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previous definitions fall short in this regard.

Funding: This work was partially supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program [Grant 866132] (to M. Feldman),
the Israel Science Foundation [Grant 336/18] (to I. Talgam-Cohen), and the Taub Family Foundation
(to I. Talgam-Cohen). This work was supported by H2020 Marie Skłodowska-Curie Actions [Grant
708935], the National Science Foundation [Grant CCF 1717899] (to S. M. Weinberg), and the Israel
Science Foundation [Grant 317/17] (to M. Feldman).

Keywords: mechanism design • revenue • approximation • complements

1. Introduction
Consider a revenue-maximizing seller with m ≥ 1
items to sell to a single buyer. When there is just a
single item, and the buyer’s value is drawn from some
distribution with Cumulative Distribution Function
(CDF) F, seminal works of Myerson (1981) and Riley
and Zeckhauser (1983) prove that the optimal mech-
anism is to simply set whatever price maximizes
p · (1 − F(p)). It is now well understood that beyond
the single-item setting, the optimal mechanism suf-
fers many undesirable properties that make it im-
practical, including randomization, nonmonotonicity,
and others (Rochet and Chone 1998; Thanassoulis
2004; Pavlov 2011; Daskalakis et al. 2013, 2014;
Hart and Nisan 2013; Briest et al. 2015; Hart and Reny
2015). Following the seminal work of Chawla et al.
(2007), there is now a sizable body of research proving
that the simple mechanismswe see in practice are in fact
approximately optimal in quite general settings, helping

to explain their widespread use (Chawla et al. 2010,

2015; Li and Yao 2013; Babaioff et al. 2014; Kleinberg

andWeinberg 2014; Bateni et al. 2015; Rubinstein and
Weinberg 2015; Yao 2015; Chawla and Miller 2016;
Cai and Zhao 2017; Hart and Nisan 2017).
Still, prior work has largely been limited to additive

or unit-demand buyers (a buyer’s valuation is addi-
tive if v(S) �

∑
i∈S v({i}); it is unit demand if v(S) �

maxi∈S{v({i})}). Only recently have researchers begun
tackling more complex valuation functions (Rubinstein
and Weinberg 2015, Chawla and Miller 2016, Cai and
Zhao 2017). Even these works have remained re-
stricted to subclasses of subadditive valuations, also
called complement free (a valuation is subadditive if
v(S∪T) ≤ v(S) +v(T) for all S,T). Although subadditive
valuations are quite general, they can only capture in-
teraction between items as substitutes. For example, if
the items are pieces of furniture, a buyer’s marginal
value for a chair might decrease as her living space
gets more crowded by other items. To date, no results
in this line of work have modeled interactions be-
tween items as complements. For example, a buyer’s
value for a kitchen table might instead increase if she
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already has a chair. The goal of this paper is to study
simple and approximately optimal mechanisms in
domains where buyer valuations exhibit both sub-
stitutes and complements.

1.1. Running Examples

We now present two running examples, which will
help motivate and exposit our model.

Example 1. Consider a college that sells courses (indexed
by [m] � {1, 2, . . . ,m}) “a la carte” (i.e., courses are
items for sale). The college also specifies diplomas that
it awards (indexed by [k]), and for each diploma j, it
specifies a set of courses Sj that a student must pass
in order to receive j. Students may purchase courses
as they like, but in order to receive a diploma, they
must complete the set of courses required by that
diploma. Denote by vj the value of diploma j. The
value of a student for a set of courses C is the to-
tal value of diplomas it covers (i.e.,

∑
j:Sj⊆C vj). The

items (courses) exhibit complementarities because
value is derived from diplomas containing multiple
courses. At the same time, certain sets of courses
may conflict, require prerequisites, or impose too
much coursework. Therefore, the items also behave
as substitutes (e.g., a student cannot successfully take
two conflicting courses).

Example 2. Consider a recruiter who matches profes-
sionals to firms. The recruiter focuses on identifying
and matching certain skills indexed by [m] (say soft-
ware developer, algorithms developer, data scientist,
computer vision expert, quality assurance, etc.) to high-
tech firms. A firm may be interested in maintaining a
set of projects indexed by [k], and each project j ∈ [k]
requires a set Sj of professionals to maintain. If vj de-
notes the profit the firm will enjoy by completing
project j, then the value of a firm for a set of experts C is
the total value of projects they can cover (i.e.,

∑
j:Sj⊆C vj).

As in Example 1, the items (experts) exhibit com-
plementarities because value is derived from proj-
ects requiring multiple experts. Also as in Example 1,
the items behave as substitutes—firms typically have
limited hiring budget and/or physical space and
cannot derive utility from recommended experts
beyond this cap.

In both examples, observe that complementarities
arise in a similar manner: Each individual item is
a building block for an object that provides value.
Substitutability arises in a similar manner as well:
Certain subsets of itemsmay conflict and be infeasible
to simultaneously utilize. Because we view one of our
main contributions as the formalization of an im-
proved degree of complementarity notion, we dedicate
the subsequent subsection to introducing this (and re-
lated) concepts.

1.2. How toMeasure the Degree of Complementarity

Even for the traditionally simpler domain of welfare
maximization, mechanisms for buyers with comple-
ments have only recently emerged (Abraham et al.
2012; Feige et al. 2015; Feldman et al. 2015, 2016). The
main difficulty is that strong lower bounds are known
for general valuations (Lehmann et al. 2002, Nisan
and Segal 2006), so the precise degree to which buyer
valuations exhibit substitutes or complements must
be explicitly modeled in order to achieve tractability.
Interestingly, strong positive results are possible in
the complete absence of complements and no re-
striction on the degree of substitutability (Dobzinski
2007, Feige 2009, Dobzinski et al. 2010, Feldman et al.
2013, Devanur et al. 2015) but not vice versa: Many
strong lower bounds still exist in the absence of substi-
tutes but with arbitrary complementarity (Lehmann
et al. 2002, Abraham et al. 2012, Morgenstern 2015,
Feldman et al. 2016).
Although arbitrary substitutability may apply in

quite general settings, valuations with arbitrary comple-
ments often misrepresent the settings at hand. In settings
that involve complements (e.g., shoes, airport arrival and
departure slots, radio spectrum allocation, labor markets
with heterogeneous skills), it is rarely the case that all
elements complement one another. Interestingly, the
right definition of “degree of complementarity” differs
between environments. The goal is thus to define val-
uation classes that allow reasoning about complements
in a meaningful and sufficiently general way.

1.2.1. BuildingBlock:ThePositiveHypergraphModel. Our
proposed model of complementarity begins with the
previously studied positive hypergraph (PH) model.
A PHvaluation v(·) is such that there exists another set
functionw(·) so that v(S) �

∑
T⊆S w(T), andw(T) ≥ 0 for

all T. Note that such valuations exhibit complemen-
tarities but not substitutes. A PH valuation has PH
degree d if for all |T| > d, w(T) � 0 (i.e., a valuation
incorporates more complementarity behavior if larger
sets of items have synergy). A prominent example for
such a source of complementarity is the Federal Com-
munications Commission (FCC) spectrum auctions,
where purchasing licenses for the same band of
spectrum in adjacent geographical regions increases
the overall value of the purchase. Each region can
be associated with an element, and each subset of
geographically adjacent regions T may be associated
with w(T), the complementary benefit from owning
the band at exactly the region set T. In Abraham
et al. (2012), the authors provided algorithms and
mechanisms for social welfare maximization with
guarantees that degrade gracefully with d. It is worth
noting that even for PH valuations of degree 2, it may
be that every pair of items is complement. Note that in
both Examples 1 and 2, the valuation function of the
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buyer is a PH valuation defined by w(Sj) � vj for all j,
and w(T) � 0 otherwise. Therefore, the PH degree of
complementarity would be maxj |Sj|.

1.2.2. Shortcomingsof thePHModel (andAlternatives). In
the PH model, the number of items plays a crucial role
in the degree of complementarity. For example, a
buyer that is interested only in the grand bundle of all
items (and no proper subset) has the highest degree
of complementarity (in the context of Example 1,
consider a college that sells many courses but certifies
only a single diploma—both previous measures label
the corresponding valuation functionwith the highest
possible degree of complementarity of m). However,
when selling to such a buyer, one can treat the grand
bundle as a single item, and thus, no complementarity
issues arise (so the “intrinsic” degree of complemen-
tarity is low). That is, previous measures of comple-
mentarity deem this setting the most complex, whereas
from a revenue-maximizing perspective, it is actually
the least complex. This observation suggests that a
different perspective on complementarity is needed
for revenue-maximizing auction design.

This same issue arises in another recent degree of
complementarity definition—the supermodular (SM)
degree introduced by Feige and Izsak (2013). Two
items j, j′ have a supermodular relation if there exists
a (possibly empty) set S ⊆ [m] \ {j, j′} such that v(S ∪
{j, j′}) − v(S ∪ {j′}) > v(S ∪ {j}) − v(S) (i.e.,S exposes
the synergy between j and j′). A valuation has super-
modular degree d if each item j has at most d other
items with a supermodular relation.1 In Examples 1
and 2, the supermodular degree is at least maxj |Sj| − 1
but could be larger depending on the structure in
which the sets {Sj}j intersect.

To further emphasize the relevance of a novel
measure, consider the following two instantiations of
Example 2: (1) Every pair of experts can complete a
project unique to them, and there is a single super-
team of 10 experts that can complete its own project;
(2) every set of 10 experts can complete a project
unique to it. In both settings, the PH degree is 10, and
the supermodular degree is m. Yet, setting (2) seems
vastly more complex than (1), and an ideal measure of
complementarity should capture this.

1.3. Our Notion

As mentioned, our notion begins with the PH model.
The difference is in how we measure the degree of
complementarity. In the language of our examples,
the set function w(·) has w(Sj) � vj for all projects/
diplomas j, andw(T) � 0 for allT that do not correspond
to a project/diploma. We define the degree of com-
plementarity to be the maximum over all items of the
number of projects/diplomas requiring that item. Note
that one simple comparison between the PH degree and

ourmeasure is that the PH degree of a hypergraph is the
maximum size of any hyperedge, whereas our measure
is the maximum degree of any node.
Revisiting the two objections previously raised,

observe that when only the grand bundle of all items
provides nonzero value, our measure assigns this
valuation a complementarity degree of one, matching
the intrinsic simplicity. When every pair of experts
completes a unique project (and there is one super-
team of size 10), our measure assigns a complemen-
tarity degree of m. When every set of 10 experts can
complete a unique project, our measure assigns a
complementarity degree of (m−1

9 ). So, our measure
correctly identifies that the latter setting is signifi-
cantlymore complex. Notice further that ourmeasure
of complementarity ranges from 1 to 2m−1, whereas
previous measures range from 1 to m; so, our mea-
sure has the potential to provide a much more fine-
grained evaluation.
There is one more aspect to our model of comple-

ments. Even for additive buyers, multidimensional
auctions are known to be intractable when values for
items are correlated (Hart andNisan 2013, Briest et al.
2015). Specifically, there exists a distribution D over
R

2 such that when a single additive buyer’s valuation
is drawn from D, the optimal revenue for the seller is
infinite, but the revenue of the best deterministic
mechanism is one. Therefore, although our model of
complementarities so far is intrinsically motivated, it
is intractable without further effort. A representative
approach to circumvent these impossibilities for addi-
tive buyers is the independent items assumption: Item
values are drawn independently.
With complementarities between items, there is

little sense in whichwe can have independence across
items, but a notion of independence still naturally
folds into the model in the following way: Simply
assume that the random variables {vj}j∈[k] are inde-
pendent (that is, the students’ values for various di-
plomas are independent random variables). This is the
natural extension of “independent items” assumed in
all prior works on this topic.
To summarize in the language of our examples, we

model complements among items (courses/experts)
via a set-valued function w(·), where w(S) is equal to
the value derived from a diploma requiring exactly
the set S of courses (or a project requiring exactly the
set S of experts), and a buyer’s valuation for a set T of
items is

∑
T⊆S w(T). Over the entire population of

buyers, the values {w(T)}T⊆[m] are independent ran-
dom variables. We now proceed to describe how we
model substitutes.

1.3.1. Substitutes. Consider a student planning his or
her entire course selection. Naturally, constraints
such as overlapping courses, geographic constraints,
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prerequisites, general demands on time, etc., deem
some sets of courses infeasible. One can model this
with a set system C ⊆ 2[m]. A set of courses S is in C if it
is feasible to construct a schedule that contains all
courses in S (and S /∈ C denotes that the courses S
violate some constraint and cannot be a feasible
schedule). Therefore, one could fold substitutes
into the student’s valuation by updating v(S) to be
maxS′∈C,S′⊆S{

∑
Sj⊆S′ vj} (the maximum sum of values for

all diplomas that can be achieved using courses froma
feasible S′ ⊆ S).

Our model merges the two prevailing models of
complements and substitutes: Complements are cap-
turedvia“diplomas” that require every course in a set,
and substitutes are captured by downward-closed
“feasibility constraints,” which preclude the student
from obtaining value from toomany courses at once. So,
to fully recap, there is a functionw : 2[m] → R+ that takes
as input a set S and outputs the value derived from a
course/project that requires exactly the set S of items.
There are also feasibility constraints C, where S ∈ C

denotes that it is feasible to simultaneously utilize all
items in S. The buyer’s value v(S) for a set S of items is
then maxS′⊆S,S∈C{

∑
T⊆S w(T)}. Among the entire pop-

ulation of buyers, the values {w(T)}T⊆[m] are drawn
independently. Finally, we say that an instance has
degree of complementarity d if the maximum over all
items of the number of diplomas/courses requiring
that item is d (formally, maxj |{T, T 
 j ∧ w(T) > 0}|).

We now expound a more concrete example dem-
onstrating the complementarity aspect (which does
not have strict substitutes). This example also gives
some intuition for the “hard” examples, where simple
mechanisms cannot provide good approximation guar-
antees. Suppose that a random student in the population
valuesdiploma j at 2j+1 with probability 2−(j+1) and zero
otherwise (independently for all diplomas). The ex-
pected total value to students is then k, the total
number of diplomas, and therefore, k is a trivial upper
bound to the optimal revenue. Depending on the struc-
ture of the sets of courses required for each diploma, it
may further indeed be possible to extract revenue Ω(k),
even when k � 2Ω(m) (if, for instance, for every set of
size m/2 courses, there is a diploma that requires
exactly that set of courses; see Proposition 5 for a
complete analysis).

In this example, pricing courses (of which there arem)
achieves revenue at best O(m) � k, and selling the

grand bundle for a single price achieves revenue only

O(1) (see Proposition 5 for analysis of both these

claims). Therefore, the better of selling items sepa-

rately and selling the grand bundle, in this example,

cannot achieve an approximation better than O(mk ) to

the optimal revenue.

1.4. Main Result and Techniques

Our main result (Theorem 2) is that the mechanism
proposed by Babaioff et al. (2014)—the better of
selling separately (post a price on each item, let the
buyer purchase whatever subset she likes) and bundling
together (post a single price on the grand bundle, let the
buyer purchase or not)—achieves a tight Θ(d) ap-
proximation whenever buyer valuations exhibit com-
plementarity of degree at most d (by our complemen-
tarity measure—the maximum over all items of the
number of diplomas/projects that require that item).
We show that our notion of complementarity best

fits our model. If instead we measure complemen-
tarity via the “supermodular degree,” then there exist
populations in our model with supermodular degree
d for which the better of selling separately and bun-
dling together achieves only a Ω(2d/d) approxima-
tion. Similarly, if we instead measure complemen-
tarity via the “positive hypergraph degree,” then
there exist populations in our model with positive
hypergraph degree d for which the better of selling
separately and bundling together achieves only a
Ω(

∑
�≤d(

m
�
)/m) approximation.Bothnotionsofdegree are

defined formally in Section 6, where the lower bounds
are proved. Our point is not that Θ(d) is a “better”
bound than Ω(2d/d) (this is arguably not a fair com-
parison as the measures operate on different scales)
but rather, that “supermodular degree” and “positive
hypergraph degree” are incapable of capturing the
smooth transition from low to high degrees of com-
plementarities as they can only take on m different
values but provide guarantees that range from one to
Ω(2m). In comparison, our notion of degree of com-
plementarity takes on 2m−1 different values and pro-
vides guarantees that range fromone toΩ(2m), allowing
for an exponentially finer-grained trade-off.

1.4.1. Our Techniques. Our starting point is a duality-
based upper bound on the optimal achievable reve-
nue coming from recentwork of Cai et al. (2016). Their
upper bound decomposes into three parts, which they
call SINGLE, CORE, and TAIL. So, the goal is to show
that selling separately well approximates SINGLE
and that bundling together well approximates CORE
and TAIL. Fortunately, the analysis of Cai et al. (2016)
is fairly robust, and we are able to prove that bun-
dling together achieves a constant factor of both
CORE and TAIL via a similar approach. Our main
technical contribution appears in Section 4, where we
prove that selling separately gets an O(d) approxi-
mation to SINGLE. Incidentally, bounding SINGLE
happens to be the easiest part of the analysis in Cai
et al. (2016) for additive valuations.
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Without getting into details about what exactly this
SINGLE term is, we can still highlight the key challenge.
In the context of our hard example (where the buyer’s
value for diploma j is 2j+1 with probability 2−j−1), we
would like to post a different price on each diploma/
project. In this example, it is even the case that the
optimal “diploma/project-pricing scheme” obtains a
constant-factor approximation to SINGLE. The catch
is that we sell courses (items), not diploma/projects.
We may wish to set drastically different prices on
many different diploma/projects requiring the same
course, and it is unclear that we can achieve the de-
sired diploma/project prices by cleverly setting pri-
ces on the courses separately (in fact, it could be
impossible). So, our main technical contribution is an
algorithm to find a subset of diploma/projects S for
which it is possible to achieve any desired diploma/
project pricing on S by only posting prices on courses,
and the optimal revenue from diploma/projects in S
is a d approximation to the optimal diploma/project-
pricing scheme. It turns out that the right sets of
diploma/projects to search for are ones where each
diploma/project requires a course not required by
any of the other diploma/projects. We show that the
number of collections with this property that is needed
to partition all diploma/projects tightly characterizes
the approximation guarantee of selling separately and
that d such collections suffice whenever each course is
required by at most d diploma/projects.

Another interesting property of our analysis worth
emphasizing is the following: If our scheme chooses
to sell separately, it does so by first selecting a subset
of at most m diplomas/projects to target and then
selecting for each diploma/project a single required
item to price (and all others are offered for free). Al-
though perhaps initially counterintuitive, such schemes
are not uncommon in practice in the presence of com-
plements. For example,many iPhoneapps (which could in
principle be priced) are offered for free upon purchase of
an iPhone. In the context of our examples, such a scheme
may involve the university offering introductory classes
for free and charging only for thefinal course completing
the diploma. In the case of a recruiter, theymay charge a
price to recruit a true specialist (e.g., the “computer
vision expert”) but offer to recruit less specialized
experts for free.

1.5. Further Related Work

1.5.1. Multidimensional Auction Design. A rapidly
growing body of recent literature has shown that
simple mechanisms are approximately optimal in
quite general settings (Chawla et al. 2007, 2010, 2015;
Li and Yao 2013; Babaioff et al. 2014; Kleinberg and

Weinberg 2014; Bateni et al. 2015; Rubinstein and
Weinberg 2015; Yao 2015; Chawla and Miller 2016;
Cai and Zhao 2017; Hart and Nisan 2017). Of these,
the result most related to ours is Rubinstein and
Weinberg (2015), which proves that the better of
selling separately and bundling together achieves a
constant-factor approximation for a single buyer whose
valuation is drawn from a population that is “sub-
additive with independent items” (note that their
approximation guarantees in this model are im-
proved by Chawla and Miller 2016 and Cai and Zhao
2017).Their model is similar to our model with d � 1
(but neither subsumes the other), so our results can
best be interpreted as an extension of theirs to buyers
whose valuations also exhibit complementarity.
In terms of techniques, our work makes use of a

recent duality framework developed in Cai et al. (2016).
The same duality framework has been used in con-
current work by the present authors to prove multi-
dimensional “Bulow–Klemperer” results (Eden et al.
2017) and independent work by others to design
simple, approximately optimal auctions for multiple
subadditive bidders (Cai and Zhao 2017). Still, the
duality theory is only used to provide an upper bound
on the revenue in all these cases, and the remaining
technical contributions are disjoint. In particular, for
the present paper, Section 3 has a high technical
overlap with these works, and Section 5 bears some
similarity. However, ourmain technical contribution lies
in Section 4, which is unique to the problem at hand.

1.5.2. Agentswith Complements. In recent years, there
has also been a rapid growth in the design of algo-
rithms and mechanisms in the presence of comple-
ments (Abraham et al. 2012; Feige and Izsak 2013;
Feldman and Izsak 2014, 2017; Feige et al. 2015;
Feldman et al. 2015, 2016; Nguyen et al. 2016). These
works consider many different aspects: for example,
assuming strategic behavior of agents (or not), as-
suming the existence of strict substitutes (or not), or
focusing on simple mechanisms and quantifying the
efficiency of equilibria. In all these works, some no-
tion of degree of complementarity is cast on a class of
valuation functions, and the approximation ratio guar-
anteed grows as a function of complementarity degree.
It is noteworthy that quite often, different settings mo-
tivate different degrees of complementarity to best cap-
ture the degradation in possible guarantees. For instance,
Abraham et al. (2012) uses the PH degree, Feige and
Izsak (2013) uses the supermodular degree, Feige
et al. (2015) and Feldman et al. (2015) use the maxi-
mum over positive hypergraph (MPH) degree, and Feld-
man et al. (2016) uses the positive supermodular degree.
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Although both Abraham et al. (2012) and this paper
use a positive hypergraph to describe an agent’s
valuations, our degree of complementarity is differ-
ent than theirs. Although they set the degree of
complementarity as the maximum size of a hyperedge
in the hypergraph (the number of items in the larg-
est hyperedge), our degree of complementarity is the
maximum degree of an item (the number of hyperedges
that contain an item). Moreover, we allow substitutabil-
ity by introducing a downward-closed feasibility con-
straint over items, whereas Abraham et al. (2012) does
not consider valuations that exhibit both comple-
mentarity and substitutability. See Section 6 for de-
tails about the different notions of complementarity
used in previous works.

In comparison with the literature, ours is the first to
consider revenue maximization for buyers with com-
plements. Earlier work does indeed consider revenue
maximization for buyers with complements (Levin
1997, Milgrom 2007, Day and Milgrom 2008) but
froma fairlydifferentperspective.For instance,Milgrom
(2007) and Day and Milgrom (2008) consider core-
selecting auctions in a non-Bayesian setting. Levin
(1997) considers single-parameter valuations in a
Bayesian setting and explicitly notes the challenges in
extending to multiparameter settings. Additionally,
there has also already been follow-up work following
an initial announcement (one-page abstract) of por-
tions of this work in the Conference on Economics and
Computation 2019: Cai et al. (2018) study revenue
maximization in a Bayesian multiparameter setting
for a model of “proportional” complements. Their
model is more general than ours in some ways and
more restrictive in others. We expect further results
along this line in the future.

1.6. Discussion and Future Work

We present the first simple and approximately opti-
mal mechanism for a buyer whose valuation exhibits
both substitutes and complements.We show that for a
natural notion of “degree of complementarity,” the
better of selling separatelyand selling together achievesa
tight Θ(d) approximation to the optimal revenue. We
provide rigorous evidence that this notion best fits
our model via large lower bounds for classes of val-
uations that previous definitions would “award” a
low degree of complementarity.

Our main technical contribution is an algorithm to
partition a collection of sets into subcollections such
that each set (in the subcollection) contains an item
not contained in the others (in that same subcollec-
tion). Because of the robustness of previously de-
veloped tools like the “core-tail” decomposition (Li
and Yao 2013, Babaioff et al. 2014, Rubinstein and
Weinberg 2015, Yao 2015, Chawla and Miller 2016,
Cai and Zhao 2017) and duality-based benchmarks

(Cai et al. 2016), we are able to focus our technical
contributions to the specific problem at hand.
One immediate direction for future work would be

to see whether simple mechanisms remain approxi-
mately optimal for multiple buyers with comple-
mentarity degree d. Doing so would likely require at
least one substantial innovation beyond the ideas in
this paper, as even the d � 1 case remains open (even
considering the recent breakthrough result of Cai and
Zhao 2017).

2. Preliminaries
We consider a setting in which a seller wishes to sell a
set M of m items to a single buyer. The buyer has a
valuation function v that assigns a nonnegative real
number v(S) to every bundle of items S ⊆ M. The
valuation is normalized (v(∅) � 0) and monotone (v(S) ≤
v(T)whenever S ⊆ T). We slightly abuse notation and
let v(X) � ES∼X[v(S)] when X is a random set.

2.1. Valuations with Substitutes and Complements

2.1.1. Complements. An increasingly popular model to
represent complementarities is via a positive hypergraph
representation: v(S) �

∑
T⊆S w(T), where w : 2M → R

+

is a nonnegative weight function. Intuitively, w(T)
denotes the bonus value that the buyer enjoys from
owning exactly the set of items T (in addition to the
value the buyer already enjoys for proper subsets of T).
In the language of Section 1, w(T) denotes the buyer’s
value for the diploma that requires exactly the
courses in T. We sometimes refer to T as a hyperedge,
thinking of w(·) as a weight function on the hyper-
graph with nodes M. We say that v (or w) exhibits
complementarities of degree d if for every item i ∈
M, |{S ⊆ M : i ∈ S and w(S) > 0}| ≤ d.
A simple example of a positive hypergraph rep-

resentation is the following. Let v be an additive
valuation; then, defining w({i}) � v({i}) and w(T) � 0
for every |T| > 1 yields v(S) �

∑
T⊆S w(T).

2.1.2. Substitutes. An equally popular model to rep-
resent substitutes is via a set system capturing combina-
torial constraints. Let C ⊆ 2M denote a downward-closed
set system over the itemsM; then, v assigns values to the
sets inC, andforeveryothersetS, v(S) �maxT⊆S,T∈C{v(T)}.
Intuitively, if S /∈ C, then at least some items in S are
substitutes, and the buyer does not derive value from
all of S.
Many valuations that exhibit only substitutabilities

are representable as “additive subject to constraints”
(i.e., v(S) � maxT⊆S,T∈C{

∑
i∈T v({i})}). For example, unit-

demand valuations can be represented with C � {T ⊆
M : |T| ≤ 1}. Constraints that require a student to take
at most five courses could be represented with C �
{T ⊆ M : |T| ≤ 5}. Constraints that require a student to
take no more than 60 hours of coursework could be

Eden et al.: Simple and Approximately Optimal Mechanism for Buyer with Complements
Operations Research, 2021, vol. 69, no. 1, pp. 188–206, © 2020 INFORMS 193

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
7
3
.7

2
.1

0
4
.1

6
5
] 

o
n
 0

7
 J

an
u
ar

y
 2

0
2
3
, 
at

 1
1
:5

2
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



represented with C � {T ⊆ M :
∑

j∈T hj ≤ 60}, where hj
is the number of hours of coursework for class j.
Constraints that require a student to not take over-
lapping classes could first build a graph G with an
edge between class i and j if they overlap and thendefine
C to be all independent sets of G. Enforcing multiple
of the aforementioned constraints simultaneously is
simply a matter of taking the intersection of the de-
fined Cs.

2.1.3. Complements and Substitutes. We choose to
model substitutes and complementarities together
by combining the two models. That is, there is a
positive hypergraph representationw that represents
complementarities, combinatorial constraints C that
represent substitutabilities, and v(S) � maxT⊆S,T∈C
{
∑

U⊆T w(U)}. We assume without loss of generality
that w(T) � 0 for all T /∈ C.

2.2. Distributions of Valuations

We model our buyer valuation v(·) as being drawn
from the population D in the following way. There
are some constraints C that are fixed (not ran-
domly drawn). Each w(T) is then drawn indepen-
dently from some distribution D

′
T for every T ∈ C,

and v(S) � maxT⊆S,T∈C{
∑

U⊆T w(U)}.
We say that D has complementarity d if all valua-

tions in the support of D have complementarity d.
Note that this implies thatD has complementarity d if
and only if for every item i ∈ M,

| T 
 i : Pr w T( ) � 0[ ] < 1{ }| ≤ d.

We use V to denote the support of D, f (v) to denote
Prv̂←D[v̂ � v], and fT(y) � Prx←D

′
T
[y � x].

2.2.1. Discrete Vs. Continuous Distributions. Like Cai
et al. (2016), we only explicitly consider distributions
with finite support. Similar to their results, all of our
results immediately extend to continuous distribu-
tions as well via a standard discretization argument
(Bei and Huang 2011, Hartline et al. 2011, Daskalakis
andWeinberg2012, Hartline andLucier 2015, Rubinstein
and Weinberg 2015). We refer the reader to Cai
et al. (2016) for the formal statement and proof.

Theorem 1 assumes that for every single-dimensional
random variableX and number q ∈ [0, 1], there exists a
threshold p so that X ≥ p with probability exactly q,
which might a priori seem problematic for dis-
crete distributions. Fortunately, standard “smoothing”
techniques allow this assumption to be valid for discrete
distributions. A formal discussion of this appears in
remark 2.4 of Rubinstein and Weinberg (2015).

2.3. Mechanisms

2.3.1. Truthful Mechanisms and Revenue Maximization.

Formally, a mechanismM has two mappings X : V →
∆(2M) and p : V → R. Mapping X takes as input a
valuation v and awards a (potentially random) subset
of items. p takes as input a valuation v and charges a
price. MechanismM is then truthful if for all v, v′ ∈ V,
v(X(v))− p(v) ≥ v(X(v′)) − p(v′) (note that for a single
buyer, there is no need to distinguish between Bayesian
incentive compatible and dominant strategy incentive
compatible—the definitions coincide). Alternatively, one
canviewamechanismasamenu that lists options of the
form (X, p), where X ∈ ∆(2M) and p ∈ R. A buyer with
value v(·) then selects the menu option argmax ×
{v(X) − p}. It is easy to see the equivalence between
the two representations: Simply setting (X(v), p(v)) �
argmax{v(X) − p} takes one from the menu view to a
truthful mechanism.We denote by REV(D) the optimal
revenue attainable by any truthful mechanism when
buyer valuations are drawn from the population D.

2.3.2. Simple Mechanisms. The two simple mecha-
nisms we study are selling separately (SREV) and
bundling together (BREV). We denote by BREV(D)
the optimal expected revenue attainable by selling all
items together and drop the parameter D when it is
clear from context. It is well known that BREV(D) �
max p · Pr[v(M) ≥ p] (Myerson 1981). SREV requires
some care as it may be computationally intractable
for a buyer to even decide, given item prices, which
set of items provides her the optimal utility. In such
cases, it is not clear which set of items a computa-
tionally bounded buyer will purchase. Therefore,
counting on the buyer to compute an optimal buying
strategy may be an undesirable solution concept
(from a computational perspective). In certain cases,
however, one can easily determine whether item i
will be purchased: For example, if every set that the
buyer is even willing to purchase contains item i, then
certainly the buyer will purchase (at least) item i.
Therefore, if we only count item i as sold whenever it
is contained in every set that the buyer is willing to
purchase, we certainly never overestimate the reve-
nue achieved by any rational buyer. Put another way,
our only assumption on the buyer’s behavior is that
whenever there exists a set yielding strictly positive
utility, they choose to purchase a set that yields
strictly positive utility (not necessarily their utility-
maximizing set)—our revenue guarantees will hold
for any buyer whose behavior satisfies this property.
This is similar to the approachusedbyRubinstein and

Weinberg (2015): We define SREV∗ to be the optimal
revenue attainable by any item pricing only counting
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an item as sold if every set the buyer is willing to purchase
contains that item. More formally, for a given item
pricing �p and valuation v, let Ii(�p, v) � 1 if ∃S 
 i, v(S) −∑

j∈S pj > 0 and ∀S �
 i, v(S) −
∑

j∈S pj ≤ 0, and Ii(�p, v) � 0
otherwise. Then, SREV∗(D)�max�pEv←D[

∑
i Ii(�p,v) · pi].

2.4. The Copies Environment

In our bounds, we shall make use of a related “copies
environment” also utilized in Chawla et al. (2007,
2010, 2015) and Kleinberg and Weinberg (2014). For
any product distribution D

′
� ×k

i�1D
′
i, we define the

corresponding copies setting as follows. There is a
single item for sale and k buyers. Buyer i’s value for the
item is drawn from the distribution D

′
i. For instance,

in our model, the hypergraph representation of the
valuation is drawn from D

′
� ×SD

′
S, so we would

have a buyer for every subset, with buyer S’s value
drawn from the distribution D

′
S. We emphasize that

in the copies setting, there is a single item for sale
and a buyer for every subset S. There are no longer
any feasibility constraints on which items can be si-
multaneously purchased: There is a single item that
can be awarded to at most one buyer (or no one).

We can then define the benchmark OPTcopies(D
′
) to

be the expected revenue obtained by the optimal
mechanism of Myerson (Myerson 1981) on input D

′
.

Note that this is equal to Ew←D
′[maxT{ϕ̄T(w(T)), 0}],

where ϕ̄T(·) denotes Myerson’s ironed virtual value for
the distribution D

′
T. We make use of the following

result, the proof of which appears for completeness in
Appendix B.

Theorem 1 (Chawla et al. 2010). For any q ≤ 1, there exist
(possibly random) prices {pT}T such that

1. Revenue is high: OPTcopies(D
′
) ≤ 1

q

∑
T⊆M EpT [pT ·

Prx←D
′
T
[x ≥ pT]].

2. Probability of sale is low:
∑

T⊆M EpT [Prx←D
′
T
[x ≥

pT]] ≤ q.
3. Moreover, each pT takes on at most two values. If D

′
T

is regular, then pT is a point mass.

3. Our Duality Benchmark and Main
Theorem Statement

Weextend the duality framework of Cai et al. (2016) to
our setting in a natural manner. Full technical details
are deferred to Appendix A. The only technical detail
needed for stating our revenue benchmark is the
following: We partition the valuation space V into
2m − 1 different regions, depending onwhich hyperedge
is the most valuable to a buyer with valuation v.
Specifically, we say that v is in region RA if A �
argmaxT⊆M{w(T)}, with ties broken lexicographically.

Corollary 1. For valuation distribution D established by
drawing a hypergraph representation w ←

∏
S D

′
S and

returning v(S) � maxT⊆S,T∈C{
∑

U⊆T w(U)},

REV D( ) ≤ E
v←D

max
S∈C

∑

T⊆S

w T( ) · 1 v /∈ RT[ ]

{ }[ ]

NONFAVORITE( )

+ E
v←D

∑

S⊆M

max 0, ϕ̄S w S( )( )
{ }

· 1 v ∈ RS[ ]

[ ]

.

SINGLE( )

We defer to Appendix A any discussion of how this
benchmark is derived but provide here some intuition
to help parse it. Corollary 1 upper bounds the revenue
with two terms. The second term, SINGLE, sums over
all Sa term that is zerowhenever v /∈ RS (that is,S is not
the buyer’s favorite diploma). When v ∈ RS (that is, S
is the buyer’s favorite diploma), it sums the Myer-
sonian (ironed) virtual value for diploma S (as defined
by distribution D′

S). The first term, NONFAVORITE,
is simply the buyer’s value for the grand bundle of all
items only counting contributions from diplomas that are
not their favorite.
In Section 4, we show that max{SREV∗,BREV} gets

a 4(d + 1) approximation to SINGLE (Proposition 1).
This portion of the analysis develops techniques spe-
cific to buyerswith restricted complements. In Section 5,
we show that BREV gets a 12 approximation to
NONFAVORITE (Proposition 4). This portion of the
analysis will look somewhat standard to the reader
familiar with Cai et al. (2016), with a little extra work
to extend their main ideas to our setting.We conclude
this section with our main theorem

Theorem 2. For a distribution D that has complementarity d,
REV ≤ (4d + 16)max{BREV,SREV∗}.

Proof. Combine Propositions 1 and 4 with Corollary 1
to get

REV D( ) ≤ 4dSREV∗ D( ) + 16BREV D( )

≤ 4d + 16( )max SREV∗,BREV
{ }

. □

4. Bounding SINGLE
In this section, we show that the better of selling items
separately and selling the grand bundle gets an O(d)
approximation to SINGLE. Specifically, we prove
the following.

Proposition 1. SINGLE ≤ 4dSREV∗ + 4BREV.

4.1. Relating SINGLE to OPTcopies

We begin by relating SINGLE to OPTcopies.
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Observation 1. SINGLE ≤ OPTcopies.

Proof. First, observe that there is exactly one S for
which 1[v ∈ RS] � 1. So, it is certainly the case that for
all v (with v(S) �

∑
T⊆S w(T)), we have

∑

S⊆M

max 0, ϕ̄S w S( )( )
{ }

· 1 v ∈ RS[ ]

≤ max
S⊆M

0, ϕ̄S w S( )( )
{ }

.

⇒ E
v←D

∑

S⊆M

max 0, ϕ̄S w S( )( )
{ }

· 1 v ∈ RS[ ]

[ ]

≤ E
v←D

max
S⊆M

0, ϕ̄S w S( )( )
{ }[ ]

.

The left-hand side is exactly SINGLE, and the right-
hand side is exactly OPTcopies. □

Note that if the buyer’s valuation was additive, at
this point we would already be finished. We could
simply set the prices guaranteed by Theorem 1 and be
done. Aswe considermore complex buyer valuations,
there are two barriers we must overcome. The first is
because of substitutability: If we try to set prices on
each subset separately, just because the buyer is
willing to purchase set S does not mean he will choose
to purchase set S because he may purchase some
substitutes instead. Note that this issue does not arise
in absence of substitutes: If the buyer is willing to
purchase S by itself, he is certainly willing to add S to
any other set of purchased items. The second barrier is
because of complementarity: Even after we decide the
“correct” price to charge for set S, we can only set
prices on items andnot on bundles. Therefore, the prices
wewant to set for different bundles necessarily interfere
with each other. This is the novel barrier unique to values
with complementarity and is also the only part of the
analysis where the (necessary) factor of d arises.

4.2. Overcoming the Complements and

Substitutes Barriers

The first step to overcoming the complements barrier
is to find a subset of bundles for which we can still set
the appropriate prices. As a warm-up, let us see what
the argument would look like assuming that there
were only complements and no substitutes (C � 2M).

Lemma 1. Let C � 2M and T1, . . . ,Tk be subsets of M
such that Ti �⊆ ∪j ��iTj for all i. Then, for all {pT}T⊆M,
SREV ≥

∑
i pTi

Prx←D
′
Ti
[x ≥ pTi

].

Proof. Set price pTi
on the item contained in Ti but not

∪j ��iTj (if there aremultiple, select one arbitrarily). Then,
by hypothesis, the price the bidder would have to pay
in order to receive the entire set Ti is exactly pTi

. Because

C � 2M, whenever w(Ti) ≥ pTi
, the buyer will choose to

purchase the set Ti in addition to whatever else he or
she chooses to purchase. Therefore, the item contained
in Ti but not∪j��iTj is purchasedwith probability at least
Prx←DTi

[x ≥ pTi], and the revenue of this item pricing is
at least

∑
i pTi

Prx←D
′
Ti
[x ≥ pTi

]. □

The proof of Lemma 1 makes use of the assumption
that C � 2M in exactly one place: to argue that whenever
w(Ti) ≥ pTi

, the buyer chooses to purchase the com-
plete set Ti. When C �� 2M, it may be the case that even
though thebuyer iswilling topurchase setTi, she chooses
to purchase substitutes instead. We can remove this
assumption on C by restricting attention to certain
price vectors.

Lemma 2. Let C be any downward-closed set system and
T1, . . . ,Tk be subsets of M such that Ti �⊆ ∪j��iTj for all i.
Then, for all {pT}T⊆M such that pT ≥ 4BREV for all
T, SREV∗ ≥ 1

4

∑
i pTi Prx←D

′
Ti
[x ≥ pTi].

Proof. Set price pTi
/2 on the item contained in Ti but

not ∪j��iTj (if there are multiple, again select one arbi-
trarily). The price the bidder would have to pay in
order to receive the entire set Ti is exactly pTi

/2. Sup-
pose w(Ti) ≥ pTi

. Then, the buyer is not only willing to
purchase Ti but also gets utility at least pTi/2 for doing
so. The only reason she would choose not to purchase
this set is if there was some other set S with Ti �⊆ S and
v(S) ≥ pTi

/2 ≥ 2BREV. As v(S) ≤ v(M) − w(Ti) for all
such S, in order for such a set to exist, it must be
the case that v(M) − w(Ti) ≥ 2BREV. Clearly, this oc-
curs with probability at most 1

2, as otherwise we could
set price 2BREV on the grand bundle, sell with
probability strictly larger than 1

2, and make revenue
strictly larger than BREV. Moreover, v(M) − w(Ti) �∑

U ��Ti
w(U) is completely independent of w(Ti). There-

fore, even conditioned on w(Ti) ≥ pTi
, the probabil-

ity that the bidder is interested in some other set S
with Ti �⊆ S is at most 1

2, and therefore, the buyer
indeed chooses to purchase Ti with probability at
least Prx←D

′
Ti
[x ≥ pTi

] · 12. □

Finally, we can combine Lemma 2 with Theorem 1
to reduce our search to the problem of partitioning the
hyperedges into collections Hx � {Tx1, . . . ,Txkx} such
that Txi �⊆ ∪j��iTxj for all i.

Corollary 2. Let C be any downward-closed set system, and
let {Hx}x∈[k] be a partition of the hyperedges {T : fT(0) < 1}
such that for all x, and all T ∈ Hx, T �⊆ ∪T′∈Hx\{T}T

′.
Then, 4kSREV∗ + 4BREV ≥ SINGLE.

Proof. Take q � 1 in Theorem 1, and let {pT}T⊆M be the
guaranteed (randomized) prices. By Theorem 1, con-
dition 3, there exist two deterministic prices pHT ≥ pLT
and probabilities qT such that pT � pHT with probability qT
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and pT � pLT with probability 1 − qT. Therefore, Theo-
rem 1, condition 1 can be rewritten as

OPTcopies ≤
∑

T⊆M

qTp
H
T · Pr

x←D
′
T

x ≥ pHT
[ ]

+ 1 − qT
( )

pLT · Pr
x←D

′
T

x ≥ pLT
[ ]

.

We can further rewrite this by breaking up the two
sums into prices that exceed 4BREV and those that do
not; let B � 4BREV for simplicity:

OPTcopies ≤
∑

T⊆M,pH
T
≤B

qTp
H
T · Pr

x←D
′
T

x ≥ pHT
[ ]

+
∑

T⊆M,pL
T
≤B

1 − qT
( )

pLT · Pr
x←D

′
T

x ≥ pLT
[ ]

+
∑

T⊆M,pH
T
>B

qTp
H
T · Pr

x←D
′
T

x ≥ pHT
[ ]

+
∑

T⊆M,pL
T
>B

1 − qT
( )

pLT · Pr
x←D

′
T

x ≥ pLT
[ ]

.

By condition 2 of Theorem 1, we have
∑

T⊆M

qT · Pr
x←D

′
T

x ≥ pHT
[ ]

+ 1 − qT
( )

· Pr
x←D

′
T

x ≥ pLT
[ ]

≤ 1.

Therefore, as all prices in the top sum are at most B,
the entire top two terms sum to at most B � 4BREV.

For the bottom two terms, there is no term for T if
pHT ≤ B. If pHT > B ≥ pLT, define pT � pHT . If p

H
T > pLT > B,

then set pT to whichever of {pHT , p
L
T} maximizes pT·

Prx←D
′
T
[x ≥ pT]. Then,

∑
T⊆M,pH

T
>B pT · Prx←D

′
T
[x ≥ pT] is

at least as large as the bottom two terms. Moreover,
as all pT > B, we can apply Lemma 2 to conclude that
for all T1, . . . ,Tk uch that Ti �⊆ ∪j��iTj or all i, SREV

∗ ≥
1/4

∑
i pTi

Prx←D
′
Ti
[x ≥ pTi

] .

Finally, as {Hx}x∈[k] partitions the hyperedges so
that for all x and T ∈ Hx, T �⊆ ∪T′∈Hx\{T}T

′, we get

∑

T⊆M,pH
T
>B

pT · Pr
x←D

′
T

x ≥ pT
[ ]

�
∑k

x�1

∑

T∈Hx,pHT >B

pT

· Pr
x←D

′
T

x ≥ pT
[ ]

≤ 4k · SREV∗.

The last inequality is because of Lemma 2 and
completes the proof.
So, the last remaining task is to find a good partition

of hyperedges, such that within each partition, every
hyperedge contains at least one item not contained in
the other hyperedges in the same partition.We isolate
this contribution in Section 4.3.

4.3. Partitioning Hyperedges with

Restricted Complements

We provide a high-level description of our algorithm
here and give pseudocode in Figure 1. Recall that the
algorithm takes as input a set of hyperedges and
returns a partition of the hyperedges {Hx}x, so that in
each partitionHx, every hyperedge S ∈ Hx contains an
item that is not in any other hyperedge T ∈ Hx. The
algorithm iteratively constructs each Hx and initially
initializes Hx to contain all remaining hyperedges.
Then, it iteratively eliminates all “bad” hyperedges
(those that do not contain an item absent from the
others) until the remaining hyperedges have the
desired property. In the proof of Theorem 3, it is easy to
show that the algorithm outputs a feasible partition,
and the trick is guaranteeing that each iteration makes
sufficient progress toward finalizing the partition.

Theorem 3. For any set of hyperedges E ⊆ 2M, the algo-
rithm in Figure 1 returns a partition of E � {Hx}x∈[k]
such that
1. For all x, and all T ∈ Hx, T �⊆ ∪T′∈Hx\{T}T

′.
2. k ≤ maxi{|{T ∈ E : i ∈ T}|}.

Proof. First, it is clear that the algorithm indeed prop-
erly outputs a partition of E: Observe that because of
line 2d in Figure 1, when a hyperedge is permanently
assigned to some Ei, it will not be assigned to any Ei′ ,
which implies that all the Eis are disjoint. Also, every
hyperedge is either permanently assigned to some Ei

or remains in Ecurr, which by line 2, implies that the
algorithm terminates only when every hyperedge is
permanently assigned to some Ei. So, every hyperedge is
contained in some partition, and the partitions are disjoint.

That the output partition satisfies Property 1 is easy
to verify: For any x, T ∈ Hx only the check in 2c passes

Figure 1. An Edge-Partitioning Process
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for T and (the present) Hx. After the check passes,
some other edges will be removed from Hx before the
output. Clearly, removing edge fromHx cannot cause
T to all of a sudden be contained in ∪T′∈Hx\{T}T

′ when
it was previously not contained. So, Property 1
is satisfied.

To prove Property 2, first denote by Ei
curr the state of

Ecurr at the start of iteration i. We will show that
∪T∈Ei

T � ∪T∈Ei
curr

T. In other words, every element con-
tained in some hyperedge in Ei

curr is still contained in
some hyperedge in Ei. To see this, observe that when
Ei is first set to E

i
curr, we clearly have∪T∈Ei

T � ∪T∈Ei
curr

T.
The only time hyperedges are removed from Ei is in
step 2c. Note that in order for a hyperedge to be re-
moved from Ei, it must be the case thatT ⊆ ∪T′∈Ei\{T}T

′.
In other words, in order to remove T from Ei, it must
be that all the elements contained in T are also con-
tained in ∪T′∈Ei\{T}T

′. Therefore, removing T does not
change ∪T′∈EiT

′, and when we terminate, we main-
tain ∪T∈Ei

T � ∪T∈Ei
curr

T.
To see why this implies Property 2, note that it

implies that if for any i, |{T ∈ E, i ∈ T}| � d, then i will
be contained in at least one hyperedge in all ofE1, . . . ,Ed,
and therefore, no hyperedges containing i remain in
Ed+1
curr. In particular, for d � maxi{|{T ∈ E, i ∈ T}|}, it is

the case that for all i, no hyperedges containing i
remain in Ed+1

curr, and therefore, the algorithm termi-
nates with at most d partitions. □

We can now combine everything to provide a proof
of Proposition 1.

Proof of Proposition 1. Combining Theorem 3 with
Corollary 2, we get that whenever D has comple-
mentarity d, that 4dSREV∗ + 4BREV ≥ SINGLE, com-
pleting the proof.

5. Bounding NONFAVORITE
In this section, we bound NONFAVORITE using
similar ideas to those developed in Cai et al. (2016).
Much of the process will look familiar to experts fa-
miliar with Rubinstein and Weinberg (2015) and Cai
et al. (2016), but there are a couple of new ideas
sprinkled in. We begin by breaking NONFAVORITE
into CORE + TAIL, as is by now standard (t will be
chosen later).

Lemma3. NONFAVORITE is upper bounded by the following:

E
v←D

max
S∈C

∑

T⊆S

w T( ) · 1 w T( ) ≤ t[ ]

{ }[ ]

+ CORE( )

E
v←D

∑

S :w S( )>t

w S( ) · 1 v /∈ RS[ ]
£¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¥

¦§§§§§§§§§§§§§§§§§§§̈. TAIL( )

Proof. The proof follows from the following algebra:

(NONFAVORITE)

� E
v←D

max
S∈C

∑

T⊆S

w T( ) · 1 v /∈ RT[ ]

{ }[ ]

� E
v←D

max
S∈C

∑

T⊆S

w T( ) · 1 w T( ) ≤ t[ ] · 1 v /∈ RT[ ]

{ }[ ]

+ w T( ) · 1 w T( ) > t[ ] · 1 v /∈ RT

[ ]}

≤ E
v←D

max
S∈C

∑

T⊆S

w T( ) · 1 w T( ) ≤ t[ ]

{ }[ ]

+ E
v←D

max
S∈C

∑

T⊆S

w T( ) · 1 w T( ) > t[ ] · 1 v /∈ RT[ ]

{ }[ ]

≤ E
v←D

max
S∈C

∑

T⊆S

w T( ) · 1 w T( ) ≤ t[ ]

{ }[ ]

+ E
v←D

∑

T|w T( )>t

w T( ) · 1 v /∈ RT[ ]

[ }]

. □

5.1. Bounding CORE

Our main approach to bound CORE is to apply the
same concentration bound of Schechtman (Schechtman
2003) used in Rubinstein and Weinberg (2015). Es-
sentially, we just have to show that our valuation
functions are “subadditive over independent items”
for the appropriate definition of “items” (which hap-
pens to be hyperedges). It is perhaps not obvious that
our valuation functions are subadditive over inde-
pendent “items,” but indeed, they are.
Let us first recall the definition of subadditive over

independent items. In the definition, we intentionally
write N instead of M to denote the set of items as the
“items” in the definition may be different than the
items for sale.

Definition 1. A distribution D over valuation functions
v : 2N → R is subadditive over independent items if the
following conditions hold.
1. No externalities and independence across items. For

every item i, let Ωi be a compact subset of a normed
space (i.e., Ωi � [0, 1]). There exists a product distri-
bution D′ over ×i∈NΩi (that is, D′ �

∏
i∈N D′

i ) and a
collection of deterministic functions VS : ×i∈SΩi → R

such that a sample v fromD can be drawn by sampling
�x ← D′ and defining v(S) � VS(�xS).

2. Monotonicity. Every v in the support of D is
monotone (i.e., v(S) ≤ v(S′) for every S ⊆ S′).
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3. Subadditivity. Every v in the support of D is
subadditive (i.e., v(S ∪ S′) ≤ v(S′) + v(S′) for all S,S′).

Definition 2. LetD denote a distribution over valuation
functions, D′ denote the product distribution, and
{VS(·)} be the deterministic functions that witness D as
subadditive over independent items. D is c-Lipschitz if
for all �x, �y, and sets of items S,T, we have

|VS �xS
( )

− VT �yT
( )

| ≤ c · |X ∪ Y| − |X ∩ Y|(

+ | i ∈ X ∩ Y : xi �� yi
{ }

|
)
.

We use the following lemma and corollary (of a concen-
tration inequality because of Schechtman (Schechtman
2003)) from Rubinstein and Weinberg (2015) (the
bound in Corollary 3 is slightly improved from Rubin-
stein and Weinberg (2015), so we include a proof).

Lemma 4 (Rubinstein and Weinberg 2015). Let D be a
distribution that is subadditive over independent hyper-
edges, where for each hyperedge T, v({T}) ∈ [0, c] with
probability one. Then, D is c-Lipschitz.

Corollary 3 (Rubinstein andWeinberg 2015). Suppose that
D is a distribution that is subadditive over independent
hyperedges and c-Lipschitz. If a is the median of v(N),
then E[v(N)] ≤ 3a + c · (2 + 1/ ln 2).

Proof. By corollary 12 in Schechtman (2003), we know
that for all k > 0,

Pr v N( ) ≥ 3 · a + k · c[ ] ≤ min 1, 4 · 2−k
{ }

. (1)

Substituting x � 3 · a + k · c gets k � (x − 3a)/c. There-
fore, Equation (1) becomes meaningful only when 4 ·
2−k ≤ 1 (i.e., when x ≥ 2c + 3a). Computing the ex-
pected value of v(N) gives

∫
∞

0

Pr v N( ) > x[ ]dx ≤

∫
∞

0

min 1, 4 · 2 3a−x( )/c
{ }

dx

� 2c + 3a + 4 · 23a/c ·

∫
∞

2·c+3a

2−x/c · dx.

Computing the integral gives − c
ln 2 [2

−x/c]∞2c+3a �
c

ln 2 ·

2−
2c+3a

c � c
4 ln 2 · 2

−3a/c, which plugged back to the equa-

tion, concludes that

Ev N( ) ≤ 2c + 3a +
c

ln 2
,

as desired. □

Finally, we just need to relate CORE to a random
variable that is subadditive over independent items.

Lemma 5. CORE is the expectation of a random variable
vCORE(N), where vCORE(·) is t-Lipschitz and subadditive
over independent items N � 2M. Moreover, vCORE(N) is
stochastically dominated by v(M).

Proof. Let the “items” N � 2M. Let the distributions
D̂T � D

′
T · 1[w(T) ≤ t] (that is, a random variable

drawn from D̂T can be coupled with the random
variablew(T) · 1[w(T) ≤ t]). Define constraints C′ ⊆ 2N

(� 22
M
) so that a subset U of 2M is in C′ if and only if

there exists a set C ∈ C with ∪T∈UT ⊆ C. In other
words, U ∈ C′ if and only if the union of elements
of U is contained in some set in C. Finally, de-
fine VU(�xU) � maxU′⊆U,U′∈C′{

∑
T∈U xT}.

It is easy to see that vCORE(·) has no externalities and
independent items. It is also easy to see that vCORE(·) is
monotone. Finally, we will prove that vCORE(·) is
subadditive by observing that C′ is downward closed.
To see this, simply observe that if U′ ⊆ U, and
∪T∈UT ⊆ C, then clearly ∪T∈U′T ⊆ C. So, if C ∈ C wit-
nesses that U ∈ C′ and U′ ⊆ U, then C also witnesses
that U′ ∈ C′.
Now that C′ is downward closed, it is easy to see

(and well known) that vCORE is subadditive. For
any U,W, let X � argmaxX′⊆U∪W,X∈C′{

∑
T∈X xT}. Then,

let U′ � X ∩U and W′ � X ∩W. Clearly,
∑

T∈X xT ≤∑
T∈U′ xT +

∑
T∈W′ xT. As C′ is downward closed, U′ ∈

C′ and W′ ∈ C′. Therefore, vCORE(W) + vCORE(U) ≥∑
T∈U′ xT +

∑
T∈W′ xT ≥

∑
T∈X xT � vCORE(U ∪ W),

and vCORE(·) is subadditive.
So, finally, it remains to show that vCORE(N) is

stochastically dominated by v(M). Couple the random

variable xT drawn from D̂T so that xT�w(T)·1[w(T)≤t].

Now consider U∗ � argmaxU⊆2M,U∈C′ {
∑

T∈U xT}. Then,
we have vCORE(N) �

∑
T∈U∗ xT. By definition of C′,

there exists some C ∈ C such that T ⊆ C for all T ∈ U∗.
Therefore,

vCORE N( ) �
∑

T∈U∗
xT ≤

∑

T⊆C

xT ≤
∑

T⊆C

w T( )

(because xT ≤ w T( ))

≤ max
S⊆M,S∈C

∑

T⊆S

w T( )

{ }

because C ∈ C( ) � v M( ).

So,when xT andw(T) are coupled in this way, we have
vCORE(N) ≤ v(M), and therefore, v(M) stochastically
dominates vCORE(N). □

Now, Lemma 5 combined with Corollary 3 states
that 3 · v(M) exceeds CORE − t · (2 + 1/ ln 2) with
probability at least 1/2, allowing us to conclude with
the following proposition.

Proposition 2. CORE ≤ 6BREV + t · (2 + 1/ ln 2).

Proof. Let a be the median of the random variable
vCORE(N). Then, Pr[vCORE(N) ≥ a] � 1/2. As v(M) sto-
chastically dominates vCORE(N), we have Pr[v(M) ≥
a] ≥ 1/2. Moreover, by Corollary 3, the fact that
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CORE � E[vCORE(N)] and that vCORE is t-Lipschitz
and subadditive over independent items, we have

CORE ≤ 3a + t 2 + 1/ ln 2( ).

Moreover, as Pr[v(M) ≥ a] ≥ 1/2, we have

BREV ≥ a/2.

Combining the two equations proves the propo-
sition. □

5.2. Bounding TAIL

Our approach to bound TAIL is again similar to Cai
et al. (2016). We begin by rewriting TAIL using lin-
earity of expectation and the fact that the hypergraph
representation w of valuation v is drawn from D

′
,

which is a product distribution:

TAIL � E
v←D

∑

T⊆M,w T( )>t

w T( ) · 1 v /∈ RT[ ]
£¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¥

¦§§§§§§§§§§§§§§§§§§§̈

� E
v←D

∑

T⊆M,w T( )>t

wT( )· 1 ∃T′,w T′( ) > w T( )[ ]

£¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¥

¦§§§§§§§§§§§§§§§§§§§̈

�
∑

T⊆M

E
v←D

[w T( ) · 1 w T( ) > t ∧ v /∈ RT[ ]]

by linearity of expectation
( )

�
∑

T⊆M

∑

x>t,fT x( )>0

x · fT x( ) ·Pr
D−T

∃T′,w T′( ) > x[ ]

by independence across hyperedges
( )

.

From here, we use essentially the same lemma from
Cai et al. (2016). We have replaced their SREV with
BREV, but the proof is identical.

Lemma 6 (Cai et al. 2016). For all x,T, x · Prw←D
′
−T

[∃T′,w(T′) > x] ≤ BREV.

Proof. For any x, we can set price x on the grand
bundle. It will sell with probability at least Prw←D

′
−T

[∃T′,w(T′) > x] as whenever there is a single hyper-
edge with contribution x, certainly the buyer’s value
for the grand bundle is at least x. Therefore, BREV≥
x· Prw←D

′
−T
[∃T′,w(T′)> x]. □

Proposition 3. TAIL ≤ (
∑

T⊆M Pr[w(T) > t]) · BREV.

Proof. By Lemma 6, we get

∑

T⊆M

∑

x>t,fT x( )>0

x · fT x( ) · Pr
w←D

′
−T

∃T′,w T′( ) > x[ ]

≤
∑

T⊆M

∑

x>t,fT x( )>0

fT x( ) · BREV

�
∑

T⊆M

Pr w T( ) > t[ ] · BREV. □

5.3. Setting the Cutoff

Finally, we just need an appropriate choice of t. We
will choose to set t such that

∑
T⊆M Pr[w(T) > t] � k for

the appropriate choice of k. We first show how to
relate t to BREV. Lemma 7 is well known, but we
provide a proof for completeness.

Lemma 7. Let E1, . . . ,Ek be independent events such that∑
i Pr[Ei] � k. Then, Pr[∪iEi] ≥ 1 − e−k.

Proof. By independence,

Pr ∪iEi[ ] � 1 −
∏

i

1 − Pr Ei[ ]( ).

So, if we define qi � Pr[Ei], we want to maximize∏
i(1 − qi) subject to

∑
i qi � k. Using a Lagrangian

multiplier ofλ on the constraint
∑

i qi � k, we get a new
objective of

∏

i

1 − qi
( )

+ λ ·
∑

i

qi

( )

− λk.

We see that the partial with respect to qi is exactly
−
∏

j��i(1 − qj) + λ. So, setting qi � k/n for all i, and
λ � (1 − k/n)n−1, we get that

∑
i qi � k, and the partial of

the Lagrangian with respect to qi is zero for all i.
Therefore, this is the optimal solution. At qi � k/n for
all i, we have

∏
i(1 − k/n) � (1 − k/n)n ≤ e−k. □

Corollary 4. If t is such that
∑

T⊆M Pr[w(T) > t] � k,
then BREV ≥ (1 − e−k)t.

Proof. Apply Lemma 7 to the events ET � {w(T) > t}.
Then, the probability that there exists some hyperedge
Twithw(T) > t is at least (1 − e−k). So, the grand bundle
will sell at price t with probability at least (1 − e−k). □

We can now complete our bound forNONFAVORITE
and the proof of Theorem 2.

Proposition 4. NONFAVORITE ≤ 12BREV.

Proof. Combine Propositions 2 and 3, taking t such
that

∑
T Pr[w(T) > t] � 1.66. □

6. Lower Bounds
The following proposition shows that the factor d
approximation (established in Theorem 2) is tight (up
to a constant factor), even when there are no substi-
tutes (C � 2M), and d � mO(1). The same proposition
shows that our d approximation is tight up to a log-
arithmic factor for all d. The construction is based on a
construction from Hart and Nisan (2017) used to
show that BREV may be a factor of m smaller than SR
EV for additive buyers, which has also inspired
similar constructions (e.g., Dughmi et al. 2014).
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Proposition 5. For all k ≥ 1, there exists a distribution D
with complementarity d ≤ m

k

( )
, for which

REV ≥
d

2k
max BREV, SREV{ }.

Proof. Consider an integer a and a set of hyperedges E.
Index the hyperedges with integers in increasing order
of size with {1 + a, 2 + a, . . . , |E| + a} (we abuse notation
and use e both for index and hyperedge; i.e., set of items).
The product distributionD

′
has fe(0) � 1 for all e �∈ E, and

for every e ∈ E, set fe(0) � 1 − 2−e and fe(2
e) � 2−e. Let D

be the distribution that samples w ← D
′
and returns

v(S) �
∑

T⊆S w(T).We show that REV(D) ≥ |E| · (1 − 2−a),
but SREV(D) ≤ 2m and BREV(D) ≤ 2.

First, consider the random variable v(M). We have
v(M) ≤

∑|E|+a
e�1+a w(e). For any price p, in order to have

v(M) ≥ p, we must have w(e) > 0 for some e ≥ log p,
as

∑log p−1
e�1+a 2e � p − 2a+1 < p. Note that there is no reason

topricebelow21+a. Also, byunionbound, theprobability
that this occurs is atmost

∑
e≥log p 2

−e ≤ 21−log p ≤ 2/p. For
any price p we could set on the grand bundle, it sells
with probability at most 2/p, so BREV ≤ 2.

Similarly, for any price pi, in order for the buyer to
possibly be willing to purchase item i, we must have∑

e
i w(e) ≥ pi. Again, in order for this to happen, we
must have w(e) > 0 for some e ≥ log pi, e 
 i. Again by
union bound, the probability that this occurs is at
most 2/pi. For any price pi we could set on item i, the
probability that the buyer is possiblywilling to purchase
item i is at most 2/pi, so SREV ≤ 2m.

Consider however the following mechanism, which
essentially sells the hyperedges in E separately.
The mechanism allows the buyer to purchase any set/
hyperedge S she chooses and charges price 2S. Note

that because we indexed the hyperedges in increas-

ing order of size, the cheapest set that contains S is in

fact S itself. By union bound (
∑n+a

e�1+a 2
−e � 2−a − 2−n−a;

therefore, its complement is at least 1 − 2a), the proba-

bility that v ≡ 0 is at least 1 − 2−a. Therefore, whenever

w(e) > 0, with probability at least 1 − 2−a, the buyer

will choose to purchase exactly the set e and pay 2e. So,

the revenue is at least
∑|E|+a

e�1+a2
−e ·2e·(1−2−a)�|E|·(1−2−a).

Finally, consider a d regular hypergraph (M,E) over
m nodes with hyperedges of size k (this necessitates

d ≤ (mk )). By definition, every node is contained in

exactly d edges. Therefore, if E is the set of hyperedges

used to construct D, then D has complementarity d,

and |E| � dm/k. Taking a → ∞ completes the proof.
Furthermore, we argue that this parameter cor-

rectly characterizes the degree of complementarity in

our setting. Specifically, in Proposition 6, we establish

extremely high lower bounds (as a function of the

complementarity degree) on the approximation ratio

that canbeobtainedbymax{BREV, SREV} for previous
measures of complementarity from the literature.
A valuation is positive hypergraph of degree at

most k (PH-k) (Abraham et al. 2012) if its hypergraph
representation w has only nonnegative hyperedges
and only positive hyperedges S of size at most k. A
valuation is Positive Supermodular of degree k (PS-k)
if in its hypergraph representation, every item shares a
positive hyperedge with at most k other items (and all
hyperedges are nonnegative). The following propo-
sition asserts the lower bounds for the aforemen-
tioned hierarchies.

Proposition 6. The following hold for distributions in our
settings, where hyperedge values w(T) are independently
drawn, and v(S) �

∑
T⊆S w(T).

1. There exists a distribution D with only PH-k val-
uations in the support, for which REV ≥ 1

2m

∑
1≤i≤k

(mi )max{BREV, SREV} (e.g., for PH-2, REV ≥ Ω(m)·

max{BREV,SREV}).
2. There exists a distributionDwith only PS-k valuations

in the support, for which REV ≥ 2k+1−1
2(k+1)max{BREV,SREV}.

Proof. To show Proposition 6.1, consider the distri-
bution D given in the proof of Proposition 5, with E
being the set of all hyperedges of size at most k. To
show Proposition 6.2, assume for simplicity that m
is divisible by k + 1. Partition M to m/(k + 1) sets
M1,M2, . . .Mm/(k+1), all of size k + 1, and let E be the set
of all hyperedges S ⊆ Mi for all i. Every item i inMj has
neighbors only from Mj; therefore, every valuation in
the support is from PS-k. The number of hyperedges is
m
k+1 · (2

k+1 − 1). □

Proposition 6 also (trivially) holds for generalized
hierarchies. A valuation v is MPH of degree at most k
(Feige et al. 2015) if there exists a collection L of such
hyperedge weight functions, so that v(S) � max�∈L
{
∑

T⊆S w�(T)}. A valuation v is maximum over PS
(MPS) of degree at most k (Feldman et al. 2016) if there
exists a collection L of such hyperedge weight func-
tions, so that v(S) � max�∈L{

∑
T⊆S w�(T)}. Because ev-

ery PH-k (PS-k) valuation is also trivially in MPH-k
(MPS-k), Proposition 6.1 (Proposition 6.2) also holds
for such MPH-k (MPS-k) valuations. In addition, con-
sider the SM degree (Feige and Izsak 2013), which is
defined as follows.

Definition 3 (Feige and Izsak 2013) (SM). A valuation v
is SM of degree at most k if for each item i, the number
of items i′ such that there exists a set Si′ �
 i so that
v(Si′ ∪ i)−v(Si′)> v(Si′ \{i

′}∪{i})−v(Si′ \{i
′}) is at most

k (i.e., i’s marginal contribution to a set may increase by
adding another item, to at most k different items).

It can be shown that PS-k ⊆ SM-k. Therefore,
Proposition 6.1 carries over to SM-k.
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Appendix A. Background on the Duality Framework
We first recall the duality approach of Cai et al. (2016).

Definition A.1 (Reworded from Cai et al. 2016, definitions 2

and 3). A mapping λ : V × V → R
+ is flow conserving if

for all v ∈ V,
∑

v′∈V λ(v, v′) ≤ f (v) +
∑

v′∈V λ(v′, v).2 The vir-
tual transformation associated with λ, Φλ, is a transforma-
tion from valuation functions in V to valuation functions
in V× (the closure of V under linear combinations)
and satisfies3

Φ
λ v( ) ·( ) � v ·( ) −

1

f v( )

∑

v′∈V

λ v′, v( ) v′ ·( ) − v ·( )( ).

In the definition, one should interpret λ(·, ·) as being
potential Lagrangian multipliers for incentive constraints
in a certain linear program to find the revenue-optimal
mechanism and think of f (v) flow going into each v from
some super source, λ(v, v′) flow going from v to v′, and all
excess flow (that enters v but does not leave) as going from v
to a super sink. Note that whether a given λ is flow con-
serving depends on the populationD. Cai et al. (2016) show
that Lagrangian multipliers that satisfy the flow conser-
vation constraint yield upper bounds of the following form.

Theorem A.1 (Reworded from Cai et al. 2016, theorem 10).

LetM be any truthful mechanism where a bidder with type v receives
items X(v) and pays p(v). Then, for all flow-conserving λ, the ex-
pected revenue ofM is upper bounded by its expected virtual welfare
with respect to λ. That is,

E
v←D

p v( )
[ ]

≤ E
v←D

Φ
λ v( ) X v( )( )

[ ]
.

As an immediate corollary, we can obtain the following
upper bound on the revenue of any truthful mechanism by
observing that the bound in Theorem A.1 is maximized
when X(v) is deterministically argmaxS⊆M{Φλ(v)(S)}.

Corollary A.1. For all D, and all flow-conserving λ, we have

REV D( ) ≤ E
v←D

max
S⊆2M

Φ
λ v( ) S( )

[ ]
.

We begin this section by defining our flow-conserving λ

and the resulting Φλ. Readers familiar with Cai et al. (2016)
will recognize it as the natural generalization of their flow
to our setting, and we will make the language as similar
as possible.

We will break V into 2m − 1 different regions, depending
on which hyperedge is the most valuable to a buyer with

value v. Specifically, we say that v is in region RA if
A � argmaxT⊆M{w(T)}, with ties broken lexicographically.
Recall that D is established by drawing w from the product
distribution D

′
, and the returned valuation v satisfies

v(S) � maxT⊆S,T∈C{
∑

U⊆T w(U)}. Then, consider the follow-
ing flow.

Definition A.2 (Flow for Our Benchmark). If v ∈ RA, define
w′(T) � w(T), for all T �� A, and define w′(A) �minx>w(A)

{x : fA(x)> 0}. Set λ(v′,v)�Prx←D
′
A
[x≥w′(A)]·

∏
T ��A fT(w

′(T))�

f (v)·
Pr

x←D
′
A
[x≥w′(A)]

fA(w(A))
for the v′(·) such that v′(S) � maxT⊆S,T∈C

{
∑

U⊆T w
′(U)} for all S, and λ(v′′, v) � 0 for all other v′′.

Proposition A.1. The λ(·, ·) from Definition A.2 is flow con-
serving. Moreover, if v(·) is such that v(S) � maxT⊆S,T∈C
{
∑

U⊆T w(U)}, and v ∈ RA, then Φλ satisfies the following:

Φ
λ v( ) S( ) ≤ max

T⊆S,T∈C

∑

U⊆T,U ��A

w U( )

{ }

+max 0,ϕA w A( )( )
{ }

≤ max
T∈C

∑

U⊆T,U ��A

w U( )

{ }

+max 0,ϕA w A( )( )
{ }

.

Proof. That λ(·, ·) is flow conserving is clear. Every v ∈ RA

has total incoming flow of

f v( ) ·
Prx←D

′
A
x ≥ w A( )[ ]

fA w A( )( )
, (A.1)

where f (v) of this comes from the source, and the remaining

f (v) ·
Pr

x←D
′
A
[x>w(A)]

fA(w(A))
comes from other types in RA. Every v ∈

RA also has outgoing flow either equal to zero (if decreasing
the value of w(A) moves the resulting v′ out of RA) or ex-
actly (A.1) (otherwise). In either case, theflowgoing out is at
most the flow coming in.

Let us now compute Φ
λ(v)(S). Plugging into Defini-

tion A.1, we get

Φ
λ v( ) S( ) � v S( ) −

v′ S( ) − v S( )( )Prx←D
′
A
x ≥ w A( )[ ]

fA w A( )( )
.

Recall that v′(S) ≥ v(S) for all S, and therefore, Φλ(v)(S) ≤
v(S) for all S. Now there are two cases to consider. In the
first case, maybe maxT⊆S,T∈C{

∑
U⊆T,U ��A w(U)} � v(S). In other

words, the set in C “chosen” by a consumer with valuation v
does not contain A. In this case, we immediately get that
Φλ(v)(S) ≤ v(S) � maxT⊆S,T∈C{

∑
U⊆T,U ��A w(U)}, as desired.

In the second case, maybe maxT⊆S,T∈C{
∑

U⊆T,U ��A w(U)} <

v(S). In other words, the set in C “chosen” by a consumer
with valuation v contains A. In this case, increasing w(A) by
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any x > 0 increases v(S) by exactly x. Therefore, we have
v′(S) � v(S) + w′(A) − w(A), and therefore,

Φ
λ v( ) S( ) � v S( ) −

w′ A( ) − w A( )( )Prx←D
′
A
x ≥ w A( )[ ]

fA w A( )( )

� max
T⊆S,T∈C

∑

U⊆T

w U( )

{ }

−
w′ A( ) − w A( )( )Prx←D

′
A
x ≥ w A( )[ ]

fA w A( )( )

≤ max
T⊆S,T∈C

∑

U⊆T,U ��A

w U( )

{ }

+ w A( )

−
w′ A( ) − w A( )( )Prx←D

′
A
x ≥ w A( )[ ]

fA w A( )( )

� max
T⊆S,T∈C

∑

U⊆T,U ��A

w U( )

{ }

+ ϕA w A( )( ).

The last line uses the definition

ϕA(w(A)) � w(A) −
(w′(A) − w(A))Prx←D

′
A
[x ≥ w(A)]

fA(w(A))
,

which may seem unfamiliar to readers more familiar with
virtual values for continuous distributions. Indeed, this is the
right generalization of Myerson’s ϕ(·) for continuous distri-
butions to the discrete setting, and we refer the interested
reader to section 4 of Cai et al. (2016) formore discussion. □

A.1. Ironing

The astute reader will notice that when D
′
S is irregular, the

bound we probably want would replace ϕA(·) with ϕ̄A(·).
Cai et al. (2016) shows how to design a flow that accom-
plishes this essentially by adding cycles to λ between ad-
jacent types to “iron out” any nonmonotonicities but for
their setting of additive buyers. The exact same approach
will work here. We omit a proof and refer the reader to
Cai et al. (2016) for more detail. This allows us to prove
Corollary 1.

Proof of Corollary 1. Simply combine Corollary A.1 and
Proposition A.1, after replacing ϕ(·) in Proposition A.1 with
ϕ̄(·). □

Appendix B. Background on the

Copies Environment
Recall that a random variable X is first-order stochastically
dominated (FOSD) by random variable Y if for every x,
Pr[X ≥ x] ≤ Pr[Y ≥ x]. We remark that if X is FOSD by Y.
then E[X] ≤ E[Y].

Proof of Theorem 1 (Chawla et al. 2010). Let 1q be an in-
dependent indicator random variable that equals one with
probability q. Let {XS}S be nonnegative independent random
variables that are drawn from the independent distributions.

Consider a tie breaking rule among the sets, and let the
event XS � maxT{XT} be true only when S also wins in the

tie-breaking rule. Set qS � Pr[XS � maxT{XT}]. So,
∑

S qS � 1,
set tS s.t. Pr[XS ≥ tS] � q · qS.

Let us see that the random variable 1q · XS · 1[XS �

max{XT}] is FOSD by XS · 1[XS ≥ tS].
For every x ≥ tS, it holds that Pr[1q · XS · 1[XS �

max{XT}] ≥ x] ≤ qPr[XS ≥ x],
whereas Pr[XS · 1[XS ≥ tS] ≥ x] � Pr[XS ≥ x].

For every x < tS, it holds that Pr[1q ·XS ·1[XS�max{XT}]≥

x]≤q·qS by definition of qS, whereas Pr[XS ·1[XS ≥ tS] ≥ x] �
Pr[XS ≥ tS] � q ·qS by definition of tS. We get that

E max
S

XS{ }

[ ]
�
∑

S

E XS · 1 XS � max XT{ }[ ]
[ ]

�
1

q

∑

S

E 1q · XS · 1 XS � max XT{ }[ ]
[ ]

≤
1

q

∑

S

E XS · 1 XS ≥ tS[ ][ ].

Let XS be the random variable that first draws x ← D
′
S

and returns max{0,ϕS(x)}. Assume the distributions are
regular, and refer to Chawla et al. (2010) for the irregular
case. As tS ≥ 0, we get

E
x←D

′
S

max
S

ϕS x( ), 0
{ }[ ]

≤
∑

S

E
x←D

′
S

ϕS x( ) · 1 ϕS x( ) ≥ tS
[ ][ ]

.

Observe that the term for each S is the expected virtual
value of themechanism that allocates to a bidderwith value x if
x exceeds pS � inf{x : ϕS(x) � tS}. This allocation is achieved
by posting a price pS. By Myerson’s payment identity,

E
x←D

′
S

ϕS x( ) · 1ϕS x( ) ≥ t′S
[ ][ ]

� E
x←D

′
S

pS · Pr x ≥ pS
[ ][ ]

.

This concludes Property 1. Property 2 follows by mono-
tonicity ofϕS (regularity ofD

′
S, for the irregular case refer to

Chawla et al. 2010):
∑

S

Pr
D

′
S

x ≥ pS
[ ]

�
∑

S

Pr
D

′
S

ϕS x( ) ≥ tS
[ ]

�
∑

S

q · qS � q. □

Appendix C. Revenue Guarantees for Pricing

Bundles Require a Different Approach
Following our results, one natural question that may be
raised is, instead of either pricing items or only the grand
bundle, if there is a “simple” (or at least, deterministic)
scheme for pricing subsets of items that gets a constant
fraction of the optimal revenue. In this section, we briefly
establish that a significantly new approach would be re-
quired to resolve this question. Specifically, we provide an
example in which the optimal revenue from pricing subsets
is a constant, but in this example, our upper bound to the
optimal revenue is O(m); therefore, revenue from pricing
subsets cannot cover our upper bound up to a constant
factor (and we would need a new upper bound to use as a
starting point). This leaves the following open questions: Is
there indeed an O(m) gap between the optimal revenue
from pricing subsets and the optimal revenue, or can one
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come up with a tighter upper bound to the optimal revenue
that proves an o(m) gap between the revenue from pricing
subsets and the optimal revenue?

Example A.1. Consider m items, and a buyer without fea-
sibility constraints (i.e., C � 2[m]), with a valuation defined by
the hypergraph representation w distributed by w([i]) � 2m−i

with probability 2−(m−i), and w([i]) � 0 otherwise. The key
property here is that smaller hyperedges have higher weight
with lower probability.

Consider now any scheme that prices bundles. Define pi
to be the cheapest price the buyer can pay in order to
purchase sets for which their union contains [i]. Note that pi
is monotone increasing by definition (for any i′ > i, any
union of sets that contains [i′] also contains [i]).

Let j∗ be the largest index j such that pj ≤ 2 · 2m−j. We
prove the following two claims.

Claim A.1. The buyer will never pay more than 3 · 2m−j∗ .

Proof. By definition of j∗, it holds that pj∗ ≤ 2 · 2m−j∗ . There-
fore, the buyer can attain value from all hyperedges [i] for
which i ≤ j∗ at price pj∗ . The only hyperedges they might yet
not have value for are the [i] for which i > j∗. However, the
total contribution of all such hyperedges to the buyer’s value is

at most
∑m

k�j∗+1 2
m−k �

∑m−(j∗+1)
k�0 2k < 2m−j∗ .

Therefore, the buyer will always prefer the option that
costs pj∗ to receive a superset of [j∗] than even the grand
bundle [m] at any price > pj∗ + 2m−j∗ . Therefore, the buyer
will never choose to purchase an option at price > 3 · 2m−j∗ . □

Claim A.2. The buyer will only buy something with prob-
ability at most 2−(m−j∗)+1.

Proof. Let i∗ be the smallest item for which w([i∗]) > 0.
Similar to Claim A.1, the buyer’s total value for [m] (i.e., from
the hyperedges {[k] : k > i∗ − 1}) is strictly less than 2m−i∗+1.

If i∗ > j∗ (i.e., i∗ ≥ j∗ + 1), then in order to acquire nonzero
value, the buyer must purchase at least at price pi∗ ≥ pj∗+1 >
2m−j∗ ≥ 2m−i∗+1 and result in negative utility. Therefore, if
i∗ > j∗, then the buyer will purchase nothing.

By the union bound, the probability that i∗ ≤ j∗ is

Pr ∃i ≤ j∗ : w i[ ]( ) �� 0
[ ]

≤
∑j∗

i�1

2− m−i( ) ≤ 2− m−j∗( )+1. □

As a conclusion of Claims A.1 and A.2, the optimal
revenue from pricing bundles in our example is at most

3 · 2m−j∗ · 2−(m−j∗)+1 � 6. Moreover, for our example, it is not

hard to see that our benchmark (Corollary 1) is m. Indeed,

recall that for the highest value in the support of a distri-

butionD, Myerson’s virtual value is simply that value. That

is, because all distributions in this example have a single

nonzero point mass, the nonnegative virtual value is equal

to the value at all points, and therefore, our benchmark

simply becomes the expected welfare (which is m).
Therefore, the optimal revenue from pricing bundles

cannot approximate our benchmark, which implies that a
substantially different approach is required. We conclude

with a proof sketch that even randomized mechanisms can
achieve revenue at best O(1) in this example.

Claim A.3. No randomized mechanism can guarantee rev-
enue > 6 for this example.

Proof (Sketch). To prove the claim, we will define a flow-
conserving λ for this exampleD and consider the resultingΦ

λ

using Corollary A.1. The proof is a “sketch” only because we
do not fully expand all calculations.

Observe that each type can be completely described by an
m-long bit string �t, with ti � 1 if and only if w([i]) > 0.
Consider the following mapping g(·).

• For each bit string�t, let i(�t) :� min{j, tj � 1}, the smallest
index such that ti � 1. Observe that i(�t) is well defined as
long as �t �� �0.

• If i(�t) � m, or ti(�t)+1 � 1, then define g(�t) � �0.

• Otherwise, define g(�t) :� �t + �εi(�t)+1 − �εi(�t) (swap the coor-

dinates i(�t) and i(�t) + 1, by adding the (i(�t) + 1)st standard basis

vector, and subtracting the i(�t)th).
We will now define our flow-conserving λ to have�t send

all of its incoming flow to g(�t). Observe that there are no
cycles in the directed graph defined by g(·) and that every
type gets incoming flow from at most one other type. We
now want to figure out just how much flow is sent into
each �t, and then, we can compute the corresponding Φ

λ.
So, consider any type �t. If t1 � 1, then �t gets no incoming

flow from anywhere. If t1 � 0 (and �t �� �0), then g−1(�t) exists
(and is equal to �t − �εi(�t) + �εi(�t)−1). Observe that the total flow
incoming to �t is equal to the total flow incoming to g−1(�t),

plus f (g−1(�t)). Observe also that f (g−1(�t)) � f (�t) · 1−2−(m−i(�t))

1−2−(m−i(�t)+1)
/2.

Indeed, f (�t) � (
∏

i,ti�1 2
−(m−i)) · (

∏
i,ti�0 1 − 2−(m−i)), whereas

f (g−1(�t)) � (
∏

i,ti�1 2
−(m−i))(

∏
i,ti�0 1 − 2−(m−i)) · 1−2

−(m−i(�t))

2−(m−i(�t))
·

2−(m−i(�t)+1)

1−2−(m−i(�t)+1)
(because we flip the bits at location i(�t) and i(�t − 1)).

We now use this to inductively compute the total flow
into �t. Indeed, if ci denotes the ratio of f (g−1(�t))/f (�t) when
i(�t) � i, and di is such that theflow into�t is equal to dif (�t), then
we have the recurrence relation: di+1 � ci + cidi, with ci :�
1−2−(m−i)

1−2−(m−i+1) /2, and base case d1 � 0. Our goal is to solve this

recurrence for di.
Observe that for any choice of ci, and d1 � 0, this recurrence

solves to di+1 :�
∑i

j�1

∏i
��j c�. So, we just need to evaluate this

sumof products for our particular definition of ci. To compute
this, observe that the product telescopes, so we have

∏i

��j

c� �
1 − 2− m−i( )

1 − 2− m−j+1( )
/2−i+j−1.

Therefore, we also get

di+1 �
∑i

j�1

∏i

��j

c� �
∑i

j�1

1 − 2− m−i( )

1 − 2− m−j+1( )
/2−i+j−1

≥
∑i

j�1

2−i+j−1 − 2−m+j−1

� 1 − 2−i − 2−m+i − 2−m
( )

≤ 1 − 2−i − 2−m+i.

Eden et al.: Simple and Approximately Optimal Mechanism for Buyer with Complements
204 Operations Research, 2021, vol. 69, no. 1, pp. 188–206, © 2020 INFORMS

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
7
3
.7

2
.1

0
4
.1

6
5
] 

o
n
 0

7
 J

an
u
ar

y
 2

0
2
3
, 
at

 1
1
:5

2
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



This then defines the following Φ
λ:

Φ
λ �t
( )

S( ) �
∑

i

I i[ ] ⊆ S( ) · I ti � 1( ) · 2m−i − di

×
∑

i

I i[ ] ⊆ S( ) · I g−1 �t
( )

i
� 1

( )
· 2m−i.

� 1 − di( )
∑

i

I i[ ] ⊆ S( ) · I ti � 1( ) · 2m−i

+ di
∑

i

I i[ ] ⊆ S( )

· I ti � 1( ) − I g−1 �t
( )

i
� 1

( )( )
· 2m−i

≤ 1 − di( )
∑

i

I i[ ] ⊆ S( ) · I ti � 1( ) · 2m−i

≤ 2−i
�t( )+1

( )
+ 2−m+i �t( )−1

)∑

i

I i[ ] ⊆ S( )

· I ti � 1( ) · 2m−i.

The first equality simply follows from plugging into the
definition of Φλ. The second equality simply rearranges
terms. The following inequality followsbyobserving that I(ti �
1) and I(g−1(�t)i � 1) differ only on i(�t) and i(�t) − 1. Moreover,
if [i(�t)] ⊆ S, then certainly [i(�t) − 1] ⊆ S as well, so whenever
the positive term is counted, the negative term is counted
as well (but the negative term is larger). The final in-
equality follows from our lower bound on di. The final term
is clearly maximized at S � [m], so we have now estab-
lished that

REV D( ) ≤ E�t
2−i

�t( )+1 + 2−m+i �t( )−1
( )∑

i

I ti � 1( ) · 2m−i

[ ]

.

So, our goal is just to upper bound the right-hand side. To
compute this, consider a fixed i. The probability that ti � 1 is
exactly 2−(m−i). The distribution of i(�t), conditioned on this, is

that i(�t) is equal to jwith probability at most 2−(m−j) (for j < i),

and i(�t) � i with the remaining probability (it is never > i

because we have conditioned on ti � 1). Therefore,

E�t 2−i
�t( )+1 + 2−m+i �t( )−1

( )
·
∑

i

I ti � 1( ) · 2m−i

[ ]

≤
∑

i

2m−i · 2− m−i( )·

1 −
∑

j<i

2− m−j( )

( )

· 2−i+1 + 2−m+i−1
( )

(

+
∑

j<i

2− m−j( ) · 2− j−1( ) + 2−m+j−1
( ))

≤
∑

i

2−i+1 + 2−m+i−1 +m21−m + 2−2m+2i−1/3
( )

≤ 2 + 1 + 2 + 2/9 ≤ 6.

Therefore, the optimal revenue for this example, even for
randomized mechanisms, is at best six. □

Endnotes
1 For example, when purchasing shoes, each additional pair of shoes
may have a marginally decreasing value, but for any pair, the two
shoes areworthmore than the sum of values of each shoe by itself. For
results that consider the supermodular degree, see Feige and Izsak
(2013), Feldman and Izsak (2014, 2017), and Izsak (2017).

2This is equivalent to stating that there exists a λ(v,⊥) ≥ 0 such that
λ(v,⊥) +

∑
v′∈V λ(v, v′) � f (v) +

∑
v′∈V λ(v′, v), which might look more

similar to the wording of definition 2 in Cai et al. (2016).
3That is, Φλ(v) is a (possibly negative) function from 2M to R and
satisfies Φλ(v)(S) � v(S) − 1

f (v)

∑
v′∈V λ(v′, v)(v′(S) − v(S)) for all S ⊆ M.
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