = 0 (where they overproduce high
M, galaxies) to z = 2 (where they underproduce high My galaxies).

What steps forwards are necessary for simulations to match
the observed z = 2 DMF? Some possible solutions include (1)
implementing dust yields in stellar ejecta as a function of a star’s
mass and metallicity (Ferrarotti & Gail 2006; Bianchi & Schneider
2007; Zhukovska et al. 2008; Nanni et al. 2013; Schneider et al.
2014), or the local ISM density or temperature, as pointed out
by McKinnon et al. (2017); (2) tracking the evolution of grains
with different sizes (see e.g. Hou et al. 2019 for two-size grains
and McKinnon et al. 2018; Aoyama, Hirashita & Nagamine 2019
for a continuous distribution of grain sizes). Solution #2 will
be implemented in an upcoming paper. We expect that a non-
monotonic evolution of high-mass-end DMF would result from the
intensified grain—grain collisions at lower redshift that will generally
lead to an increasing abundance of smaller grains that experience
faster destruction.

Turning to the DGR—Z; relation: The simulations by McKinnon
et al. (2017) obtain a rather flat relation between the DGR and gas-
phase metallicity from low Zg, to high Zy,, mainly because their
accretion time-scale for dust growth (see equation 5 of McKinnon
et al. 2016) does not vary with the local ISM Z,,;. We find that the
dependence of the accretion time-scale on metallicity is essential to
reproduce the observed DGR-Z,,, relation as is shown in Popping

-1.5
0
D
=2.0
¥

_25 4
~
o . -
A —zoq i’
00 o
Q
=

—3.54 L +

N +
0,0t
—4.04 * Zgas-independent Tacer
Zgas-dependent Tacer
¢ Remy-Ruyer+14
—4.5 T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5

log Z/Z

Figure 9. A comparison of DGR-Zy,s relations from two test runs where
accretion time-scales Tycer (cf. equation 5) are dependent (as adopted by
Popping et al. 2017; Hou et al. 2019; and our work) or independent (as
adopted by McKinnon et al. 2017) of Zg,. These test runs have the same
mass resolution as the primary SIMBA run, but have 2567 dark matter particles
and 256% gas elements in a cube of 25k~ Mpc. It shows Zgas-dependent
Tacer 18 essential to reproduce the observed relation.

et al. (2017), Hou et al. (2019), and our work, in our case by
the results of two test runs in Fig. 9. If we assume a metallicity-
independent accretion time-scale, then we get a flatter and higher
relation (blue points) compared to the Rémy-Ruyer et al. (2014)
observations. The actual observations are slightly shallower than the
predictions from the metallicity-dependent model, suggesting that
perhaps our metallicity dependence should be softened somewhat.

Similar to Popping et al. (2017), our results show a weak evolution
of the DGR-Zy,, relation from z = 0 to 6, especially for high-
metallicity galaxies. This is encouraging given that the underlying
galaxy formation models (SAM versus hydrodynamic) are rather
different from one another. Beyond this, the treatment of dust growth
in both models is different: grain growth by accretion in our work
does not use the information of any detailed subgrid ISM model,
whereas in the Popping et al. (2017) SAM, the accretion time-scale
is calculated by inferring the gas density in molecular clouds from
SFR laws. The fact that these two very different models arrive at
the same conclusion for a relatively modest evolution in the DGR-
Z relation likely underscores its robustness. On the other hand,
Hou et al. (2019) shows that the DGR at a fixed Zg, builds up
significantly a factor of ~5 from z = 5 to 0. This discrepancy mainly
comes from the different treatment of grain growth and feedback.
Grain growth in our simulation is overall stronger; therefore, our
simulated galaxies are able to reach the quasi-static states within a
shorter period of time. Moreover, SIMBA has a more sophisticated
feedback mechanisms that suppress further metal enrichment at
lower redshifts, particularly in massive galaxies.

Hou et al. (2019) explores the scaling relations with a variety
of galaxy properties other than Zy,,. Comparing Figs 5(c) and (e)
against their figs 4(b) and (d), we find that the trend predicted
by both simulations are similar but there are big discrepancies
at the high M, (M, > 10°°Mg, the turning point of mass—
metallicity relation) and low-f; end, where Hou et al. (2019)’s model
overproduces the DGR compared against observational constraints.
In this regime, our DGR-M, and DGR, relations flatten. The
sophisticated black hole feedback model in SIMBA compared to
the simple phenomenological AGN feedback model used in their
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work that may underestimate the suppressing power can explain the
difference. A similar analysis applies to the low f, regime, where
most of the galaxies are highly evolved and massive, and black hole
feedback mechanisms are influential.

4.3 Caveats

Here, we point out some caveats of our simulation. First, we note
that the choice of free parameters for dust production, grain growth,
and grain destruction via SNe shocks are not well constrained
(cf. Table 1) and most likely degenerate. Though grain growth
dominates the evolution of dust content, a combination of free
parameters different from what is chosen in this work could
potentially lead to an equally good (or even slightly better) match
to observations, e.g. one with stronger production, weaker grain
growth and stronger destruction, or one with stronger grain growth
and much stronger destruction. On the other hand, the observed
metallicities depend strongly on which strong-line calibration is
used. The match to De Vis et al. (2019) would be worse if e.g.
calibrations of Pettini & Pagel (2004) are used instead of Pilyugin
& Grebel (2016).

Besides, dust plays an important role in cooling and shielding
gas, catalyzing important chemical reactions (e.g. formation of
molecular hydrogen) and recombination processes, and alternating
the interstellar radiation fields. However, dust in our simulation
only affects the ISM by depleting gas-phase metals thus reducing
the efficiency of gas cooling channels. Work to implement the dust
physics in a fully self-consistent manner is under way.

Beyond this, in our current model implementation, dust grains
are fully coupled to gas flows. In reality, dust grains can be
decoupled from gas due to radiative forces and lack of pressure and
experience/apply drag forces from/to gas (Squire & Hopkins 2018;
Hopkins & Squire 2018a, b). Dust grains in this work are assumed to
have the same grain size to capture the major processes that evolve
the dust mass. In the future, we will implement ‘active’ dust particles
that are not strictly coupled to gas to track the evolution of grain-
size distributions and take grain—grain collisions into account. As
mentioned in Section 4.2, we expect the evolution of the grain—size
distribution would alter the evolution of the cosmic dust content.
The use of dust superparticles to sample the spatial distribution of
dust would also save the memory usage, making it computationally
feasible to track multiple-size grains in a large volume cosmological
simulation, even though we expect the effect on dynamics would
be negligible because of the lack of spatial resolution of our large-
volume cosmological simulations and strong radiative fields.

Finally, the 100h2~' Mpc SIMBA volume lacks the resolution to
resolve a multiphase ISM, which is a common issue for large-
volume cosmological simulations. As a result, parameters such as
the reference accretion time-scale 7, have to be tuned such that
the effective gas density is boosted. We also assume fixed dust
destruction and condensation efficiencies, which may actually be
functions of local ISM properties (Seab & Shull 1983; McKee
et al. 1987; Ferrarotti & Gail 2006; Bianchi & Schneider 2007;
Zhukovska et al. 2008; Yamasawa et al. 2011; Nanni et al. 2013;
Schneider et al. 2014; Temim et al. 2015). Calibrating parameters
we have used against numerical simulations of resolved ISM is one
potential approach to make improvement.

5 SUMMARY

We have developed a self-consistent model for the formation,
growth and destruction of dust in the SIMBA cosmological galaxy
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formation simulation, and used these to compare to predictions to
observed predictions, as well as study the physical drivers of the
DGR and DTM in galaxies. We also develop a machine learning
framework to relate the DGR and DTM to various input global
galaxy properties. Our main results are as follows:

Our main results follow:

(i) SIMBA broadly reproduces the observed DMFs across the
measured redshifts of z = 0-2, albeit with modest underprediction
at high-z. The low-mass end steepens at high redshift.

(i) We find a relationship between the DGR of star-forming
galaxies and their gas-phase metallicity such that lower metallicity
galaxies have lower DGRs. This is broadly in accord with obser-
vations. There is little evolution with redshift in this relationship.
Meanwhile, quenched galaxies show lower DGR and essentially
no relationship in this space (Fig. 3). This non-constant dust-to-
metals ratio with metallicity (equation 9) has implications for galaxy
formation models that historically have assumed a constant dust-to-
metals ratio (see e.g. Silva et al. 1998; Granato et al. 2000; Baugh
et al. 2005; Lacey et al. 2010; Narayanan et al. 2010; Fontanot &
Somerville2011; Niemi etal. 2012; Somerville etal. 2012; Hayward
et al. 2013; Narayanan et al. 2015, 2018a, b; Cowley et al. 2017;
Katz et al. 2019; Ma et al. 2019).

(iii)) The DTM ratio versus metallicity relation drops at low
metallicity, akin to the DGR relationship (Fig. 4). This is consistent
with low-redshift result, yet may be in tension with observational
constraints at low metallicities at high redshifts from GRBs and
DLAs. Other trends are qualitatively similar to those of the DGR.

(iv) In order to help both modelers and observers estimate more
accurate DGR and DTM ratios, we have developed a publicly
available machine learning framework that generates a mapping
between the DGR and DTM ratio and a set of galaxy physical
properties, showing that it depends significantly on various galaxy
properties. The machine learning framework reduces the scatter in
the prediction from ~0.3 dex in the DTM and DGR using a simple
fit to Z,,s alone, down to ~0.15 dex using the machine learning
framework. This code is available at https://bitbucket.org/1q3552/d
ust_galaxy_analyzer.

(v) While the DGR and DTM ratios depend most sensitively on
the gas-phase metallicity in galaxies, we demonstrate that there
are important secondary relationships between these ratios and
the depletion time-scale, stellar mass, and gas fraction of galaxies
(Fig. 5). The DGR and DTM ratio both drop to lower M,, and
rise to lower fg,, and gas depletion times. There is no dependence
on gas surface density and baryonic half-mass radius. Hence, dust
content is governed by both long-term evolutionary processes such
as metal content and stellar mass, as well as short-term varia-
tions such as varying gas content and (commensurately) depletion
times.

Overall, the SIMBA dust model is at least as successful compared
with other current dust models implemented in cosmological simu-
lations. However, there remain various caveats and potential direc-
tions for improvement. These include having active dust (not tied to
the gas), multiple dust grain sizes, and implementing more sophis-
ticated dust cooling. Furthermore, there are various free parameters
that are constrained indirectly by observations, which might be
better constrained using high-resolution ISM simulation. By using
such a multiscale approach to combine high-resolution simulations
and observational constraints into a cosmological galaxy formation
model, we are moving towards more comprehensively studying the
evolution of galaxy dust on cosmological scales.
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