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1 INTRODUCTION

A fundamental question at the heart of the literature on mechanism design is that of revenue maxi-
mization by a single seller who is offering for sale any number of goods to any number of (potential)
bidders. In the classic economic literature, this problem is studied in a Bayesian setting: The seller
has prior knowledge of (often, independent) distributions from which the valuation of each bidder
for each good is drawn and wishes to devise a truthful mechanism that maximizes her revenue in
expectation over these prior distributions. Over the past few years, numerous works at the inter-
face of economics and computation are now studying a more demanding model: that of mechanism
design from samples. In this model, rather than possessing complete knowledge of the distributions
from which the bidders’ values for the various items are drawn, the seller more realistically only
has access to samples from these distributions (e.g., past data). The goal in this setting is to learn
with high probability an auction with good revenue guarantees given polynomially many (in the
parameters of the problem) samples.

Revenue maximization from samples is commonly thought of as a “next step” beyond Bayesian
revenue maximization. That is, existing works so far in this context take settings for which
simple auctions in the related Bayesian problem are already well understood and prove that these
simple auctions can be learned efficiently via samples (up to an ¢ loss, which will always be lost
when optimizing from samples). For example, in single-parameter settings, the seminal work
of Myerson [1981] completely characterizes a simple and optimal auction in the Bayesian setting,
and works such as Cole and Roughgarden [2014], Morgenstern and Roughgarden [2015], Devanur
et al. [2016], Hartline and Taggart [2019], Roughgarden and Schrijvers [2016], and Gonczarowski
and Nisan [2017] prove that these simple mechanisms or variants thereof can be learned with
polynomially many samples. Similarly, in multi-parameter settings with independent items,
works of Chawla et al. [2007], Chawla et al. [2010], Chawla et al. [2015], Hart and Nisan [2012],
Babaioff et al. [2014], Rubinstein and Weinberg [2015], Yao [2015], Cai et al. [2016], Chawla and
Miller [2016], and Cai and Zhao [2017] prove that simple mechanisms achieve constant-factor
approximations in rich multi-dimensional settings, and works of Morgenstern and Roughgarden
[2016], Balcan et al. [2016], Balcan et al. [2018], Cai and Daskalakis [2017], and Syrgkanis
[2017] prove that simple mechanisms with these guarantees can be learned with polynomially
many samples. These analyses rely on a delicate understanding of the structure and/or inherent
dimensionality of auctions that give such revenue guarantees to show how to learn such an
auction without overfitting the samples.

It is therefore unsurprising that the problem of learning an up-to-¢ revenue-maximizing multi-
item auction from samples has not been previously studied, since the structure/dimensionality
of optimal (precisely or up-to-¢) multi-item auctions is not understood even when there is only
one bidder, and even with independent items. Such auctions are known to be extremely complex,
suffering from properties such as randomization [Thanassoulis 2004], uncountable menu complex-
ity [Daskalakis et al. 2013], and non-monotonicity [Hart and Reny 2015]. These domains provably
lack the natural starting point of all previous works: a structured/low-dimensional mechanism in
the Bayesian setting to learn via samples.

In this article, we show that despite these challenges, up-to-¢ optimal multi-item auctions can
be learned from polynomially many samples from the underlying bidder-item distributions. More
formally, in a setting with n bidders and m items where the value of each bidder i for each item
j is drawn independently from a distribution V; ; supported on [0, H] for some H that is known to
the seller, we show that polynomially many samples suffice for learning, with probability at least
1 — §, an m-item almost-truthful auction that maximizes the expected revenue among all possible
m-item almost-truthful auctions up to an additive ¢. An auction is Bayesian Incentive Compatible
(BIC) if it is in every bidder’s interest to bid truthfully, given that all other bidders do so as well.
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THEOREM 1.1 (MAIN RESULT—INFORMAL VERSION OF THEOREM 3.1). For n bidders with indepen-
dent values for m items supported on [0, H], for every ¢, > 0 and for everyn < poly(n, m,H, ¢), the
sample complexity of learning, w.p. 1—3§, an n-BIC auction that maximizes revenue (among all n-BIC
auctions) up to an additive ¢ is poly(n, m, H, /¢, 1/n,log 1/5).

The above theorem is informal mostly because we have not specified exactly how bidders value
bundles of items. Essentially, the bidders may have arbitrary (i.e., not necessarily additive, not even
necessarily subadditive) valuations subject to some Lipschitz condition (i.e., changing the value of
bidder i for item j by ¢ only changes the bidder’s value for any outcome by at most Le for some
absolute constant L).! We defer a formal definition to Section 2 but only note here that commonly
studied classes of valuations such as additive, unit-demand or “additive subject to constraints” with
independent items (as well as several natural subadditive and superadditive valuation classes and
even certain valuation classes with externalities) all satisfy our definition with Lipschitz constant 1.

The main challenge in proving our result for m > 1 items is noted above: The structure of (up-
to-¢) optimal mechanisms for such settings is not understood, even for additive valuations. In
particular, there is no known low-dimensional class of mechanisms that is guaranteed to con-
tain an (up-to-¢) optimal mechanism for any product distribution, thus barring the use of many
learning-theoretic arguments. Our result relies on a succinct structured argument, allowing us to
reduce revenue maximization from samples to related problems of revenue maximization from
given discrete distributions.

As the corresponding Bayesian question remains open (i.e., whether one can find, given the
distributions explicitly, an up-to-¢ optimal mechanism in poly-time), our result is of course
information-theoretic: It shows that polynomially many samples suffice for a computationally
unbounded seller but provides no computationally efficient learning algorithm. Concretely, the
algorithm that we give uses as a black box an oracle that can perform (optimal or almost-optimal)
multi-item Bayesian revenue maximization given (the full description of) finite prior distributions.?

1.1 Brief Overview of Techniques

Most prior works (for single- as well as multi-dimensional settings) take the following approach:
First, define a class C, of auctions as a function of ¢. Second, prove that, for all possible distributions
D, the class C, contains an up-to-¢ optimal mechanism for D. Finally, prove that the best-in-class
(up to ¢) for C, can be learned with polynomially many samples. In prior works, ingenuity is
required for both steps: C; is explicitly defined, proved to contain up-to-¢ optimal auctions, and
proved to have some low-dimensional structure allowing efficient learnability.

Our approach indeed follows this rough outline, with two notable simplifying exceptions. First
is our approach to defining C,. Here, we first define C, s be the space of all auctions that are op-
timal for an empirical distribution over S-many poly(¢)-rounded samples (that is, optimal for any
discrete product distribution where each marginal is (a) only supported on multiples of poly(¢)
and (b) uniform over a multiset of size S). This fully nonparametric approach stands in contrast
with the popular existing approach of taking C, to be some parametric family of auctions. Unlike
in such existing approaches where C, is fixed, in our approach the set C, s grows with the num-
ber of samples S. Nonetheless, we show that the rate of its growth is moderate enough so that
there exists a “sweet-spot” number of samples S = poly(1/¢) such that, on the one hand, C,, s con-
tains an auction that is up-to-¢ optimal for the “true distribution” D and, on the other hand, the

10ur results in fact hold even more generally: to arbitrary outcomes that do not even correspond to bundles of items. See
Section 2 for the full details.

2Note, however, that if computationally efficient algorithms were to be developed for up-to-¢ optimal mechanisms given
an explicit prior, then our approach would immediately become computationally efficient as well.
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best-in-class from C, s can be learned from S samples. So in the language of prior work, one could
say that we set C; = C;,s for this S = poly(V/e).

To show that C, does in fact contain, for all distributions 9, an auction that is up-to-¢ optimal
for O, we simply take enough samples to guarantee uniform convergence (of the revenue) over
C. and additionally the optimal auction for D. It is far from obvious why this should suffice, as
the optimal auction for P is not an element of C,, nor even of the same format.? Still existing
tools (namely, the ¢-BIC-to-BIC reduction of Daskalakis and Weinberg [2012] and Rubinstein and
Weinberg [2015]), when applied correctly, suffice to complete the argument. This part of our proof
is conceptually much simpler than prior works (despite making use of a big technical hammer), as
this approach holds quite generally and is robust due to not requiring the analysis of any specific
class of mechanisms.

Second, our argument that the best-in-class can be in fact learned (up to ¢) with S = poly(¢)
samples is simply a counting argument, and does not require any notions of a learning dimension.
This is indeed in the spirit of some recent single-dimensional results, however in those results the
counting argument is highly dependent on the structure of auctions in C,. As discussed above,
such dependence is damning for multi-dimensional settings where such structure provably does
not exist. Again, the proof does require some hammers (notably, arguments originally developed
for reduced forms via samples in Cai et al. [2012], and a concentration inequality of Babichenko
et al. [2017], see also Devanur et al. [2016]), but they are applied in a fairly transparent manner.

The above approach should help explain how we are able to extend far beyond prior works,
which relied on a detailed analysis of specific structured mechanisms: The key tools we use are ap-
plicable quite generally, whereas the specific mechanisms analyzed in prior work are only known
to maintain guarantees only in restricted settings. For example, Theorem 1.1 already constitutes
the first up-to-¢ optimal-mechanism learning result for any multi-parameter setting even if it held
only for additive valuations (and one bidder). But the approach is so general that extending it to
arbitrary Lipschitz valuations with independent items is simply a matter of updating notation.

1.2 Applications and Extensions

Specialized to a single-bidder setting, our construction in fact yields exact truthfulness (more on
that in Section 6), showing that an e-optimal mechanism can be found for a single bidder with
independent item values (with Lipschitz valuations) using only polynomially many samples. This
should be contrasted with a result of Dughmi et al. [2014], which shows that achieving this is not
possible for correlated distributions, even for a bidder with additive valuations.

COROLLARY 1.2 (SINGLE BIDDER—INFORMAL VERSION OF THEOREM 3.2). For one bidder with in-
dependent values for m items supported on [0, H|, for every e, § > 0, the sample complexity of learn-
ing, w.p. 1—04, an IC auction that maximizes revenue (among all IC auctions) up to an additive ¢ is

poly(m, H, 1/e,log 1/s).

Specialized to single-dimensional settings, our analysis once again yields a strengthened result,
both in giving exact Dominant Strategy Incentive Compatibility (DSIC)* and in providing a com-
putationally efficient algorithm (due to known efficient solutions [Elkind 2007; Myerson 1981] to
single-parameter revenue maximization from given discrete distributions):

3That is, the optimal auction for O is a mapping from the the support of D to outcomes, whereas the elements of C, are
mappings from a finite space to outcomes. Furthermore, notions of Bayesian incentive compatibility for O do not imply
nor are implied by these notions for the various discrete distributions defining Cs.

4A mechanism is DSIC if it is a dominant strategy for each bidder to bid truthfully. For a single good, Myerson [1981]
shows that the maximal revenue attainable by a BIC mechanism and by a DSIC mechanism is the same.
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COROLLARY 1.3 (SINGLE-PARAMETER—INFORMAL VERSION OF THEOREM 3.3). For n single-
parameter bidders with independent values in [0, H|, for every &,8 > 0, the sample complexity of
efficiently learning, w.p. 1 —0, a DSIC auction that maximizes revenue (among all DSIC auctions) up
to an additive ¢ is poly(n, H, 1/¢,1og 1/5).

Corollary 1.3 nicely complements the existing literature on single-parameter sample complexity
in the following ways. First, our algorithm/analysis immediately follows as a special case of Theo-
rem 1.1 (without referencing structural results about optimal single-parameter auctions), so it is in
some sense more principled. Second, our analysis holds even for arbitrary constraints on the allo-
cations (putting it in the same class as the state-of-the-art’ single-parameter results [Gonczarowski
and Nisan 2017; Hartline and Taggart 2019], and even slightly beyond®).

Finally, portions of our approach are specific to Bayesian Incentive Compatible auctions (versus
Dominant Strategy Incentive Compatible auctions), but portions are not. We are therefore able to
use the same techniques to conclude similar, albeit qualitatively weaker, results for e-DSIC auctions
in Theorem A.2. See Appendix A for further details.

1.3 Related Work and Brief Discussion

Two active lines of work are directly related to the present article. First are papers that study rich
multi-dimensional settings and aim to show that mechanisms with good approximation guaran-
tees can be learned with few samples, such as Morgenstern and Roughgarden [2016], Balcan et al.
[2016], Balcan et al. [2018], Cai and Daskalakis [2017], and Syrgkanis [2017]. The main approach in
each of these works is to show that specific classes of structured mechanisms (e.g., classes that are
known to allow for constant-factor revenue maximization) are inherently low-dimensional with
respect to some notion of dimensionality. Our results are stronger than these in some regards and
weaker in others. More specifically, our results are stronger in the sense that with comparably
many samples, our mechanisms guarantee an up-to-¢ approximation to the optimal mechanism
instead of a constant-factor. Our results are weaker in the sense that our learning algorithms are
information-theoretic (do not run in poly-time), and our mechanisms are not “as simple.” As dis-
cussed earlier, both weaknesses are necessary to possibly surpass the constant-factor barrier (at
least, barring the resolution of major open questions, such as a computationally efficient up-to-¢
approximation even when all distributions are explicitly known. Again, note that should this ques-
tion be resolved affirmatively, our results would immediately become computationally efficient as
well).

Most related to our work, at least in terms of techniques, is the rich line of works on single-
dimensional settings [Cole and Roughgarden 2014; Devanur et al. 2016; Dhangwatnotai et al. 2015;
Gonczarowski and Nisan 2017; Hartline and Taggart 2019; Huang et al. 2015; Morgenstern and
Roughgarden 2015; Roughgarden and Schrijvers 2016]. These works show that up-to-¢ optimal
mechanisms can be learned in richer and richer settings. In comparison to these works, our single-
dimensional results slightly extend the state of the art [Gonczarowski and Nisan 2017; Hartline and
Taggart 2019] as a corollary of a more general theorem that applies to multi-dimensional settings.
Even restricted to single-dimensional settings, our proof is perhaps more transparent.

SHere and throughout the article when we refer to “state-of-the-art” for single-parameter settings, we are specifically
referring to allocation constraints that can be accommodated.

%Note that for the single-parameter setting, our algorithm in fact coincides with that of Devanur et al. [2016]. However our
analysis, unlike theirs, extends to arbitrary allocation constraints. Our approach also transparently handles mild extensions
of constraints beyond those considered in Hartline and Taggart [2019] and Gonczarowski and Nisan [2017]. Gonczarowski
and Nisan [2017] explicitly state that their techniques cannot handle such extensions and leave this question (which we
successfully resolve) open.
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We conclude with a brief discussion and an open problem. Corollaries 1.2 and 1.3 are both de-
duced from Theorem 1.1 by use of an argument as to why the resulting ¢-BIC auction is in fact BIC
or by using an ¢-BIC to BIC reduction that loses negligible revenue. Given that we have explicitly
referenced the existence of a quite general ¢-BIC-to-BIC reduction, the reader may be wondering
why this reduction does not in fact allow our general results to be exactly BIC as well.

The main barrier is the following: To actually run the ¢-BIC-to-BIC reduction as part of our
auction for n > 1 bidders, one must take samples exponential in the number of items from each
bidders’ value distribution. This means that even though we can learn an e-BIC mechanism with
few samples, plugging it through the reduction to remove the ¢ would cost us exponentially many
samples in addition. Note that our current use of these theorems is non-constructive: we only use
them to claim that the revenues achievable by the optimal BIC and ¢-BIC mechanisms are not far
off. This conclusion does not actually require running the reduction, but rather simply observing
that it could be run (more details in Section 5).

When bidder valuations are drawn from a product distribution, it seems conceivable (espe-
cially given our results), that sample complexity polynomial in the number of items should suf-
fice. Indeed, if each bidders’ values are drawn i.i.d., this is known due to exploitations of sym-
metry [Daskalakis and Weinberg 2012]. But subexponential sample complexity is not known to
suffice for any other restricted class of distributions, despite remarkable recent progress in devel-
oping connections to combinatorial Bernoulli factories [Dughmi et al. 2017]. We state below what
we consider to be the main open problem left by our work in the context of this article, but read-
ers familiar with black-box reductions in Bayesian mechanism design will immediately recognize
a corresponding open problem for the original welfare-maximization setting studied in Hartline
et al. [2011] and Bei and Huang [2011] that is equally enticing.

OPEN PrOBLEM 1. Given an e-BIC auction for some product distribution over n>1 bidders and
m>1 items, even with additive bidders, is it possible to transform it into a (precisely) BIC auction
with negligible (poly(¢) - poly(n, m, H)) revenue loss using polynomially many samples from this
product distribution?

1.3.1  Subsequent Related Work. Since the presentation of a preliminary version of this work at
FOCS 2018, progress has been made on three fronts that merits brief discussion. First is recent work
of Kothari et al. [2019], which gives a QPTAS for a single unit-demand buyer over m independent
items. As referenced in the previous section, our results now immediately extend to provide an
up-to-¢ approximation to the optimal revenue for a single unit-demand buyer using polynomially-
many samples with quasi-polynomial runtime.

Second is recent work of Gergatsouli et al. [2019], which identifies barriers toward a problem
related to Open Problem 1. Specifically, one can view Open Problem 1 as asking for an algorithm
that takes as input a fully known auction, and has sample access to D, and outputs a BIC auction.
Gergatsouli et al. [2019] prove an impossibility result in a setting where the algorithm is given as
input a fully known D, but only has query access to the auction (there are also a few other additional
differences). To best see why this difference is significant, consider a single bidder and m items.
With a (fully-known) ¢2-IC auction A, multiplying all prices by a multiplicative (1 — ¢) results in a
IC auction that up-to-¢ approximates the revenue of A, using no samples from D (i.e., this resolves
the single-bidder version of Open Problem 1; see Section 6.1). However, the auction A may offer
exp(m) different outcomes, so actually learning A via query access to figure out which outcome
of A a given buyer might choose (even when D is explicitly known) might require exp(m) queries
to A. Indeed, this reduction positively resolves the single-bidder version of Open Problem 1, but
breaks down for the question studied by Gergatsouli et al. [2019], which they instead negatively
resolve. Gergatsouli et al. [2019] therefore identify barriers to a positive resolution of a problem
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related to Open Problem 1, but in a model that is different enough that one should not make too
strong a conjecture regarding Open Problem 1 based on their results.

Finally, there is the recent work of Guo et al. [2019], which applies techniques similar to ours
to study the precise sample complexity of several domains, including single-buyer revenue max-
imization (the scenario we discuss in Section 6.1). While we are most interested in establishing
that the sample complexity is polynomial (rather than nailing it down precisely), the latter work
establishes that certain parts of our analysis are in fact tight up to logarithmic factors. Still, it is not
known whether our full results are tight, and it is a fascinating open problem to determine this (also
posed explicitly in Guo et al. [2019]). Specifically, Guo et al. [2019] also establish a lower bound
on learning an up-to-¢ optimal hypothesis over a product distribution, as a function of the size of
support of the marginals. Put another way, their lower bound implies that improving our sample
complexity (beyond logarithmic factors) would require either (a) discretizing differently, and/or
quantitatively improving state-of-the-art ¢-IC to IC reductions or (b) exploiting some (currently
unknown) structure of revenue-maximizing multi-item auctions.” Both directions are important
for future work.

The remainder of this article is structured as follows. In Section 2, we formally present the
model and setting. In Section 3, we formally state our results, which are informally stated above as
Theorem 1.1 and Corollaries 1.2 and 1.3. In Section 4, we overview the main ideas behind the proof
of Theorem 1.1, a proof that we give in full detail in Section 5. In Section 6, we derive Corollaries 1.2
and 1.3. We present some extensions in Section 7. In Appendix A, we state and prove a result
analogous to Theorem 1.1 for DSIC auctions, using similar proof techniques. Parts of certain proofs
are relegated to Appendix B.

2 MODEL AND PRELIMINARIES

The Decision Maker (Seller), Bidders, and Outcomes. A single decision maker has the power to
choose a social outcome, such as who gets which good that is for sale, or such as which pas-
time activities are offered in which of the weekends of the upcoming year. There are n bid-
ders who have stakes in this outcome. (The decision maker will be able to charge the bid-
ders and will wish to maximize her revenue.) The possible set of allowed outcomes is denoted
by X and can be completely arbitrary. A central example is that of an m-parameter auction:
The decision maker is a seller who has m items for sale, and the set of outcomes/allocations is
X < [0,1]™™, where an allocation X = (x; j)ie[n],je[m] € X specifies for each bidder i and good j
the amount of good j that bidder i wins. The traditional multi-item setting is the special case with
X = Xpulticitem = {(xi’j)i,j e{0,1}"™ | Vj: 3l x; < 1}, while outcomes with fractional coor-
dinates occur for example in the canonical model of position auctions, where smaller coordinates
denote smaller click-through rates.

Values. Bidder i € [n] has a valuation function v;(-) over the set of possible outcomes X. This
function is parametrized by m values v; 1, ..., v; » (We will not explicitly write v; z,(-), but refer
to the parameters implicitly for ease of notation. Moreover, as v;(+) is completely determined by
Vi1s- - ., Vi, m, We will sometimes simply refer to 0; as bidder i’s value, and to v; ; as bidder i’s value
for parameter j) and drawn from a given distribution such that:

¢ (Independent Parameters) The v; ;s are independent random variables, drawn from distri-
butions V; ; that are all supported in [0, H].

7 As already noted, understanding the structure of such auctions is a major open problem independently of auction learning.
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e (Lipschitz) There exists an absolute constant L, such that if v;’l, e, U;,m is obtained from
Vi1,...,0Vim by modifying one of the v; ;s by at most an additive ¢, then |v;(x) — v}(x)| <
Le for all x € X.
For example, in the multi-item setting described above, v;(x) = Z;nzl xijvij (and L = 1).8 An
additive-up-to-k-items setting may also be easily captured using this setting (again with L = 1),
and so can even settings with complementarities, such as a setting in which good 2j is worth v; ;
to bidder i iff bidder i also gets good 2j + 1 (and is otherwise worthless to bidder i). Since X can be
completely arbitrary (in particular does not have to be a subset of [0, 1]™™), we can most generally
think of the v; ;s as parameters that capture the “relevant attributes” of each bidder, such as affinity
to action films, affinity to winter sports, willingness to spend a lot of time in a pastime activity, and
so on. The only requirement is that these attributes are a “natural” parametrization in the sense
that the utility of the bidder from any given outcome x € X smoothly depends on (i.e., is Lipschitz
in) each of them,” and that they are independently drawn.
We note that both properties above (independent items and Lipschitz) together imply that the
valuation of each bidder for each outcome is bounded in [0, mLH].

Payments, Priced Outcomes, and Mechanisms. A payment specification p = (p;);e[n] specifies for
each bidder i to be charged p;. A priced outcome is a pair (x,p) of an allocation and a payment
specification. The utility of bidder i with value v;(-) from priced outcome (x, p) is u; (v;, (x,p)) =
v;(x) — p;. An auction/mechanism is a function that maps each valuation profile (v; ;)ic[n], je[m]
to a distribution over priced outcomes. The seller’s expected revenue from a mechanism y is'
Eovx,,vi;[2iepn £i(v)], where p(v) is the payment specification chosen by the mechanism for
the valuation profile v.

Truthfulness. An auction y is individually rational (IR) if the expected utility of a truthful bidder
is nonnegative at any valuation profile, i.e.: E [uy (vk, u(v))]| > 0 for every k € [n] and v € [0, H]™™,
where the expectation is over the randomness of the auction. For ¢ > 0, an auction y is e-dominant-
strategy incentive compatible (¢-DSIC) if truthful bidding maximizes a bidder’s expected utility
at any valuation profile up to an additive e, i.e.:'" E[ug(vk, p(v))] > Efug (vk, p(v, v_g))] — &
for every k € [n], v € [0, H]"™™, and v} € [0, H]™, where the expectation is once again over the
randomness of the auction. An auction is DSIC if it is 0-DSIC. An auction p is e-Bayesian in-
centive compatible (e-BIC) if truthful bidding maximizes a bidder’s utility in expectation over
all valuations of the other bidders, up to an additive ¢, i.e: E,,_ i Vis [uk (g, vk, v_g))] >

i#k
’ / m
Eo jnx ij Vi [ur (v, p(v),v_k))] —¢ for every ke [n] and wvi, v €[0,H|™, where the
i#k
8This case is actually Lipschitz in a stronger sense: If vg Do Ug is obtained from v; 1, . . ., v; m by modifying one of

the v; ;s by at most an additive , then [v; (¥) — 0}(¥)| < |¥|; “Le for L = 1. We note that using this stronger property
(as well as other properties of the multi-item setting such as monotonicity), our analysis (mutatis mutandis) can be used to
quantitatively improve the polynomial dependency of our sample complexity on the parameters of the problems, however
we do not follow this direction in this article. In general, in this article we always choose generality of results over tighter
polynomials.

9This rules out such “tricks” as using bit-interleaving to condense the m parameters into a single parameter.

19This expectation is both over the draw of valuation profile v and over the draw of priced outcome from y(); to avoid
clutter, we will not explicitly mention the latter in our notation throughout this article.

11 As is standard in the Game Theory literature, given an n-bidder valuation profile v = (v1, . . ., v,), we use v_j for
any k € [n] to denote this valuation profile without the valuation of bidder k, and use (v}, v_g) for any v; € [0, H]™
to denote the valuation profile obtained from v by replacing bidder k’s valuation with v,’c.
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expectation is both over the valuations of the bidders other than k and over the randomness of the
auction. An auction is BIC if it is 0-BIC.

Additional Notation. We will use the following additional notation in our analysis, where ¢ > 0:

e For v € [0, H|, we denote by |v|, the value of v, rounded down to the nearest integer mul-
tiple of .

e Weuse [0,H], = {|v]. | v € [0,H]} to denote the set of integer multiples of ¢ in [0, H].

e For every i, j, we denote by |V; ;|. the distribution of |v; |, for v; ; ~ V; ;.

Existing Tools. In our analysis, we will make use of the following two theorems, which we state
below in a way that is adapted to the notation of our article. The first shows the optimal revenue
over all e-BIC auctions and the optimal revenue over all BIC auctions are close (while this is stated
in Rubinstein and Weinberg [2015] with respect to multi-parameter settings with allocations in
{0,1}™™ the same proof holds verbatim for arbitrary outcome sets X):

THEOREM 2.1 (RUBINSTEIN AND WEINBERG [2015];'> SEE ALsO DASKALAKIS AND WEINBERG

[2012]. Let D be any joint distribution over arbitrary valuations, where the valuations of different
bidders are independent. The maximum revenue attainable by any IR and e-BIC auction for D is at
most 2nv/mLHe greater than the maximum revenue attainable by any IR and BIC auction for that
distribution.

The second is a Chernoff-style concentration inequality for product distributions:

THEOREM 2.2 (BABICHENKO ET AL. [2017]; SEE ALSO DEVANUR ET AL. [2016]). Let Dy,...,D¢ be
discrete distributions. Let S € N. For every i, draw S independent samples from D;, and letDES) be the
uniform distribution over these samples. For every e > 0 and f : X le supp D; — [0, H], we have

2
that Pr(E . po[f] =B, o [f]l > ) < Lexp(—55).

i=1

Unlike standard Chernoff bounds, which state that the expectation over the empirically sampled
distribution (over ¢-tuples) well approximates the expectation over the true distribution, this con-
centration inequality states that the expectation over the product of the marginals of the empirically
sampled distribution well approximates the expectation over the true distribution. This difference
is crucial to us, since, as we will see, there are far less such possible products of empirical marginals
than there are empirical distributions, so a far smaller number of auctions can guarantee revenue
optimization over the former, and this concentration inequality lets us generalize this revenue
optimization to be over the true distribution.

3 MAIN RESULTS

In this section, we formally state our main results, which were informally presented as Theorem 1.1
and Corollaries 1.2 and 1.3 in the Introduction. We start with our main result.

TaeOREM 3.1 (MAIN REsuLt). Foreverye,é > 0 and for everyn < poly(n,m,L, H, ¢), the sample
complexity of learning an up-to-¢ optimal IR and n-BIC auction is poly(n,m,L, H, /¢, 1/, log1/s).

121f we denote by R, the maximum expected revenue attainable by any IR and &-BIC auction for the bidders’ product
distribution, and by R the maximum revenue attainable by any IR and BIC auction for the same distribution, then the
result of Rubinstein and Weinberg [2015] is that for any n > 0, it is the case that R > (1 — 1) - (R, — ’;f) Choosing

1 = 1/ 737 vields Theorem 2.1 as stated above, since R, is trivially bounded from above by the maximum possible sum

of valuations, i.e., by nmLH.
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15:10 Y. A. Gonczarowski and S. M. Weinberg

That is, there exists a deterministic algorithm®® that given poly(n, m, L, H, e, /y,log1/s) samples
from each Vi ;, with probability 1—6 outputs an IR and n-BIC auction that attains from X, ; V; ;
expected revenue at most an additive ¢ smaller than any IR and n-BIC auction.

The following corollary of our main result should be contrasted with a result of Dughmi et al.
[2014], which shows that finding an ¢-optimal mechanism for a single additive bidder with corre-
lated item distributions requires exponentially many samples.

THEOREM 3.2 (SINGLE BIDDER). When there is n = 1 bidder, for every e, > 0, the sample com-
plexity of learning an up-to-¢ optimal IR and IC** auction ispoly(n, m, L, H, /e, log 1/s). That is, there
exists a deterministic algorithm"® that given poly(n, m, L, H, V/e,log 1/5) samples from each V; j, with
probability 1—5 outputs an IR and IC auction that attains from X, ; V; j expected revenue at most
an additive ¢ smaller than any IR and IC auction.

The following corollary of our main result unifies and even somewhat extends the state-of-the-
art results for single-parameter (m = 1) revenue maximization. To state it we restrict ourselves to
the setting where revenue maximization has been solved by Myerson [1981]: Assume that X <
[0,1]" and that v;(x) = v; - x;.1°

THEOREM 3.3 (SINGLE-PARAMETER). In an m=1-parameter setting with X < [0,1]" and
vi(x) = v; - x;, for every €,8 > 0, the sample complexity of efficiently learning an up-to-¢ IR and
DSIC auction is poly(n,m, L, H, /¢, log 1/s). That is, there exists a deterministic algorithm with run-
ning time poly(n,m,L,H, 1/e,log 1/s) that given poly(n,m, L, H,1/e,log1/s) samples from each V; ;,
with probability 1—§ outputs an IR and DSIC auction that attains from X ; ; V; ; expected revenue at
most an additive ¢ smaller than any IR and BIC auction.

4 MAIN RESULT PROOF OVERVIEW

In this section, we roughly sketch our learning algorithm and present each of the main ideas behind
its analysis, by presenting a proof overview structured to present each of these ideas separately.
The proof overview is given in this section only for an additive multi-item setting, and some ele-
ments of the proof are omitted or glossed over for readability. The full proof, which contains all
omitted details and applies to a general arbitrary Lipschitz setting, and in which the main ideas
that are surveyed in this section separately are quite intermingled, is given in Section 5."7

Our learning algorithm is similar in nature to the one presented in Devanur et al. [2016] for
certain single-parameter environments; however, the analysis that we will use to show that it
does not overfit the samples is completely different (even for single-parameter environments,
where our analysis holds for arbitrary allocation constraints). Recall that our result is (necessarily)

3Recall that this result is information-theoretic and not computationally efficient (by necessity, without resolving major
open problems), so our decision maker (seller) is computationally unbounded, and we allow the algorithm to make calls
to any deterministic oracle that has no access to any V; ;. In particular, we assume access to an oracle that can solve the
revenue maximization problem on any precisely given Vi/’ ; of finite support.

14Recall that for a single bidder, the notions of BIC and DSIC coincide.

15See Footnote 13.

16This setting is slightly more general than the state-of-the-art single-parameter results, which assume X < {0, 1} and/or
the special setting of position auctions [Gonczarowski and Nisan 2017; Hartline and Taggart 2019]. As noted in the Intro-
duction, Gonczarowski and Nisan [2017] explicitly state that their techniques cannot accommodate arbitrary X < [0, 1]
and leave this question (which we successfully resolve) open.

7The somewhat less involved proof for DSIC auctions that is sketched in this section as an intermediary proof is given in
Appendix A (in that appendix, though, the analysis is more general as it refers to general Lipschitz valuations and not only
to additive valuations as in this section), both since we find that result interesting in its own right and to allow interested
readers to familiarize themselves with that proof before diving into the more involved proof for BIC auctions in Section 5.
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information-theoretic and not computationally efficient. Therefore, some steps in the algorithm
perform operations that are not known to be performable in poly-time (but can certainly be per-
formed without access to any V; ;). In particular, our algorithm will solve an instance of a Bayesian
revenue maximization problem for a precisely given input of finite support (step 2).

Algorithm. We start with S (to be determined later) independent samples from each V; ;. Our
algorithm roughly proceeds as follows:

(1) For each bidder i and good j, round all samples from V; ; down to the nearest multiple of
¢. Denote the uniform distribution over these rounded samples by W ;.

(2) Find an IR and O(¢)-IC (see below) multi-item auction that maximizes the revenue from
the product of the rounded empirical distributions W; ;. Denote this auction by .

(3) Return the auction p¢, which on input I, rounds down all actual bids to the nearest multi-
ple of ¢, ||, and allocates and charges payments according to the output of 1:(|J|,) when
run on these rounded bids.

We start with a simpler scenario, namely that of learning DSIC auctions, and only toward the end
of this section introduce the additional issues that arise when learning BIC auctions. We therefore
start by showing that if in step 2 of our algorithm we interpret “IC” as “DSIC,” that is, that if in
that step we take an IR and O(¢)-DSIC auction that maximizes the revenue from the product of
the rounded empirical distributions, then there exists S = poly(n, m, H, /¢, log 1/s) such that the
auction p* output by our algorithm is O(¢)-DSIC and its revenue from X ; ; V; ; is, with probability
at least 1—4, up-to-O(e)-close to the maximum revenue attainable from X, ; V; ; by any DSIC
auction. (The formal statement and full proof are given in Appendix A.) We note that the auction
output by the algorithm is indeed O(¢)-DSIC, since the output y in step 2 is O(¢)-DSIC, and the
rounding of the actual bids as defined in step 3 only loses another me.'8

Uniform Convergence of the Revenue of All Possible Output Mechanisms. Note that for every i, j,
each rounded sample from step 1 of the algorithm is independently distributed according to | V; ;..
The main challenge is in showing that the resulting auction gives up-to-O(¢) optimal revenue not
only on the rounded empirical distributions X; ; W ;, but also on the rounded true distributions
X ;IVi j]e- That is, the main challenge is in showing that no overfitting occurs, in the absence of
any structural properties that we can exploit for the mechanisms that are optimal (or up-to-O(¢)
optimal) for X; ; Wj ;.

This is the point where our approach makes a sharp departure from prior works. Prior work
deems this task to be hopeless, and proceeds by proving structural results on optimal mechanisms
for restricted domains. We circumvent this by instead simply counting the number possible inputs
we will ever query in step 2, and observing that the number of mechanisms over which we have
to obtain uniform convergence is at most this number. A crucial observation is that while we do
have to consider more and more mechanisms as the number of samples S grows, the number of
mechanisms that we have to consider grows moderately enough so as to not eclipse our gains from
increasing the number of samples that we take. For this argument to hold, it is essential that our
distributions are product distributions.

Let V be the set of all product distributions X, ; Wl’ ; where each Wl’ ; is the uniform distribution
over some multiset of S values from [0, H].. Let M be the set of all mechanisms returned by step 2
of the algorithm for some distribution X, ; Wl’ ; € V. At the heart of our analysis, and of this part

of our analysis in particular, is the observation that |'V| < (S + 1)™™ 1"/l Crucially, this expression

8The astute reader will notice that me ¢ O(e). As all our bounds are polynomial in m, 1/ anyway, this is immaterial, and
one example of a detail that we glossed over in this section in the interest of cleanliness, as promised.
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has S only in the base and not in the exponent. Indeed, for every X i W,/] € V, for every i, j, and
for every integer multiple of ¢ in [0, H] (there are [H/s] many such values), the probability of this
value in W;; can be any of the S + 1 values 0,1/s, . .., 1. Therefore, [M| < (S + 1)/l
We will choose S so that with probability at least 1—4, it simultaneously holds for all mecha-
nisms p € M that
Revie,wy, (1) — Revse v, ()] < e. 1)
To this end, we will use a Chernoff-style concentration bound (Theorem 2.2) for product dis-
tributions, which when applied to our setting shows that for each auction separately Equa-
tion (1) is violated with probability exponentially small in -2 H2 So, to have Equation (1) hold
with probability at most 1—¢ for all auctions in M simultaneously, we choose S so that the vi-
olation probability for each auction separately is at most 3/|m|, and use a union bound. Since

IM| < (S + 1)"™1"/<], we have that it is enough to take S such that
(S+1)mm-[H/el
5

2 H2 is of order of magni-

tude at least log IM|/s = log ~ log1/s + n-m- H/elog S, which is clearly possible by
taking a suitable S that is polynomial in n, m, H, 1/e, and log 1/s. So, taking a number of sample
of this magnitude gives that with probability at least 1—3, Equation (1) simultaneously holds for
all mechanisms in M and so the mechanism output by step 2 of the algorithm gets up-to-O(¢)
the same revenue on the product of the rounded empirical distributions X, ; Wj ; as it does on
the product of the rounded true distributions X, ;|V; j|.. So, the revenue that the mechanism p*
output by (step 3 of) the algorithm attains from X; ; V; ; is identical to the revenue that the mech-
anism y output by step 2 of the algorithm attains from X; ;1Vi jle, which is up-to-O(e) the optimal
revenue attainable from X, ; W ;.

Revenue Close to Optimal. Our next task is to show that with high probability the optimal rev-
enue attainable from X; ; W ; by any O(¢)-DSIC auction is up-to-O(e) the same as the optimal
revenue attainable from X ; V; ; by any DSIC auction, which would imply that the revenue that
¢ attains from X,  V; ; is close to optimal, as required. Let OPT be the DSIC auction that maxi-
mizes the revenue (among such auctions) in expectation over X, ;V; ;. At the heart of this part of
our analysis is the fact that while our algorithm cannot hope to find OPT, we can nonetheless carefully
reason about it in our analysis, as it is nonetheless fixed and well-defined (in particular, it does not
depend on the drawn samples). Let OPT, be the mechanism defined over X ;|V; | as follows: for
each bidder i and item j, let w; ; be the input bid of bidder i for item j (a multlple of ¢), and replace
it by a bid v; ; independently drawn from the distribution V; ; conditioned upon being in the in-
terval [w; j, w; ; + ¢); the auction OPT, allocates and charges payments according to the output
of OPT when run on these drawn replacement bids. Obviously, the auction OPT, is an O(¢)-DSIC
auction'” whose revenue from X, [ i.jle is identical to that of the auction OPT from X, i Vijs
i.e., to the optimal revenue from >< i.j Vi,j» so it is enough to show that the revenue of the auction
OPT, from X, ;|V;jle and from X, ; W;; is the same up-to-O(e) with high probability, that is,
that Equation ( ) also holds for the mechanism OPT, with high probability. To do so, we modify
the definition of the set M to also include the (well-defined even prior to sampling, despite be-
ing unknown to our algorithm) mechanism OPT,—since the order of magnitude of |[M| does not
change, the order of magnitude of the number of samples required to guarantee that Equation (1)
holds for all auctions in M (including OPT,) does not change.

Bayesian Incentive Compatibility. We conclude our proof overview by adapting the proof to the
more delicate BIC notion of incentive compatibility, thus showing that if in step 2 of our algorithm

90r more accurately, O (me)-DSIC; see Footnote 18.
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we take an O(¢)-BIC (rather than O(¢)-DSIC) and IR auction that maximizes the revenue from the
product of the rounded empirical distributions, then there exists S = poly(n, m, H, /¢, log 1/5) such
that the auction p® output by our algorithm is, with probability at least 1 — §, an O(¢)-BIC auc-
tion whose revenue from X ; V; ; is up-to-O(e)-close to the maximum revenue attainable from
X ;;Vi,j by any BIC auction (and therefore, by Theorem 2.1, up-to-O(+/¢)-close to the revenue
attainable from this distribution by any O(¢)-BIC auction).?’ The challenge here is that (approx-
imate) BIC is a distribution-dependent property of a mechanism (as opposed to DSIC, which is a
distribution-agnostic incentive compatibility notion). Indeed, examining our analysis above with
(e-)DSIC replaced by (e-)BIC, we note that the resulting analysis falls short of carrying through
in two points: it is unclear why OPT, is O(e)-BIC not only with respect to X, ; V; ; but also with
respect to X, ; W ;, and it is unclear why any mechanism that can be output by step 2 of our
algorithm is O(¢)-BIC not only with respect to X; ; W; ; but only with respect to X, ; Vi ;. At the
heart of this part of our analysis is the observation that the set of all interim expected utilities, of
all bidders’ possible types, from all possible reported types, in all mechanisms,?! on the one hand, is
comprised of a small-enough number of random variables to still enable uniform convergence, and, on
the other hand, contains sufficient information to show that incentive constraints do not deteriorate
much. Concretely, we will choose S so that with probability at least 1 — §, simultaneously for all
mechanisms in M (including OPT,) not only does Equation (1) hold, but also the following holds
for every bidder k € [n] and values vy, v, € [0, H]":

|Ev,k~ X q,j Wij [uk (Uk, ﬂ(v;c’ v—k))] - Ev,k~ X q,j Vijle [uk (Uk’ ,U(U;C, U_k))]| S e (2)
ik ik

We note that for every mechanism y, we require that Equation (2) hold for n-[H/¢]*™ distinct com-
binations of of k € [n] and v, v;_ € [0, H]!". Crucially, this number does not depend on S. So, the
number of instances of Equation (2) that we would like to hold simultaneously with high prob-
ability is |[M| - n-[H/e]*™, and so we have |M| - (1 + n-[H/e]>™) < (1 + n-[H/e]?™) - (S + 1)*m el
instances of either Equation (1) or Equation (2) that we would like to hold simultaneously with high
probability.?? As this number still has S only in the base and not in the exponent, we can proceed
as above to guarantee this with high probability using only a polynomial number of samples.

5 PROOF OF MAIN RESULT

In this section, we give the full details of the proof of our main result, Theorem 3.1. The proofs of
supporting lemmas are relegated to Appendix B.

ProoF oF THEOREM 3.1. We assume that for every i € [n] and j € [m], we have S (to be deter-
mined later) independent samples (v} j)le from V; ;. Algorithm 1 presents our learning algorithm,
which is similar in nature to the one presented in Devanur et al. [2016] for certain single-parameter
environments, however the analysis that we will use to show that it does not overfit the samples is
completely different (even for single-parameter environments, where our analysis holds for arbi-
trary allocation constraints). We now analyze Algorithm 1. Note that for every i, j, s, we have that

w; ; ~ |Vi,j] independently. |

20Theorem 2.1 in fact allows us to also reduce to a cleaner oracle, which finds an optimal BIC auction rather than an optimal
O(&)-BIC auction, in Section 5.

2 The set of all such interim expected utilities for a single mechanism is sometimes referred to as the reduced form of the
mechanism.

22 A somewhat similar idea appeared in Cai et al. [2012], albeit without exploiting independence across items.
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ALGORITHM 1: Empirical Multi-Parameter Up-to-¢ BIC Revenue Maximization.
se[S] .
Jietnljelm)* Z
)s=1 is a sequence of § = O(I;L2 - (log /s + "rgH)) samples from

Function EmpiricalOptimize(H, X, ¢, 6, (zﬁ .

Input: For every i € [n],j € [m], (v}
Vi, j

Output: With probability 1—4, an IR and (4mLe)-BIC mechanism for X ; ; V; j, defined over [0, H]™ ™
with allocations in X, whose expected revenue from X; ; Vj j is up to an additive
(4nmL(e + +/2He)) smaller than that of any IR and (4mLe)-BIC mechanism for X i,j Vi,j with
allocations in X

forie€ [n],j € [m]do

fors € [S] do

| wiy o7l

end

i,j

Wi, j «<— the uniform distribution over (w; ])5

end
p <— OptimizationOracle(H, e, (Wi j)ie[n], je[m]) // See definition below
return The mechanism that for input (vi,j) ic[n], je[m)] OUutputs p((lvij)e) iefn], je[m] ), modified to

charge each bidder mLe less.

i

unction OptimizationOracle(H, X, ¢, (Wi,j)ic[n], je[m]):
Input: For every i € [n],j € [m], W ; is a distribution over [0, H],
Output: An IR and BIC mechanism for X; ; W; j, defined over [0, H]?'™ with allocations in X, which

maximizes the expected revenue from X; ; W, j among all IR and BIC mechanisms for

X W;, j with allocations in X
p «— an IR and BIC mechanism for X ; ; Wi, j (defined over X; ; suppWi,j) with allocations in X,

which maximizes the expected revenuefrom X Wi,j among all such mechanisms
return The mechanism obtained by extending yu to be defined over (v; j); ; € [0, H|?'™ as follows:
forevery k € [n] s.t. vy ; ¢ supp Wy ; for some j € [m], replace the entire bid vector
Ok = (Vk,j) je[m] Of bidder k with a bid vector v} = (v;c,j)je[m] € supp X ; Wy ; that

maximizes EULkN X ik Wis [ug (vg, p(v) UL '_k))]

Let V be the set of all product distributions X; ; W/ ; where each W} ; is the uniform distribu-
tion over some multiset of S values from [0, H] . Let M be the set of all mechamsms of the form
OptimizationOracle(H,X))e, X W for all X; W’ € V. At the heart of our analysis is the
observation that |'V| < (S + 1)"™ [H/ ‘]. (Cruc1ally, th1s expression has S only in the base and not
in the exponent!) Indeed, for every X, ; W/ ; €V, for every i, j, and for every integer multiple of
¢ in [0, H] (there are [H/s| many such values), the probability of this value in W} ; can be any of the
S + 1 values 0,1/s, ..., 1. (The inequality on |V| is strict, since, for example, not all probabilities
can be 0 simultaneously.) Therefore, (S + 1)mm ¥l

Let OPT be the IR and (4mLe)-BIC auction for X, ; V; ; that maximizes the expected revenue
(among such auctions) from X, ; V; ; (our learning algorithm cannot hope to find OPT, but in our
analysis we may carefully reason about it, as it is nonetheless well defined; in particular, it does not
depend on S). Let OPT, be the (randomized) mechanism defined over X [ ile as follows: Let
w = (Wi,j)ic[n], je[m] be an input valuation; for each i, j, independently draw Vij ~ Vijliwijowi+e)s
let (x,p) = OPT((vi,j)ic[n), je[m]); the allocation of OPT,(w) is x, and the payment of each bidder
iis p; — mLe.
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LEmMMA 5.1. OPT, is an IR and (6mLe)-BIC mechanism for X ;|Vi j], whose expected revenue
from X [ Vi.jle is nmLe smaller than the expected revenue ofOPT from X Vi

We will choose S so that with probability at least 1—3, both of the following simultaneously
hold for all mechanisms p € M U {OPT,}:

o |RCVXLJ_ Wi, j (ﬂ) - ReVXi’j[Vi,ng (,U)} S nmLS’ (3)
e For every agent k € [n] and types vy, v; € [0, H]["

EU*k* X itk Wi, j [uk (Uk"u(v;c’ U—k))] - E‘U—k"xi,j:i#kLVi,jJs [uk (Uk,,u(’();(, v—k))]} S mlLe. (4)

We note that for every mechanism y, we require that Equation (4) hold for n-[H/¢|*™ distinct
combinations of of k € [n] and vy, v € [0, H]". Crucially, this number does not depend on S.

By Theorem 2.2 (with £ = n - m, and note that any mechanism’s revenue is bounded by nmLH),
we have that for each mechanism y € M U {OPT,} separately Equation (3) holds with probability

—e?s/(8H7)
at least 1 — 4¢ 56

, and for each combination of (u, k, v, v} ) separately Equation (4) holds

e—¢ S/(SHZ)

with probability at least 1 —

Choosing S so that each of these probablhtles is at least 1 — we obtain that

S
(IM]+1)-n-[H/e]?m>
both Equation (3) holds simultaneously for all mechanisms y € M U {OPT,} and Equation (4) holds

simultaneously for all combinations (g, k, vk, v} ) with probability at least 1—J. We now estimate S.
Since |M U {OPT,}| < (S + 1)™™["/<] we have that it is enough to take S such that

S =L . (log 1 4 log1/s + logn + 2mlog[H/e] + nm[H/e]log(S + 1)).

Therefore,?® there exists an appropriate

S—=0 (Ij_;logl/(s-i- %ﬁslog ”'Zﬁqs) =0 (Ij—; - (log Vs + %))

Let u be the output of the call to OptimizationOracle in Algorithm 1, and let y® be the final
output of the algorithm (the output of EmpiricalOptimize).

Lemma 5.2. If Equation (4) holds for every mechanism in M U {OPT.} and for every (k, vk, v} ),
then:

e OPT, is a (8mLe)-BIC mechanism for X ; ; Wi ;.

e The expected revenue of p from X, ;W ; is at most 4nmL~/2He smaller than the expected
revenue of OPT, from X, ; W ;.

e p is a (2mLe)-BIC mechanism for X, ;|Vi .

LEMMA 5.3. p* is an IR mechanism whose expected revenue from X, ; Vi ; is nmLe smaller than
the expected revenue of pi from X ; ;| Vi j|.. Furthermore, if i is (ZmLs)-BICfor X ilVijles then pf
is (4mLe)-BIC for X ; ; Vy ;.
23The requirement is of the form S > a + blog S, so the tight solution is of order a + b log b.

Journal of the ACM, Vol. 68, No. 3, Article 15. Publication date: March 2021.



15:16 Y. A. Gonczarowski and S. M. Weinberg

So, with probability at least 1— 38, we have both that x* is an IR and (4mLe)-BIC mechanism (by
Lemmas 5.2 and 5.3) and that:

Revy, v, (1) = (by Lemma 5.3)
=Revy, |v;,J. (1) — nmLe (by Equation (3) and since p € M)
>Revy, w,,(p) — 2nmLe (by Lemma 5.2)
>Revy, w,,(OPT,) — 4nmL~/2He — 2nmLe (by Equation (3) for OPT,)
>Revy, v, (OPT,) — 3nmLe — 4nmL~/2He (by Lemma 5.1)
=Revy, v, ,;(OPT) — 4nmLe — 4nmL~v/2He
=Revy, v, (OPT) — 4nmL(e + V2He). O

6 FROM APPROXIMATE TO EXACT INCENTIVE COMPATIBILITY

In this section, we derive sample complexity results for exact incentive compatibility for the special
cases of a single bidder (Theorem 3.2) or a single good/single-parameter setting (Theorem 3.3). As
mentioned in the Introduction, whether this can also be done for more general settings remains
an open question.

6.1 One Bidder

In this section, we will prove Theorem 3.2. For a single bidder, the following theorem, which to
the best of our knowledge first implicitly appeared in Balcan et al. [2005], where it is attributed to
Nisan,?* provides an &-IC to IC reduction with negligible revenue loss.

THEOREM 6.1 (NISAN, CIRCA 2005). Let u be an IR and e-IC*> mechanism for a single bidder. Modi-
fying each possible priced outcome by multiplying the payment in that priced outcome by 1—+/¢ and
letting the bidder choose the (modified) priced outcome that maximizes her utility yields an IR and IC
mechanism p' with expected revenue at least (1—+/¢) - (Rev(y) — +/¢).

For completeness, we provide a proof of this theorem. The idea is that discounting more ex-
pensive priced outcomes more heavily makes sure that incentives do not drive the bidder toward
a much cheaper priced outcome. More concretely, due to the auction being only &-IC, the util-
ity of a bidder from choosing a cheaper priced outcome can be higher by at most ¢. Since for
any priced outcome whose price is cheaper by more than a /¢ compared to the bidder’s original
priced outcome, the given discount is smaller by more than \/Ez = ¢, this smaller discount more
than eliminates any potential utility gain due to choosing the cheaper priced outcome, so such a
cheaper priced outcome would not become the most-preferred one.

24Tt appears there and in following papers [Babaioff et al. 2017; Chawla et al. 2007; Dughmi et al. 2014; Gonczarowski
2018; Hart and Nisan 2013] as part of a two-step reduction sometimes called “nudge and round” (this is the “nudge” part),
which reduces the menu size of a single-bidder auction with negligible revenue loss. To the best of our knowledge, the
first reference to this argument as a general ¢-IC to IC reduction rather than as part of a “nudge and round” operation
(where it fixes IC issues resulting from rounding) is in Daskalakis and Weinberg [2012], who also attribute it to Nisan
following Chawla et al. [2007], who in turn attribute it to Nisan following Balcan et al. [2005]. A similar technique appears
in Madarasz and Prat [2017] within the context of correcting for model misspecification. In this context, our rounding of
the empirical distributions can be viewed as a deliberately introduced model misspecification that on the one hand novelly
serves as a tool against overfitting and on the other hand is carefully controlled so that its adverse effect is limited to at
most an ¢ loss in incentive compatibility. In the one bidder case, after guaranteeing that no overfitting occurs, we correct
for this loss in incentive compatibility using this technique as in the model misspecification literature.

%5Recall once again that for a single bidder, the notions of BIC and DSIC coincide.
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Proor. Fix a type v € [0, H|™ for the bidder. Let e be the priced outcome (a distribution over
priced outcomes, i.e., a random variable, if y1 is randomized) according to ; when the bidder has type
v. It is enough to show that the bidder pays at least (1—+/¢)(p. — +/€) in expectation according
to ¢/ when he has type v. (We denote the expected price of, e.g., e by p..) Let f’ be a possible
priced outcome of 1/, and let f be the priced outcome of p that corresponds to it. We will show
that if ppr < (1—+/¢)(pe — +/¢), then the bidder strictly prefers the priced outcome e’ of y’ that
corresponds to e over f’ (and so does not choose f’ in y’, completing the proof). Indeed, since in

this case pr < p. — /¢, we have that

E [u(v,e")] = E [u(v,e)] + Ve pe>E [u(v, f)] — e + Ve - pe = E [u(v, f))] — Ve pr — e+ /e pe
:E[u(v,f’)]—£+\/5~(pe—pf) >]E[u(v,f’)]—S—i-\/zv\/E:}E[u(v,f’)],
as required. O

Applying Theorem 6.1 to the auction output by?® Algorithm 1 yields Theorem 3.2.

6.2 Single-Parameter Settings

In this section, we will prove Theorem 3.3. The algorithm presented in Section 5 constitutes a black-
box reductions from ¢-BIC revenue maximization from samples to BIC revenue maximization from
given distributions. As noted in the Introduction, the latter are mostly unsolved for more than one
good. For a single good, however, the problem of DSIC/BIC revenue maximization was completely
resolved by the seminal work of Myerson [1981] (who, in particular, showed that the optimal BIC
mechanism is DSIC), and the computation complexity of the solution for discrete distributions was
shown by Elkind [2007] to be polynomial.

Definition 6.2 (Myersonian Auction, Myerson [1981]). An n-bidder Myersonian auction (for val-
uations in [0, H]) is a tuple (¢;);en, where for every i € [n], ¢; : [0, H] — R is a nondecreasing
function called the ironed virtual valuation of bidder i. The chosen outcome is x € X that maxi-
mizes Zie[n] x; - ¢i(v;), with ties broken in a consistent manner. The payment is defined by the
payment identity of Myerson [1981], which guarantees that the auction is IR and DSIC.

THEOREM 6.3 (MYERSON [1981]). For every product distribution X [_, W;, there exists a (DSIC)
Myersonian auction (¢;)?_, that attains maximum revenue from X_; W; among all IR and BIC
auctions. Moreover, for every i € [n], the ironed virtual valuation ¢; depends only on W;.

THEOREM 6.4 (ELKIND [2007]). LetS € N. There exists an algorithm that runs in time poly(S), such
that given a discrete distribution W with support of size at most S, outputs a nondecreasing function
¢ : suppW — R, such that for every product X ;_, W; of discrete distributions each having support of
size at most S, the (DSIC) Myersonian auction (§;)ien (where ¢; is the output of the algorithm given
W; ) maximizes the expected revenue from X ;_, W; among all IR and BIC auctions.

Plugging?’ Theorem 6.4 into Algorithm 1 brings us closer (by making the algorithm efficient) to
proving Theorem 3.3; however, this seems to still result in an ¢-DSIC (rather than precisely DSIC)
auction. Indeed, in the notation of Section 5, while y is DSIC, it seems that p¢ is only O(me)-DSIC.
To complete the proof of Theorem 3.3, we note that the latter is in fact exactly DSIC in this case.

260r, for a somewhat simpler analysis, to the auction output by Algorithm 2 in Appendix A. For readers interested in precise
polynomial dependencies, in this case the allowed revenue deviation in Equation (5) could also be loosened to 4/mLe to
save on samples, since the revenue loss from running the reduction of Theorem 6.1 would be far greater anyway.
2’Extending the mechanism p returned by the optimizer in OptimizationOracle to be defined over all of [0, H]? ™ as
follows, though [following Gonczarowski and Nisan 2017]: for every i € [n] and j € [m] s.t. v; ;j ¢ supp W, j, replace v; ;
with max{w; ; € supp Wy, | wij < v;j}.
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Indeed, its allocation rule is monotone, and it satisfies the payment identity of Myerson [1981] for
every bidder.

7 EXTENSIONS
7.1 On Computational Efficiency

As mentioned above, it is currently not known how to efficiently implement the optimization
oracle, outputting an up-to-O(¢)-optimal auction, as used in our algorithm. Nonetheless, there has
been quite some work on efficiently finding auctions with weaker revenue guarantees with respect
to optimal, such as guaranteeing some constant fraction of the optimal revenue. As the structured
argument of our analysis provides a black-box reduction from BIC-revenue-maximization given
a full distributions description to ¢-BIC-revenue-maximization from samples, we can plug in any
such algorithm into our analysis (in lieu of the optimization oracle) to obtain a learning algorithm
with matching computational complexity and revenue degradation:

TuEOREM 7.1 (“META THEOREM”: BLACK-BOX REDUCTION FOR EFFICIENT UP-TO-CONSTANT
GUARANTEES). If there exists a polynomial-time algorithm for Bayesian revenue-maximization
up to a constant factor C given an explicitly specified finite product distribution, then for every
&,6 > 0 and for every n < poly(n,m, L, H, ¢), there exists a polynomial-time algorithm that given
poly(n,m,L,H, /e, 1/n,1og /) samples from each V; ;, with probability at least 1—38 outputs an IR
and n-BIC auction that attains from X ; V; j expected revenue at most an additive ¢ smaller than a
C fraction of that of any IR and n-BIC mechanism.

7.2 Partial Correlations

In some settings, there could be partial correlations between the distributions of the values of each
bidder for the various goods. Our construction and analysis can also be modified to analyze such
settings, to obtain sample bounds that are polynomial in the independent dimensions. To give a
few examples:

e If there are correlations across values of different goods for the same bidder, but differ-
ent bidders’ valuations are independent, then our upper bound for |M| becomes (S +
1) (<D™ "and so our analysis would yield sample complexity that is polynomial in the
number of bidders (as our upper bound of |M| in this case is still singly exponential in the
number of bidders) and exponential in the number of goods (as our upper bound of |M| in
this case is doubly exponential in the number of goods).

e If for each bidder i the values of every two goods 2j,2j+1 € [m] are correlated, but are
independent of the values of these goods for any other bidder, and of the values of any
other good for any bidder, then our upper bound for [M| becomes (S + 1) ™/ (/)* and
so our analysis still yields sample complexity that is polynomial in the both the number
of bidders and the number of goods (as our upper bound of |M| in this case is still singly
exponential in both parameters). This is an example for a weaker form of correlation for
which our analysis can still yield sample complexity that is polynomial in all parameters.

APPENDICES
A  DOMINANT-STRATEGY INCENTIVE COMPATIBILITY

In this appendix, we demonstrate a somewhat less involved version of our analysis and prove the
following result, which we find interesting in its own right—a version of our main result for dom-
inant strategy (rather than Bayesian) incentive compatibility. The proofs of supporting lemmas
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are relegated to Appendix B. We start by phrasing a weak technical assumption that this result
additionally requires.

Definition A.1 (Weakly Downward Closed). We say that the set of allowed allocations X is
weakly downward closed if for every outcome x € X and for every k € [n], there exists x’ € X
such that a) vi(x’) = vi(x) for every vp = (vg,;)je[m]> and b) v;(x") = 0 for every i # k and
v = (Ui,j)je[m]-28

THEOREM A.2 (MAIN REsuLT—DSIC VARIANT). If X is weakly downward closed, then for every
€,0 > 0, the sample complexity of learning an IR and e-DSIC auction whose revenue differs from that
of the optimal IR and DSIC auction by less than an additive ¢ is at most poly(n, m, L, H, /¢, log 1/5).
That is, there exists a deterministic algorithm® that given poly(n, m, L, H, /e, log 1/s) samples from
eachV; j, with probability 1—& outputs an IR and e-DSIC auction that attains from X ; ; V; j expected
revenue at most an additive ¢ smaller than any IR and DSIC auction.

Proor. We assume that for every i € [n] and j € [m], we have S (to be determined later) inde-
pendent samples (v ]) from V; ;. Algorithm 2 presents our learning algorithm, which is similar
in nature to the one presented in Devanur et al. [2016] for certain single-parameter environments,
however the analysis that we will use to show that it does not overfit the samples is completely
different (even for single-parameter environments, where our analysis holds for arbitrary weakly
downward closed allocation constraints—note that this assumption guarantees that the modifica-
tion to the allocation rule of the mechanism returned by OptimizationOracleDSIC still results in
allocations in X). We now analyze Algorithm 2. Note that for every i, j, s, we have that wi P Vi, jJ .
independently.

Let 7V be the set of all product distributions X ; ; W/; where each W/ ; is the uniform distribu-
tion over some multiset of S values from [0, H],. Let M be the set of all mechanlsms of the form
OptimizationOracleDSIC(H.X))e, X, W for all X W’ € V. At the heart of our analysis is
the observation that |[V| < (S + 1)*™ H/ ¢ (Cruc1ally, th1s expression has S only in the base and
not in the exponent!) Indeed, for every X; ; W/ ; €V, for every i, j, and for every integer mul-
tiples of ¢ in [0, H| (there are [H/:| many such values), the probability of this value in W;; can
be any of the S + 1 values 0, /s, . .., 1. (The inequality on |V| is strict, since, for example, not all
probabilities can be 0 simultaneously.) Therefore, (S + 1) melrel,

Let OPT be the IR and DSIC auction defined over X; ; supp V; ; that maximizes the expected
revenue (among such auctions) from X, ; V; j (our learmng algorithm cannot hope to find OPT,
but in our analysis we may carefully reason about it, as it is nonetheless well defined; in particular,
it does not depend on S). Let OPT, be the (randomized) mechanism defined over X, ;|V; ;. as
follows: let w = (wj j)ie[n], je[m] be an input valuation; for each i, j, independently draw Vi~
Vi il lwijowi gt e)s let (x,p) = OPT((vi,J-)ie[n]’je[m]) ; the allocation of OPT, (w) is x, and the payment
of each bidder i is p; — mLe.

LEMMA A.3. OPT, is an IR and (2mLe)-DSIC mechanism whose expected revenue from X, ;| V; ;|-
is nmLe smaller than the expected revenue of OPT from X, ; V; ;.

%8For example, for the multi-item setting this is satisfied if for every x = (xi,;)ie[n], je[m] € X and for every i € [n], we
have that (x;, 0_;) € X as well.

2Once again, recall that this result is information-theoretic and not computationally efficient (by necessity, without re-
solving major open problems), so our decision maker (seller) is computationally unbounded, and we allow the algorithm
to make calls to any deterministic oracle that has no access to any V; ;. In particular, we assume access to an oracle that
can solve the revenue maximization problem on any precisely given V - of finite support.
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ALGORITHM 2: Empirical Multi-Parameter Up-to-¢ DSIC Revenue Maximization.
. - - s \SE[S] X
Function EmpiricalOptimizeDSIC(H, X, ¢, §, (Ui,j)ie[n],je[m] ): o
Input: For every i € [n],j € [m], (v} ;)s=11is a sequence of § = O(I;L2 - (log /s + "rgH)) samples from
Vij

Output: With probability 1—6, an IR and (4mLe)-DSIC mechanism defined over [0, H]" ™ with
allocations in X, whose expected revenue from X ij Vi,j is up to an additive 4nmLe smaller
than that of any IR and DSIC mechanism defined over X; ; supp W; ; with allocations in X

foric [n],j € [m] do

for s € [S] do

| wiy o lople

end

S

W, j «<— the uniform distribution over (Wf,j)s=1

end

p <— OptimizationOracleDSIC(H, X, e, (Wi j)ie[n], je[m]) // See definition below

return The mechanism that for input (vi,j) ic[n), je[m] OUtputs u((lvij)e) ie[n],je[m] ), modified to
charge each bidder mLe less.

o]

unction OptimizationOracleDSIC(H, X, e, (Wi,j)ic[n], je[m])*
Input: For every i € [n],j € [m], W, ; is a distribution over [0, H],
Output: An IR and (2mLe)-DSIC mechanism defined over [0, H|? ™ with allocations in X, which
maximizes the expected revenue from X; ; W; j among all IR and (2mLe)-DSIC mechanisms
defined over X; ; supp Wj,j with allocations in X
u «<— an IR and (2mLe)-DSIC mechanism defined over X i,j supp Wi j with allocations in X, which
maximizes the expected revenue from X ; ; W; j among all such mechanisms
return The mechanism obtained by extending yi to be defined over all (v; j);,j € [0, H|#'™ as follows:
ifvg,j & supp Wy ; for precisely one bidder k (and one or more parameters j), then an
outcome is chosen such that bidderk’s valuation and payment are the same as in ,u(v;C, U_k),
forv) = (v;c,j)je[m] € supp X ; Wy, ; that maximizes E [uy (vks y(v;c, v_g))], and such
that all other bidders’ valuations of the outcome are zero irrespective of their valuations, and
all other bidders’ payments are zero. If v; j ¢ supp W;,j for more than one bidder i, then an
outcome is chosen such that all bidders’ valuations are zero irrespective of their valuations
and all payments are zero.

We will choose S so that with probability at least 1—4, it simultaneously holds for all mecha-
nisms g € M U {OPT,} that

‘ReriJ w, (1) — Reri.j[Vi,jJF(P)’ < nmlLe. (5)

By Theorem 2.2 (with £ = n - m, and note that any mechanism’s revenue is bounded by nmLH),
we have that for each mechanism y € M U {OPT,} separately, Equation (5) holds with probability

2 2
AHe € S/(8H?) S
at least 1 — - W’

Equation (5) holds simultaneously for all mechanisms y € M U {OPT,} with probability at least
1—6. We now estimate S. Since [M U {OPT,}| < (S 4 1) "], we have that it is enough to take
S such that

. Choosing S so that this probability is at least 1 — we obtain that

Sz %2 - (log £ + log 1/5 + nm[H/¢]log(S + 1)).
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Therefore,*® there exists an appropriate
S=0 (g—;logl/(s + %ﬁlog%{l}) =0 (%2 . (logl/a + %))
Let u be the output of the call to OptimizationOracleDSIC in Algorithm 2 (note that it is well
defined, since X is weakly downward closed), and let ¢ be the final output of the algorithm (the

output of EmpiricalOptimizeDSIC).

LEMMA A4. pf is an IR and (4mLe)-DSIC mechanism whose expected revenue from X, ; Vi is
nmLe smaller than the expected revenue of ji from X ; ;| Vi je.

So, we have that ;¢ is an IR and (4me)-DSIC mechanism (by Lemma A.4) and that with proba-
bility at least 1—6:

Revy, v, (u%) (by Lemma A.4)
= Revy, v, ). (1) — nmlLe (by Equation (5) and since p € M)
> Revy, w, (1) — 2nmLe (since OPT, is IR and (2me)-DSIC and by optimality of 1)
> Revy, w;,(OPT,) — 2nmLe (by Equation (5) for OPT,)
> Revy, |v,,). (OPT,) — 3nmLe (by Lemma A.3)

= Revy, v, ,(OPT) — dnmLe.

Two main differences between the statements of Theorem A.2 and of Theorem 3.1 stand out:
the technical requirement that X be weakly downward closed, and the fact that the learned mech-
anism has weaker incentive properties than the benchmark. In Section 5, we have avoided the
latter within the context of Bayesian incentive compatibility via Theorem 2.1. It would be inter-
esting to understand whether and to what extent a similar result also applies within the context
of dominant-strategy incentive compatibility.

OPEN PROBLEM 2. For n>1 bidders and m > 1 items, even with additive bidders, is the maximum
revenue attainable by any IR and e-DSIC auction from a given product distribution at most negligibly
(poly(¢)-poly(n, m, H)) greater than the maximum revenue attainable by any IR and DSIC auction
from the same distribution?

Since the e-dominant strategy incentive compatibility implies e-Bayesian incentive compatibil-
ity, then the question in Open Problem 2 holds whenever the optimal BIC auction is also DSIC.
Recently, Yao [2017] has shown that in general the revenue obtained by the optimal IR and BIC
auctions can be higher than that obtained by the optimal IR and DSIC auctions—it is such cases in
which Open Problem 2 is open and interesting. An affirmative result for Open Problem 2 would of
course immediately imply an analogue of Open Problem 1 for DSIC auctions, which, if true, would
allow Theorem A.2 to be strengthened to allow for learning a precisely DSIC auction.

OPEN PROBLEM 3. Given an IR and e-DSIC auction and given some product distribution over n>1
bidders and m>1 items, even with additive bidders, is it possible to transform the given auction into
an IR and (precisely) DSIC auction with negligible (poly(¢)-poly(n, m,H)) revenue loss from that
distribution using polynomially many samples from this product distribution?

30See Footnote 23.
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B OMITTED PROOFS
B.1 Proofs Omitted from Section 5

PROOF OF LEMMA 5.1. Individual Rationality: Let k € [n], let w = (wj ;) ie[n], je[m] be a (rounded)
valuation profile, and let v = (v; ;) ie[n], je[m] be drawn as defined above. Then:

E [u (wk, OPT,(w))]

=E [uk (wk, OPT(U)) + mLs] (since valuations are Lipschitz)

> E | ug (vk, OPT(v)) — Z L(vk,j — wi,j) + mLe (since v, j < Wi j + ¢€)
Jelm]

> E [ux (vr, OPT(v)) ]| = 0. (since OPT is IR)

Incentive Compatibility: Let k € [n], let wx = (wg, ;) je[m] and w) = (w;cj) je[m] be (rounded)

valuations, and let vx = (vx,;)je[m] and v = (v}, j) je[m] be respectively drawn as defined above.
Then:
Ey onx ij [Vijle [ux (Wk’ OPT, (w, W—k))]
i#k
=Eo nx i) vis [ur (Wi, OPT(vg, v_¢)) + mLe] (since valuations are Lipschitz)
i#k

>E, ~x i Vis | Uk (vk,OPT(vk,v,k)) — Z L(vk,j — wi,j) + mLe | (since vy ; < wg j+¢)

i#k jelm]

2By v i) viy [uk (vk, OPT(vk, v_))] (since OPT is (4mLe)-BIC for X, ; Vi ;)
itk

ZEo inx i) Vis [uk (vk, OPT(v, v_k))] — 4mLe (since valuations are Lipschitz)
ik

>Eo jnx i viy | % (Wi, OPT(vy, v—k)) — Z L(vk,j — wkj) | — 4mLe
ik jétm]
(since v, ; < Wi j + €)

2Eo nx i) Vi [ur (Wi, OPT (v}, v_k))] — 5mLe

i#k

=Ew x4 Vi) [k (Wi, OPT(wy, w_k)) — mLe] — 5mLe
itk

=B i 1Vigle Uk (Wi, OPT,(wy, w_i))] — 6mLe.
i#k

Revenue: Let OPT, = (x,,p.) and let OPT = (x,p). Then:
ReVX i,jl.Vi,jJé‘ (OPTS) - EW~ X i,jI.ViJJé‘ [Pg (W)]

:Ev~><i,jvi,j P(U) - Z mLe
i€[n]

= IEZJ~><,»J- Vij [p(v)] — nmLe
=Revy v, ,(OPT) — nmLe. i
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PROOF OF LEMMA 5.2. Incentive Compatibility of OPT,: Let k € [n], let wx = (Wi ;) je[m] and
/

w = (w), j) je[m] be (rounded) valuations. Then:
E,_~x i Wi [ug (wk, OPT, (wg, w,k))] (by Equation (4) for OPT,)
i#k
> Ew,k~>< ij Wil [uk (Wk, OPTE(W]C, W_k>)] — mLe
itk

(since OPT, is (6mLe)-BIC for X ;| Vi ;])

2By ox i Vil [tk (Wi, OPT, (wy, w_g))] — 7mLe (by Equation (4) for OPT,)
i#k

2 B x5 wisltk (Wi, OPT,(wy, w_k))] — 8mLe.
i#k

Revenue: by Theorem 2.1 (for X, ; W; ;), since OPT, is IR and (8mLe)-BIC for X, ; W; j and by
optimality of .

Incentive Compatibility of yi: Let k € [n],let wp = (wg. ;) je[m) and w) = (W;c,j)je[m] be (rounded)
valuations. Then:

B jnx i WVisle [k (wie, p(wies w_))] (by Equation (4) and since p € M)
i#k

2By ox i wiy [k (Wi, p(wie, w_i))] — mLe (since p is BIC for X, ; Wj ;)
ik

> ]wawxll.’j w,, [tk (Wi, p(wy, w_i))] — mLe (by Equation (4) since p € M)
i#k

>E,_ ~x . Vi ). [k (wk,p(wft,w_k))] — 2mlLe. O
i#k

ProOF OF LEMMA 5.3. Individual Rationality: let k € [n] and let v = (v; ) e[n], je[m] be a Valua-
tion profile. Then:

uk (Vs p(([v1,]e) ien), jepm] ) ) + mLe| (since valuations are Lipschitz)

> E | ue((lokjle) jermy 1 (([01je)iern jetm)) — Z L(vk,j — |vk,j]e) + mLe

Jjem]

>E [uk(([vk,jjg)je[m],/1(([v,—,jjg)ie[n],je[m]))] > 0. (since p is IR)

Revenue: Let u° = (x4, p*) and let p = (x, p). Then:
Revse, v, (1) = Eyrcy v, [0 (0)]
= ]EWNX,-,]-[Vi,jJs p(w) — Z mLe

=Eux, Vi)l [p(w)] — nmLe
= Revy, v, (#) — nmLe.
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Incentive Compatibility: Let k € [n], let vg = (vk ;) je[m] and v} = (v} ]) je[m] be valuations, and
denote |vx]e = (|vk,jle)je[m) and |V} e = ([v;c’jjg)je[m]. Then:

]Ev,kNX i,j ,][uk(vk’u ('Uk,'l),k))]
i#k
=Ew o i) Visle [ur (vk, p([vk s w_k)) + mLe] (since valuations are Lipschitz)
i#k

> B i vigle | e (lor)es p(lorles wor)) — 1 L(0ks — lvkle) + mLe

i#k jelm]
> Eo oy gl (0o lonleow))] (since jris (2mLe)BIC for X [V 1.)
i#k
> B X i Visle [ur ([vk e, (|} )es w_k))] — 2mLe (since valuations are Lipschitz)
i#k

> B o o Wile | 4k (@ 105 e w k) = D7 Llvk; — ok jle) | — 2mLe
i£k jelm]

> B o ) it [0 (o (e w))] — 3mie
i#k

=E,  ~x i ”[uk (vk U (Uk,v_k)] — 4mlLe. O
itk

B.2 Proofs Omitted from Appendix A

ProoF oF LEMMA A 3. Individual Rationality: Let k € [n], let w = (W ;)ic[n], je[m] be a (rounded)
valuation profile, and let v = (v; ;) ie[n], je[m] be drawn as defined above. Then:

ur (we, OPT,(w))]

E[
E[

U (wk, OPT(v ) + mLs] (since valuations are Lipschitz)

>E | u (vk, OPT(U)) — Z L(vk,j — wi,j) + mLe (since v j < wij + ¢€)
Jj€lm]

>E [uk (vk, OPT(U))] > 0. (since OPT is IR)

Incentive Compatibility: Let k € [n], let w = (Wi j)ic[n], je[m] be a (rounded) valuation profile,
let w, = (W;C’j)je[m] be a (rounded) valuation, and let v = (v,,]),e[n],ﬁ[m] and v}, (vk’]) c[m] be
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respectively drawn as defined above. Then:

[uk (Wk, OPT, (wg, W_k))]
E[

U (wk, OPT (v, v— k)) + mLE] (since valuations are Lipschitz)

>E | u (vk,OPT(vk,v_k)) - Z L(vk,j — wi,j) + mLe (since vy j < wyj + &)
Jjelm]

E [ug (vk, OPT(vg, v_¢)) | (since OPT is DSIC)

[uk (vk, OPT( vk, v_ k))] (since valuations are Lipschitz)

>E | u (wk,OPT(v;C,v,k)) — Z L(vk,j — Wi j) (since vy j < wi; + ¢€)
Jjelm]

E [uk (wk,OPT(v;C,v_k))] — mLe
= E [ux (wk, OPT, (W}, w_g)) — mLe| — mLe
E [uk (wk,OPTE(wL,w,k))] — 2mLe.

Revenue: Let OPT, = (x,,p,) and let OPT = (x,p). Then:

ReVXi,lei,jJe (OPTE) = EW'\’Xi,j[Vi.jJé‘ [p5<w)]
= ]E‘U’VXI-J-Vi,j p(’U) - Z mLe

By, v, [p(0)] — nmiLe
= Revy, v, ;(OPT) — nmLe. m]

Proor oF LEMMA A 4. Individual Rationality: let k € [n] and let v = (v; ;) ic[n], je[m] De a valua-
tion profile. Then:

uy (vk ,u(([v, ile )le[n]’je[m])) + mLE] (since valuations are Lipschitz)

> E | w((lok)e)jerms #(([0ni)e)ictnbjeim)) = D) Lok — [okle) + mLe

Jjelm]

> E [ur ((lox,jle) jepm)s #(([01]e) iefn),jefm)) ) | = 0 (since y is IR)

Incentive Compatibility: Let k € [n], let v = (v j)ic[n],jc[m] e a valuation profile, let v; =
(U;c,j)jE[m] be a valuation, and denote |vi | = (|vk,jle)je[m]> [V} ]e = (Lv;c’jjg)je[m] and |v_g|, =
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(lvi.jle)iern)\fk}, je[m]- Then:

E [uk (Uk, ,ug (Z}k, U_k))]
= E [uk (vk p([vkc]es [k ]e)) + mLe] (since valuations are Lipschitz)

>E | we(|oele u(|vkles [o-kle)) = Y L(oks — ok jle) + mLe

Jjelm]
E [u (|okle> u(| s lo-]e)) ] (since p is (2mLe)-DSIC)
E [uk ([vkjg, p([o e, [v_kjg))] — 2mLe (since valuations are Lipschitz)
> E | u (Uk».u(LU;cJe’ lU—kJs)) - Z L(Uk’j - lvk’ng) — 2mLe

j€lm]

> E [uk (vr. p([v]es lo—k]e)) | — 3mLe
=K [uk (Uk,;f (v;c,v_k)] — 4mlLe.

Revenue: Let p® = (x°,p°) and let g = (x, p). Then:

Reri,j Vij (W°) = Ev~><,.,_,. Vij [p*(v)]
=By, gl [p) = ) mLe
i€[n]

= IEw~><,-,j[Vi,ng [P(W)] — nmLe
=Revy, v, (1) — nmLe. i
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