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ABSTRACT
Recently, blockchain has received much attention from the mobility-

centric Internet of Things (IoT). It is deemed the key to ensuring

the built-in integrity of information and security of immutability

by design in the peer-to-peer network (P2P) of mobile devices. In a

permissioned blockchain, the authority of the system has control

over the identities of its users. Such information can allow an ill-

intentioned authority to map identities with their spatiotemporal

data, which undermines the location privacy of a mobile user. In

this paper, we study the location privacy preservation problem

in the context of permissioned blockchain-based IoT systems un-

der three conditions. First, the authority of the blockchain holds

the public and private key distribution task in the system. Sec-

ond, there exists a spatiotemporal correlation between consecutive

location-based transactions. Third, users communicate with each

other through short-range communication technologies such that

it constitutes a proof of location (PoL) on their actual locations. We

show that, in a permissioned blockchain with an authority and a

presence of a PoL, existing approaches cannot be applied using a

plug-and-play approach to protect location privacy. In this context,

we propose BlockPriv, an obfuscation technique that quantifies,

both theoretically and experimentally, the relationship between

privacy and utility in order to dynamically protect the privacy of

sensitive locations in the permissioned blockchain.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability; Privacy protections; • Computer systems orga-
nization → Peer-to-peer architectures.
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1 INTRODUCTION
As of this writing, the mobility-centric Internet of Things (IoT)

systems utilize a centralized model to handle the vast amount of

data generated by IoT devices (e.g., smart vehicles in the Vehicular

Ad Hoc Network (VANET) [7], smartphones in Ad Hoc networking-

based mobile crowdsensing [10]). Such models are weak in ensuring

security and trust and are not capable of handling the fast-paced

growth of IoT. Thus, distributed systems are considered to address

the problems of IoT systems. Recently, blockchain, a unique dis-

tributed technique, has gained tremendous attention from the IoT

community. It is a distributed peer-to-peer (P2P) technique for

recording digital interactions in a unique way that is designed to

be secure, transparent, highly resistant to outages, auditable, and

efficient[13, 22]. It provides built-in integrity of information, and se-

curity of immutability by design, making it very useful for ensuring

trust, security, and transparency in P2P trustless networks. To date,

two main categories of blockchain have been studied in a variety of

IoT applications: public and permissioned. In a public blockchain,

there exists no authority of the blockchain; a node can join and

leave the network at any point with random pseudonyms and can

also change its public keys at any time instance (e.g., for every trans-

action). This frequent pseudonym scheme makes the IoT nodes
1

untraceable and provides high privacy. However, in a permissioned

blockchain, such a high level of privacy is not easily attainable, as

the authority of the blockchain controls the blockchain network

with a variety of access controls spanning from control over joining

the network to perform consensus mechanisms. Amazon’s Quan-

tum Ledger Database (QLDB)[1], J.P. Morgan’s Quorum blockchain

[21], and Microsoft’s Azure blockchain [4] are just a few examples

of industry standard permissioned blockchains.

1
In this paper, we use the terms IoT node, IoT device, and users interchangeably.
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Similar to many other fields, permissioned blockchain is also

being studied in the IoT of mobile devices. For better understanding,

we draw motivation of a permissioned blockchain from CreditCoin,

a privacy-preserving blockchain framework for the Vehicular Ad

Hoc Network (VANET) [18]. In this framework, the vehicles are re-

quired to be registered with the authority. This authority is respon-

sible for generating and providing the vehicles with cryptographic

keys, and keep track of the relationship between the vehicles and

the provided keys. A set of trace managers at different locations

also aids the authority in tracking malicious vehicles/users. In this

framework, only road-side units (RSUs) and authorized vehicles are

responsible for managing the blockchain. This framework is built

around the short-range communication technology-based P2P net-

work of the vehicles. Here, the vehicles make transactions with their

peers such that each transaction is signed by each of the peer vehi-

cles by their public keys. As these transactions are made through

a short-range communication technology (e.g., Wi-Fi, Bluetooth),

they can be treated as a proof-of-location (PoL) for the vehicles’

whereabouts in the spatiotemporal domain. In some frameworks,

such as the one proposed in [2], the proof of location is explicitly

defined in the design. Based on the transaction information, the

vehicles generate a rating about each other and forward them to

the nearest RSU. The RSUs then compute the overall rating of each

vehicle and append the new rating into the blockchain. Similar

motivation can also be drawn from the work presented in [28].

Obviously, these frameworks can be integrated into many other

mobility-centric IoT scenarios, such as mobile crowdsensing. The

RSUs and smart vehicles can be replaced with Wi-Fi access points

and low powered mobile devices (e.g., smart phones and smart

watches), respectively. In terms of location privacy, these frame-

works only guarantee conditional privacy to IoT users. That is, the

devices can enjoy privacy from their peers by using the public keys

provided by the authority. However, as the authority holds the

mapping between real identity and the public keys, the privacy of

sensitive locations from a malicious authority cannot be preserved

using only a key changing mechanism. A malicious authority can

perform a spatiotemporal analysis of the disclosed locations of a

user and can reveal sensitive information.

In this paper, we study the location privacy issue in the context of

permissioned blockchain, where: (1) the authority of the blockchain

holds the public and privacy key distribution task in the system,

(2) a transaction can be considered as a proof of location (PoL) for

a user’s temporal whereabouts, and (3) there is a spatiotemporal

correlation between the locations. We make the following key con-

tributions: (1) We first discuss the limitations of existing location

privacy-preserving mechanisms under a PoL in the context of per-

missioned blockchain. (2) We present an effective solution, called

BlockPriv. As discussed above, in BlockPriv, the worst form of

privacy leakage is considered. That is, whenever an IoT node makes

a transaction with its peers, its location information is known to

the malicious blockchain authority and the authority is completely

capable of mapping the real identity of a node with its public key

pairs. Taking a node’s privacy preference for different locations and

spatiotemporal correlation between the transactions, BlockPriv
decides whether or not a node should make a transaction, such that

its undisclosed sensitive location’s privacy is also preserved with a

set of locations. (3) We quantify the trade-off between privacy and

utility theoretically and empirically using two factual datasets.

The rest of the paper is organized as follows. Related works are

discussed in section 2. The overview of the system and its design

goals are presented in section 3. Then, the proposed BlockPriv
approach is detailed in section 4. Important security, privacy, and

utility aspects of BlockPriv are analyzed in section 5. A discussion

of the experimental analysis is covered by section 6. Finally, the

paper is concluded in section 7. Important notations used in the

paper are presented in Table 1.

2 RELATED WORK
Location privacy preservation is a comparatively well studied prob-

lem in centralized architecture-centric IoT systems. Several classes

of mechanisms have been proposed to mitigate the privacy leakage,

such as (1) pseudonym, (2) location perturbations, and (3) spatial

obfuscation. The goal of these mechanisms is to apply them to a

node’s actual location before releasing it to the central authority. For

instance, in the case of a pseudonym, before revealing the location,

the mechanism changes the ID of a node to make it untraceable [29].

These approaches depend on a trusted third party (TTP) to carry

out the steps of changing pseudonym. This is similar to the mixing

approach [8] used in blockchain to improve privacy by exchanging

the public key of a mobile node with a random public key such that

the probability of linking multiple transactions is reduced. However,

in a permissioned version of blockchain such an approach will not

work.

Perturbation mechanisms, such as differential privacy-based geo-

indistinguishability [3], add statistical noise to a node’s real location

before it is shared with the system. Obviously, under a PoL, such

mechanisms have limited impact [19]. On the other hand, spatial

obfuscation reduces the precision of the actual location information

before releasing it to the authority of the system. This is done by

either infusing more locations[17] or replacing the actual location

with a realistic larger region[14]. Similar to location perturbation,

location obfuscation works only at a limited scale under the PoL. In

a nutshell, the existing privacy-preserving mechanisms, designed

for centralized IoT systems, cannot be applied in a plug-and-play

way to the problem that we are trying to solve here.

In the scope of blockchain, the frequent change of public keys is

the most explored solution to preserve privacy[11, 22, 25, 30]. It was

first proposed by Nakamoto [22], the creator of Bitcoin. Motivated

by Bitcoin’s solution, Dorri et al. [11] also suggested to use a fresh

unique public key to prevent linkage attacks while communicating

with other nodes in their proposed Lightweight Scalable Blockchain

(LSB) architecture for smart-vehicle ecosystems. In blockchain-

based centralized proof-of-location (PoL) generation, Brambilla et

al. [9] also proposed changing the public keys frequently to pre-

serve a node’s sensitive location privacy while generating proof

of locations. Michelin et al. [19] proposed a privacy-preserving

blockchain-based SpeedyChain framework for a vehicular network

scenario. Similar to most of the other works in this context, Speedy-

Chain considers the fixed positioned roadside infrastructure units

(RSIs) as the key to maintaining the blockchain. Unlike Bitcoin

or Ethereum-like blockchains, here, for each vehicle there exists

exactly one block in the blockchain. In order to maintain privacy,
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this framework proposes the timely change of the public key of

each vehicle. However, these frameworks do not fit completely into

the scenario considered in this paper, where the authority of the

blockchain controls the private and public key distributions to the

mobile nodes in the system.

The idea of a permissioned blockchain is primarily stemed from

the evidence of misuse of freedom in public blockchains for ille-

gal activities. For instance, almost half of the bitcoin transactions

are estimated to be related to illegal drug sales, ransomware, and

other malicious activities[12]. Hence, the deanonymization of the

blockchain users has gained significant attention from both the

law enforcement and the security and privacy communities. In

fact, it is found that changing the public keys in order to nullify

a linking attack in a public blockchain is not quite as bulletproof

as it was expected [6, 16]. Research efforts show that it is possible

to map the public keys of Bitcoin users to their unique identities

(e.g., IP addresses) [6, 16]. For instance, Koshy et al.[16] were able

to deanonymize 1162 addresses by analyzing transaction relaying

patterns. Biryukov et al. [6] proposed a deanonymizing algorithm

by exploiting only the input and output transactions of mixing

services and identified a relationship between the input and output

addresses at a very high accuracy. Recently, Roulin et al. [23] applied

decision tree algorithms on smart home devices’ data (e.g., smart

things, nest smoke alarm) by utilizing off-chain information to clas-

sify IoT devices for understanding a user’s activity pattern. While

the work is done in the context of smart home, it can be adapted for

the mobility of the IoT devices. All these deanonymization works

highlight that simply changing the public keys frequently is not

the ultimate solution to providing privacy in the blockchain, even

in a public version.

Moving forward, our work is focused on an authority-based

permissioned blockchain where privacy is tougher to achieve by

default. It is closely related to the work proposed by Li et al. [18]

in the context of a vehicular network. Using their proposed frame-

work, it is possible to achieve only conditional privacy, as the trace

manager can track anyone at any time, if necessary. Similarly, Yang

et al. [28] presented a blockchain-based decentralized trust manage-

ment framework for vehicles where each vehicle is registered with

the system using its VIN number. Thus, only conditional privacy

can be attained with this framework. Likewise, Sharma et al. [24]

proposed a permissioned blockchain by incorporating traceability

features while maintaining privacy in the Internet of Vehicles (IoV).

However, they used a server for vehicle registration, which would

store all vehicle IDs in an encrypted scheme; the central authority

can track any vehicle when needed.

To achieve complete location privacy, Yang et al. [27] proposed

an obfuscation approach to protect location privacy in a private

blockchain for crowdsensing applications. In this work, a worker

submits an obfuscated region to the system to protect their exact

location’s privacy. However, in the case of P2P communication of

the nodes, this type of approach cannot be applied without the

collaboration of the nodes. Jia et al. [15] designed a blockchain-

based incentive mechanism for crowdsensing applications with

a focus on preserving the location privacy of the users. In their

framework, a confusion layer was proposed, in which a user’s

location is encoded in such a way that it can be confused with other

Table 1: Notations and Their Description

Notation Description

MU Mobile user or mobile node

Nx Privacy parameter for a location lx
P(lh ) Privacy level achieved for location lh
Pr tMU (l) MU ’s probability of being at location l at time t

ls A sensitive location

S Set of all sensitive locations of aMU
U(l) Loss of utility for location l
Tr A trajectory

n Total number of sensitive locations in a Tr
δt Time difference

La Set of all locations reachable to/from location la
Φ(a,b) Required time to reach from location la to lb
|X | Size/number of elements in a set X
α % of location types selected as sensitive

r Privacy region radius

k − 1 users’ locations. While this could be a solution to protect

location privacy, it requires the honest collaboration of other users.

In contrast to all these works, we intend to design a location

privacy-preserving obfuscation mechanism that does not require

collaboration from other users and can provide complete privacy

in permissioned-blockchain under the presence of PoL.

3 SYSTEM OVERVIEW AND DESIGN GOALS
In this section, we present the details of the system model and

the behavior and attack strategies of the malicious entities in the

system. We then formulate the central problem of this paper and

state the goals we set out to achieve in the design of its solution.

3.1 Blockchain System Model
We consider a permissioned blockchain, where its authority also

acts as the certificate authority to provide the public and private

key pairs to the mobile nodes. The mobile nodes are registered with

the system and communicate with each other using the preassigned

key pairs. Communication between the nodes takes place using a

short-rage communication technology. The nodes can request the

authority for new key pairs at any point of time. The blockchain

is managed by preassigned mobile edge computing devices (e.g.,

RSU, Wi-Fi access points, and so on), distributed over a large region.

These devices constitute the blockchain nodes and are connected

with each other in a P2P network over the internet. The transactions

among the IoT nodes are broadcasted to the blockchain nodes in the

blockchain network. The blockchain nodes aggregate and insert the

new transactions into the blockchain through a consensus mecha-

nism (e.g. practical byzantine fault tolerance, proof-of-stake) in a

timely fashion (e.g. every 30 minutes). We consider a blockchain

architecture similar to the one presented in CreditCoin [18] with-

out considering the rewarding phase. We assume that the mobile

nodes have internet capability to compute the time to reach one

location from another with the help of a traffic information provider

in real time, e.g., Google Maps. We also assume that the informa-

tion between the traffic information service provider and a node is
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Figure 1: System model of permissioned-blockchain where
BC and BA refer to blockchain and blockchain authority,
respectively. The BA also acts as certificate authority and
trace manager. The mobile IoT nodes are connected with
each other in a P2P network using a short-range communi-
cation technology. They make transactions with each other
and send information on the transactions (e.g., rating about
other mobile nodes at a specific location and time) to the
nearest blockchain node. Here, each grid refers to a specific
location.

anonymous and the provider is independent from the blockchain

authority.

3.2 Malicious Entities and Attack Strategies
3.2.1 Malicious Entities. In the system, we consider the authority

of the blockchain as the malicious entity. It follows the honest-but-

curious adversary model in the system. That is, it tries to predict a

target node’s sensitive spatiotemporal information without violat-

ing any protocol of the system or dismantling the way blockchain

works. Furthermore, it is not going to hack into the device of a

target node. We also consider that, in order to compute the time

reachability information, the authority also uses a traffic informa-

tion service provider. From this point on, we refer to the authority

as an attacker. It is important to note that some of the mobile nodes

can be malicious. However, as we mentioned earlier in the system

model, the mobile nodes can change their public keys at any point

of time; the malicious mobile nodes cannot track a target node from

their transactions without colluding with the authority. This is a

fundamental privacy feature of blockchains. Thus, we focus on the

attack strategies of the blockchain authority.

3.2.2 Attacker’s Goal and Strategies. The goal of an attacker is to

understand a mobile node’s presence at different locations in the

temporal domain. In order to do so, it utilizes the time-reachability-

based spatiotemporal correlation between a node’s disclosed loca-

tions in the blockchain as its fundamental strategy. Let the random

variable Ot
MU represents the actual location of a mobile nodeMU

at time t . Given a node’s locations li , lj at time ta, tb respectively,

the node’s probability of being at a location lh at a discrete time tq
(ta < tq < tb ) is

Pr
q
MU (lh ) = Pr(O

q
MU = lh |O

a
MU = li ,O

b
MU = lj ) (1)

The attacker computes Pr
q
MU (lh ) using the time reachability corre-

lation as follows.

Pr
q
MU (lh ) =


1 If lh is reachable to and from li

and lj in (tb − ta ) time

0 Otherwise

(2)

Obviously, it is possible to have multiple locations with Pr
q
MU (lh ) =

1. Thus, the ultimate goal of the attacker is to minimize the number

of such locations. That is,

minimize

(∑
Pr

q
MU (lh )

)
(3)

This forms the core of an attacker’s strategy. Based on this, we

consider mainly the following attacks that can be exploited by the

attacker to infer a target node’s location information.

(1)Collusion withmalicious mobile nodes: Malicious nodes collude

with the authority and provide it with the location information of

a target node for profit.

(2) Map matching attack: The authority employs the map infor-

mation to understand spatially reachable and unreachable location

information. A spatially unreachable location refers to a location

that cannot be reached at any time using a map service (e.g., the

middle of a lake). Thus, Pr∞MU (l) = 0.

(3) Time-reachability-based path reconstruction attack: In order

to reconstruct the actual path between two revealed locations, the

authority can use the time reachability information to construct the

valid paths that can be traveled between the two locations within a

time limit.

We also analyze the impact of transaction dropping attack on

location privacy. Note that, the scope of this paper encompasses the

analysis of location privacy invading attacks from a user’s point of

view and thus different blockchain related attacks, such as DDoS,

Sybil, 51% attack, and eclipse attack are not covered here.

3.3 Problem Formulation and Design Goals
It is clear that there is an important trade-off between location pri-

vacy and utilization of the system. The problem lies with the short-

range communication technology-based transactions between the

mobile nodes that form proof of locations (PoL) for the nodes. Thus,

in order to protect a sensitive location’s privacy, a mobile node

must remain silent in the network: that is, it must not make any

transaction in the network. This leads to the question of how long

in both spatial and temporal domains a node must remain silent to

protect a sensitive location’s privacy. Remaining silent infinitely

results in a location privacy of 100%, but a system utilization of 0%.

In other words, an indefinite silence will incur a 100% loss of utility.
Hence, the goal of this work is to formulate, design, implement, and

evaluate a location privacy-preserving mechanism, called Block-
Priv, for mobile nodes in the context of permissioned blockchain

by solving the following problem:

minimize {P−1(ls ),U(ls )} (4)
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Here, P(ls ) andU(ls ) refer to the achieved privacy for sensitive

location ls and the loss of utility due to privacy preservation for ls ,
respectively.

To summarize, in the design of the BlockPriv mechanism, we

intend to achieve the following goals: (1) achieve privacy without

collaborating with any other entity in the system, and (2) achieve a

quantifiable balance between privacy and utility.

4 THE BLOCKPRIV APPROACH
For the sake of clarity and tomaintain coherencewith the blockchain

concept, we first discuss the public key changing technique adapted

in BlockPriv. In our scheme, we adapt the temporal public key

changing concept proposed by Michelin et al. [19]. Here, at a fixed

time interval tkey , a mobile node will change its public key in or-

der to nullify the possibility of spatiotemporal linkage attack from

malicious nodes. Note that, in our problem, public key changing

can only provide privacy to a mobile node against its peers, not

against the authority that distributes the keys. Also, this scheme

is vulnerable against colluding attack between the authority and

malicious mobile nodes, which is one of the focus of our work.

At this point, we present the formal definition of location privacy

and utility from the perspective of a mobile node. The definition

of privacy can be derived from the formulation of the attacker’s

objective, defined by equation 3, as follows.

P(ls ) = maximize

(∑
Pr

q
MU (lh )

)
(5)

Let us consider: a node’s last revealed location in the blockchain

is li at time ta , and it was at a sensitive location lsh at time tq . It
should reveal its location, also known as making a transaction, at

an insensitive location lj at time tb (ta < tq < tb ) if and only if

P(lsh ) =

(∑
Pr

q
MU (l

s
h )

)
≥ Nh (6)

To explain, a node should reveal its location lj at time tb in the

network to the authority when there exists at least Nq number of

locations, including lsh , which are both reachable from and to li and

lj in (δt = tb−ta ) time. Here,Nh is a user defined privacy parameter

for location lsh . This formulation is applicable only for a single

sensitive location. It is also possible that, after lsh , the node was also

at another sensitive location lsp at time tr (ta < tq < tr < tb ) such

that, after δt = tb −ta time, P(lsh ) ≥ Nh , but P(l
s
p )
)
< Np . In such a

case, the node should not make any transaction at location lj at time

tb . Formally, if there arem number of sensitive locations visited by

a node between time ta and tb , then it will make a transaction with

its peers at an insensitive location at time tb in the network if and

only if

P(lsi ) =

(∑
Pr

qi
MU (l

s
i )

)
≥ Ni ; ∀i = 1, . . .m (7)

Note that, from ta to tb , the node was continuously silent in the

network. We call it single or 1 round silence to maintain privacy

of them number of sensitive locations. If a trajectory Tr contains
n number of sensitive locations, then the average privacy of each

sensitive location in that trajectory is defined as

P(Tr ) =
1

n

∑
i
P(lsi ), i = 1, . . .n (8)

Figure 2: Illustrated BlockPriv: The curve refers to a mo-
bile node (MU )’s actual path between l0, l1, and l2 locations
at times t0, t1, and t2, respectively. The location l1 is privacy
sensitive for the MU . Thus, it remained silent at location l1.
It will make a blockchain transaction at l2 at time t2 only
when the number of locations reachable from both l0 and l2
in t2 − t0 time, meets the privacy requirement for l1.

From the formulation of privacy, we can also define the loss of utility

due to the application of privacy preservation. Let us consider: at

i-th round silence, the node opted not to make any transaction at

P(lsh ) number of locations. In our definitions, this number is the loss

of utility of BlockPriv. If a node maintained k rounds of silence

to preserve privacy of a trajectory Tr with n number of sensitive

locations, then the average loss of utility for each sensitive location

is

U(Tr ) =
1

n

i=k∑
i=1
Ui (9)

This allows us to reconstruct the multi-objective optimization prob-

lem, presented in equation 4, as a single objective optimization

problem as follows:

minimizeU(Tr )

s .t . P(lsi ) ≥ Ni ;∀l
s
i ∈ Tr

(10)

Now we present in detail the mechanism of BlockPriv to solve

this problem.

In this mechanism, the mobile nodes are responsible for labeling

their sensitive locations and assigning level of privacy to each of

them. The nodes utilize radius r to specify the level of privacy for a

sensitive location as N = πr2. Let us consider: a nodeMU made a

transaction in the network at time ta at location li . Then, it moved

to a privacy sensitive location lsh at time tq and did not make any

transactions. Then, after every ∆t time at location lj , different from
both li and l

s
h , it checks the number of locations that are reachable

to and from li and lj . Let current time and location be tb and lj ,
respectively. The node first computes the set of all the locations Li
that are reachable from li in δt = tb −ta time. Next, it computes the

set of all the locations Lj from which location lj is reachable. Then,
L = Li ∩ Lj forms the set of all locations from which both li and
lj is reachable in δt time. In other words, each of the location in L

creates a valid 1-hop route from li to lj in δt time. That is, based
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on the time reachability information, the node can move from li to
any location ll ∈ L and then move to lj in δt time. Thus,

L = {∀l |(Φ(li , l) + Φ(l, lj )) ≤ δt} (11)

Here, Φ(a,b) refers to the time to get from location a to b. The size
ofL defines the privacy level achieved for sensitive location lsh in δt

time. That is, P(lsh ) = |L|. The node will make a transaction at time

tj at location tb only when |L| ≥ Nh . If there is a totalm number

of sensitive locations visited by the node in δt time, according to

equation 7, it will make a transaction at time tj and location lb if

and only if

|L| ≥ Ni ; ∀i = 1, . . .m (12)

It is understandable that, in the case when all the sensitive locations

have the same level of privacy, comparing L with the level of

privacy of the latest sensitive location is enough to check whether

the condition in equation 7 is valid. However, for sensitive locations

with different levels of privacy, theMU is required to check whether

all the previous sensitive locations’ levels of privacy are met before

making any transaction.

For a single sensitive location ls , the maximum loss of utility

Umax (l
s ) is bounded by the value of its privacy parameterN . The

higher the value of N , the higher theUmax (l
s ). More specifically,

Umax (l
s ) ≤ L. Certainly, from equation 10, we do not want any

“extra” loss in utility of the blockchain. Let ta be the last time a

node’s location was revealed in the blockchain. After that, at every

∆t (∆t ∈ Z≥0) time, it computes L and checks whether it meets

the privacy requirement of a set of sensitive locations. That is,

after checking L at time (ta + x × ∆t), it will check L at time

(ta + (x + 1) × ∆t). Here, x ∈ Z≥0. Let, t
′
, where (ta + x × ∆t) <

t ′ < (ta + (x + 1) × ∆t) is the time when L ≃ N . Then, computing

L at (ta + (x + 1) × ∆t) time will certainly impose some extra loss

of utilities. Thus, Umax (l
s ) ≤ N + U ′. Here, U ′ refers to the

set of insensitive locations at which the MU opted not to make

any transaction between time t ′ and (ta + (x + 1) × ∆t). With the

higher value of ∆t , the value ofU ′ will be higher. Thus, ∆t should
remain as small as possible. However, for resource-constrained

mobile nodes, a small ∆t means very frequent computation of the

time reachability, which affects the energy of the device. Thus, the

compromise between the capability of the device and loss of utility

is an issue that needs to be examined: we leave it for our future

work. The detail of BlockPriv is presented in Algorithm 1.

5 SCHEME ANALYSIS
In this section, we present an analysis of the important privacy,

utility, and security aspects of BlockPriv.

5.1 Privacy Analysis
5.1.1 Privacy Bound.

Lemma 5.1. If there are multiple numbers of sensitive locations
between two revealed insensitive locations, then each of the sensitive
locations achieves a privacy level of (maxN).

Proof. Let us suppose that a mobile node MU has visited m
number of sensitive locations between lprev and lcur in δt =
(tcur − tprev ) time. According to equation 12, it will make a trans-

action at location lcur and time tcur only when all of the sensitive

Algorithm 1: BlockPriv
Input: Current location lcur , current time tcur , last

revealed location in the blockchain lprev and time

tprev , list of sensitive locations S , list of level of
privacy for the sensitive locations N , previous time

of key change t
key
prev , key expiration time tkey

Output: Decision on making transactions.

1 if (tcur − t
key
prev ) ≥ tkey then

2 Request new key pair from the authority.

3 t
key
prev = tcur

4 if lcur is a sensitive location then
5 Append lcur to S and do not make any transaction.

6 else
7 δt ← tcur − tprev
8 Lprev ← select all the locations that are reachable from

lprev in δt time

9 Lcur ← select all the locations from which lcur is

reachable in δt time

10 L ← Lprev ∩ Lcur
11 for (i = 1; i ≤ |S |; i + +) do
12 if |L| ≥ N(lsi ∈ S) then
13 Delete lsi from S

14 if S , ∅ then
15 Do not make any transactions in the network.

16 else
17 Free to make transactions.

locations’ privacy requirements are met. That is, a new transaction

will take place only when the length of the set L ≥ (maxN =

max{N1, . . .Nm }). Thus, even if a sensitive location’s privacy re-

quirement is much lower than (maxN), the achieved privacy for

i-th sensitive location lsi in the set is P(lsi ) = |L| ≥ (maxN). □

5.1.2 Obfuscating Paths.

Lemma 5.2. If there are any sensitive locations between two re-
vealed insensitive locations li and lj , then, at a minimum, there are
(maxN) number of 1-hop obfuscating paths between the two revealed
locations.

Proof. Equation 11 implies that each location in the set L is

reachable to and from lpr iv and lcur in δt time. Thus, from the

point of reachability, each i-th location in L forms a 1-hop path

between lpr iv and lcur in δt time. As a result, each path formed by

each sensitive location lsi ∈ L is obfuscated with (|L| − 1) number

of different other paths in δt time. □

5.2 Utility Analysis
5.2.1 Loss of Utility Bound.

Lemma 5.3. If there are multiple numbers of sensitive locations
between two revealed insensitive locations, then the maximum loss
of utilityUmax (l

s ) in BlockPriv to preserve privacy of a sensitive
location ls is proportional to (maxN).
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Proof. Lemma 5.1 states that whatever the expected level of pri-

vacy assigned to a specific sensitive location, the achieved privacy

is bounded by the location with highest level of privacy maxN .

Thus, the maximum loss of utility for every sensitive location ls

between the two revealed insensitive locations is Umax (l
s ) ≤

(maxN) +U ′. □

5.3 Security Analysis
We analyze the efficacy of BlockPriv against different location pri-

vacy invading strategies by a malicious authority of the blockchain

system list in subsection 3.2. We also briefly discuss the interesting

impact of the transaction dropping attack on location privacy.

5.3.1 Collusion Attack.

Definition 5.4. A collusion with malicious mobile nodes is suc-

cessful if the authority of the blockchain can find a new set of

locations L* about aMU ’s sensitive location lsi such that

|L ∩ L*| < Ni . (13)

Lemma 5.5. A combination of time reachability information and
collusion with other malicious nodes will not leak privacy of a target
mobile node.

Proof. In BlockPriv, a mobile node remains silent in the spa-

tial and temporal domains in order to preserve privacy against an

untrusted authority of the blockchain. Thus, even if the authority

colludes with some mobile nodes, it will not be able to construct

a new set L* beyond L that would satisfy equation 13. In other

words, its understanding about a targeted node’s whereabouts will

not be made any finer than L by colluding with other nodes. In

fact, collusion with mobile nodes to track a target node is a costly

approach. The target node changes its public keys frequently and to

keep tracking it, the authority needs to update the colluding nodes

at the same rate. The only way a colluding attack will be successful

is if a malicious node physically tracks a target node. However, our

work concentrates on providing security against software-based

privacy invading techniques, not on physical observations. □

5.3.2 Map Matching Attack.

Definition 5.6. For a sensitive location ls , a map matching attack

is considered to be successful if a attacker can find a set of locations

L* from L such that, (L* ⊂ L*), (|L*| > 0), and Pr∞MU (li ) =
0;∀li ∈ L*.

Lemma 5.7. BlockPriv is resilient against map matching attack.

Proof. The mobile node calculates the time reachability infor-

mation using a real-time map service provider and thus each loca-

tion l , selected to form L, is spatially reachable. That is, L = {∀l ∈
L|Pr∞MU (l) = 1}. Thus, L* = ∅. □

5.3.3 Time Reachability-Based Path Reconstruction Attack.

Definition 5.8. A time reachability-based path reconstruction at-

tack on BlockPriv is said to be successful if, for a sensitive location
ls , the authority can find fewer than N number of paths between

two revealed locations for a mobile node.

Lemma 5.9. BlockPriv, is resilient against time reachability-based
path reconstruction attack.

Proof. According to equation 11, every location li ∈ L, includ-
ing every sensitive location, is reachable from previously revealed

location lprev to lcur in δt time. Thus, according to lemma 5.2,

there are at least maxN number of 1-hop obfuscating paths from

lprev to lcur for li .
We can now generalize the analysis for multi-hop paths. Let

the actual path be: lprev → ls
1
→ ls

2
→ lcur and the temporal

sequence of this path be: tprev → t1 → t2 → tcur . Hence, δt =
Φ(lprev , l

s
1
)+Φ(ls

1
, ls
2
)+Φ(ls

2
, lcur ). Assume that, using BlockPriv,

we got L, where {ls
1
, ls
2
} ∈ L. For the sake of argument, let us

consider, for every location l ∈ L′ (L′ = L \ {ls
1
, ls
2
}), there exists

no multi-hop path. In such a case, if somehow it is known that

the node visited multiple locations between lprev and lcur , then
the attacker can exclude all the single hop paths and is able to

reconstruct the actual path: lprev → ls
1
→ ls

2
→ lcur . However,

in BlockPriv, the node remains silent in the network, such that

every location in L exhibits similar probability of being the node’s

whereabouts under the time reachability condition. Also, such a

special case can occur only when Pr∞MU (l) = 0; ∀l ∈ L′. This
case falls into the category of a map matching attack and lemma 5.7

proves that BlockPriv is resilient against such an attack. Hence,

time reachability information cannot help a malicious authority to

reconstruct the actual path.

□

5.3.4 Transaction Dropping Attack.
In this attack, a mobile nodeMUi attempts to drop the transac-

tions between itself and another nodeMUj for a specific intention

(e.g. preventing the other node from gaining reward out of ill inten-

tion or to protect its instance location privacy). There are two cases

to consider here. First, MUj passes the transaction information

to the nearest blockchain node and thus MUi ’s location informa-

tion is revealed. In such a case,MUi ’s attempt to protect location

privacy will fail. Second, if MUj also drop the transaction, then

both the nodes’ location information will remain undisclosed in

the blockchain.

5.3.5 Security Limitations.
We are also interested in exploring the following security limita-

tions of BlockPriv in the future extension of the work.

(1) Off-Chain Information-Based Attack. The attacker can com-

bine off-chain information (e.g., information about the hours of

operation of a business) with the map matching attack to devise a

better inference model.

(2) Probabilistic Inference Attack from On-Chain Information. The
attacker can personalize the mobility of the node from the informa-

tion available on the chain using machine learning algorithms (e.g.,

Markov chains[20]). Such a model can be exploited to improve the

path reconstruction attack.

6 EXPERIMENTAL EVALUATION
In this section, we describe the details regarding the experimental

evaluation of BlockPriv. To properly understand the efficiency and

efficacy of our approach, we implemented two cases: locations with

(1) similar privacy parameter and (2) different privacy parameters.

These two versions will be referred to as sim-BlockPriv and diff-
BlockPriv, respectively.
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(a) New York City (NYC) (b) Tokyo (TKY)

Figure 3: Locations in (a) New York City (NYC) and (b) Tokyo
(TKY) datasets. Green markers symbolize the locations. The
red colors represent the high density regions.

Table 2: Dataset Statistics

Dataset #Transactions* #Locations #Types #Nodes*

NYC 227428 38333 400 1083

TKY 573703 61858 385 2293

*Originally called “Checkins” and “Users". In this context, we renamed the

variables “Transactions” and “Nodes", respectively.

Table 3: Simulation Setup Parameters

Parameter Value(s)

r {500, 1000, 1500, 2000} meters

γ {5,10,15,20}

v 30 miles per hour

α {2, 4, 6, 8, 10}

n 100

6.1 Experimental Settings
6.1.1 Dataset Description. In this paper, we consider the case of

making frequent transactions in the network. Hence, we selected

Foursquare’s New York City (NYC) and Tokyo (TKY) datasets [26]

to test the approach with factual data. These datasets contain the

check-in information of nodes, in terms of location and time. The

number of transactions, locations, location types, and nodes of the

datasets are presented in Table 2 and a visualization of the locations

in the datasets are depicted in Figure 3.

6.1.2 Simulation Setup. The datasets do not contain any mark

on the privacy sensitive locations of the mobile nodes. Thus, we

mark α% of the location types as sensitive locations for all the

nodes. The different values of the parameters, including privacy

level for a sensitive location r , used in the experiment, are shown

in Table 3. For each combination of the parameters, we ran the

simulation on both datasets for n number of nodes. As there is a

correlation between the number of transactions and the impact of

privacy on utility, we selected 100 nodes with the highest number

of transactions. We justify this claim through comparing the result

with 100 nodes with least number of transactions. Next, since the

datasets do not contain continuous location information, we set a

speed (v) for each node to simulate its reachability-based mobility.

By nature of mobility, there are cases when a node cannot reach a

new location, lnew , from a previous location, lprev in a certain time,

in the dataset with speed v . In these cases, we continue adding a

small value to v (e.g. v/5) until it can reach lnew . In diff-BlockPriv,

(a) NYC (α = 2%) (b) NYC (α = 10%)

(c) TKY (α = 2%) (d) TKY (α = 10%)

Figure 4: Average loss of utilities versus privacy level in sim-
BlockPriv and diff-BlockPriv.

Figure 5: Distribution of loss of utilities in sim-BlockPriv,
regarding different privacy levels.

the difference in the privacy level for different sensitive locations is

set by drawing a random number from the range {r − (r ×γ%), r +
(r × γ%)}.

6.2 Experiment Results
In the experiment, we examine the loss of utility of sim-BlockPriv

and diff-BlockPriv. In particular, we examine the following two

relationships, fundamental to the design of a privacy-preserving

mechanism: (1) loss of utility versus privacy level, and (2) loss of

utility versus number of sensitive locations.

6.2.1 Utility versus Privacy Level. We first examine the relationship

between the loss of utility and privacy (in term of radius r in meters).

For example, Figures 4(a-d) visually show this relationship for both

sim-BlockPriv and diff-BlockPriv when there are a few number of

sensitive locations(α = 2%) and a significant number of sensitive

locations(α = 10%). Each data point in a figure refers to the average

of the 100 users of a specific city. From these figures, we can make

several important occlusions. First, we can draw a clear comparison

between sim-BlockPriv and diff-BlockPriv, regarding the impact of

privacy level r on the loss of utilities. From the city level view, for

the same value of r , sim-BlockPriv imposes less utility loss than
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Table 4: Pearson’s Correlation Values

Dataset Statistics U-P U-S

NYC

Minimum 0.75 0.44

Average 0.94 0.92

Maximum 1.00 0.99

TKY

Minimum 0.75 0.74

Average 0.95 0.95

Maximum 1.00 0.99

U-P: Loss of Utility vs. privacy level

U-S: Loss of Utility vs. sensitive location types

(a) NYC (r = 500 meter) (b) NYC (r = 2000 meter)

(c) TKY (r = 500 meter) (d) TKY (r = 2000 meter)

Figure 6: Average loss of utility versus number of sensitive
location types (α ) in sim-BlockPriv and diff-BlockPriv.

diff-BlockPriv due to the privacy level randomness associated in

diff-BlockPriv.

Second, there is an almost linear correlation between the loss

of utility and privacy level, regardless of the number of sensitive

location types (α) in the dataset. We observe a similar upward trend

of loss of utility against the increase in the privacy level for α = 2%

and α = 10% in both of the datasets. The distribution of loss of

utility in Figure 5 further improves the resolution of this linearity.

If we look into the exact numeral values, presented in Table 4, the

average Pearson’s correlation values [5] are 0.94 and 0.95 for the

NYC and TKY datasets, respectively. Such linear correlation and

lower loss of utility give sim-BlockPriv an upper hand in designing

a user-centric privacy scale, which we intend to explore in our

extension of this work.

6.2.2 Utility versus Number of Sensitive Location Types. We then an-

alyze the correlation between loss of utility and number of sensitive

location types (α ). While the analysis of the relationship between

utility and privacy level show that the sim-BlockPriv charges less

utility loss than diff-BlockPriv, the correlation between utility and

number of sensitive location types further signifies the superiority

(a) (b)

Figure 7: sim-BlockPriv: comparison between the distribu-
tion of loss of utility for different numbers of sensitive loca-
tion types (α ) for r =(a) 500 meter, and (b) 2000 meter.

of sim-BlockPriv. Figures 6(a-d) present the average loss of utility

for different values of α . We found that, regardless of the value of

privacy level r , there is a linear correlation between utility and α .
For the same value of r , the higher the value of the α , the higher
the loss of utility. However, the increase of loss of utility is slightly

sharper in diff-BlockPriv than in sim-BlockPriv. This sharpness is

due to the effect of both the increase in the number of sensitive

location types and the randomness in the privacy level. As we al-

ready know that sim-BlockPriv is better than diff-BlockPriv, we

only present the distribution of loss of utility in sim-BlockPriv in

Figure 7. For the same reason, we skipped the depiction of impact of

different γ in diff-BlockPriv. Similar to the average values in Figure

6, the distributions of the loss of utility exhibit a linear correlation.

More accurately, the average correlation is 0.92 and 0.95 in the

NYC and TKY datasets, respectively. As we mentioned earlier, such

a linear correlation can play important role to make BlockPriv
usable for privacy-preserving applications.

6.2.3 User Level Correlation Analysis. Figure 8 depicts the corre-
lation values for loss of utility versus privacy level (U-P) and loss

of utility versus number of sensitive location types (U-S) for 100

users; Table 4 presents different statistics (min, average, and max)

on these values. It is observed that in the NYC dataset, 75% of the

nodes have 0.9 correlation for both U-P and U-S. In the case of the

TKY dataset, these numbers are 82% and 84%, respectively. Note

that, these statistics are generated by considering the 100 nodes

with the greatest number of transactions in the datasets. We found

that, when the number of transaction is fewer, the loss of utility is

significantly less. For instance, in both datasets, the 100 nodes with

fewest number of transactions achieved minimum 30% less loss of

utility than the 100 nodes with highest number of transactions.

7 CONCLUSION AND FUTUREWORK
In this paper, we introduce a user-centric obfuscation technique

called BlockPriv, to preserve location privacy in permissioned

blockchain-based IoT systems. As part of this work, we consider

that a user cannot falsify its location and an untrusted authority

can correlate locations by considering spatiotemporal constraints

to predict unrevealed sensitive locations of a user. We quantify

the relationship between the notion of privacy and utility of the

system in BlockPriv. We analyze two variations of BlockPriv,
sim-BlockPriv and diff-BlockPriv, where the first has the same

privacy level for all the sensitive locations, and the second has a
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Figure 8: sim-BlockPriv: correlation values (Corr. value) of
loss of utility versus privacy level (U-P) and loss of utility
versus number of sensitive location types (U-S) for 100 users
in NYC and TKY datasets.

different privacy level for different sensitive locations. We show

that there is a linear correlation between loss of utility and privacy

level in sim-BlockPriv. Such linearity can be exploited to define

a usable privacy scale. In the extended version of this work, we

intend to employ a more rigorous model to simulate the mobility of

the nodes. Our future work also includes, improving the technique

by considering different probabilistic attack models based on a

combination of off-chain and on-chain information, adapting the

approach for the case of continuous transactions in the network,

and defining a soft privacy margin to further reduce the loss of

utility.
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