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ABSTRACT

Recently, blockchain has received much attention from the mobility-
centric Internet of Things (IoT). It is deemed the key to ensuring
the built-in integrity of information and security of immutability
by design in the peer-to-peer network (P2P) of mobile devices. In a
permissioned blockchain, the authority of the system has control
over the identities of its users. Such information can allow an ill-
intentioned authority to map identities with their spatiotemporal
data, which undermines the location privacy of a mobile user. In
this paper, we study the location privacy preservation problem
in the context of permissioned blockchain-based IoT systems un-
der three conditions. First, the authority of the blockchain holds
the public and private key distribution task in the system. Sec-
ond, there exists a spatiotemporal correlation between consecutive
location-based transactions. Third, users communicate with each
other through short-range communication technologies such that
it constitutes a proof of location (PoL) on their actual locations. We
show that, in a permissioned blockchain with an authority and a
presence of a PoL, existing approaches cannot be applied using a
plug-and-play approach to protect location privacy. In this context,
we propose BlockPriv, an obfuscation technique that quantifies,
both theoretically and experimentally, the relationship between
privacy and utility in order to dynamically protect the privacy of
sensitive locations in the permissioned blockchain.

CCS CONCEPTS

« Security and privacy — Pseudonymity, anonymity and un-
traceability; Privacy protections; - Computer systems orga-
nization — Peer-to-peer architectures.
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1 INTRODUCTION

As of this writing, the mobility-centric Internet of Things (IoT)
systems utilize a centralized model to handle the vast amount of
data generated by IoT devices (e.g., smart vehicles in the Vehicular
Ad Hoc Network (VANET) [7], smartphones in Ad Hoc networking-
based mobile crowdsensing [10]). Such models are weak in ensuring
security and trust and are not capable of handling the fast-paced
growth of IoT. Thus, distributed systems are considered to address
the problems of IoT systems. Recently, blockchain, a unique dis-
tributed technique, has gained tremendous attention from the IoT
community. It is a distributed peer-to-peer (P2P) technique for
recording digital interactions in a unique way that is designed to
be secure, transparent, highly resistant to outages, auditable, and
efficient[13, 22]. It provides built-in integrity of information, and se-
curity of immutability by design, making it very useful for ensuring
trust, security, and transparency in P2P trustless networks. To date,
two main categories of blockchain have been studied in a variety of
IoT applications: public and permissioned. In a public blockchain,
there exists no authority of the blockchain; a node can join and
leave the network at any point with random pseudonyms and can
also change its public keys at any time instance (e.g., for every trans-
action). This frequent pseudonym scheme makes the IoT nodes!
untraceable and provides high privacy. However, in a permissioned
blockchain, such a high level of privacy is not easily attainable, as
the authority of the blockchain controls the blockchain network
with a variety of access controls spanning from control over joining
the network to perform consensus mechanisms. Amazon’s Quan-
tum Ledger Database (QLDB)[1], J.P. Morgan’s Quorum blockchain
[21], and Microsoft’s Azure blockchain [4] are just a few examples
of industry standard permissioned blockchains.

!In this paper, we use the terms IoT node, IoT device, and users interchangeably.
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Similar to many other fields, permissioned blockchain is also
being studied in the IoT of mobile devices. For better understanding,
we draw motivation of a permissioned blockchain from CreditCoin,
a privacy-preserving blockchain framework for the Vehicular Ad
Hoc Network (VANET) [18]. In this framework, the vehicles are re-
quired to be registered with the authority. This authority is respon-
sible for generating and providing the vehicles with cryptographic
keys, and keep track of the relationship between the vehicles and
the provided keys. A set of trace managers at different locations
also aids the authority in tracking malicious vehicles/users. In this
framework, only road-side units (RSUs) and authorized vehicles are
responsible for managing the blockchain. This framework is built
around the short-range communication technology-based P2P net-
work of the vehicles. Here, the vehicles make transactions with their
peers such that each transaction is signed by each of the peer vehi-
cles by their public keys. As these transactions are made through
a short-range communication technology (e.g., Wi-Fi, Bluetooth),
they can be treated as a proof-of-location (PoL) for the vehicles’
whereabouts in the spatiotemporal domain. In some frameworks,
such as the one proposed in [2], the proof of location is explicitly
defined in the design. Based on the transaction information, the
vehicles generate a rating about each other and forward them to
the nearest RSU. The RSUs then compute the overall rating of each
vehicle and append the new rating into the blockchain. Similar
motivation can also be drawn from the work presented in [28].
Obviously, these frameworks can be integrated into many other
mobility-centric IoT scenarios, such as mobile crowdsensing. The
RSUs and smart vehicles can be replaced with Wi-Fi access points
and low powered mobile devices (e.g., smart phones and smart
watches), respectively. In terms of location privacy, these frame-
works only guarantee conditional privacy to IoT users. That is, the
devices can enjoy privacy from their peers by using the public keys
provided by the authority. However, as the authority holds the
mapping between real identity and the public keys, the privacy of
sensitive locations from a malicious authority cannot be preserved
using only a key changing mechanism. A malicious authority can
perform a spatiotemporal analysis of the disclosed locations of a
user and can reveal sensitive information.

In this paper, we study the location privacy issue in the context of
permissioned blockchain, where: (1) the authority of the blockchain
holds the public and privacy key distribution task in the system,
(2) a transaction can be considered as a proof of location (PoL) for
a user’s temporal whereabouts, and (3) there is a spatiotemporal
correlation between the locations. We make the following key con-
tributions: (1) We first discuss the limitations of existing location
privacy-preserving mechanisms under a PoL in the context of per-
missioned blockchain. (2) We present an effective solution, called
BlockPriv. As discussed above, in BlockPriv, the worst form of
privacy leakage is considered. That is, whenever an IoT node makes
a transaction with its peers, its location information is known to
the malicious blockchain authority and the authority is completely
capable of mapping the real identity of a node with its public key
pairs. Taking a node’s privacy preference for different locations and
spatiotemporal correlation between the transactions, BlockPriv
decides whether or not a node should make a transaction, such that
its undisclosed sensitive location’s privacy is also preserved with a
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set of locations. (3) We quantify the trade-off between privacy and
utility theoretically and empirically using two factual datasets.

The rest of the paper is organized as follows. Related works are
discussed in section 2. The overview of the system and its design
goals are presented in section 3. Then, the proposed BlockPriv
approach is detailed in section 4. Important security, privacy, and
utility aspects of BlockPriv are analyzed in section 5. A discussion
of the experimental analysis is covered by section 6. Finally, the
paper is concluded in section 7. Important notations used in the
paper are presented in Table 1.

2 RELATED WORK

Location privacy preservation is a comparatively well studied prob-
lem in centralized architecture-centric IoT systems. Several classes
of mechanisms have been proposed to mitigate the privacy leakage,
such as (1) pseudonym, (2) location perturbations, and (3) spatial
obfuscation. The goal of these mechanisms is to apply them to a
node’s actual location before releasing it to the central authority. For
instance, in the case of a pseudonym, before revealing the location,
the mechanism changes the ID of a node to make it untraceable [29].
These approaches depend on a trusted third party (TTP) to carry
out the steps of changing pseudonym. This is similar to the mixing
approach [8] used in blockchain to improve privacy by exchanging
the public key of a mobile node with a random public key such that
the probability of linking multiple transactions is reduced. However,
in a permissioned version of blockchain such an approach will not
work.

Perturbation mechanisms, such as differential privacy-based geo-
indistinguishability [3], add statistical noise to a node’s real location
before it is shared with the system. Obviously, under a PoL, such
mechanisms have limited impact [19]. On the other hand, spatial
obfuscation reduces the precision of the actual location information
before releasing it to the authority of the system. This is done by
either infusing more locations[17] or replacing the actual location
with a realistic larger region[14]. Similar to location perturbation,
location obfuscation works only at a limited scale under the PoL. In
a nutshell, the existing privacy-preserving mechanisms, designed
for centralized IoT systems, cannot be applied in a plug-and-play
way to the problem that we are trying to solve here.

In the scope of blockchain, the frequent change of public keys is
the most explored solution to preserve privacy[11, 22, 25, 30]. It was
first proposed by Nakamoto [22], the creator of Bitcoin. Motivated
by Bitcoin’s solution, Dorri et al. [11] also suggested to use a fresh
unique public key to prevent linkage attacks while communicating
with other nodes in their proposed Lightweight Scalable Blockchain
(LSB) architecture for smart-vehicle ecosystems. In blockchain-
based centralized proof-of-location (PoL) generation, Brambilla et
al. [9] also proposed changing the public keys frequently to pre-
serve a node’s sensitive location privacy while generating proof
of locations. Michelin et al. [19] proposed a privacy-preserving
blockchain-based SpeedyChain framework for a vehicular network
scenario. Similar to most of the other works in this context, Speedy-
Chain considers the fixed positioned roadside infrastructure units
(RSIs) as the key to maintaining the blockchain. Unlike Bitcoin
or Ethereum-like blockchains, here, for each vehicle there exists
exactly one block in the blockchain. In order to maintain privacy,
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this framework proposes the timely change of the public key of
each vehicle. However, these frameworks do not fit completely into
the scenario considered in this paper, where the authority of the
blockchain controls the private and public key distributions to the
mobile nodes in the system.

The idea of a permissioned blockchain is primarily stemed from
the evidence of misuse of freedom in public blockchains for ille-
gal activities. For instance, almost half of the bitcoin transactions
are estimated to be related to illegal drug sales, ransomware, and
other malicious activities[12]. Hence, the deanonymization of the
blockchain users has gained significant attention from both the
law enforcement and the security and privacy communities. In
fact, it is found that changing the public keys in order to nullify
a linking attack in a public blockchain is not quite as bulletproof
as it was expected [6, 16]. Research efforts show that it is possible
to map the public keys of Bitcoin users to their unique identities
(e.g., IP addresses) [6, 16]. For instance, Koshy et al.[16] were able
to deanonymize 1162 addresses by analyzing transaction relaying
patterns. Biryukov et al. [6] proposed a deanonymizing algorithm
by exploiting only the input and output transactions of mixing
services and identified a relationship between the input and output
addresses at a very high accuracy. Recently, Roulin et al. [23] applied
decision tree algorithms on smart home devices’ data (e.g., smart
things, nest smoke alarm) by utilizing off-chain information to clas-
sify IoT devices for understanding a user’s activity pattern. While
the work is done in the context of smart home, it can be adapted for
the mobility of the IoT devices. All these deanonymization works
highlight that simply changing the public keys frequently is not
the ultimate solution to providing privacy in the blockchain, even
in a public version.

Moving forward, our work is focused on an authority-based
permissioned blockchain where privacy is tougher to achieve by
default. It is closely related to the work proposed by Li et al. [18]
in the context of a vehicular network. Using their proposed frame-
work, it is possible to achieve only conditional privacy, as the trace
manager can track anyone at any time, if necessary. Similarly, Yang
et al. [28] presented a blockchain-based decentralized trust manage-
ment framework for vehicles where each vehicle is registered with
the system using its VIN number. Thus, only conditional privacy
can be attained with this framework. Likewise, Sharma et al. [24]
proposed a permissioned blockchain by incorporating traceability
features while maintaining privacy in the Internet of Vehicles (IoV).
However, they used a server for vehicle registration, which would
store all vehicle IDs in an encrypted scheme; the central authority
can track any vehicle when needed.

To achieve complete location privacy, Yang et al. [27] proposed
an obfuscation approach to protect location privacy in a private
blockchain for crowdsensing applications. In this work, a worker
submits an obfuscated region to the system to protect their exact
location’s privacy. However, in the case of P2P communication of
the nodes, this type of approach cannot be applied without the
collaboration of the nodes. Jia et al. [15] designed a blockchain-
based incentive mechanism for crowdsensing applications with
a focus on preserving the location privacy of the users. In their
framework, a confusion layer was proposed, in which a user’s
location is encoded in such a way that it can be confused with other
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Table 1: Notations and Their Description

Notation Description

MU Mobile user or mobile node

Ny Privacy parameter for a location I

Ply) Privacy level achieved for location Iy,

Pr}th(l) MU’s probability of being at location [ at time ¢
I A sensitive location

S Set of all sensitive locations of a MU

Ul Loss of utility for location /

Ty A trajectory

n Total number of sensitive locations in a T}

St Time difference

L, Set of all locations reachable to/from location I,
®(a,b) Required time to reach from location I, to [
1X| Size/number of elements in a set X

a % of location types selected as sensitive

r Privacy region radius

k — 1 users’ locations. While this could be a solution to protect
location privacy, it requires the honest collaboration of other users.

In contrast to all these works, we intend to design a location
privacy-preserving obfuscation mechanism that does not require
collaboration from other users and can provide complete privacy
in permissioned-blockchain under the presence of PoL.

3 SYSTEM OVERVIEW AND DESIGN GOALS

In this section, we present the details of the system model and
the behavior and attack strategies of the malicious entities in the
system. We then formulate the central problem of this paper and
state the goals we set out to achieve in the design of its solution.

3.1 Blockchain System Model

We consider a permissioned blockchain, where its authority also
acts as the certificate authority to provide the public and private
key pairs to the mobile nodes. The mobile nodes are registered with
the system and communicate with each other using the preassigned
key pairs. Communication between the nodes takes place using a
short-rage communication technology. The nodes can request the
authority for new key pairs at any point of time. The blockchain
is managed by preassigned mobile edge computing devices (e.g.,
RSU, Wi-Fi access points, and so on), distributed over a large region.
These devices constitute the blockchain nodes and are connected
with each other in a P2P network over the internet. The transactions
among the IoT nodes are broadcasted to the blockchain nodes in the
blockchain network. The blockchain nodes aggregate and insert the
new transactions into the blockchain through a consensus mecha-
nism (e.g. practical byzantine fault tolerance, proof-of-stake) in a
timely fashion (e.g. every 30 minutes). We consider a blockchain
architecture similar to the one presented in CreditCoin [18] with-
out considering the rewarding phase. We assume that the mobile
nodes have internet capability to compute the time to reach one
location from another with the help of a traffic information provider
in real time, e.g., Google Maps. We also assume that the informa-
tion between the traffic information service provider and a node is
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Figure 1: System model of permissioned-blockchain where
BC and BA refer to blockchain and blockchain authority,
respectively. The BA also acts as certificate authority and
trace manager. The mobile IoT nodes are connected with
each other in a P2P network using a short-range communi-
cation technology. They make transactions with each other
and send information on the transactions (e.g., rating about
other mobile nodes at a specific location and time) to the
nearest blockchain node. Here, each grid refers to a specific
location.

anonymous and the provider is independent from the blockchain
authority.

3.2 Malicious Entities and Attack Strategies

3.2.1 Malicious Entities. In the system, we consider the authority
of the blockchain as the malicious entity. It follows the honest-but-
curious adversary model in the system. That is, it tries to predict a
target node’s sensitive spatiotemporal information without violat-
ing any protocol of the system or dismantling the way blockchain
works. Furthermore, it is not going to hack into the device of a
target node. We also consider that, in order to compute the time
reachability information, the authority also uses a traffic informa-
tion service provider. From this point on, we refer to the authority
as an attacker. It is important to note that some of the mobile nodes
can be malicious. However, as we mentioned earlier in the system
model, the mobile nodes can change their public keys at any point
of time; the malicious mobile nodes cannot track a target node from
their transactions without colluding with the authority. This is a
fundamental privacy feature of blockchains. Thus, we focus on the
attack strategies of the blockchain authority.

3.2.2  Attacker’s Goal and Strategies. The goal of an attacker is to
understand a mobile node’s presence at different locations in the
temporal domain. In order to do so, it utilizes the time-reachability-
based spatiotemporal correlation between a node’s disclosed loca-
tions in the blockchain as its fundamental strategy. Let the random
variable O]tWU represents the actual location of a mobile node MU
at time . Given a node’s locations I;, [; at time t,, t}, respectively,

Shabhid et al.

the node’s probability of being at a location [, at a discrete time tg4
(ta <tq <tp)is

Pri () =Pr(OL = 14105y = 1. 0% = 1)) 1)
The attacker computes Pr;\I/IU(lh) using the time reachability corre-
lation as follows.
1 Ifly is reachable to and from [;
and [j in (tp — t4) time (2)
0 Otherwise

Pri(y) =

Obviously, it is possible to have multiple locations with Pr;{/w (Ip) =
1. Thus, the ultimate goal of the attacker is to minimize the number
of such locations. That is,

minimize (Z PrZ/IU(lh)) (3)

This forms the core of an attacker’s strategy. Based on this, we
consider mainly the following attacks that can be exploited by the
attacker to infer a target node’s location information.

(1) Collusion with malicious mobile nodes: Malicious nodes collude
with the authority and provide it with the location information of
a target node for profit.

(2) Map matching attack: The authority employs the map infor-
mation to understand spatially reachable and unreachable location
information. A spatially unreachable location refers to a location
that cannot be reached at any time using a map service (e.g., the
middle of a lake). Thus, Pry; (1) = 0.

(3) Time-reachability-based path reconstruction attack: In order
to reconstruct the actual path between two revealed locations, the
authority can use the time reachability information to construct the
valid paths that can be traveled between the two locations within a
time limit.

We also analyze the impact of transaction dropping attack on
location privacy. Note that, the scope of this paper encompasses the
analysis of location privacy invading attacks from a user’s point of
view and thus different blockchain related attacks, such as DDoS,
Sybil, 51% attack, and eclipse attack are not covered here.

3.3 Problem Formulation and Design Goals

It is clear that there is an important trade-off between location pri-
vacy and utilization of the system. The problem lies with the short-
range communication technology-based transactions between the
mobile nodes that form proof of locations (PoL) for the nodes. Thus,
in order to protect a sensitive location’s privacy, a mobile node
must remain silent in the network: that is, it must not make any
transaction in the network. This leads to the question of how long
in both spatial and temporal domains a node must remain silent to
protect a sensitive location’s privacy. Remaining silent infinitely
results in a location privacy of 100%, but a system utilization of 0%.
In other words, an indefinite silence will incur a 100% loss of utility.
Hence, the goal of this work is to formulate, design, implement, and
evaluate a location privacy-preserving mechanism, called Block-
Priv, for mobile nodes in the context of permissioned blockchain
by solving the following problem:

minimize {P~1(1%), U5} (4)
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Here, P(I°) and U(I°) refer to the achieved privacy for sensitive
location I* and the loss of utility due to privacy preservation for I*,
respectively.

To summarize, in the design of the BlockPriv mechanism, we
intend to achieve the following goals: (1) achieve privacy without
collaborating with any other entity in the system, and (2) achieve a
quantifiable balance between privacy and utility.

4 THE BLOCKPRIV APPROACH

For the sake of clarity and to maintain coherence with the blockchain
concept, we first discuss the public key changing technique adapted
in BlockPriv. In our scheme, we adapt the temporal public key
changing concept proposed by Michelin et al. [19]. Here, at a fixed
time interval t¢¥, a mobile node will change its public key in or-
der to nullify the possibility of spatiotemporal linkage attack from
malicious nodes. Note that, in our problem, public key changing
can only provide privacy to a mobile node against its peers, not
against the authority that distributes the keys. Also, this scheme
is vulnerable against colluding attack between the authority and
malicious mobile nodes, which is one of the focus of our work.

At this point, we present the formal definition of location privacy
and utility from the perspective of a mobile node. The definition
of privacy can be derived from the formulation of the attacker’s
objective, defined by equation 3, as follows.

P(1*) = maximize (Z PVX,IU(lh)) ®)

Let us consider: a node’s last revealed location in the blockchain
is [; at time tg4, and it was at a sensitive location l}sl at time t4. It
should reveal its location, also known as making a transaction, at
an insensitive location [; at time t, (¢, < tq < t3) if and only if

PS) = (Z Pr]‘f/[U(lfl)) > Np 6)

To explain, a node should reveal its location I; at time t; in the
network to the authority when there exists at least Ny number of
locations, including I3, which are both reachable from and to /; and
ljin (6t = t}—tq) time. Here, N}, is a user defined privacy parameter
for location I;. This formulation is applicable only for a single
sensitive location. It is also possible that, after l}sl, the node was also
at another sensitive location l; at time ¢ (t5 < tq < tr < tp)such
that, after 5§t = t}, —t, time, P(l;) > Np, but P(l;,)) < Np.Insucha
case, the node should not make any transaction at location I; at time
tp. Formally, if there are m number of sensitive locations visited by
anode between time t, and £}, then it will make a transaction with
its peers at an insensitive location at time ¢, in the network if and
only if

P = (ZPijU(lf)) >Ni; Vi=1,...m )

Note that, from t, to t},, the node was continuously silent in the
network. We call it single or 1 round silence to maintain privacy
of the m number of sensitive locations. If a trajectory T, contains
n number of sensitive locations, then the average privacy of each
sensitive location in that trajectory is defined as

P(T,) = %ZP(Z?), i=1,...n ®)

MobiQuitous, November 12-14, 2019, Houston, TX, USA

L/t g

bo/to L/t

Q mu's visited location

QO Locations reachable from 1,
in (t,-tp) time
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Figure 2: Illustrated BlockPriv: The curve refers to a mo-
bile node (MU)’s actual path between Iy, /1, and I locations
at times fy, t1, and ty, respectively. The location [; is privacy
sensitive for the MU. Thus, it remained silent at location [;.
It will make a blockchain transaction at [ at time ¢, only
when the number of locations reachable from both [y and I,
in t — tp time, meets the privacy requirement for /.

From the formulation of privacy, we can also define the loss of utility
due to the application of privacy preservation. Let us consider: at
i-th round silence, the node opted not to make any transaction at
P(l;) number of locations. In our definitions, this number is the loss
of utility of BlockPriv. If a node maintained k rounds of silence
to preserve privacy of a trajectory T, with n number of sensitive
locations, then the average loss of utility for each sensitive location
is

i=k
UT) =3 Uy ©)
i=1

This allows us to reconstruct the multi-objective optimization prob-
lem, presented in equation 4, as a single objective optimization
problem as follows:

minimize U(Ty)

10
st P(7) = NiVI§ €T, (10)

Now we present in detail the mechanism of BlockPriv to solve
this problem.

In this mechanism, the mobile nodes are responsible for labeling
their sensitive locations and assigning level of privacy to each of
them. The nodes utilize radius r to specify the level of privacy for a
sensitive location as N = 7r2. Let us consider: a node MU made a
transaction in the network at time ¢, at location [;. Then, it moved
to a privacy sensitive location llsz at time t4 and did not make any
transactions. Then, after every At time at location [}, different from
both [; and IZ’ it checks the number of locations that are reachable
to and from [; and [;. Let current time and location be t; and [,
respectively. The node first computes the set of all the locations .L;
that are reachable from [; in 8t = t}, —t, time. Next, it computes the
set of all the locations .L; from which location [; is reachable. Then,
L = L; N L forms the set of all locations from which both [; and
[j is reachable in 6t time. In other words, each of the location in £
creates a valid 1-hop route from I; to [; in §t time. That is, based
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on the time reachability information, the node can move from J; to
any location [; € £ and then move to [ in 6t time. Thus,

L = {VI|(®(;, ) + (1, 1})) < 6t} (11)

Here, ®(a, b) refers to the time to get from location a to b. The size
of L defines the privacy level achieved for sensitive location [ }sl in 8t
time. That is, P(I3) = | £|. The node will make a transaction at time
tj at location t, only when | L] > Np,. If there is a total m number
of sensitive locations visited by the node in §¢ time, according to
equation 7, it will make a transaction at time ¢; and location [, if
and only if

Ll >N;; Vi=1,...m (12)

It is understandable that, in the case when all the sensitive locations
have the same level of privacy, comparing £ with the level of
privacy of the latest sensitive location is enough to check whether
the condition in equation 7 is valid. However, for sensitive locations
with different levels of privacy, the MU is required to check whether
all the previous sensitive locations’ levels of privacy are met before
making any transaction.

For a single sensitive location I*, the maximum loss of utility
Umax(I®) is bounded by the value of its privacy parameter N. The
higher the value of N, the higher the Uy, 4x(I°). More specifically,
Umax(I*) < L. Certainly, from equation 10, we do not want any
“extra” loss in utility of the blockchain. Let t, be the last time a
node’s location was revealed in the blockchain. After that, at every
At (At € Zxo) time, it computes L and checks whether it meets
the privacy requirement of a set of sensitive locations. That is,
after checking £ at time (¢, + x X At), it will check £ at time
(tq + (x + 1) X At). Here, x € Z>¢. Let, t/, where (t5 + x X At) <
t' < (tq + (x + 1) X At) is the time when £ ~ N. Then, computing
L at (tg + (x + 1) X At) time will certainly impose some extra loss
of utilities. Thus, Umax(I°) < N + U’. Here, U’ refers to the
set of insensitive locations at which the MU opted not to make
any transaction between time ¢’ and (¢, + (x + 1) X At). With the
higher value of At, the value of U’ will be higher. Thus, At should
remain as small as possible. However, for resource-constrained
mobile nodes, a small At means very frequent computation of the
time reachability, which affects the energy of the device. Thus, the
compromise between the capability of the device and loss of utility
is an issue that needs to be examined: we leave it for our future
work. The detail of BlockPriv is presented in Algorithm 1.

5 SCHEME ANALYSIS

In this section, we present an analysis of the important privacy,
utility, and security aspects of BlockPriv.

5.1 Privacy Analysis
5.1.1  Privacy Bound.

LEMMA 5.1. If there are multiple numbers of sensitive locations
between two revealed insensitive locations, then each of the sensitive
locations achieves a privacy level of (max N).

PRrROOF. Let us suppose that a mobile node MU has visited m
number of sensitive locations between lprer and oy, in 6t =
(tcur — tprev) time. According to equation 12, it will make a trans-
action at location l¢y,, and time t¢,, only when all of the sensitive
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Algorithm 1: BlockPriv

Input: Current location Icy,,, current time ¢, last
revealed location in the blockchain [y, and time
tprev, list of sensitive locations S, list of level of

privacy for the sensitive locations N, previous time

key
tprev’

Output: Decision on making transactions.
1 if (feur — £5¢Y ) > tK€Y then

of key change key expiration time tk€¥

prev

2 Request new key pair from the authority.
ke

3 tprgv = teur

'S

if Iy is a sensitive location then
5 L Append ¢y, to S and do not make any transaction.

6 else
7 Ot «— teur — z’prev
8 Lprev < select all the locations that are reachable from

lprev in 6t time

9 Lcyur < select all the locations from which I, is
reachable in §t time

1o L~ Lprev N Leur

1 for(i=1i<|S;i++)do

12 L if |£] > N(f €S) then

13

L Delete I? from S

na if S # (0 then

15 L Do not make any transactions in the network.
6 else
17 L Free to make transactions.

locations’ privacy requirements are met. That is, a new transaction
will take place only when the length of the set £ > (maxN =
max{MNi, ... Npn}). Thus, even if a sensitive location’s privacy re-
quirement is much lower than (max N), the achieved privacy for
i-th sensitive location [ in the setis P(I}) = | £] > (max N). O

5.1.2  Obfuscating Paths.

LEMMA 5.2. If there are any sensitive locations between two re-
vealed insensitive locations l; and I}, then, at a minimum, there are
(max N') number of 1-hop obfuscating paths between the two revealed
locations.

Proor. Equation 11 implies that each location in the set £ is
reachable to and from ly,i, and leyr in 8t time. Thus, from the
point of reachability, each i-th location in £ forms a 1-hop path
between lp,iy and lcyr in 5t time. As a result, each path formed by
each sensitive location I € L is obfuscated with (| £] — 1) number
of different other paths in §¢ time. O

5.2 Utility Analysis
5.2.1 Loss of Utility Bound.

LEMMA 5.3. If there are multiple numbers of sensitive locations
between two revealed insensitive locations, then the maximum loss
of utility Upmax(I°) in BlockPriv to preserve privacy of a sensitive
location I® is proportional to (max N).
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ProOF. Lemma 5.1 states that whatever the expected level of pri-
vacy assigned to a specific sensitive location, the achieved privacy
is bounded by the location with highest level of privacy max N.
Thus, the maximum loss of utility for every sensitive location I°
between the two revealed insensitive locations is Upax(I5) <
(max N) +U’. O

5.3 Security Analysis

We analyze the efficacy of BlockPriv against different location pri-
vacy invading strategies by a malicious authority of the blockchain
system list in subsection 3.2. We also briefly discuss the interesting
impact of the transaction dropping attack on location privacy.

5.3.1 Collusion Attack.

Definition 5.4. A collusion with malicious mobile nodes is suc-
cessful if the authority of the blockchain can find a new set of
locations £* about a MU'’s sensitive location I such that

LN L < Nj. (13)

LEMMA 5.5. A combination of time reachability information and
collusion with other malicious nodes will not leak privacy of a target
mobile node.

Proor. In BlockPriv, a mobile node remains silent in the spa-
tial and temporal domains in order to preserve privacy against an
untrusted authority of the blockchain. Thus, even if the authority
colludes with some mobile nodes, it will not be able to construct
a new set L* beyond £ that would satisfy equation 13. In other
words, its understanding about a targeted node’s whereabouts will
not be made any finer than £ by colluding with other nodes. In
fact, collusion with mobile nodes to track a target node is a costly
approach. The target node changes its public keys frequently and to
keep tracking it, the authority needs to update the colluding nodes
at the same rate. The only way a colluding attack will be successful
is if a malicious node physically tracks a target node. However, our
work concentrates on providing security against software-based
privacy invading techniques, not on physical observations. ]

5.3.2  Map Matching Attack.

Definition 5.6. For a sensitive location [*, a map matching attack
is considered to be successful if a attacker can find a set of locations
L* from £ such that, (L* c £*), (|£L*] > 0), and PrXflU(li) =
0;Vl; € L*.

LEmMA 5.7. BlockPriv is resilient against map matching attack.

Proor. The mobile node calculates the time reachability infor-
mation using a real-time map service provider and thus each loca-
tion I, selected to form L, is spatially reachable. That is, £ = {VI €
L|Pry, (D) = 1}. Thus, £* = 0. ]

5.3.3 Time Reachability-Based Path Reconstruction Attack.

Definition 5.8. A time reachability-based path reconstruction at-
tack on BlockPriv is said to be successful if, for a sensitive location
I%, the authority can find fewer than A number of paths between
two revealed locations for a mobile node.

LEMMA 5.9. BlockPriv, is resilient against time reachability-based
path reconstruction attack.
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PRrRoOF. According to equation 11, every location /; € £, includ-
ing every sensitive location, is reachable from previously revealed
location Iprer to leyr in 6t time. Thus, according to lemma 5.2,
there are at least max A number of 1-hop obfuscating paths from
lprev to leyr for I;.

We can now generalize the analysis for multi-hop paths. Let
the actual path be: [pre — I§ — 15 — lcyr and the temporal
sequence of this path be: tpree — t1 — t2 — tcyr. Hence, 6t =
O(lprev, 3) + (17, 15) + (L3, lcyr ). Assume that, using BlockPriv,
we got L, where {I?, lg} € L. For the sake of argument, let us
consider, for every location I € L (£’ = L\ {I{,]}), there exists
no multi-hop path. In such a case, if somehow it is known that
the node visited multiple locations between lpree and lcyy, then
the attacker can exclude all the single hop paths and is able to
reconstruct the actual path: lprey — If — IJ — lcyr. However,
in BlockPriv, the node remains silent in the network, such that
every location in £ exhibits similar probability of being the node’s
whereabouts under the time reachability condition. Also, such a
special case can occur only when Prij (I) = 0; VI € L’ This
case falls into the category of a map matching attack and lemma 5.7
proves that BlockPriv is resilient against such an attack. Hence,
time reachability information cannot help a malicious authority to
reconstruct the actual path.

O

5.3.4 Transaction Dropping Attack.

In this attack, a mobile node MUj attempts to drop the transac-
tions between itself and another node MUj for a specific intention
(e.g. preventing the other node from gaining reward out of ill inten-
tion or to protect its instance location privacy). There are two cases
to consider here. First, MU; passes the transaction information
to the nearest blockchain node and thus MUj’s location informa-
tion is revealed. In such a case, MU;’s attempt to protect location
privacy will fail. Second, if MUj also drop the transaction, then
both the nodes’ location information will remain undisclosed in
the blockchain.

5.3.5 Security Limitations.

We are also interested in exploring the following security limita-
tions of BlockPriv in the future extension of the work.

(1) Off-Chain Information-Based Attack. The attacker can com-
bine off-chain information (e.g., information about the hours of
operation of a business) with the map matching attack to devise a
better inference model.

(2) Probabilistic Inference Attack from On-Chain Information. The
attacker can personalize the mobility of the node from the informa-
tion available on the chain using machine learning algorithms (e.g.,
Markov chains[20]). Such a model can be exploited to improve the
path reconstruction attack.

6 EXPERIMENTAL EVALUATION

In this section, we describe the details regarding the experimental
evaluation of BlockPriv. To properly understand the efficiency and
efficacy of our approach, we implemented two cases: locations with
(1) similar privacy parameter and (2) different privacy parameters.
These two versions will be referred to as sim-BlockPriv and diff-
BlockPriv, respectively.
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(a) New York City (NYC) (b) Tokyo (TKY)

Figure 3: Locations in (a) New York City (NYC) and (b) Tokyo

(TKY) datasets. Green markers symbolize the locations. The
red colors represent the high density regions.

Table 2: Dataset Statistics

Dataset | #Transactions® | #Locations | #Types | #Nodes*
NYC 227428 38333 400 1083
TKY 573703 61858 385 2293

*Originally called “Checkins” and “Users". In this context, we renamed the

variables “Transactions” and “Nodes", respectively.

Table 3: Simulation Setup Parameters

Parameter Value(s)
r {500, 1000, 1500, 2000} meters
Y {5,10,15,20}
v 30 miles per hour
a {2, 4,6, 8,10}
n 100

6.1 Experimental Settings

6.1.1 Dataset Description. In this paper, we consider the case of
making frequent transactions in the network. Hence, we selected
Foursquare’s New York City (NYC) and Tokyo (TKY) datasets [26]
to test the approach with factual data. These datasets contain the
check-in information of nodes, in terms of location and time. The
number of transactions, locations, location types, and nodes of the
datasets are presented in Table 2 and a visualization of the locations
in the datasets are depicted in Figure 3.

6.1.2  Simulation Setup. The datasets do not contain any mark
on the privacy sensitive locations of the mobile nodes. Thus, we
mark a% of the location types as sensitive locations for all the
nodes. The different values of the parameters, including privacy
level for a sensitive location r, used in the experiment, are shown
in Table 3. For each combination of the parameters, we ran the
simulation on both datasets for n number of nodes. As there is a
correlation between the number of transactions and the impact of
privacy on utility, we selected 100 nodes with the highest number
of transactions. We justify this claim through comparing the result
with 100 nodes with least number of transactions. Next, since the
datasets do not contain continuous location information, we set a
speed (v) for each node to simulate its reachability-based mobility.
By nature of mobility, there are cases when a node cannot reach a
new location, [ ¢y, from a previous location, lyre, in a certain time,
in the dataset with speed v. In these cases, we continue adding a
small value to v (e.g. v/5) until it can reach I . In diff-BlockPriv,
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Figure 4: Average loss of utilities versus privacy level in sim-
BlockPriv and diff-BlockPriv.

40 mmm nYC
= TKY
20
0
500

1000 1500 2000
Privacy level radius, r(meter)

Loss of utilities (%)

Figure 5: Distribution of loss of utilities in sim-BlockPriv,
regarding different privacy levels.

the difference in the privacy level for different sensitive locations is
set by drawing a random number from the range {r — (r X y%), r +
(rxy%)}.

6.2 Experiment Results

In the experiment, we examine the loss of utility of sim-BlockPriv
and diff-BlockPriv. In particular, we examine the following two
relationships, fundamental to the design of a privacy-preserving
mechanism: (1) loss of utility versus privacy level, and (2) loss of
utility versus number of sensitive locations.

6.2.1  Utility versus Privacy Level. We first examine the relationship
between the loss of utility and privacy (in term of radius r in meters).
For example, Figures 4(a-d) visually show this relationship for both
sim-BlockPriv and diff-BlockPriv when there are a few number of
sensitive locations(a = 2%) and a significant number of sensitive
locations(a = 10%). Each data point in a figure refers to the average
of the 100 users of a specific city. From these figures, we can make
several important occlusions. First, we can draw a clear comparison
between sim-BlockPriv and diff-BlockPriv, regarding the impact of
privacy level r on the loss of utilities. From the city level view, for
the same value of r, sim-BlockPriv imposes less utility loss than
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Table 4: Pearson’s Correlation Values

Dataset | Statistics U-P U-S
Minimum 0.75 0.44

NYC Average 0.94 0.92
Maximum 1.00 0.99
Minimum 0.75 0.74

TKY Average 0.95 0.95
Maximum 1.00 0.99

U-P: Loss of Utility vs. privacy level

U-S: Loss of Utility vs. sensitive location types
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x —8— sim-BlockPriv X
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Figure 6: Average loss of utility versus number of sensitive
location types () in sim-BlockPriv and diff-BlockPriv.

diff-BlockPriv due to the privacy level randomness associated in
diff-BlockPriv.

Second, there is an almost linear correlation between the loss
of utility and privacy level, regardless of the number of sensitive
location types (@) in the dataset. We observe a similar upward trend
of loss of utility against the increase in the privacy level for & = 2%
and a = 10% in both of the datasets. The distribution of loss of
utility in Figure 5 further improves the resolution of this linearity.
If we look into the exact numeral values, presented in Table 4, the
average Pearson’s correlation values [5] are 0.94 and 0.95 for the
NYC and TKY datasets, respectively. Such linear correlation and
lower loss of utility give sim-BlockPriv an upper hand in designing
a user-centric privacy scale, which we intend to explore in our
extension of this work.

6.2.2  Utility versus Number of Sensitive Location Types. We then an-
alyze the correlation between loss of utility and number of sensitive
location types («). While the analysis of the relationship between
utility and privacy level show that the sim-BlockPriv charges less
utility loss than diff-BlockPriv, the correlation between utility and
number of sensitive location types further signifies the superiority
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Figure 7: sim-BlockPriv: comparison between the distribu-
tion of loss of utility for different numbers of sensitive loca-
tion types («) for r =(a) 500 meter, and (b) 2000 meter.

of sim-BlockPriv. Figures 6(a-d) present the average loss of utility
for different values of a. We found that, regardless of the value of
privacy level r, there is a linear correlation between utility and .
For the same value of r, the higher the value of the , the higher
the loss of utility. However, the increase of loss of utility is slightly
sharper in diff-BlockPriv than in sim-BlockPriv. This sharpness is
due to the effect of both the increase in the number of sensitive
location types and the randomness in the privacy level. As we al-
ready know that sim-BlockPriv is better than diff-BlockPriv, we
only present the distribution of loss of utility in sim-BlockPriv in
Figure 7. For the same reason, we skipped the depiction of impact of
different y in diff-BlockPriv. Similar to the average values in Figure
6, the distributions of the loss of utility exhibit a linear correlation.
More accurately, the average correlation is 0.92 and 0.95 in the
NYC and TKY datasets, respectively. As we mentioned earlier, such
a linear correlation can play important role to make BlockPriv
usable for privacy-preserving applications.

6.2.3 User Level Correlation Analysis. Figure 8 depicts the corre-
lation values for loss of utility versus privacy level (U-P) and loss
of utility versus number of sensitive location types (U-S) for 100
users; Table 4 presents different statistics (min, average, and max)
on these values. It is observed that in the NYC dataset, 75% of the
nodes have 0.9 correlation for both U-P and U-S. In the case of the
TKY dataset, these numbers are 82% and 84%, respectively. Note
that, these statistics are generated by considering the 100 nodes
with the greatest number of transactions in the datasets. We found
that, when the number of transaction is fewer, the loss of utility is
significantly less. For instance, in both datasets, the 100 nodes with
fewest number of transactions achieved minimum 30% less loss of
utility than the 100 nodes with highest number of transactions.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduce a user-centric obfuscation technique
called BlockPriv, to preserve location privacy in permissioned
blockchain-based IoT systems. As part of this work, we consider
that a user cannot falsify its location and an untrusted authority
can correlate locations by considering spatiotemporal constraints
to predict unrevealed sensitive locations of a user. We quantify
the relationship between the notion of privacy and utility of the
system in BlockPriv. We analyze two variations of BlockPriv,
sim-BlockPriv and diff-BlockPriv, where the first has the same
privacy level for all the sensitive locations, and the second has a
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Figure 8: sim-BlockPriv: correlation values (Corr. value) of
loss of utility versus privacy level (U-P) and loss of utility
versus number of sensitive location types (U-S) for 100 users
in NYC and TKY datasets.

different privacy level for different sensitive locations. We show
that there is a linear correlation between loss of utility and privacy
level in sim-BlockPriv. Such linearity can be exploited to define
a usable privacy scale. In the extended version of this work, we
intend to employ a more rigorous model to simulate the mobility of
the nodes. Our future work also includes, improving the technique
by considering different probabilistic attack models based on a
combination of off-chain and on-chain information, adapting the
approach for the case of continuous transactions in the network,
and defining a soft privacy margin to further reduce the loss of
utility.
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