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ABSTRACT

We present predictions for the evolution of the galaxy dust-to-gas ratio (DGR) and dust-to-

metal ratio (DTM) from z = 0 → 6, using a model for the production, growth, and destruction

of dust grains implemented into the SIMBA cosmological hydrodynamic galaxy formation

simulation. In our model, dust forms in stellar ejecta, grows by the accretion of metals, and is

destroyed by thermal sputtering and supernovae. Our simulation reproduces the observed dust

mass function at z = 0, but modestly underpredicts the mass function by ∼×3 at z ∼ 1–2. The

z = 0 DGR versus metallicity relationship shows a tight positive correlation for star-forming

galaxies, while it is uncorrelated for quenched systems. There is little evolution in the DGR–

metallicity relationship between z = 0 and 6. We use machine learning techniques to search

for the galaxy physical properties that best correlate with the DGR and DTM. We find that

the DGR is primarily correlated with the gas-phase metallicity, though correlations with the

depletion time-scale, stellar mass, and gas fraction are non-negligible. We provide a crude

fitting relationship for DGR and DTM versus the gas-phase metallicity, along with a public

code package that estimates the DGR and DTM given a set of galaxy physical properties.

Key words: (ISM:) dust, extinction – galaxies: high-redshift – galaxies: ISM.

1 IN T RO D U C T I O N

Dust plays a critical role in the physics of the interstellar medium

(ISM) and galaxy evolution. The surfaces of dust grains catalyze a

range of chemical reactions that influence the structure of ISM and

star formation (Hollenbach & Salpeter 1971; Mathis 1990; Wein-

gartner & Draine 2001; Draine 2003; Wolfire et al. 2008; Hollenbach

et al. 2012; Gong, Ostriker & Wolfire 2017), including the formation

of molecular hydrogen and grain-catalyzed recombinations of H+

and C+. The ejection of dust from galaxies can contribute to metal

abundances in the intergalactic medium and offers an additional

cooling channel (Ostriker & Silk 1973; Bouché et al. 2007; Ménard,

Kilbinger & Scranton 2010; Peeples et al. 2014; Peek, Ménard &

Corrales 2015; Vogelsberger et al. 2019), while dust absorption

of far-ultraviolet and optical photons can shape the temperature

structure of the neutral ISM (Goldsmith 2001; Krumholz, Leroy

& McKee 2011; Narayanan et al. 2011, 2012; Narayanan & Davé

2012).

A complex set of physical processes contributes to the evolving

dust content of the Universe. It can be produced via condensation

⋆ E-mail: pg3552@ufl.edu

of dust grains from the gas-phase metals in the ejecta of asymptotic

giant branch (AGB) stars and supernovae (SNe; Gehrz 1989; Todini

& Ferrara 2001; Nozawa et al. 2003; Ferrarotti & Gail 2006;

Nozawa et al. 2007; Zhukovska, Gail & Trieloff 2008; Nanni

et al. 2013; Schneider et al. 2014), after which it can grow in

the ISM via accretion of gas-phase metals (Dominik & Tielens

1997; Dwek 1998; Hirashita & Kuo 2011; Zhukovska 2014). It

can be destroyed via enhanced non-thermal sputtering in SN blast

waves, thermal sputtering, and via grain–grain collisions (Draine &

Salpeter 1979a, b; Seab & Shull 1983; McKee et al. 1987; Jones,

Tielens & Hollenbach 1996; Bianchi & Ferrara 2005; Nozawa et al.

2007).

Dust properties in galaxies have been intensively studied through

statistics and scaling relations, of which three particularly inter-

esting are dust mass functions (DMFs; Dunne, Eales & Edmunds

2003; Vlahakis, Dunne & Eales 2005; Eales et al. 2009; Dunne

et al. 2011; Clemens et al. 2013; Beeston et al. 2018), dust-to-gas

ratios (DGRs) and dust-to-metal ratios (DTMs) as a function of

galaxy metallicity or stellar mass (Issa, MacLaren & Wolfendale

1990; Lisenfeld & Ferrara 1998; Hirashita, Tajiri & Kamaya 2002;

Draine et al. 2007; Galametz et al. 2011; De Cia et al. 2013, 2016;

Zafar & Watson 2013; Rémy-Ruyer et al. 2014; Sparre et al. 2014;

Giannetti et al. 2017; Wiseman et al. 2017; Chiang et al. 2018;
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1426 Q. Li, D. Narayanan and R. Davé

Kahre et al. 2018; De Vis et al. 2019). These relationships provide a

convenient method for determining gas masses in galaxies, as well

as providing constraints on the baryon cycle that governs galaxy

evolution at low and high redshifts (e.g. Magdis et al. 2012).

Theorists have commonly used an assumed constant dust-to-

metal ratio in galaxies in order to model the evolving dust content

in hydrodynamic or semi-analytic models of galaxy formation (e.g.

Silva et al. 1998; Granato et al. 2000; Baugh et al. 2005; Lacey et al.

2010; Narayanan et al. 2010; Fontanot & Somerville 2011; Niemi

et al. 2012; Somerville et al. 2012; Hayward et al. 2013; Narayanan

et al. 2015, 2018a, b; Cowley et al. 2017; Katz et al. 2019; Ma et al.

2019). However, there is growing evidence from both integrated

and resolved far-infrared studies of galaxies at both low and high

redshifts that the DGR and DTM in galaxies are not constant, and

may not even be straightforwardly modelled by a simple linear

relationship with a galaxy physical property (such as metallicity).

For example, while the gas-to-dust ratio appears to scale with the

metallicity of galaxies in the local Universe (Dwek 1998; Draine

et al. 2007; Bendo et al. 2010), there may be deviations from this

trend at the lowest metallicities (e.g. Galliano et al. 2005; Galametz

et al. 2011; Rémy-Ruyer et al. 2014; De Vis et al. 2019). Similarly,

the DTG measured by damped Ly-alpha (DLA) and gamma-ray

burst (GRB) absorbers (e.g. De Cia et al. 2013, 2016; Wiseman

et al. 2017) from z = 0.1 to z = 6.3 are similar to those in the Local

group, though drop at metallicities lower than 0.05 Z⊙. Hence, more

sophisticated theoretical modelling of galaxy dust content and its

evolution is needed.

In recent years, galaxy evolution models have progressed from

treating dust as a simple scale factor of the metal mass (see

Somerville et al. 2012 and references therein) to including the

physics of dust formation, growth and destruction in galaxies as

they evolve. The first generation of these sorts of simulations treated

galaxies as one-zone models (e.g. Issa et al. 1990; Dwek 1998;

Inoue 2003; Morgan & Edmunds 2003; Calura, Pipino & Matteucci

2007; Zhukovska et al. 2008; Hirashita & Yan 2009; Asano et al.

2013; Calura et al. 2014; Rowlands et al. 2014; Zhukovska 2014;

Feldmann 2015; De Vis et al. 2017), though more recently a number

of groups have begun to incorporate self-consistent dust physics

on-the-fly into bona fide hydrodynamic models of galaxy formation

and evolution. Bekki (2015), McKinnon, Torrey & Vogelsberger

(2016), and Aoyama et al. (2017) established some of the initial

frameworks for including dust in hydrodynamic galaxy formation

simulations to study the evolution of dust properties in individual

galaxies. Building on this, McKinnon et al. (2017) performed

full-volume cosmological simulations using moving mesh code

AREPO to study dust properties across galaxies over cosmic time,

but were unable to successfully reproduce the DGR–metallicity

relation. Vogelsberger et al. (2019) extended this framework by

implementing high temperature dust cooling channels to study

dust in galaxy clusters and its impact on the intergalactic medium.

Aoyama et al. (2017, 2018) developed a two-grain size model into an

SPH (smoothed particle hydrodynamic) cosmological simulation,

where they studied overall dust properties in a whole cosmological

volume and IGM, while Hou et al. (2019) built on this to add a

phenomenological active galactic nuclei (AGNs) feedback model.

Finally, Popping, Somerville & Galametz (2017) and Vijayan

et al. (2019) have implemented the physics of dust formation,

growth and destruction into semi-analytic galaxy formation models.

The growing interest in modelling dust evolution highlights its

importance in more accurately modelling the observed properties

of galaxies.

What has been missing thus far is a predictive self-consistent

model for the DGR and DTM in galaxies across cosmic time in

a large-volume cosmological galaxy formation simulation. In this

paper, we aim to develop this model. To do this, we incorporate

into state-of-the-art cosmological hydrodynamic simulation SIMBA

(Davé et al. 2019) a model to track on-the-fly dust formation and

evolution, broadly following the McKinnon et al. (2017) passive

scalar dust algorithm. Here, passive refers to the dust being advected

with the gas, and scalar refers to the dust having a fixed grain-size

distribution.

We include dust production from Type-II SN and AGB stars, and

further growth via accretion of metals, while destruction can occur

from sputtering, consumption by star formation, or SN shocks. We

explore the evolution of the galaxy DMF and the scaling relations of

the DGR and DTM with metallicity over cosmic time. We then build

on this, and investigate the physical drivers of the DGR and DTM

using a machine-learning framework trained by our simulated data

set to understand the scatter in the DGR/DTM–metallicity relation.

We use these tools to develop an algorithm (that we release publicly)

for the dust mass from galaxies without the assumption of an overly

simplistic DGR or DTM. We additionally provide a simple scaling

relation for the DGRs in galaxies.

This paper is organized as follows. In Section 2, we summarize

the SIMBA simulation suite, with a particular focus on the model

for dust formation and evolution. We present the DMFs and scaling

relations between the DGR/DTM and gas phase metallicities in

Section 3. In Section 3.4, we model the underlying physical drivers

of the DGR and DTM, and establish a connection between the

DGR/DTM and various physical properties of galaxies. We then

discuss our results, compare them to other theoretical work, and

discuss potential caveats in Section 4, and conclude in Section 5.

2 M E T H O D O L O G Y

2.1 Cosmological simulations

This work utilizes the SIMBA cosmological hydrodynamic simula-

tion. We refer the reader to Davé et al. (2019) for full details, and

we summarize the salient points here.

The primary SIMBA simulation we use here has 10243 dark matter

particles and 10243 gas elements in a cube of 100h−1 Mpc side

length, and is run from z = 249 down to z = 0. We assume a

Planck16 (Planck Collaboration et al. 2016) concordant cosmology

of �m = 0.3, �� = 0.7, �b = 0.048, H0 = 68 km s−1 Mpc−1,

σ 8 = 0.82, and ns = 0.97. Our SIMBA run has a minimum

gravitational softening length ǫmin = 0.5h−1 kpc, mass resolution

9.6 × 107 M⊙ for dark matter particles and 1.82 × 107 M⊙ for gas

elements. The system is evolved using a forked version of the GIZMO

cosmological gravity plus hydrodynamic solver (Hopkins 2015), in

its Meshless Finite Mass (MFM) version. This code, modified from

GADGET-3 (Springel 2005), evolves dark matter and gas elements

together including gravity and pressure forces, handling shocks via

a Riemann solver with no artificial viscosity.

Radiative cooling and photoionization heating are modelled using

the GRACKLE-3.1 library (Smith et al. 2017), including metal cooling

and non-equilibrium evolution of primordial elements. An H2-based

star formation rate is used, where the H2 fraction is computed

based on the sub-grid model of Krumholz, McKee & Tumlinson

(2009) based on the metallicity and local column density, with

minor modifications as described in Davé, Thompson & Hopkins

(2016) to account for variations in numerical resolution. The star
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Dust-to-gas and dust-to-metal ratio in galaxies 1427

formation rate is given by the H2 density divided by the dynamical

time: SFR=ǫ∗ρH2/tdyn, where we use ǫ∗ = 0.02 (Kennicutt 1998).

These stars drive winds in the ISM. This form of feedback is

modelled as a two-phase decoupled wind, with 30 per cent of wind

particles ejected hot, i.e. with a temperature set by the supernova

energy minus the wind kinetic energy. The modelled winds have an

ejection probability that scales with the galaxy circular velocity and

stellar mass (calculated on the fly via fast friends-of-friends galaxy

identification). The nature of these scaling relations follow the

results from higher resolution studies in the Feedback in Realistic

Environments zoom simulation campaign (e.g. Muratov et al. 2015;

Anglés-Alcázar et al. 2017b; Hopkins et al. 2014, 2018).

The chemical enrichment model tracks eleven elements (H, He, C,

N, O, Ne, Mg, Si, S, Ca, Fe) during the simulation, with enrichment

tracked from Type-II SNe, Type-Ia SNe, and AGB stars. The yield

tables employed are Nomoto et al. (2006) for SNII yields, Iwamoto

et al. (1999) for SNIa yields, and AGB star enrichment following

Oppenheimer & Davé (2006). Type-Ia SNe and AGB wind heating

are also included, along with ISM pressurization at a minimum

level as required to resolve the Jeans mass in star-forming gas as

described in Davé et al. (2016).

SIMBA incorporates black hole physics. Black holes are seeded

and grown during the simulation via two-mode accretion. The first

mode closely follows the torque-limited accretion model presented

in Anglés-Alcázar et al. (2017a), and the second mode uses Bondi

accretion, but solely from the hot gas component. The accretion

energy is used to drive feedback that serves to quench galaxies,

including a kinetic subgrid model for black hole feedback, along

with X-ray energy feedback. SIMBA additionally includes a dust

physics module to track the life cycle of cosmic dust, which we

describe in the following section.

2.2 Modelling the dust life cycle

In our implementation, dust is fully coupled with gas flows. This

treatment is essentially accurate, as the drift caused by the gas–

dust drag force and the radiative pressure is under-resolved in our

simulations. Additionally, dust grains are assumed to have the same

physical properties with a constant radius a = 0.1µm and density

σ = 2.4 g cm−3 (Draine 2003). We ignore dust cooling channels

that will be implemented in future work.

Dust is produced by condensation of a fraction of metals from

SNe and AGB ejecta. We follow the prescription described by

equations (4)–(7) in Popping et al. (2017) that updates the work

of Dwek (1998). In the following, m
j

i,d refers to the dust mass of

the ith element (C, O, Mg, Si, S, Ca, Fe) produced by the jth stellar

process (SNII or AGB stars), whereas m
j

i,ej refers to the mass of

ejecta from the jth process.

The mass of dust produced by AGB stars with a carbon-to-oxygen

mass ratio C/O > 1 is expressed as

mAGB
i,d =

{

δAGB
C

(

mAGB
C,ej − 0.75mAGB

O,ej

)

, i = C

0, otherwise,
(1)

where δAGB
i is the condensation efficiency of element i for AGB

stars. The mass of dust produced by AGB stars with C/O < 1 is

expressed as

mAGB
i,d =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, i = C

16
∑

i=Mg,Si,S,Ca,Fe

δAGB
i mAGB

i,ej , i = O

δAGB
i mAGB

i,ej , otherwise,

(2)

where μi is the mass of element i in atomic mass units. The mass

of dust produced by Type-II SNe is described as

mSNII
i,d =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

δSNII
C mSNII

C,ej , i = C

16
∑

i=Mg,Si,S,Ca,Fe

δSNII
i mSNII

i,ej , i = O

δSNII
i mSNII

i,ej , otherwise,

(3)

where δSNII
i is the condensation efficiency of element i for SNII.

We choose a fixed dust condensation efficiency δAGB
i,dust = 0.2 based

on the computation of Ferrarotti & Gail (2006), and δSNII
i,dust = 0.15

guided by Bianchi & Schneider (2007) to match the low-metallicity

end of the observed z = 0 relation between the DGR and gas-phase

metallicities (Rémy-Ruyer et al. 2014).1 We omit the condensation

of Type-Ia SN ejecta, as recent work suggests that Type-Ia SNe

are not significant sources of dust production (see Nozawa et al.

2011; Dwek 2016; Gioannini et al. 2017). This is different from

McKinnon et al. (2016) and Popping et al. (2017), where Type-

Ia SNe are assumed to have the same condensation efficiency as

Type-II SNe.

Once dust grains are seeded, they grow by accreting gas-phase

metals. Following Dwek (1998), the growth rate is expressed as
(

dMd

dt

)

grow

=

(

1 −
Md

Mmetal

)(

Md

τaccr

)

, (4)

where Mmetal is the total mass of dust and local gas-phase metals.

Following Hirashita (2000) and Asano et al. (2013), the accretion

time-scale τ accr is

τaccr = τref

(

ρref

ρg

)(

Tref

Tg

)(

Z⊙

Zg

)

. (5)

where ρg, Tg, and Zg are the local gas density, temperature, and

metallicity, respectively. ρref, Tref, and Zref are the reference values

correspondingly. We take ρref = 100 H atoms cm−3, Tref = 20 K,

and τ ref = 10 Myr in this work.

Dust grains can be eroded by colliding with thermally excited

gas especially in hot haloes (e.g. Barlow 1978; Draine & Salpeter

1979b; Tielens et al. 1994). We adopt the approximation of the

thermal sputtering rate of grain radii derived by Tsai & Mathews

(1995), following McKinnon et al. (2017) and Popping et al.(2017).

The sputtering time-scale is expressed as

τsp = a

∣

∣

∣

∣

da

dt

∣

∣

∣

∣

−1

∼ (0.17 Gyr)

(

a

0.1µm

)(

10−27 g cm−3

ρg

)

×

[(

T0

Tg

)ω

+ 1

]

, (6)

where ω = 2.5 controls the low-temperature scaling of the sputtering

rate and T0 = 2 × 106 K is the temperature above which the

sputtering rate flattens. The growth rate of dust mass due to thermal

sputtering is then calculated by
(

dMd

dt

)

sp

= −
Md

τsp/3
. (7)

Because SN blast waves are not resolved in our simulations,

we implement a subgrid model for dust destruction by SN shocks

1Note – because our condensation efficiency for Type-II SNe is tuned to

match the low-Z end of the local DGR–metallicity relation, the z = 0

version of this relationship in the remainder of this paper should be treated

as matching observations by construction, and not as a bona fide prediction.
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1428 Q. Li, D. Narayanan and R. Davé

Table 1. Simulation free parameters.

Parameter Description Value Range accepted by literature

Thermal sputtering

a Grain radius (µm) 0.1 –

σ Density of solid matters within grains (g cm−3) 2.4 2.2(graphite), 3.3(silicate)a

Production

δ
AGB,C/O>1
i,dust Condensation efficiency 0.2 for i = C 0.2–1.0b

0 otherwise 0

δ
AGB,C/O<1
i,dust 0 for i = O 0

0.2 otherwise 0.2–0.8b

δSNII
i,dust 0.15 for i = C 0.15–1.0b

0.15 otherwise 0.15–0.8b

Growth

ρref Reference density (g cm−3) 2.3 × 10−22 –

Tref Reference temperature (K) 20 –

τ ref
g Growth time-scale with T = Tref and ρ = ρref (Myr) 10 2–500c

Destruction (SNe Shock)

ESN,51 Energy per SN (1051 erg) 1.0 –

ǫ The efficiency of destruction by SN shocks 0.3 0.1–0.5d

Notes. aSee Jones et al. (1996).
bSee Dwek (1998), McKinnon et al. (2017), and Popping et al. (2017).
cWe fix ρref = 2.3 × 10−22 g cm−3 and Tref = 20 K. See Dwek (1998), Zhukovska (2014), McKinnon et al. (2017), and Popping et al. (2017).
dSee McKee (1989).

(Dwek & Scalo 1980; Seab & Shull 1983; McKee et al. 1987;

McKee 1989). The characteristic time-scale τ de is

τde =
Mg

ǫγMs

, (8)

where Mg is the local gas mass, ǫ = 0.3 is the efficiency with

which grains are destroyed in SNII shocks (McKee 1989), γ is

the local SNII rate, and Ms is the mass of local gas shocked to at

least 100 km s−1, calculated using the Sedov–Taylor solution to a

homogeneous medium of nH = 0.13 H atoms cm−3 (the minimum

SF threshold density of our simulations).

We additionally destroy dust completely in hot winds and

during star formation and AGN X-ray heating (Section 2.1). The

parameters adopted in this simulation is listed in Table 1.

Finally, we note that for the star formation and grain growth

models, we need to provide a total metallicity in solar units. For this,

we assume a solar abundance (Z⊙ = 0.0134) taken from Asplund

et al. (2009).

2.3 Data analysis – a machine-learning framework

We seek to accurately quantify how galaxy dust properties, particu-

larly the DGR, trace other global galaxy properties. This represents

a regression problem, where from a set of input variables, the

prediction for the DGR is desired that most closely follows what is

predicted directly by the simulation.

We employ machine learning for this regressor, as is now

becoming common for a wide variety of astrophysical applications

(e.g. Ball et al. 2007; Fiorentin et al. 2007; Gerdes et al. 2010;

Carrasco Kind & Brunner 2013; Ness et al. 2015; Kamdar, Turk &

Brunner 2016; Agarwal, Davé & Bassett 2018; Rafieferantsoa, Davé

& Naab 2019). Taking advantage of the large training set offered by

SIMBA simulation of tens of thousands of galaxies, we use machine

learning to relate the galaxy DGR to a set of galaxy properties, i.e.

an N-dimensional vector X, the components of which are the global

galaxy properties as detailed in Section 3.4.

The primary algorithm used in this work is extremely randomized

trees (ERTs; Geurts, Ernst & Wehenkel 2006). ERTs build a large

ensemble of regression trees, each of which splits the training set

– here, an (N + 1)-dimensional space comprising of data points

(X, DGR) from 70 per cent of the simulated galaxies – recursively

among one randomly selected subset of the galaxy properties. Each

splitting divides the (N + 1)-dimensional space into two (N + 1)-

dimensional subspaces, and it stops once the resulting subspace

only contains one (X, DGR) point or the user-defined maximum

tree depth is reached, in which case a relation between X and DGR

is established. The estimates produced by all the regression trees

in the ERT ensemble are averaged to build a final map from X to

DGR. We refer readers interested in further details to Geurts et al.

(2006) for the details of splitting and randomization in ERTs. For

this work, we used the implementation of ERTs in the PYTHON

package, SCIKIT-LEARN (Pedregosa et al. 2011).

3 DUST PRO PERTIES OV ER COSMIC TIME

3.1 Dust mass functions

Fig. 1 shows the redshift evolution of DMF, comparing against the

observational result of Dunne et al. (2003) at z = 2; Eales et al.

(2009) at z = 1; and Dunne et al. (2011), Clemens et al. (2013),

and Beeston et al. (2018) at z = 0. Unlike the comparison presented

in Davé et al. (2019); here, we standardized their results to our

cosmological parameters (cf. Section 2.1) and our assumed dust

mass absorption coefficient κ(850µm) = 0.77 cm2 g−1.

At z = 0, SIMBA agrees well with observed data. Our simulation

underproduces the DMF at the low-mass end, due to our mass

resolution and the minimum mass of identified galaxies (24 baryonic

particles ≈4.37 × 108 M⊙ baryonic mass). The z = 2 model DMF

underpredicts the observational one by a modest factor of ∼3. This

is still much better than early attempts in this area, where galaxies

with Md � 108M⊙ are hardly produced (e.g. McKinnon et al.

2017). We note that the observational mass function by Dunne et al.

(2003) and Dunne et al. (2011) are from surveys of sub-mm sources

with large beam sizes, which could result in multiple objects being

blended within one beam therefore overestimating their dust masses

MNRAS 490, 1425–1436 (2019)
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Dust-to-gas and dust-to-metal ratio in galaxies 1429

Figure 1. Model DMFs from our cosmological galaxy formation simula-

tions at redshifts z = 0–3 for the full cosmological box, compared against

observed data. When comparing to observational data sets, we select galaxies

within particular redshift bins as follows. For Eales et al. (2009), we plot

data from 0.6 < z < 1.0. For Dunne et al. (2011) and Beeston et al. (2018),

we plot data from 0.0 < z < 0.1. We standardized their results to our

cosmological parameters (cf. Section 2.1) and the dust mass absorption

coefficient κ(850µm) = 0.77 cm2 g−1.

Figure 2. The comoving cosmic dust mass density ρd (blue), the comoving

dust mass density excluding dust ejected out of galaxies via galactic winds

(cyan), and the comoving cosmic stellar mass density (red) ρ∗ as a function

of redshift. ρ∗ = 310ρd at z = 0. For the convenience of comparison, ρ∗ is

normalized such that ρ∗ = ρd at z = 0.

(e.g. Narayanan et al. 2010; Hayward et al. 2013; Narayanan et al.

2015). Beyond this, once we fold in the uncertainties in deriving

dust masses from sub-mm photometry, it is probably premature

to use the high-redshift DMF as a strong constraint on models.

Overall, the DMF predicted by SIMBA broadly agrees with currently

observed determinations, with very good agreement in the overall

DMF shape. This indicates that SIMBA viably models dust evolution

over cosmic time in galaxies, and sets the stage for examining more

detailed dust-related properties.

Fig. 2 shows the ratio of the comoving cosmic dust mass density

ρd and the comoving cosmic stellar mass density ρ∗ as a function of

redshift. The cosmic dust (or stellar) mass density is computed by

summing the dust masses Md (or stellar masses M∗) of all gas cells

and dividing by the total comoving volume. We get ρ∗ = 310ρd at

z = 0. For the convenience of comparison, ρ∗ is normalized such

that ρ∗ = ρd at z = 0.

The cosmic dust mass density rapidly increases from z = 6

by over 1.5 dex. At late times, the dust density flattens as the

global star formation rate falls, the amount of metals available

to be accreted drops, and a quasi-balance is reached among dust

production, growth, destruction, and astration. The evolution of the

dust mass density only slightly lags behind the stellar mass density

at early epochs and catches up with rapid grain growth.

The comoving dust mass density excluding dust ejected out of

galaxies via galactic winds is shown as the cyan line. It increases

monotonically at high redshifts, following the total dust mass

density. At z ∼ 2, it starts declining as star formation rates

decline on average with the onset of quenching massive galaxies,

which slows down the metal enrichment and thus limits the grain

growth. Meanwhile the destructive processes remain strong, and

are even enhanced in massive galaxies that harbour little cold gas.

Comparing this trend to the evolution of total dust mass density, we

infer that the destruction of dust ejected to haloes, dominated by

thermal sputtering, is not strong enough to quickly eliminate dust

grains owing to the low-gas density. The wind model may need

to be modified so that dust can be efficiently destroyed during the

decoupled wind phase from galaxies into circumgalactic gas.

3.2 The dust-to-gas ratio

The agreement of our predicted DMFs with observations suggests

that SIMBA represents a plausible dust evolution model. We now

turn to examining the main target relations of our paper, the DGR

and DTM in SIMBA galaxies, in comparison to data.

Fig. 3 shows the hexbin plot of the DGR as a function of gas-

phase metallicity (Zgas) between z = 0 and 6, compared against the

data points as observed by Rémy-Ruyer et al. (2014) and De Vis

et al. (2019). Hexbins are colour-coded with specific star formation

rates (sSFR) = SFR/M∗.

At z = 0, SIMBA shows a DGR that is in good agreement with

observations. However, we emphasize that our dust model was tuned

to do so via our choice of the dust condensation efficiencies. These

quantities mostly change the Z < 0.2Z⊙ part of the DGR, without

changing the slope much. Hence, the slope of the DGR versus Zgas

is a robust prediction, as is our predictions for the redshift evolution.

There are two main regimes in the DGR−Zgas plane. The

first regime corresponds to star-forming galaxies, where the DGR

increases with Zgas. Our models predict a weak evolution of the

DGR–Zgas relation between z = 0 and 6, as is also predicted by

Popping et al. (2017) using a semi-analytic model. The evolution

of this relation in the DGR–Zgas plane is mainly driven by the

metal enrichment of galaxies as more galaxies just move along

the sequence to slightly higher Zgas at lower redshifts. The second

regime corresponds primarily to quenched galaxies and shows low-

DGR values and no correlation with Zgas. This is driven by AGN

feedback that builds up the quenched galaxy population, in which

dust production is stopped but dust destruction is enhanced by

sputtering in surrounding hot gas. Even though there are no observed

galaxies in this regime, this is likely due to an observational selection

effects rather than an actual lack of galaxies (De Vis et al. 2019).

Finally, we note that the predicted DGR ratios in low-Zgas galaxies

generally lie below the observations. These objects are typically

very gas-rich dwarfs. It is unclear whether they are overly gas-rich

in SIMBA, or else they have too little dust production (or both).
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1430 Q. Li, D. Narayanan and R. Davé

Figure 3. The relation between DGR and gas-phase metallicity at z =0–6.

For z =1–6, the theoretical data is shown with hexbins colour-coded with

specific star formation rates, while the best fit of z = 0 theoretical relation

with a power law (equation 9) is shown in each panel (for reference) with

green dashed lines. The black dots and crosses in each panel are the z = 0

observational data by Rémy-Ruyer et al. (2014) and De Vis et al. (2019),

respectively. For De Vis et al. (2019), we use metallicities derived from ‘S’

calibration of Pilyugin & Grebel (2016).

There may also be observational selection effects that bias in favour

of higher dust masses in such small, faint systems.

We determine a best-fitting power law to the DGR–Zgas relation

in the star-forming regime. We separate the star-forming sequence

from quenched galaxies by applying a density-based spatial clus-

tering of applications with noise (DBSCAN) algorithm (Ester et al.

1996) to galaxies in {DGR, Zgas, sSFR} space. We then fit the

star-forming sequence in the DGR–Zgas plane using a power law:

log DGR = (2.445 ± 0.006) log

(

Z

Z⊙

)

− (2.029 ± 0.003). (9)

This is quite close to the best-fitting power law to the De Vis

et al. (2019)’s data log DGR = (2.45 ± 0.12) log
(

Z
Z⊙

)

− (2.0 ±

1.4), quantitatively confirming the good agreement of the predicted

and observed slopes. Still, the scatter of the best fit is large (σ =

0.31 dex), even though the correlation is clear. Better estimates of

the DGR might be obtained by incorporating secondary physical

parameters in addition to Zgas; we explore this in Section 3.4 using

machine learning.

3.3 The dust-to-metal ratio

In Fig. 4, we apply a similar analysis to the DTM, plotting the DTM

ratio as a function of Zgas between z = 0 and 6. This relation is

equivalent to the relation between the DGR and Zgas. As discussed

above, our simulation shows only a weak evolution of the DTM

Figure 4. The relation between dust-to-metal ratio (DTM) and gas-phase

metallicity at z = 0–6. Observational data from high-redshift observations

of DLA and GRB absorbers (De Cia et al. 2013, 2016; Wiseman et al. 2017)

are overplotted. The black dots and crosses in each panel are the z = 0

observational data by Rémy-Ruyer et al. (2014) and De Vis et al. (2019),

respectively.

ratio from z = 6 to 0 and approximately reproduces the result of

Rémy-Ruyer et al. (2014) and De Vis et al. (2019). The DTM ratio

increases rapidly as Zgas increases at the low-metallicity regime until

it is capped at a roughly constant value ∼0.8 when Zgas > 0.5 Z⊙.

For the quenched galaxies, the DTM ratio drops off quickly for the

same reasons as in the DGR case.

Overplotting the z ∼ 2–4 data from high redshift observations of

damped lyman alpha (DLA) and gamma-ray burst (GRB) absorbers

(De Cia et al. 2013, 2016; Wiseman et al. 2017) against the simulated

data; however, we find a systematic discrepancy at Zgas < 0.5 Z⊙,

where the predicted DTM ratios show a much steeper dependence

with metallicity than the observations. The source of this discrep-

ancy is unclear. We note that the nature of these absorbers can be

significantly different from the physical conditions in galaxy discs.

DLAs are thought to arise from the outskirts of gas discs in galaxies

and perhaps even from metal-poor gas in the circumgalactic medium

(Berry et al. 2014). Moreover, these studies measure metallicities

and DTM via abundances acquired from optical/UV absorption-line

spectroscopy, which is different from methods typically used for

galaxies observed in the local Universe (i.e. strong-line calibrations

for metallicities and infrared emission for the dust mass). This

discrepancy thus may reflect a difference in the dust production

versus destruction in different environments or scales, combined

with the selection effect and methodologies of observations. We

defer a more careful comparison of the DGR in these particular

types of objects to future work, but note that there is potentially a

discrepancy at low Z. This also may be responsible for the too-low

DGR at low Z. We note, however, that significantly larger amounts
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Dust-to-gas and dust-to-metal ratio in galaxies 1431

Figure 5. The result our best-fitting map from galaxy properties (gas-phase

metallicity Zgas, gas depletion time-scale τ depletion , stellar mass M∗, half-

baryonic mass radius Rb,50, gas mass fraction fg, and gas surface density


g) to the DGR at z = 0, using extreme randomized trees (ERT). The ERT

is trained with the training set, denoted by cyan points, which consists of

70 per cent randomly selected star-forming galaxies from SIMBA. Orange

points denote the prediction using galaxy properties of the cross-validation

set that consists of the remaining 30 per cent of the galaxies. The black dots

represent the z ∼ 0 observational data by De Vis et al. (2019) for reference.

of dust in low-mass galaxies would steepen the DMF, which may

put our currently viable predictions into conflict with observations.

3.4 Better DGR and DTM prediction via machine learning

We now investigate the physical drivers of the DGR and DTM ratios

in galaxies, as well as their scatter. While equation (9) provides a

rough fit, it is clear that there is correlated scatter, and hence fitting

with more variables should give a tighter relation. To approach this

agnostically in terms of the form and input variables, we employ

a machine learning approach using extremely randomized trees

(ERTs).

We seek to establish a map between a range of physical properties

– namely gas-phase metallicity (Zgas), gas depletion time-scale

(τ depletion ≡ Mg/SFR), stellar mass (M∗), half-baryonic mass radius

(Rb,50), gas mass fraction [fg ≡ Mg/(Mg + M∗)], and gas surface

density (
g) – on to the galaxy DGR and DTM ratios. We limit

our analyses to z = 0 and concentrate our efforts on fitting

the star-forming sequence of galaxies, since quenched galaxies

show little dust and no obvious trend with any physical property

and our relations show little evolution with redshift. It would be

straightforward to apply this methodology to other redshift outputs.

The ERT is set-up using 70 per cent of the selected SIMBA galaxy

sample as a training set, with a maximum depth of 20 levels. We

Figure 6. Analogous to Fig. 5 but for DTM instead of DGR.

then use the remaining 30 per cent for validation. The algorithm

then generates a mapping between the inputs and the two desired

outputs (DGR and DTM). By using ERT, we also have access to

importance levels, which are determined as the relative depth of a

given input parameter was used for branching the tree.

Fig. 5 shows the fitted relation between the DGR and various

galaxy physical properties. Cyan points show the training set,

and orange points denote the validation set; taken together, they

represent all simulation star-forming galaxies. Observations are

shown from De Vis et al. (2019) as black points.

Comparing to observations, SIMBA reproduces the observed z =

0 DGR values as a function of various galaxy physical quantities

reasonably well. The DGR increases with metallicity and stellar

mass, though less tightly so with the latter. The DGR also drops with

the gas fraction and depletion time, probably reflecting underlying

trends from the stellar mass dependence. The DGR shows no clear

dependence on Rb,50 or 
g. For Zgas, τ depletion, M∗, and fg, the

Spearman’s rank correlation coefficients are r = 0.87, −0.63, 0.64,

0.81, respectively, compared to 0.33 for Rb,50 and 0.14 for 
g.

Fig. 6 shows the analogous plot for the DTM ratio. The trends

are broadly similar, with DTM increasing with Zgas and M∗,

and decreasing with fg and τ depletion. This suggests that M∗, fg,

and τ depletion may provide additional information that will enable

tighter prediction of both the DGR and the DTM. Rank correlation

coefficients are similar to the DGR case.

Since we know the true values for the 30 per cent validation set,

we can examine how well the ERT is able to reproduce these true

values. The quality of fitting is shown in the left-hand panels of

Fig. 7, for the DGR (top panels) and DTM (bottom). We find a very

tight relation with a ∼0.15 dex scatter estimated by the mean squared

error (MSE) between the predicted DGR and true (simulated) DGR

of the cross-validation set. This scatter is significantly reduced from
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1432 Q. Li, D. Narayanan and R. Davé

Figure 7. Top left: a hexbin plot of the predicted DGR derived from physical

properties of galaxies in the cross-validation set DGRpredict and their ‘real’

DGRcv from the simulation at z = 0. Top right: Mean squared error (MSE)

of the predicted DGR compared to the ‘real’ DGR as a function of maximum

depths of ERT for both the training set (blue line) and the cross-validation

set (orange dashed line). Bottom panels: Analogous to the top panels but

for DTM. We use an MSE of the training set to measure the bias of the

model (i.e. to what degree can the model fit the real data) and MSE of the

cross-validation set to measure the variance (i.e. how sensitive the model

is to noises). We choose the optimal depth 20 by trading off biases and

variances.

Figure 8. Left: The relative importance of different galaxy properties

in predicting DGR. Right: The relative importance of different galaxy

properties in predicting DTM. For both DGR and DTM, four most important

properties are Zgas, τ depletion, fg, and M∗.

∼0.28 dex when only Zgas is used, showing that the machine learning

is effective at generating better predictions for the DGR. Similarly,

for the DTM, the scatter is reduced from 0.27 dex when only Zgas

is used, to 0.14 using the full ERT mapping.

To examine the sensitivity to the ERT tree depth, we show in

the right-hand panel of Fig. 7 the MSE as a function of tree depth.

We see that increasing the tree depth initially greatly improves

predictions, but beyond a depth of � 9 levels, there is essentially

no improvement. This is true for both the DGR and the DTM ratio.

At this point, given the sample size and the number of parameters,

there is no more information contained in additional tree levels.

Hence, we find an optimal maximum ERT tree depth of nine levels

for this sample.

Finally, we examine importance levels of the input physical

parameters, as returned by the ERT algorithm, shown in Fig. 8.

At the optimal depth of 9 levels, the left-hand panel shows that the

DGR appears to be most directly correlated with the metallicity,

followed by the gas fraction. The depletion time and stellar mass

also assist with the fitting at a lower level. As expected, the half-

mass radius and the gas surface density do not contribute significant

information.

The trends are broadly similar for the DTM, as shown in the

right-hand panel of Fig. 8. However, it now appears that the

metallicity, depletion time, and gas fractions all show similar levels

of importance. The stellar mass still shows lower importance, and

Rb,50 and 
g are again irrelevant.

In summary, our ERT-based machine learning framework is able

to significantly improve the predictive power for the DGR and DTM

relations. Using only Zgas results in scatters of ∼0.3 dex, while

using the ERT-generated mapping reduces the scatter to ∼0.15 dex.

The key quantities driving this are the metallicity, gas fraction,

depletion time, and (to a lesser extent) stellar mass, while in SIMBA

the dependencies on the baryonic half-mass radius and gas surface

density are negligible. The map determined via ERT using SIMBA

can be applied by modelers who usually have no information about

dust or do not track dust evolution in a self-consistent way, which

will provide a more accurate estimation of dust mass than that based

on a simple assumption of DGR (or DTM). Alternatively, observers

with information about these global galaxy quantities can utilize

these algorithms to estimate the DGR or DTM in their galaxies.

4 D ISCUSSION

4.1 Physical underpinnings

We now take a deeper dive in to the details of the trends of the DGR

with various physical properties, by examining the correlations of

the DGR versus various galaxy physical quantities as shown in

Fig. 5. We focus our discussion on the DGR, as the trends and

interpretations for the DTM ratio are analogous.

In Fig. 5(a), we show the DGR–Zgas relation. At Z < 0.2 Z⊙,

the relation is roughly linear, corresponding to an approximately

constant but low DTM (cf. Fig. 6a). While there is a steep increase

from Z ∼ 0.2 Z⊙ to Z ∼ 0.5 Z⊙, the relation is again roughly

linear at Z > 0.5 Z⊙, corresponding to an approximately constant

DTM ∼ 0.8 (see Fig. 6a). These three different trends shows three

different regimes of dust enrichment. At lower Zgas, the galaxies

are underevolved and the dust enrichment is dominated by dust

production via condensation of ejecta from late-stage stars. In the

intermediate Zgas regime, dust growth via accreting gas-phase metals

gradually take over the enrichment process. At higher Zgas, the

growth is extremely strong and the dust mass is mainly determined

by the gas-phase metals available for accretion.

In Fig. 5(c), we show the DGR–M∗ relation. The relation flattens

after M∗ � 109.5M⊙. This transition follows the flattening of the

metal–metallicity relations above a comparable M∗ (Tremonti et al.

2004; see fig. 9 in Davé et al. 2019) plus the fact that the DGR

primarily traces the galaxy metallicity as Fig. 5(a) shows. At higher

masses, most galaxies are quenched, so the DGR actually drops and

has a large scatter owing to dust destruction.

In Figs 5(b) and (e), we show the DGR–τ depletion and DGR–fg

relation, respectively. Galaxies with lower fg and τ depletion, which

implies that they are quiescent and highly evolved, tend to have a

higher DGR. The relations are flatter at low fg and τ depletion, because

the rapid grain growth due to abundant metals is countered by

enhanced destructive processes, i.e. shock waves from supernovae,

thermal sputtering, and astration. These trends shows the correlation

between DGR and galaxy evolutionary stages that proceeds as star
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formation deplete gas and build up metals. We note, that there are

high-M∗ (usually high-Zgas) galaxies, whose fg is still relatively high

and whose star formation rates are not highly suppressed, having

a relatively low DGR. A similar situation applies to some low-M∗

galaxies. This contributes to the scatter in the DGR–Zgas plane.

We conclude that the DGR (and DTM) can be determined by Zgas

along with M∗ that reflects the chemical enrichment history and

τ SF along with fg that indicates the evolutionary stage of galaxies.

Physically, this suggests that metal enrichment history reflected by

Zgas and M∗, and evolutionary stages quantified by τ depletion (see also

Asano et al. 2013; Zhukovska 2014; Feldmann 2015) and fg (see

also De Vis et al. 2019) are the main drivers of the scatter in the

DGR−Zgas plane. Meanwhile, galaxy compactness as quantified by

Rb,50 and 
g does not seem to impact the DGR or DTM, showing

that at least in SIMBA dust content is insensitive to galactic structure

– with the caveat that given SIMBA’s ∼1 kpc resolution, galactic

structure may not be faithfully modelled in detail.

4.2 Comparison with other models

The DMF and the DGR–Zgas relation have been studied by cos-

mological hydrodynamic simulations (McKinnon et al. 2017; Hou

et al. 2019) and semi-analytic models (Popping et al. 2017). Like

McKinnon et al. (2017) and Popping et al. (2017), our work predicts

that the DMF increases monotonically from z = 2 to 0 at the high-

mass end (Md � 108M⊙), and is unable to simultaneously match the

z = 0–2 DMF. Nevertheless, our result appears to have the closest

match to observations to date, underpredicting the z = 2 DMF by

a factor of ∼3, which is significantly better than McKinnon et al.

(2017) where galaxies with Md � 108 M⊙ are hardly produced.

On the other hand, Hou et al. (2019) tracks two types of grains

(small/large) and grain–grain shattering and coagulation. They also

implement a subgrid-model to boost the density of unresolved dense

gas, which is not adopted by our model (therefore we use a short

τ ref) and a simple AGN feedback model to suppress star-forming

activity of massive galaxies. They are able to reproduce the non-

monotonic trend of the high-mass-end DMF evolution from z = 2

to 0, which was observed by Dunne et al. (2011). However, they fail

to match the observed DMF at z = 0 (where they overproduce high

Md galaxies) to z = 2 (where they underproduce high Md galaxies).

What steps forwards are necessary for simulations to match

the observed z = 2 DMF? Some possible solutions include (1)

implementing dust yields in stellar ejecta as a function of a star’s

mass and metallicity (Ferrarotti & Gail 2006; Bianchi & Schneider

2007; Zhukovska et al. 2008; Nanni et al. 2013; Schneider et al.

2014), or the local ISM density or temperature, as pointed out

by McKinnon et al. (2017); (2) tracking the evolution of grains

with different sizes (see e.g. Hou et al. 2019 for two-size grains

and McKinnon et al. 2018; Aoyama, Hirashita & Nagamine 2019

for a continuous distribution of grain sizes). Solution #2 will

be implemented in an upcoming paper. We expect that a non-

monotonic evolution of high-mass-end DMF would result from the

intensified grain–grain collisions at lower redshift that will generally

lead to an increasing abundance of smaller grains that experience

faster destruction.

Turning to the DGR–Zgas relation: The simulations by McKinnon

et al. (2017) obtain a rather flat relation between the DGR and gas-

phase metallicity from low Zgas to high Zgas, mainly because their

accretion time-scale for dust growth (see equation 5 of McKinnon

et al. 2016) does not vary with the local ISM Zgas. We find that the

dependence of the accretion time-scale on metallicity is essential to

reproduce the observed DGR–Zgas relation as is shown in Popping

Figure 9. A comparison of DGR–Zgas relations from two test runs where

accretion time-scales τ accr (cf. equation 5) are dependent (as adopted by

Popping et al. 2017; Hou et al. 2019; and our work) or independent (as

adopted by McKinnon et al. 2017) of Zgas. These test runs have the same

mass resolution as the primary SIMBA run, but have 2563 dark matter particles

and 2563 gas elements in a cube of 25h−1 Mpc. It shows Zgas-dependent

τ accr is essential to reproduce the observed relation.

et al. (2017), Hou et al. (2019), and our work, in our case by

the results of two test runs in Fig. 9. If we assume a metallicity-

independent accretion time-scale, then we get a flatter and higher

relation (blue points) compared to the Rémy-Ruyer et al. (2014)

observations. The actual observations are slightly shallower than the

predictions from the metallicity-dependent model, suggesting that

perhaps our metallicity dependence should be softened somewhat.

Similar to Popping et al. (2017), our results show a weak evolution

of the DGR–Zgas relation from z = 0 to 6, especially for high-

metallicity galaxies. This is encouraging given that the underlying

galaxy formation models (SAM versus hydrodynamic) are rather

different from one another. Beyond this, the treatment of dust growth

in both models is different: grain growth by accretion in our work

does not use the information of any detailed subgrid ISM model,

whereas in the Popping et al. (2017) SAM, the accretion time-scale

is calculated by inferring the gas density in molecular clouds from

SFR laws. The fact that these two very different models arrive at

the same conclusion for a relatively modest evolution in the DGR-

Z relation likely underscores its robustness. On the other hand,

Hou et al. (2019) shows that the DGR at a fixed Zgas builds up

significantly a factor of ∼5 from z = 5 to 0. This discrepancy mainly

comes from the different treatment of grain growth and feedback.

Grain growth in our simulation is overall stronger; therefore, our

simulated galaxies are able to reach the quasi-static states within a

shorter period of time. Moreover, SIMBA has a more sophisticated

feedback mechanisms that suppress further metal enrichment at

lower redshifts, particularly in massive galaxies.

Hou et al. (2019) explores the scaling relations with a variety

of galaxy properties other than Zgas. Comparing Figs 5(c) and (e)

against their figs 4(b) and (d), we find that the trend predicted

by both simulations are similar but there are big discrepancies

at the high M∗ (M∗ > 109.5M⊙, the turning point of mass–

metallicity relation) and low-fg end, where Hou et al. (2019)’s model

overproduces the DGR compared against observational constraints.

In this regime, our DGR–M∗ and DGR–fg relations flatten. The

sophisticated black hole feedback model in SIMBA compared to

the simple phenomenological AGN feedback model used in their
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1434 Q. Li, D. Narayanan and R. Davé

work that may underestimate the suppressing power can explain the

difference. A similar analysis applies to the low fg regime, where

most of the galaxies are highly evolved and massive, and black hole

feedback mechanisms are influential.

4.3 Caveats

Here, we point out some caveats of our simulation. First, we note

that the choice of free parameters for dust production, grain growth,

and grain destruction via SNe shocks are not well constrained

(cf. Table 1) and most likely degenerate. Though grain growth

dominates the evolution of dust content, a combination of free

parameters different from what is chosen in this work could

potentially lead to an equally good (or even slightly better) match

to observations, e.g. one with stronger production, weaker grain

growth and stronger destruction, or one with stronger grain growth

and much stronger destruction. On the other hand, the observed

metallicities depend strongly on which strong-line calibration is

used. The match to De Vis et al. (2019) would be worse if e.g.

calibrations of Pettini & Pagel (2004) are used instead of Pilyugin

& Grebel (2016).

Besides, dust plays an important role in cooling and shielding

gas, catalyzing important chemical reactions (e.g. formation of

molecular hydrogen) and recombination processes, and alternating

the interstellar radiation fields. However, dust in our simulation

only affects the ISM by depleting gas-phase metals thus reducing

the efficiency of gas cooling channels. Work to implement the dust

physics in a fully self-consistent manner is under way.

Beyond this, in our current model implementation, dust grains

are fully coupled to gas flows. In reality, dust grains can be

decoupled from gas due to radiative forces and lack of pressure and

experience/apply drag forces from/to gas (Squire & Hopkins 2018;

Hopkins & Squire 2018a, b). Dust grains in this work are assumed to

have the same grain size to capture the major processes that evolve

the dust mass. In the future, we will implement ‘active’ dust particles

that are not strictly coupled to gas to track the evolution of grain-

size distributions and take grain–grain collisions into account. As

mentioned in Section 4.2, we expect the evolution of the grain–size

distribution would alter the evolution of the cosmic dust content.

The use of dust superparticles to sample the spatial distribution of

dust would also save the memory usage, making it computationally

feasible to track multiple-size grains in a large volume cosmological

simulation, even though we expect the effect on dynamics would

be negligible because of the lack of spatial resolution of our large-

volume cosmological simulations and strong radiative fields.

Finally, the 100h−1 Mpc SIMBA volume lacks the resolution to

resolve a multiphase ISM, which is a common issue for large-

volume cosmological simulations. As a result, parameters such as

the reference accretion time-scale τ ref have to be tuned such that

the effective gas density is boosted. We also assume fixed dust

destruction and condensation efficiencies, which may actually be

functions of local ISM properties (Seab & Shull 1983; McKee

et al. 1987; Ferrarotti & Gail 2006; Bianchi & Schneider 2007;

Zhukovska et al. 2008; Yamasawa et al. 2011; Nanni et al. 2013;

Schneider et al. 2014; Temim et al. 2015). Calibrating parameters

we have used against numerical simulations of resolved ISM is one

potential approach to make improvement.

5 SU M M A RY

We have developed a self-consistent model for the formation,

growth and destruction of dust in the SIMBA cosmological galaxy

formation simulation, and used these to compare to predictions to

observed predictions, as well as study the physical drivers of the

DGR and DTM in galaxies. We also develop a machine learning

framework to relate the DGR and DTM to various input global

galaxy properties. Our main results are as follows:

Our main results follow:

(i) SIMBA broadly reproduces the observed DMFs across the

measured redshifts of z = 0–2, albeit with modest underprediction

at high-z. The low-mass end steepens at high redshift.

(ii) We find a relationship between the DGR of star-forming

galaxies and their gas-phase metallicity such that lower metallicity

galaxies have lower DGRs. This is broadly in accord with obser-

vations. There is little evolution with redshift in this relationship.

Meanwhile, quenched galaxies show lower DGR and essentially

no relationship in this space (Fig. 3). This non-constant dust-to-

metals ratio with metallicity (equation 9) has implications for galaxy

formation models that historically have assumed a constant dust-to-

metals ratio (see e.g. Silva et al. 1998; Granato et al. 2000; Baugh

et al. 2005; Lacey et al. 2010; Narayanan et al. 2010; Fontanot &

Somerville 2011; Niemi et al. 2012; Somerville et al. 2012; Hayward

et al. 2013; Narayanan et al. 2015, 2018a, b; Cowley et al. 2017;

Katz et al. 2019; Ma et al. 2019).

(iii) The DTM ratio versus metallicity relation drops at low

metallicity, akin to the DGR relationship (Fig. 4). This is consistent

with low-redshift result, yet may be in tension with observational

constraints at low metallicities at high redshifts from GRBs and

DLAs. Other trends are qualitatively similar to those of the DGR.

(iv) In order to help both modelers and observers estimate more

accurate DGR and DTM ratios, we have developed a publicly

available machine learning framework that generates a mapping

between the DGR and DTM ratio and a set of galaxy physical

properties, showing that it depends significantly on various galaxy

properties. The machine learning framework reduces the scatter in

the prediction from ∼0.3 dex in the DTM and DGR using a simple

fit to Zgas alone, down to ∼0.15 dex using the machine learning

framework. This code is available at https://bitbucket.org/lq3552/d

ust galaxy analyzer.

(v) While the DGR and DTM ratios depend most sensitively on

the gas-phase metallicity in galaxies, we demonstrate that there

are important secondary relationships between these ratios and

the depletion time-scale, stellar mass, and gas fraction of galaxies

(Fig. 5). The DGR and DTM ratio both drop to lower M∗, and

rise to lower fgas and gas depletion times. There is no dependence

on gas surface density and baryonic half-mass radius. Hence, dust

content is governed by both long-term evolutionary processes such

as metal content and stellar mass, as well as short-term varia-

tions such as varying gas content and (commensurately) depletion

times.

Overall, the SIMBA dust model is at least as successful compared

with other current dust models implemented in cosmological simu-

lations. However, there remain various caveats and potential direc-

tions for improvement. These include having active dust (not tied to

the gas), multiple dust grain sizes, and implementing more sophis-

ticated dust cooling. Furthermore, there are various free parameters

that are constrained indirectly by observations, which might be

better constrained using high-resolution ISM simulation. By using

such a multiscale approach to combine high-resolution simulations

and observational constraints into a cosmological galaxy formation

model, we are moving towards more comprehensively studying the

evolution of galaxy dust on cosmological scales.
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Agarwal S., Davé R., Bassett B. A., 2018, MNRAS, 478, 3410
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