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Abstract. We argue that the concentrated production and ownership of Bitcoin mining
hardware arise naturally from the economic incentives of Bitcoin mining. We model Bit-
coin mining as a two-stage competition; miners compete in prices to sell hardware while
competing in quantities for mining rewards. We characterize equilibria in our model and
show that small asymmetries in operational costs result in highly concentrated ownership
of mining equipment. We further show that production of mining equipment will be domi-
nated by the miner with the most efficient hardware, whowill sell hardware to competitors
while possibly also using it to mine.
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1. Introduction
In the years since Bitcoin was introduced by Nakamoto
(2008), cryptocurrencies have attracted a great deal of
funding and media coverage. Bitcoin’s market capitaliza-
tion now exceeds $900 billion.1 The protocol underlying
Bitcoin is unquestionably clever and has largely succeeded
in creating a public yet anonymized record of transactions.
In principle, these transactions can be authorized by any-
one whowishes to become a Bitcoin “miner.”

In practice, it is widely acknowledged that Bitcoin
mining is controlled by a small number of large entities.
This concentration is frequently cited as a major con-
cern and has motivated several new cryptocurrencies.
For example, theNxt white paper2 states the following:

Bitcoin’s creator, Satoshi Nakamoto, intended for the
bitcoin network to be fully decentralized, but nobody
could have predicted that the incentives provided by
Proof of Work systems would result in the centraliza-
tion of the mining process.

Meanwhile, the abstract of the white paper introduc-
ing Bitcoin Gold3 states the following:

The purpose [of Bitcoin Gold] is to make Bitcoin min-
ing decentralized again. Satoshi Nakamoto’s idealistic
vision of “one CPU one vote” has been superseded
by a reality where the manufacture and distribution
of mining equipment has become dominated by a
very small number of entities.

These quotes highlight different ways in which Bitcoin
mining is centralized. The first quote addresses centralized
ownership; most of the hardware used to mine Bitcoin is
controlled by a few large organizations (Hileman and

Rauchs 2017, Gencer et al. 2018). The second quote ad-
dresses centralized production; a 2018 Bitmain prospectus
estimates that mining equipment manufactured by Bit-
main accounts for 75% of the market.4 Interestingly, Bit-
main also owns and operates its own mining equipment;
the prospectus claims that Bitmain earned mining revenue
of $53 million in 2016 and $199 million in 2017, accounting
for 9.6% and 6.2% of the global total, respectively.5

Two key questions motivate this work. First, why is
the ownership of mining equipment so concentrated?
Second, why is the production of mining equipment
so concentrated?

We address these questions by modeling Bitcoin
mining as a two-stage contest, where miners compete
over a fixed reward. Each miner has access to different
hardware and pays different operational costs for
electricity, land, wages, and other expenses. In the first
stage, miners set prices at which they are willing to
sell their hardware to competitors. In the second
stage, miners choose what hardware to acquire and
power. Miners split the available mining rewards pro-
portionally to their computational power.

Regarding our first question, our model predicts
that even small differences in operational costs lead to
highly concentrated ownership of mining equipment.
Regarding the second, our model predicts that the
miner with the best hardware will sell it at a price low
enough to capture the whole market, regardless of
whether it also chooses to mine. This implies highly
concentrated production of mining equipment.

We provide more detail about Bitcoin mining, our
model, and our results.
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1.1. What Is Bitcoin Mining?
Bitcoin is a digital currency, with the innovative fea-
ture that the record of transactions is not maintained
by a single entity but rather, by a collection of self-
appointed “miners.” Whenever a miner verifies a
block of transactions, it receives a “block reward” (cur-
rently 6.25 bitcoin), in addition to fees offered by those
whose transactions are included. Each block must be
accompanied by the solution to a cryptopuzzle.6 The
fastest way to solve these puzzles is to guess solutions
at random, so the rate at which miners are rewarded is
proportional to their rate of guessing (“hash rate”). Im-
portantly, the difficulty of these puzzles adjusts so
that, on average, a new block is created every 10 mi-
nutes, regardless of the total hash rate in the network.

Although all miners guess solutions randomly, there
are several ways to reduce the cost of each guess.

• Hardware. Specialized hardware, called “ASICs”
(Application-Specific Integrated Circuits) designed to
solve Bitcoin cryptopuzzles uses 1,000 times less ener-
gy per guess, compared with general purpose graphi-
cal processing units.7

• Electricity. Cheap electricity lowers the cost of
powering mining hardware.

• Cooling. Cold locations lower the cost of cooling
mining hardware.

• Land and labor. Cheap land and labor lower the
cost of operation.

These factors play a significant role in determining
who enters the market; only miners with low costs
can mine profitably. This contributes to mining con-
centration, which can be measured in several ways.

1.1.1. Ownership of Mining Equipment. Although the
anonymity of bitcoinminingmakes it difficult to deter-
mine ownership, studies estimate that a majority of
global mining power is controlled by 8–11 largeminers
(Hileman and Rauchs 2017, Gencer et al. 2018). Togeth-
er, these miners could freeze any user’s funds, erase
past transactions, or launch other attacks. Narayanan
et al. (2016) describes these risks inmore detail.

1.1.2. Production of Mining Equipment. A 2018 pro-
spectus estimates that 75% of Bitcoin mining uses
equipment manufactured by Bitmain. The risks asso-
ciated with this concentration were highlighted in
2017, when a backdoor was discovered that gave Bit-
main the ability to shut down any Antminers that it
had produced.8

1.1.3. Mining Pools. “Mining pools” are groups of
miners that share rewards with each other in order to
decrease the variance of short-term returns. Most
blocks come from a small number of large pools.9

Many of the remainder are of unknown origin and
might also come from large pools.10 This concentration

is concerning because a single pool operator typically
determines the content of blocks mined by the pool.
However, Cong et al. (2021) argue that if miners can
easily switch between pools, then the pool size distri-
bution is irrelevant. One could even claim that mining
pools encourage decentralization by allowing small
miners to collect rewards regularly.

We do not model mining pools in this paper. In-
stead, we focus on concentration of ownership and
production of mining equipment. As noted, both
forms of concentration are prevalent, and both pose
threats to the Bitcoin network. We seek to understand
the reasons for this concentration and whether it can
be expected to persist.

1.2. Model Overview
We highlight several key features of the Bitcoin proto-
col, which form the basis of our model.

• The total value of rewards available to miners is
fixed.11

• Miners make costly investments in computational
power. In particular,

– miners produce proprietary hardware, which
they can sell to competitors.
– miners pay different operational costs (for elec-

tricity, land, cooling, labor, etc.).
• Miners earn rewards in proportion to their compu-

tational power.
In essence, there are two competitions occurring si-

multaneously; hardware producers are competing in
price, whereas miners are competing in quantities.
However, the line between hardware producer and
miner is a blurry one.

We capture this using a stylized two-stage model in
which miners have varying hardware production costs
and operational costs. In the first stage, miners post a
price at which they are willing to sell their hardware. In
the second stage, miners decide how much computa-
tional power to acquire and split a fixed prize in pro-
portion to their computational power. We model the
second-stage game as an asymmetric Tullock rent-
seeking contest, with asymmetries arising from differ-
ences in operating costs and access to high-quality hard-
ware. Meanwhile, the first-stage game is a Bertrand
competition; miners will always purchase the hardware
that allows them to mine for the lowest cost.

1.3. Overview of Results: Concentration
of Ownership

For any hardware prices set in the first stage, there is
an essentially unique second-stage equilibrium, which
we describe in Theorem 1. If all costs ci are identical,
then in equilibrium, each miner possesses an equal
amount of mining power (Corollary 1).

One might expect ownership to remain decentral-
ized so long as costs are not “too different.” Our
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(qualitative) finding is that even small cost advantages
may cause significant concentration. More precisely,
each miner’s market share in equilibrium is equal to
the percentage by which their costs are lower than the
market-wide “break-even cost” (Corollary 2). For ex-
ample, a miner with costs that are 10% lower than this
break-even cost will possess 10% of all mining power.

This mining concentration has economic implica-
tions. As we discuss in Section 2, many analyses of Bit-
coin mining assume the market is competitive and that
miners make little profit. This assumption is also incor-
porated into one frequently cited method for estimating
Bitcoin’s energy footprint. Our model makes a different
prediction. Corollary 3 establishes that total mining
profit is proportional to the Herfindahl–Hirschman In-
dex (HHI) of market concentration; concentrated min-
ing implies significant miner profits. This suggests that
the aforementioned estimate of Bitcoin’s energy con-
sumption is likely too high.

In summary, the thesis of Section 4 is that the Bitcoin
reward scheme naturally induces a concentrated mar-
ket in which low-cost miners can earn significant prof-
its. This finding has implications for various analyses
of Bitcoin, including estimates of its carbon footprint.

1.4. Overview of Results: Concentration

of Production
It is natural to wonder why a hardware producer
would sell their hardware, rather than simply using it
to mine. For example, the Chief Executive Officer of
the blockchain company Sia wrote the following:12

At the end of the day, cryptocurrency miner manufac-
turers are selling money printing machines … The buy-
er needs to understand why the manufacturer is selling
the units instead of keeping them for themselves.

One white paper proposes the following intuitive
answer:13

The expertise to operate mining facilities is very differ-
ent from that to manufacture hardware … Moreover,
without a competitive advantage in sourcing electrici-
ty, mining machine manufacturers could be uncompet-
itive despite their hardware cost advantages.

In other words, the manufacturer may be unable to
use their equipment to mine profitably.

Our model proposes a different answer. Theorem 2
establishes that there is always an equilibrium in
which the lowest-cost hardware is sold to the entire
market. This equilibrium arises even if the hardware
manufacturer has access to cheap electricity and choo-
ses to mine. Moreover, Theorem 4 establishes that, in
many cases, this outcome is the only equilibrium.

The reason for this is that the competition among
mining manufacturers resembles a Bertrand com-
petition; miners will purchase whichever equipment

enables them to mine most cheaply. Competition
from other manufacturers drives prices to the point
that all active miners end up using the most efficient
hardware. Although the miner who manufactures this
hardware might be tempted to raise its price, it does
not truly control delivery; a price increase opens the
door for another manufacturer to step in and capture
the market.

To summarize, our main conclusions regarding the
sale of hardware are that (a) production of Bitcoin
mining hardware naturally concentrates and (b) a
miner with good hardware will choose to sell it to the
entire market, even while simultaneously using it to
mine. Section 5 presents these findings in more detail.

2. Related Work
We focus on three areas of related literature. First, we
discuss papers on Bitcoin that justify some of our
modeling assumptions but are for the most part math-
ematically unrelated to our work. Second, we discuss
rent-seeking contests, which are closely related to our
second-stage game. Finally, we discuss the literature
on price discrimination in input markets, which uses a
closely related model in which one agent can sell
hardware (but cannot mine), and the remaining
agents mine (but cannot sell hardware to each other).

2.1. Cryptocurrencies
Although cryptocurrencies are relatively new, the lit-
erature on them is growing quickly. Halaburda et al.
(2022) provide a helpful survey of papers studying
economic and game-theoretic questions related to
cryptocurrencies.

Several sources document concentration in Bitcoin
mining. The most readily available statistics relate to
mining pools; currently, four mining pools are respon-
sible for over 50% of mined blocks.14 Other measures
of centralization are not publicly available, but Romiti
et al. (2019) present evidence that rewards in several
mining pools are concentrated among a few miners,
Hileman and Rauchs (2017) estimate that 11 “large
mining entities” collectively control a majority of Bit-
coin’s global hash rate, and Gencer et al. (2018) con-
clude that 75% of all blocks are initially announced by
1 of 100 Bitcoin nodes.15

Other papers provide justification for our modeling
assumptions. Our assumption that miners compete
for a fixed prize is consistent with work by Huberman
et al. (2021), who conclude that the fees paid by Bit-
coin users (and total mining rewards) are not affected
by miner behavior. Our focus on concentration of
ownership and production of mining equipment,
rather than pool size, is consistent with the conclusion
of Cong et al. (2021) that the distribution of pool size
is irrelevant if miners can freely switch between pools.

Arnosti and Weinberg: Bitcoin: A Natural Oligopoly
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Another key assumption in our model is that min-
ers are rewarded proportionally to their mining pow-
er. Recent work by Chen et al. (2019) and Leshno and
Strack (2020) proves that this is the only approach that
is anonymous, sybil proof, and collusion proof, imply-
ing that our results extend to any competition with
these properties.

Many papers study strategic deviations from the
Bitcoin protocol (Babaioff et al. 2012, Eyal and Sirer
2014, Eyal 2015, Carlsten et al. 2016, Kiayias et al.
2016, Sapirshtein et al. 2017). Whereas these papers
treat miners’ computational power as fixed, we study
miners’ incentives to acquire computational power.
Prat and Walter (2021) permit miners to decide how
much hardware to acquire but assume that they have
access to the same hardware, which is available at an
exogenous price. By contrast, we assume that miners
have different hardware and study how they price it.

2.2. Rent-Seeking Contests
There is a large literature on “rent-seeking” activities,
which seek to influence the allocation of a prize. Hillman
and Riley (1989, p. 18) summarize one important idea
from this literature:

Often influence-seeking activities are not directly ob-
servable, but the value of the prize secured by the
successful contender is known. One may then seek to
infer the value of the resources allocated to influenc-
ing the allocation of a prize from the value of the
prize itself.

Several papers apply this idea to Bitcoin mining. Kroll
et al. (2013) assume that “the total mining reward … is
equal to the total global cost of mining,” and Budish
(2018) assumes that “the prize … is dissipated by ex-
penditures aimed at winning the prize.” This assump-
tion is also made by Hayes (2015), Chiu and Koeppl
(2018), Ma et al. (2018), Thum (2018), and Easley et al.
(2019). To justify this assumption, Chiu and Koeppl
(2018) and Thum (2018) appeal to a class of games in-
troduced by Tullock (1980), in which contestants share
a prize in proportion to their expenditures. When con-
testants are symmetric, total expenditures approach the
value of the prize as the number of contestants grows.

The second stage of our model is a Tullock contest
with asymmetric contestants, which has also been stud-
ied by Hillman and Riley (1989), Gradstein (1995),
Dimitri (2017), and Alsabah and Capponi (2020). The
first two papers note that the number of active partici-
pants may be small but (for obvious reasons) do not
discuss implications for Bitcoin. Dimitri (2017) does
not explicitly address mining concentration, except to
note that at least two miners must be active in equilib-
rium. Alsabah and Capponi (2020) do study mining
concentration and are closest to our work. They focus
on miners’ research and development investments

and consider a model with ex ante symmetric min-
ers.16 By contrast, our miners are inherently asymmet-
ric, and one of our key questions is whether a miner
with good hardware will want to sell it. The sale of
hardware is not permitted in any of the aforemen-
tioned papers.

2.3. Selling Inputs to Competing Firms
There is a literature on price discrimination in input
markets, in which a supplier sells an input to a set of
downstream firms that compete in quantities. The
foundational papers of Katz (1987) and DeGraba (1990)
assume that if the supplier offers price pi to down-
stream firm i, then the marginal cost of production for i
is pi + βi. This resembles a version of our model in
which the first miner has prohibitively high operational
costs (and thus, will never mine), and the remaining
miners have prohibitively high hardware costs.

Yehezkel (2004) considers a model where a manu-
facturer sells a necessary input to a retailer and also
competes against that retailer in a final goods market.
He notes that by charging a high price to the retailer,
the manufacturer softens competition in the final
goods market. This effect is also present in our model,
although the nature of the second-stage competition is
quite different.

3. Model
There are n ≥ 2 miners competing for a prize of value
R. Each miner i has an operational cost OCi > 0 and a
hardware cost HCi > 0. Without loss of generality, we
sort the miners in increasing order of hardware cost.
The game proceeds in two stages.

1. Each miner i chooses a price pi ≥ HCi at which they
will sell their hardware.17

2. Each miner i chooses the quantity qij of computa-
tional power sourced fromminer j.

Given quantities qij, miner i’s market share is

xi(q) �

∑

j
qij

∑

k,j
qkj

: (1)

We define xi(q) � 0 if both the numerator and denomi-
nator are zero (although this will never occur in
equilibrium).

At prices p, the per-unit cost to miner i of sourcing
from miner j is

cij(p) :� OCi + HCjI(j � i) + pjI(j ≠ i): (2)

Miner i earns mining profit of

Π
M
i (p, q) � R · xi(q) −

∑

j

qijcij(p), (3)

and miner i earns additional sales profit of

Π
S
i (p, q) � (pi − HCi)

∑

j≠i

qji, (4)
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for a total utility of

Ui(p, q) � Π
M
i (p, q) +Π

S
i (p, q): (5)

Definition 1. A function Q mapping prices to pur-
chase quantities is a second-stage equilibrium if for all
price vectors p, miners j, and any q′ such that q′iℓ �
Qiℓ(p) for i≠ j,

Uj(p,Q(p)) ≥Uj(p,q
′):

Prices p are a first-stage equilibrium for Q if for any
miner j and any p′ such that p′i � pi for i≠ j,

Uj(p,Q(p)) ≥Uj(p
′,Q(p′)):

The pair (p, Q) is an equilibrium if Q is a second-stage
equilibrium and p is a first-stage equilibrium for Q.

4. The Second-Stage Game:
Concentration of Ownership

Recall our motivating question. Why is the ownership
of Bitcoin mining hardware so concentrated? This sec-
tion provides an answer by analyzing the second-
stage game in our model. We start by characterizing
second-stage equilibria. Our characterization relies
heavily on a “break-even cost” c∗. In Section 4.1, we
show how this cost can be estimated from publicly
available data. In Section 4.2, we answer our main
question; ownership concentrates because small
asymmetries in cost lead to large asymmetries in equi-
librium market share. In Section 4.3, we discuss eco-
nomic implications of this concentration.

We now analyze the second-stage game. For a fixed
price vector p, the effective cost for miner i is

ci(p) � min
j

cij(p): (6)

Lemma 1. If Q is a second-stage equilibrium, then cij(p) >
ci(p) implies Qij(p) � 0.

In other words, miners only acquire hardware from
sources offering the lowest cost. Thus, for the pur-
poses of calculating mining profit, we can ignore who
each miner purchases from and focus on how much
computational power each miner acquires.

The resulting game is a rent-seeking contest, as de-
scribed by Tullock (1980). Although several previous
papers have characterized the equilibrium of this
game, we give a new characterization in Theorem 1.
We begin by defining the X : R+ × Rn

+ → R+ by

X(y, c→) �
∑

n

i�1

max {1− ci=y, 0}: (7)

Lemma 2. For any c
→, there is a unique value c∗ satisfying

X(c∗, c→) � 1. Furthermore, increasing any ci < c∗ strictly
increases c∗, whereas increasing any ci ≥ c∗ leaves c∗

unchanged.

For the remainder of this paper, we let c∗ � c∗(p) de-
note the unique solution to X(c∗(p), c→(p)) � 1. The fol-
lowing result establishes that c∗(p) and ci(p) are sufficient
for determining equilibrium outcomes forminer i.

Theorem 1. For any prices p and any second-stage equilib-
rium Q, the total hash rate is

∑

i, j
Qij(p) �

R

c∗(p)
, (8)

the market share of miner i is

xi(Q(p)) � max 1 −
ci(p)

c∗(p)
, 0

{ }

, (9)

and the mining profit of miner i is

Π
M
i (p,Q(p)) � xi(Q(p))2R: (10)

The proof of Theorem 1 is in Appendix B.

4.1. Using Theorem 1 to Calculate a

Break-Even Cost
Before proceeding, we show how Theorem 1 can be ap-
plied to Bitcoin mining. There are several other charac-
terizations of equilibria in Tullock’s rent-seeking mod-
el (see, e.g., Hillman and Riley 1989, Gradstein 1995,
Dimitri 2017, Alsabah and Capponi 2020), which ex-
press outcomes in terms of the number of activeminers
and each of their costs. Unfortunately, these factors are
not observable in practice. By contrast, the expressions
in Theorem 1 rely heavily on the quantity c∗, which can
be easily estimated from available data. By (8), c∗ is
equal to the ratio R=

∑

Qij. The quantity R corresponds
to the rate of mining revenue, which is easily tracked.
Meanwhile,

∑

Qij corresponds to the total hash rate,
which can be accurately estimated from the difficulty
and rate of block discovery.

Let us apply this idea. On October 13, 2020, total
daily mining revenue was approximately 11.6 million
US Dollars (USD), and total hash rate was approxi-
mately 144.3 ExaHash/second.18 This implies that

c∗ ≈
$11:6 million=day

144:3 ExaHash=second
×

1 day

60 · 60 · 24 seconds

�
$0:93

ExaHash
:

This value serves as a break-even point; given the cur-
rent reward and difficulty of block discovery, any
miners with average cost above c∗ cannot mine profit-
ably, whereas those with average cost below c∗ will
earn profits from mining.19

4.2. A Natural Oligopoly: Linking Cost, Market

Share, and Profit
The claim that only miners with costs below c∗ can
make a profit is almost model free and should not be
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controversial. What is less clear is, for a miner with
cost ci < c∗, how much hardware will they control and
what profit will they make. We now use Theorem 1 to
answer these questions and study concentration of
ownership.

If we assume that there are many miners with iden-
tical costs, the following corollary establishes that all
of these costs must be close to c∗ and that each miner
will control a small share of the mining market.

Corollary 1. If all miners have identical effective costs
c1(p) � c2(p) � : : : � cn(p), then for all i, ci=c

∗ � (n− 1)=n
and xi(Q(p)) � 1=n.

In reality, miners have different costs, and one
should expect that miners with lower costs will
choose to operate more mining hardware and will
make more profit. A priori, it is not clear how strong
these effects should be. One might hope that small
cost asymmetries (i.e., on the order of 5%–10%) would
lead to only small asymmetries in market share. Un-
fortunately, Corollary 2 of Theorem 1 shows other-
wise; minor asymmetries in cost can imply drastic
asymmetries in market share.

Corollary 2. In equilibrium, ci(p) � (1− xi(Q(p)))c∗(p) for
each i. That is, miner i’s market share is precisely the per-
centage by which its effective cost ci(p) is below c∗(p).

To get intuition for Corollary 2, consider a miner
with marginal cost of hash power equal to ci < c∗. This
miner’s marginal revenue from additional hash power
is equal to c∗ times the fraction of mining hardware
controlled by competitors. In order for marginal cost
to equal marginal revenue, the fraction of hardware
controlled by others must be ci=c

∗.
We now apply Corollary 2 through a simple exam-

ple. If we use our previously calculated break-even
cost of $0.93/ExaHash, then a miner who pays $0.88/
ExaHash (5.4% below the break-even cost) should

control 5.4% of all mining hardware in equilibrium,
whereas a miner who pays $0.83/ExaHash is pre-
dicted to control 10.8% of all mining hardware. The
latter miner owns twice as much hardware, despite a
seemingly minor 5.7% cost advantage. The imbalance
in mining profit, as predicted by (10), is even more ex-
treme; the latter miner earns four times as much profit
as the former. Figure 1 plots estimated mining profit
as a function of mining cost—note the sharp growth
in profits as the cost drops.

We conclude that Bitcoin and other cryptocurren-
cies based on proof of work are natural oligopolies. In-
evitable differences in electricity costs, cooling costs,
and local wages will result in much larger differences
in market share. A miner with costs moderately below
the break-even cost c∗ should in fact control a signifi-
cant share of allmining hardware.

For anyone who considers decentralized mining as
an explicit goal of the Bitcoin protocol, this is disap-
pointing news. It also invites the question of whether a
network in which most transactions are processed by a
handful of large miners is truly secure. However, the
conclusion that Bitcoin mining is an oligopoly rather
than a competitive market also has implications for the
seemingly unrelated question of the energy consump-
tion of the Bitcoin network, as we now discuss.

4.3. Implications for Calculating Bitcoin’s

Energy Footprint
Many papers that model Bitcoin mining as a rent-
seeking contest assume that the mining market is
competitive (see Section 1). Section 4.2 establishes that
Bitcoin is instead an oligopoly (and should be ex-
pected to remain an oligopoly). Beyond its stand-
alone interest, this has implications for other economic
analyses. This section considers one such example.

One aspect of Bitcoin that has attracted significant
attention is its large carbon footprint. Many studies

Figure 1. From the Estimated Break-Even Cost of $0.93/ExaHash, OurModel Predicts a Miner’s Market Share (Left Panel) and
Profit (Right Panel) as a Function of Its Marginal Cost
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Note. This suggests a miner with costs 10% below the break-even cost could control 10% of the market andmake over $100,000 in daily profit.
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attempt to estimate the total energy consumption of
the Bitcoin network. The challenge is that although
the network hash rate can be readily estimated, it is
much harder to know the average efficiency of cur-
rently used hardware.

One way to get around this problem is to assume
that miners’ electricity costs are proportional to total
mining revenue (which is observable). The website
Digiconomist uses the following equations to derive
an estimate:

Total Mining Cost � Total Mining Revenue: (11)

TotalCost of Electricity�(TotalMiningCost)

× (%ofCost FromElectricity):

(12)

Total ElectricityUsed�(Total Cost of Electricity)=

(AveragePrice perKWh):

(13)

DeVries (2018, p. 803) explains the first equation with
the comment, “in equilibrium, not even Bitmain …

should be able to generate a profit.” In fact, this relies
on faulty logic; Theorem 1 implies that all active min-
ers should make a (possibly small) profit.

In fact, there is a close relationship between the lev-
el of concentration in the mining industry and total
mining profit. We measure concentration using the
Herfindahl–Hirschman Index, defined as the sum of
squares of market shares:20

HHI(q) �
∑

i

xi(q)
2: (14)

By (10), we have the following result.

Corollary 3. If Q is a second-stage equilibrium, then for
every p, the proportion of total mining revenue that consti-
tutes mining profit is equal to the Herfindahl–Hirschman
Index of market concentration:

∑

i

Π
M
i (p,Q(p)) � R ·HHI(Q(p)):

By assuming that miners make zero profit, Digicono-
mist likely overestimates the money that miners
spend on electricity. A simple first-order correction
would be to modify (11) by multiplying mining reve-
nue by one minus the market concentration.21 Howev-
er, this correction ignores the fact that the miners with
the greatest market share are also those with the low-
est costs, implying that using the average electricity
cost in (13) will overestimate electricity consumption.
This point is related to the critique of Koomey (2019,
p. 13) that “these estimates … don’t deal with the
large geographic variations in electricity prices.” In-
deed, Corollary 2 suggests that miners with lower
electricity costs will constitute a noticeably higher
market share.

Although we do not claim to offer a reliable estimate
of the electricity use of the Bitcoin network, our model
provides several reasons to believe that the simple cal-
culations offered by Digiconomist are an overestimate.
A more careful economics-based analysis would take
into account both mining profit and the correlation be-
tween electricity cost andmarket share.

5. The First-Stage Game: Concentration
of Production

We now fully characterize equilibria in our model and
use this characterization to answer the following ques-
tion. Why is the production of Bitcoin mining hard-
ware so concentrated?

The answer, in some ways, is simple. In the first-
stage game, miners essentially engage in Bertrand
competition; the lowest price claims the entire market.
Theorem 2 establishes that there is always an equilib-
rium in which the miner with the lowest-cost hard-
ware sells to the rest of the market. We say that sales
occur if any miner sells hardware to another miner
(i.e., there exists an i≠ j such that Qij(p) > 0).

Theorem 2. There exists an equilibrium (p, Q) where sales
occur. If HC1 < HC2, then in all equilibria (p, Q) where sales
occur, miner 1 sets price p1 ∈ [HC1,HC2], and all hardware
is produced by miner 1 (Qij(p) � 0 for all i and all j ≥ 2).

Although Theorem 2 relies on familiar intuition,
our model is significantly richer than standard Ber-
trand competition because sellers have the opportuni-
ty to mine themselves. Thus, a priori, there are three
potential equilibrium outcomes.

I. Miner 1 both mines and sells hardware to
competitors.

II. Miner 1 sells hardware to competitors but does
not mine.

III. Miner 1 mines but does not sell hardware to com-
petitors (and therefore, by Theorem 2, no sales occur).

Theorem 2 establishes that at least one of the first
two outcomes can be sustained in equilibrium. Which
one? Will the first miner choose to mine or make its
profit entirely from selling hardware? What price will
it charge in equilibrium? Theorem 2 also does not rule
out the existence of other equilibria. Can there be an
equilibrium where miners with efficient hardware
choose not to sell this hardware to others?

We answer these questions. First, Section 5.1 charac-
terizes the price set by miner 1 in equilibria with sales.
Although it is possible that either I or II is an equilibri-
um, in both cases miner 1 sets the highest price consis-
tent with its participation decision and the need to un-
dercut miner 2. Section 5.2 establishes that it is
possible for an equilibrium with no sales to exist but
only if the market primitives satisfy stringent neces-
sary conditions.
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5.1. Characterizing the Dominant

Miner’s Behavior
We first characterize the price set by miner 1 in equi-
libria where sales occur and understand whether they
choose to mine. Theorem 3 establishes that there are
only two possible prices miner 1 might set in equilibri-
um. In particular, if miner 1 both mines and sells
hardware, then it will charge the highest possible
price HC2. Meanwhile, if miner 1 abstains frommining,
then it either charges HC2 or the highest price that
maintains its incentive not to mine.

Theorem 3. In all equilibria (p, Q) where sales occur, ei-
ther p1 � HC2 or p1 < HC2, c

∗(p) � HC1 + OC1, and miner 1
does not mine (Q1j(p) � 0 for all j).

That is, there are only (at most) two potential prices
for Miner 1 to check: HC2 and whatever price induces
c∗(p) � HC1 + OC1. Generically, only one of these will be
an equilibrium (because miner 1 chooses their pre-
ferred price in [HC1,HC2]).

22

Theorem 3 implies that a necessary condition for
any price p1 < HC2 to be an equilibrium is that miner
1’s decision of whether to mine hinges on the price it
sets. That is, if we express c∗ as a function of p1, we
must have

c∗(HC1) ≤ HC1 + OC1 < c∗(HC2):

If OC1 is too small, then no matter what price miner 1
sets, they will choose to mine (and Theorem 3 implies
that they, therefore, set price HC2). If OC1 is too large,
then no matter what price miner 1 sets (subject to
guaranteeing themselves the entire market of sales),
they will choose not to mine (and Theorem 3 implies
they will also set price HC2). However, if the inequal-
ities hold, then by Lemma 2, there is a unique p1 such
that c∗(p) � HC1 + OC1, and this will be an equilibrium if
and only if this price is at least as profitable as selling
at HC2.

Interestingly, in the cases where p1 < HC2 is an equi-
librium, miner 1 would actually earn higher profit by
setting a price of HC2 and committing not to mine. Our
model does not permit this possibility; in practice,
mining activity is not directly observable, and any
commitment by a manufacturer not to use their own
hardware would not be credible. In our model, this
commitment can be made credible by lowering the
sales price, thereby encouraging other miners to pur-
chase more equipment and reducing miner 1’s return
from mining to the point where it is no longer profit-
able. This is precisely the mechanism that can cause
miner 1 to set a low price.

5.2. When Must Sales Occur?
Recall our second key question. Does it make sense
for the dominant miner to both mine and sell hard-
ware to its competitors? Theorem 2 suggests that the

answer is “yes” because there is an equilibrium where
sales occur (and in all such equilibria, all mining hard-
ware is purchased from miner 1). However, this an-
swer is incomplete, as there could a priori be another
equilibrium where no sales occur. We now turn to the
question of whether miner 1 will ever choose to keep
their hardware to themselves, in order to control more
of the mining market. The following example illus-
trates that this is possible.

Example 1 (Equilibrium Without Sales). Let HC � (1=8,
1=4, 1) and OC � (3=8, 3=4, 1).

Because miner 1 has the lowest hardware and low-
est operational costs, Theorem 1 implies that it will al-
ways choose to mine. Theorem 2 states that there is an
equilibrium where sales occur, and Theorem 3 implies
that in this equilibrium, miner 1 must set a price of
HC2 � 1=4.

Whenminer 1 sets a price of HC2 � 1=4, effective costs
are c→� (1=2, 1, 5=4) and c∗ � 11=8. By Theorem 1,miner
1 has a market share of 7/11, mining profit of (7=11)2,
and profit from sales of 8=11 · 4=11 · (1=4− 1=8) �
4=121, for a total profit of 53=121 ≈ 0:438. Miner 2 has
market share 3/11 and profit 9/121, and miner 3 has
market share 1/11 and profit 1/121.

Without sales, effective costs are c
→

� (1=2, 1, 2) and
c∗ � 3=2. By Theorem 1, miner 1 has a market share of
2/3 and profit of 4=9 ≈ 0:444, miner 2 has market
share of 1/3 and profit of 1/9.

The calculations establish that miner 1 prefers the
“no-sales” outcome to the equilibrium in which sales
occur at price 1/4. However, this is not sufficient to
ensure that “no sales” is an equilibrium. We must in-
stead verify that even at a high price, neither miner 1
nor miner 2 wishes to sell to miner 3. The calculations
for this are presented in Appendix A.2.23

So, our model is rich enough to admit the possibili-
ty of a no-sales equilibrium. However, Theorem 4 es-
tablishes fairly stringent necessary conditions on the
market primitives in order for the no-sales outcome to
be an equilibrium. We say that miner i is active if qii >
0 in the no-sales outcome and inactive if qii � 0 (recall
that Theorem 1 establishes that miner i will be active
if and only if its effective cost HCi + OCi is less than the
break-even cost c∗).

Theorem 4. If the no-sales outcome is an equilibrium, then
all of the following must hold.

I. Every inactive miner has weakly higher hardware cost
than every active miner.

II. If there are at least three active miners, then every inac-
tive miner has strictly higher operational cost than every ac-
tive miner.

III. Unless all active miners have identical hardware costs,
there is an inactive miner j who could profitably mine using
hardware from any active miner i: OCj < c∗ − HCi.
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If any of these conditions are violated, then sales oc-
cur in all equilibria. These conditions come from con-
sidering the following potential deviations from the
no-sales outcome.

I. An inactive miner could sell hardware to an active
miner.

II. An active miner could sell hardware to an inactive
miner.

III. An active miner could sell hardware to another
active miner.

The first deviation will be profitable if any inactive
miner has lower hardware costs than any active miner.
The second deviation will be profitable if any inactive
miner has low operational costs (since then, an active
miner could sell them hardware at a highmarkup—this
is the most technical bullet in the proof of Theorem 4).24

The third deviation is guaranteed to be profitable if ev-
ery inactive miner has high operational costs (since
then, miner 1 could sell to other active miners without
attracting new entrants).

The conditions in Theorem 4 are restrictive for two
reasons. First, observe that active miners are exactly
those with OCi + HCi < c∗, so every active miner has
lower total cost than every inactive miner. I and II of
Theorem 4 imply that if no sales is an equilibrium,
then every active miner not only has lower total cost
but also, lower hardware cost and lower operational
cost. In particular, for there to be an equilibrium with-
out sales, it is necessary that every miner with low op-
erational costs can also produce hardware cheaply enough
to mine profitably. This seems unlikely.

Second, observe a quantitative tension between II
and III. II requires that every inactive miner have high
operational cost (strictly higher than every active min-
er). Yet, III requires the existence of an inactive miner
with low-enough operational cost to purchase hard-
ware from every active miner. So, in particular, the
lowest operational cost of any inactive miner must lie
in (max active i{OCi}, c

∗ −max active i{HCi}).
25

In summary, Theorem 4 establishes stringent neces-
sary conditions for no sales to be an equilibrium, sug-
gesting that for practical market primitives, sales occur
in all equilibria. This conclusion is only strengthened if
miners are permitted to sell at personalized prices. In
that case, it will always be profitable for miner 1 to de-
viate from the “no-sales” outcome by selling to other
active miners.

6. Conclusions and Discussion
The concentration of ownership of mining hardware
among a few large entities and the concentration of
production of mining hardware within a single large
entity threaten the promise of a truly decentralized
digital currency. We show that both aspects of concen-
tration can be explained using a simple model with

three key features. First, miners share a fixed reward
in proportion to their investment in computational
power. Second, miners have different costs, separated
into hardware costs and operational costs. Third,
hardware can be readily bought and sold.

We show that seemingly minor differences in opera-
tional costs will result in concentrated ownership of
mining hardware; low-cost miners will have signifi-
cant market share and earn significant profits. Our
conclusion that mining profits are very sensitive to
mining cost also justifies our assumption that miners
will purchase the hardware that lets them mine most
cheaply. As a result, the sale of mining hardware re-
sembles a Bertrand competition, where the lowest-cost
manufacturer captures the entire hardware market.

In summary, mining centralization arises from core
aspects of the Bitcoin mining protocol and is not a
temporary aberration. Without significant changes,
the vision of a competitive mining market is unlikely
to be fulfilled. As Section 4.3 discusses, analyses based
on the assumption of a competitive mining market
should be revisited to understand how the reality of a
profitable mining oligopoly affects their conclusions.

There are several proposals for ways to reduce min-
ing centralization. When evaluating these proposals,
the simplicity of our model is an advantage; unless
the change addresses one of the three features identi-
fied, our model suggests that centralization will per-
sist. For example, innovations such as BetterHash and
Stratum V2,26 which are designed to allow miners
(rather than mining pools) to dictate the contents of a
block, do not address the cost asymmetries that are
the focus of this paper. Although these technologies
may offer some advantages, they are unlikely to result
in decentralized mining. Meanwhile, a change to
ASIC-resistant hash functions (such as Equihash,
which is used by Bitcoin Gold) might change the sup-
plier of mining hardware, but as long as cooling and
electricity remain significant costs, mining activity is
likely to remain concentrated among the few areas of
the world where these costs are cheapest.

What changes might have an impact? One thought is
to change the reward structure, so that rewards scale
sublinearly with mining power; diseconomies of scale
directly disincentivize large miners. Unfortunately,
sublinear rewards seem impossible as long as mining
is permissionless; recent works point out that a propor-
tional division is the only one that is anonymous, ro-
bust to sybil attacks, and robust to mergers (Chen et al.
2019, Leshno and Strack 2020). The key challenge is
that any effort to make rewards sublinear in computa-
tional power will result in miners dividing their power
among multiple false identities. A more promising ap-
proach is to equalize costs across miners. Because stor-
ing and transporting electricity are difficult, cost asym-
metries seem inherent to any proof-of-work protocol.
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However, proof-of-stake protocols reward miners in
proportion to the amount of currency that they own,
rather than their computational power. It seems plausi-
ble that variation in the cost of purchasing cryptocur-
rency should be much smaller than variation in elec-
tricity prices. If this is the case, then proof-of-stake
protocols might contribute to mining decentralization.

Although the simplicity of our model is one of its key
advantages, it also implies certain limitations. For exam-
ple, we model both operational and hardware costs as
linear in computational power. In practice, there are rea-
sons to believe that mining features economies of scale.27

However, this fact should only serve to exacerbate con-
centration of ownership; it is telling that this concentra-
tion arises even when economies of scale are absent.

More importantly, we consider a static model and
combine hardware costs and operational costs using a
simple additive form. This captures the fact that miners
purchasing identical hardware (at identical prices) may
nevertheless have different operational costs. However,
our model does not clearly distinguish between the
one-time cost of purchasing hardware and the ongoing
cost of powering it. In practice, fluctuations in Bitcoin
and electricity prices imply that the source of the cost
matters; if powering equipment is the major cost, then
less efficient miners should use their equipment only
when Bitcoin prices are high or electricity prices low. If
most of the cost is hardware acquisition, then miners
will power their hardware regardless of the Bitcoin
price. Although modeling and understanding these dy-
namics are viable directions for future work, the basic
insight that small cost asymmetries can result in highly
centralized mining operations should persist.

Appendix A. Examples

A.1. Degenerate ExamplewithMultiple Sales Equilibria
In Section 5.1, we claimed that, generically, there is a
unique equilibrium where sales occur. For completeness,
we give a nongeneric example where the two possible
equilibrium prices are both optimal. To keep calculations
simple, we set operational costs equal to zero for some
miners. A similar example in which miner 1’s profit is
maximized at exactly two prices could be constructed by
letting miners have small positive operational costs.

Example A.1 (Multiple Sales Equilibria). There are four
miners. Miners 2–4 are identical, with HCi � 1 and OCi � 0.
Miner 1 has HC1 � 0.

If OC1 < 0:6, then there is a unique equilibrium. Miner 1

sells at price 1, c∗ � 1+ 1
3 OC1, and miner 1 gets a profit of:

1− 1
3 OC1 +

4
9 OC

2
1

1+ 2
3 OC1 +

1
9 OC

2
1

:

If OC1 > 0:6, then for any price p ≤ 2
3OC1, miner 1 stays

out of the market and earns profit 2/3. This is better than
setting a price of p � 1. There is a continuum of equilibria,

but all are payoff equivalent. However, there is no
“lowest optimal price.”
If OC1 � 0:6, then there are multiple equilibria that are not

payoff equivalent (p � 1,p ≤ 0:4). Miner 1 gets a utility of 2/3
in each. When p � 1, we have c∗ � 6=5, and every other miner
gets market share 1/6 and utility 1/36. When p ≤ 0:4, we
have c∗ � 3p=2, and each of miners 2–4 get utility 1/9.

A.2. Omitted Calculations for Example 1
Recall that Example 1 provides an example where “no

sales” is an equilibrium. We verify these calculations.

Lemma A.1. In Example 1, “no sales” is an equilibrium.

Proof. Consider the price-setting problem facing miner 1.
For p ≥ 1=2, no sales occur. For p ∈ (1=4, 1=2), the third
miner buys hardware, and we have c∗(p) � 5=4+ p=2. Min-
er 1’s profits are

c∗ − 1=2

c∗

( )2

+
1

c∗
c∗ − (1+ p)

c∗
p−

1

8

( )

�
34p− 4p2 + 17

2(5+ 2p)2
:

For p ∈ [1=8, 1=4], the second and third miners buy hard-
ware, and we have c∗(p) � 9=8+ p. Miner 1’s profits are

c∗ − 1=2

c∗

( )2

+
1

c∗
1=2

c∗
p−

1

8

( )

�
64p2 + 112p+ 21

(9+ 8p)2
:

We can verify that both profit functions are maximized at
the right end points and that no price is better for miner 1
than a no-sales price of p � 1/2.
We can also check that miner 2 does not want to sell.

As before, at a price p ∈ (1=4, 1=2), the third miner buys
hardware, and we have c∗(p) � 5=4+ p=2. Miner 2’s profits
(including revenue) are

c∗ − 1

c∗

( )2

+
1

c∗
c∗ − (1+ p)

c∗
p−

1

4

( )

�
10p− 4p2

(5+ 2p)2
:

These are maximized at the no-sales outcome p � 1/2. w

A.3. Necessity of Technical Conditions in Theorem 4
In Theorem 4, II requires at least three active miners.

We quickly confirm that this condition is necessary, by
showing that it does not hold with only two active min-
ers. As previously noted, even when only two miners are
active, an inactive miner with sufficiently low operational
costs will still tempt an active miner to deviate. However,
“sufficiently low” will no longer have the clean definition
given in Theorem 4.

Example A.2 (No Sales with Nondominance). Let hard-
ware costs be (0:25, 0:3, 1) and operational costs be
(0:75, 0:2, 0:6).
With no sales, effective costs are c

→
� (1, 0:5,1:6) and

c∗ � 1:5. By Theorem 1, miner 1 has market share 1/3 and
profit 1/9. Miner 2 has market share 2/3 and profit 4/9.
With sales at a price of 0.25, effective costs are c

→
�

(1, 0:5, 0:9) and c∗ � 1:2. By Theorem 1, mining profits are
(4=144,49=144, 9=144), and sales profit for miner 1 is
5=6 · 5=6 · 1=20. Total profit is (9=144, 49=144,9=144).
Miner 1 prefers the outcome with no sales. Further-

more, one can verify that this is an equilibrium (even
though miner 3 has lower operational costs that miner 1).
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Appendix B. Proofs: Section 4
We first prove Lemma 2 and then, a helper lemma, and
then, we provide a proof of Theorem 1.

Proof of Lemma 2. For y ≤mini ci, we have X(y, c→) � 0.
Note that X(y, c→) is continuous and strictly increasing in
y on [mini ci,∞) and tends to n as y→∞. Therefore, there
is a unique solution to X(c∗, c→) � 1. Furthermore, increas-
ing any ci < y strictly decreases X(y, ci), whereas increasing
any ci ≥ y leaves X(y, ci) unchanged. w

Given any second-stage response Q, we let

Qi(p) �
∑

j

Qij(p) (B.1)

be the total computational power owned by miner i.

Lemma B.1. Suppose that Q is a second-stage equilibrium.
Then, for each i and p,

∑

j≠i

Qj(p) > 0: (B.2)

xi(Q(p)) � max 1 −
ci(p)

R

∑

j

Qj(p), 0

{ }

: (B.3)

Proof. We fix p and the values Qj(p) for j≠ i and consider
the optimization problem facing miner i. To simplify nota-
tion, we drop the dependence of Qi, Qj, and ci on p, and we
write miner i’s market share and profit as functions of qi:

xi(qi) �
qi

qi +
∑

j≠i
Qj

Ui(qi) � R · xi(qi) − ciqi +Π
S
i : (B.4)

(Note that miner i’s profit from sales Π
S
i does not depend

on qi.)
We first claim that

∑

j≠iQj > 0. This is because if
∑

j≠i

Qj � 0, then xi � I(qi > 0), and miner i does not have a best
response (so, in particular, Qi cannot be a best response).

Next, note that if
∑

j≠iQj > 0, then xi is continuous and
differentiable in qi, with

x′i (qi) �
1

qi +
∑

j≠i
Qj

−
qi

(qi +
∑

j≠i
Qj)

2
�

1− xi(qi)

qi +
∑

j≠i
Qj

: (B.5)

Furthermore, xi is easily shown to be concave, from which
it follows that U is concave. Because i chooses qi ∈ [0,∞),
it follows that the maximizer of U satisfies the following
first-order optimality condition:

U′
i (Qi) ≤ 0, with equality if Qi > 0: (B.6)

We will show that (B.4)–(B.6) jointly imply (1). They imply
that for all i,

U′
i (Qi) � R · x′i (Qi) − ci � R ·

1 − xi(Qi)

Qi +
∑

j≠i
Qj

− ci ≤ 0,

with equality if Qi > 0:

Therefore, if Qi > 0, we must have xi(Qi) � 1− ci
R

∑

jQj.
Meanwhile, if Qi � 0, then xi(Qi) � 0, and we must have
R− ci

∑

jQj ≤ 0. In other words, (1) holds. w

Proof of Theorem 1. If Q is a second-stage equilibrium,
then for all p, we have

1 �
∑

i
xi(Q(p)) �

∑

i

max 1 −
ci(p)

R

∑

j

Qj(p), 0

( )

� X(R=
∑

j

Qj(p):

The first equality follows from the definition of xi in (1),
the second follows from Lemma B.1, and the third follows
from the definition of X in (7). Therefore, Lemma B.1 im-
plies that

c∗(p) �
R

∑

j
Qj(p)

:

In other words, (8) holds. From this and Lemma B.1, (9)
follows: xi(Q(p)) �max (1− ci(p)=c

∗(p), 0).

Finally, the definition of ΠM
i in (10) implies that

Π
M
i (p,Q(p)) � R · xi(Q(p)) −

∑

j

Qij(p)cij(p)

� R · xi(Q(p)) −Qi(p)ci(p)

� R · xi(Q(p)) −R · xi(Q(p))

∑

j
Qj(p)

R
ci(p)

� R · xi(Q(p)) 1−
ci(p)

c∗(p)

( )

� R · xi(Q(p))2:

The second line uses Lemma 1 (miners only source from
the lowest-cost provider), the third uses the definition of xi
in (1), the fourth uses (8), and the fifth uses Lemma B.1. w

We now make two observations that will prove useful
in subsequent analysis.

Lemma B.2. If Q is a second-stage equilibrium, then Qi is a
continuous function of p for all i. As a result, so are xi(Q(p))
and Π

M
i (Q(p)).

Lemma B.3. For any c1, : : : , cn, if we define c∗ as in Lemma 2
and let k �

∑

i1(ci < c∗) be the number of miners participating
in equilibrium, then (k− 1)c∗ �

∑k
i�1ci.

This follows from rewriting the equation
∑k

i�11− ci=c
∗ � 1.

Appendix C. Proofs: Concentration of Production
Throughout this section, we use Qj(p) as shorthand for
∑

iQji(p) and define

p � p(p) :�min
j

{pj}:

Observe that this implies that cj(p) � OCj +min {p(p),HCj}

for all j.

C.1. Proof of Theorem 2

Lemma C.1. Let Q be a second-stage equilibrium. If there ex-
ists a miner i with HCi < p(p) and if any miner purchases from
a miner other than i in Q(p) (that is, Qjk > 0 for k ∈ {i, j}),
then (p, Q) is not an equilibrium.

Arnosti and Weinberg: Bitcoin: A Natural Oligopoly
Management Science, 2022, vol. 68, no. 7, pp. 4755–4771, © 2022 INFORMS 4765

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
7
3
.7

2
.1

0
4
.1

6
5
] 

o
n
 0

7
 J

an
u
ar

y
 2

0
2
3
, 
at

 1
1
:5

8
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



Proof. We claim that miner i can choose a better price
than pi. We note that by the definition of Ui in (5) and
Theorem 1, we have

Ui(p,Q(p)) � R ·max 1 −
ci(p)

c∗(p)
,0

( )2

+ (pi − HCi)
∑

j≠i

Qji(p):

(C.1)

If pi > p, then by Lemma 1, Qji(p) � 0 for all j≠ i, so the
second term in (C.1) is zero. Because lowering pi to p does
not change ci(p) or c∗(p), it does not change the first term
in (C.1) and may increase the second. Thus, utility Ui is
weakly higher than before.

We now show that if the conditions of the lemma are
met, then for sufficiently small ε, it is strictly better for i
to set a price of pi � p− ε than to set a price of p. The
point is that as miner i lowers the price, the loss in miner
i’s market share and profit per unit pi − HCi move continu-
ously, whereas quantity sold jumps discretely.

To see this, consider the expression for Ui in (C.1). Be-
cause ci(p) and c∗(p) are continuous functions of p, the first
term (which represents mining profit ΠM

i ) changes contin-
uously in ε. Any miner j who was previously making a
purchase had HCj ≥ p. It follows from Lemma 1 that if
miner i was to set a price pi < p, then all of these miners
would source exclusively from i. We know that at least
one of these miners was previously sourcing elsewhere
(Qjk(p) > 0). Because total purchase quantities Qj(p) are
continuous in p for all j by Lemma B.2, for all sufficiently
small ε miner i gets a discrete increase in sales, with only
a continuous loss in per-unit profit. Therefore, this devia-
tion is profitable for sufficiently small ε. w

Proof of Theorem 2. We first claim that if (p, Q) is an
equilibrium in which sales occur, then the minimum price
p must be at most HC2. This is because if sales occur and
the minimum price is above HC2, then by Lemma C.1, ei-
ther miner 1 or miner 2 is not best responding (either one
could set a price of p− ε and capture the entire hardware
market).

We next show that if HC1 < HC2, then in every equilibri-
um (p, Q) in which sales occur, all hardware is sourced
from miner 1 (that is, Qij(p) � 0 for j ≥ 2). If p1 < HC2, then
this is immediate from Lemma 1 (which states that all min-
ers purchase from the lowest-cost source) and the fact that
Q is a second-stage equilibrium. Meanwhile, if p1 ≥ HC2 and
some hardware is purchased from a miner other than min-
er 1, then Lemma C.1 establishes that setting a price p1 just
below HC2 would result in higher utility for miner 1.

Finally, we establish existence of an equilibrium where
sales occur. Let pj � HCj for j ≥ 2, and let Q be a second-
stage equilibrium in which all miners tie break in favor of
miner 1 when purchasing hardware. Let p1 be miner 1’s
best response to this.

We first note that if miner 1 sets any price p1 ≤ HC2, then
sales will occur. In particular, this implies that HCj ≥ p1 and
cj1(p) ≥ cj(p) for all j≠ 1. Because Q is a second-stage equi-
librium in which miners tie break in favor of miner 1,
all hardware will be sourced from miner 1. Furthermore,
miner 1 will have positive sales because Lemma B.1 implies
that Qj(p) > 0 for some j≠ 1.

Next, we argue that any price above HC2 is weakly worse
than a price of HC2. This is because ci(p) (and therefore, c∗(p))
are the same for any price p1 ≥ HC2, but when p1 � HC2, miner 1
gets profit from selling hardware. Therefore, we can restrict at-
tention to prices in the interval [HC1,HC2].
On this interval, U1(p,Q(p)) is continuous in p1; as argued,

all hardware is purchased from miner 1, and by Lemma B.2,
the quantities c∗(p) and Qj1(p) are continuous in p1. There-
fore, mining profit ΠM

i and sales profit ΠS
i are both continu-

ous in p1 on [HC1,HC2], so U1(p,Q) achieves its supremum
over this compact interval. In other words, there is a best re-
sponse p1. Furthermore, because p1 ≤ HC2, no miner j ≥ 2 can
benefit from changing its price. This establishes the existence
of an equilibrium in which sales occur. w

C.2. Proof of Theorem 3

Proof of Theorem 3. Theorem 2 already establishes that
when sales occur, p1 ∈ [HC1,HC2]. Therefore, the claim of
Theorem 3 that needs proving is that whenever p1 < HC2,
c∗(p) � HC1 + OC1. Observe that in order to possibly have
p1 < HC2, it must be that HC1 < HC2. Therefore, Theorem 2
already establishes that all hardware is purchased from min-
er 1. Because all hardware is purchased from miner 1, this
means that miner 1 is active if and only if c∗(p) > HC1 + OC1.
So, we consider the cases c∗(p) > HC1 + OC1 and c∗(p) ≤ HC1+

OC1 separately.
We will use throughout both cases that all hardware is pur-

chased from miner 1 in any potential equilibrium with p1 < HC2.
We consider potential equilibria with c∗(p) ≤ HC1 + OC1

first. We know from Theorem 1 that the total computa-
tional power purchased is 1=c∗(p). Because all hardware is
purchased from miner 1 (and miner 1 is inactive), miner
1’s profit is (p1 − HC1)=c

∗(p).
We now expand miner 1’s profit and establish that it is

increasing in c∗(p). Let A(p) denote the set of miners i for
which OCi + p1 < c∗(p) (i.e., the miners who are active at p)
and N(p) :�| A(p) |. Then,

∑

i∈A(p)

1−
OCi + p1
c∗(p)

� 1

⇒
∑

i∈A(p)

(OCi + p1) � (N(p) − 1) · c∗(p)

⇒
N(p) · p1
c∗(p)

�N(p) − 1−

∑

i∈A(p)
OCi

c∗(p)

⇒
p1

c∗(p)
� 1−

1

N(p)
−

∑

i∈A(p)
OCi

N(p) · c∗(p)

⇒
p1 − HC1

c∗(p)
� 1−

1

N(p)
−

∑

i∈A(p)
OCi

N(p) · c∗(p)
−

HC1

c∗(p)
:

The first line follows as 1− (OCi + p1)=c
∗(p) is miner i’s frac-

tion of the total purchased power. The rest follow from al-
gebraic manipulation. Fixing N(p), it is easy to see that the
final expression on the right-hand side is strictly increasing
in c∗(p). This means that miner 1’s profit is maximized with
c∗(p) as large as possible, except for possibly discontinuities
in miner 1’s profit when N(p) changes (e.g., if miner 1’s
profit dropped radically when c∗(p) increased and N(p) de-
creased discretely). However, miner 1’s profit is continuous
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in c∗(p). To see this, simply observe that p1 is continuous in
c∗(p), and miner 1’s profit is (p1 − HC1)=c

∗(p) (a continuous
function of continuous functions in c∗(p)).28 Therefore, there
are not in fact any discontinuities, and miner 1’s profit
must be maximized when c∗(p) is as large as possible.

It remains to consider the case where c∗(p) > HC1 + OC1. Ob-
serve in this case that miner 1 is active but still, that all hard-
ware is purchased fromminer 1 (as p1 < HC2). In this case, min-
er 1 participates, and by Equation (5), their payoff is

1−
HC1 + OC1

c∗(p)

( )2

+ (p1 − HC1) ·
HC1 + OC1

(c∗(p))2
:

We again wish to see how this term behaves for a fixed
A(p). To this end, it will be significantly cleaner to write
γ :� (HC1 + OC1)=c

∗(p) and optimize with respect to γ. We
write p1(γ) to denote the price miner 1 must set to induce
a particular γ (noting that p1 determines c∗ which deter-
mines γ) and Π(γ) to denote miner 1’s profit for a particu-
lar γ. Observe first that we can write miner 1’s profit as

Π(γ) � (1− γ)2 +
(p1(γ) − HC1) · (HC1 + OC1)

(c∗(p))2

� (1− γ)2 +
γ2(p1(γ) − HC1)

HC1 + OC1
:

Differentiating with respect to γ, we get

Π
′(γ) � −2(1 − γ) + 2γ

p(γ) − HC1

HC1 + OC1
+ γ2 p′(γ)

HC1 + OC1
:

We now wish to substitute for p′(γ). Observe that (again,
fixing A(p))

1−
HC1 + OC1

c∗(p)
+

∑

i∈A(p)

1−
OCi + p1
c∗(p)

� 1

⇒1− γ+
∑

i∈A(p)

1− γ
OCi + p1

OC1 + HC1
� 1

⇒− γ+N(p) − γ
∑

i∈A(p)

OCi

OC1 + HC1
� γN(p) ·

p1(γ)

HC1 + OC1

⇒−
1

N(p)
+
1

γ
−

∑

i∈A(p)

OCi

N(p) · (OC1 + HC1)
�

p1(γ)

HC1 + OC1

⇒
p′1(γ)

HC1 + OC1
� −1=γ2:

The first line follows as the sum of total mining power
must be one. The remaining lines substitute the definition
of γ and follow from algebraic manipulation. After mak-
ing this substitution, we get

Π
′(γ)�−2(1−γ)+2γ

p(γ)−HC1

HC1+OC1
−1

�−3+2γ
p(γ)−HC1

HC1+OC1
+1

( )

�−3+2γ
1

γ
−

1

N(p)
−

∑

i∈A(p)

OCi

N(p)·(OC1+HC1)
−

HC1

HC1+OC1
+1

( )

�−1+2γ −
1

N(p)
−

∑

i∈A(p)

OCi

N(p)·(OC1+HC1)
−

HC1

HC1+OC1
+1

( )

:

Observe first that, because p(γ) is a continuous function of
γ, Π′(γ) is also a continuous function of γ (this follows im-
mediately from the first line). From the final line, it is now
easy to see for fixed A(p) thatΠ′(γ) is negative for all γ, posi-
tive for all γ, or initially negative and then positive.
Because Π

′(γ) is continuous, at the (finitely many)
points where N(p) changes, the derivative cannot change
signs, and therefore, the derivative over the entire range
is (weakly) negative and then (weakly) positive, meaning
that the optimum must be achieved at the end points. In
particular, this means that if the optimal price lies in the
interval where c∗(p) � HC1 + OC1 up to HC2, it must be either
at c∗(p) � HC1 + OC1 or at HC2. In particular, this means that
if c∗(p) > HC1 + OC1, it must be that p1 � HC2.
This completes the proof of both cases; if c∗(p) ≤ HC1 + OC1

in the optimal solution, the first half establishes that we
must have c∗(p) � HC1 + OC1. If c∗(p) > HC1 + OC1, the second
half establishes that we must have p1 � HC2. Therefore, if
p1 < HC2 in equilibrium, wemust have c∗(p) � HC1 + OC1. w

C.3. Proof of Theorem 4
When it is clear from context, we will write ci :� ci(p)

for the effective cost of miner i in the second-stage game
and write c̃i :� OCi + HCi to denote the effective cost for
player i when all prices are high (at least HCi). We let c∗ �
c∗(p) denote the unique solution to X(c∗, c(p)) � 1 and c̃∗ de-
note the unique solution to X(c̃∗, c̃) � 1.
We prove Theorem 4 through several lemmas. The out-

line is as follows.
•One simple possible deviation from the “no-sales” strate-

gy profile is for an inactive miner to sell hardware to an active
miner. Under no sales, the inactive miner gets zero utility.
However, by selling hardware, they get strictly positive utili-
ty. Therefore, every active miner must have (weakly) better
hardware cost than every inactive miner in order for “no
sales” to possibly be an equilibrium (Lemma C.2).

• A second simple deviation from “no sales” would be for
an active miner to sell hardware to another active miner,
without changing c∗. If they can do so without causing a inac-
tive miner to become active, this is a strictly better response.
Therefore, it must be that any price set by an active miner
that is low enough to entice another active miner to buy their
hardware must also entice an inactive miner to become active
(Lemma C.3).

• A final deviation from “no sales” would be for an active
miner to sell hardware to a previously inactive miner (chang-
ing c∗ in the process). It turns out that, under the necessary
conditions imposed by Lemmas C.2 and C.3, it is strictly prof-
itable for activeminer i to cause inactiveminer j to become ac-
tive whenever OCi > OCj (assuming the necessary conditions
implied by the first two bullets), whenever at least three min-
ers are active in the “no-sales” outcome (Lemma C.4). This
concludes the proof of Theorem 4.

• Example A.2 demonstrates that Theorem 4 does not ex-
tend to the case where the “no-sales” outcome has two active
miners. Any necessary and sufficient conditions for this case
are much more technical than the simple dominance
condition.
We begin now with Lemma C.2, establishing that all ac-

tive miners must have weakly better hardware cost in order
for “no sales” to possibly be an equilibrium. Throughout the
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remainder of this section, we will let A :� {i | c̃i < c̃∗} denote
the set of active miners under “no sales” and I :� [n]\A de-
note the remainingminers.

Lemma C.2. If “no sales” is an equilibrium, then either I is
empty or maxi∈A{HCi} ≤mini∈I{HCi}.

Proof. Assume for contradiction that I is nonempty and that
there exists j ∈ I, i ∈ A such that HCj < HCi. Consider the devia-
tion where miner j sets price (HCi + HCj)=2. Under “no sales,”
miner j has zero utility. Under this deviation, miner i’s effec-
tive cost is strictly lowered, implying by Lemma 2 that c∗(p)
is strictly lower than c̃∗. This implies that some miner must
purchase hardware fromminer j, at strictly positive profit to
miner j. Therefore, miner j has a strictly profitable deviation,
contradicting that “no sales” is an equilibrium. w

We continue with Lemma C.3, which considers the pos-
sibility of an active miner selling hardware to another ac-
tive miner. Observe that Lemma C.3 implies that there is
some inactive miner who could profitably mine using any
active miner’s hardware.

Lemma C.3. If “no sales” is an equilibrium, then at least one
of the following occurs.

• HCi is the same for all i ∈ A.
• I is nonempty, andmaxi∈A{HCi} +mini∈I{OCi} < c̃∗.

Proof. Assume for contradiction that neither occurs. Then,
HCi ≠ HCj for some i, j ∈ A, and also, either I is empty or
maxi∈A{HCi} +mini∈I{OCi} ≥ c̃∗.

Let us first consider the case that HCi < HCj for some i, j ∈
A and I is empty. Then, observe that miner i can set price
maxj∈A{HCj} − ε as a price for arbitrarily small ε. Because
c∗ is a continuous function of pi, for all δ, there exists a
sufficiently small ε such that miner i’s mining profit
changes by at most δ by setting this price. On the other
hand, the miner j ∈ argmaxj∈A{HCj} must now purchase
hardware exclusively from miner i. Again, cj is a continu-
ous function of pi so for all δ, there is again a sufficiently
small ε such that miner j purchases at least 1− c̃j=c̃

∗ − δ

units of hardware from miner i at price at least
HCj − δ > HCi. Taking all of these together, miner i can pick
a sufficiently small δ > 0, set ε as a function of δ, and
strictly increase their utility. Again, the main idea is that
they get a discrete jump in sales that earn positive while
suffering only a continuous loss in mining revenue.

Let us next consider the case that HCi ≠ HCj for some i, j ∈ A
and maxi∈A{HCi} +mini∈I{OCi} ≥ c̃∗. Let again j :� argmaxj∈A
{HCj}, and let i be some miner with HCi < HCj. Miner i will
again try to set a price HCj − ε, which is a strictly profitable
deviation unless it causes some inactive miner to enter the
market. However, if HCj +mini∈I{OCi} ≥ c̃∗, then in fact, no in-
active miner will enter the market at price HCj. Moreover,
even at price HCj − ε, it is still the case that c∗ changes contin-
uously in pi, and so again, for all δ, there exists a sufficiently
small ε such that c∗ ≥ c̃∗ − δ at price HCj − ε (even taking into
account that this price causes additional miners to join the
market, albeit purchasing tiny amounts of computational
power). The analysis from the previous paragraph again
holds for the new revenue achieved by miner i, so this is
again strictly profitable. Again, the main idea is that themin-
ing revenues change continuously in pi even considering the

new miners who may enter at price < HCj, but there is a dis-
crete jump in revenue from hardware sales. w

Finally, we prove Lemma C.4, establishing conditions
under which an active miner can strictly benefit by selling
hardware to an inactive miner (under the hypotheses im-
posed by Lemmas C.2 and C.3).

Lemma C.4. If “no sales” is an equilibrium with | A |≥ 3, then
either I is empty or maxi∈A{OCi} <mini∈I{OCi}.

Proof. By Lemma C.3, there are two possible cases for a
no-sales equilibrium. First, perhaps maxi∈A{HCi}+

mini∈I{OCi} < c̃∗. This means that if miner ℓ ∈ A sets price
pℓ :� c̃∗ −mini∈I{OCi} > HCℓ, they do not yet set a price low
enough to replace the hardware cost of any miners in A
(who are producing some hardware by definition). On the
other hand, this price is just low enough that now at least
one miner (say it is a total of k miners) has cost exactly c̃∗.
Similarly, if HCi is the same for all i ∈ A (and I is non-

empty), assume for contradiction that OCj ≤ OCi for some
i ∈ A, j ∈ I. Then clearly, OCj + HCi < c̃∗, as OCj + HCi ≤ OCi+

HCi < c̃∗. Then, we draw the same conclusion; any miner
ℓ ∈ A can set price pℓ :� c̃∗ −mini∈I{OCi} > HCℓ, and this re-
sults in a price just low enough that now k ≥ 1 miners
have cost exactly c̃∗.
This means that if miner ℓ was to further slightly lower

pℓ (which is feasible, as pℓ > HCℓ), these miners would
choose to purchase nonzero hardware. For simplicity of
notation, denote by oc :�mini∈I{OCi}, and observe that
there exists a sufficiently small ε > 0 such that for any
pℓ ∈ (c̃∗ − oc− ε, c̃∗ − oc), miner ℓ’s payoff as a function of
pℓ in this range is (where c∗ is a function of pℓ)

Uℓ(p,Q) � (1− c̃ℓ=c
∗)2 + k(pℓ − HCℓ) · 1−

oc+ pℓ
c∗

( )

=c∗

� (1− c̃ℓ=c
∗)2 + (pℓ − HCℓ) · 1−

∑

j∈A

1−
c̃j

c∗

( )

=c∗

� (1− c̃ℓ=c
∗)2 + (pℓ − HCℓ) · −(| A | −1) +

∑

j∈A

c̃j

c∗

( )

=c∗:

In the second equality, we have used the fact that a total
quantity of 1=c∗ units of computational power is pur-
chased, and therefore, all units not owned by miners in A
are purchased from miner ℓ (and that

∑

j∈A1− c̃j=c
∗ units

are owned by miners in A).
We are interested in first taking the derivative with re-

spect to c∗ and then, evaluating the derivative at c∗ � c̃∗, to
argue that miner ℓ would strictly profit by lowering pℓ to
induce a c∗ < c̃∗:

∂Uℓ(p,Q)

∂c∗
�

2(1− c̃ℓ=c
∗)c̃ℓ

(c∗)2
+
∂pℓ
∂c∗

· −(| A | −1) +
∑

j∈A

c̃ j

c∗

( )

=c∗

+
(| A | −1)(pℓ − HCℓ)

(c∗)2
−
2(pℓ − HCℓ)

∑

j∈A
c̃j

(c∗)3
:

To evaluate the derivative at c∗ � c̃∗, observe first that
(−(| A | −1) +

∑

j∈Ac̃j=c̃
∗) � 0. The reason for this is because

exactly miners in A are active in equilibrium at costs c̃,
and therefore, they must be responsible for the entire
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market share (intuitively, it also makes sense that we should
not care about the change in pℓ because there are no sales at
(p,Q)). Similarly, observe that the price that induces c∗ � c̃∗ is
exactly pℓ � c̃∗ − oc. We will let ∆ :� OCℓ − oc and observe that
now pℓ � c̃∗ − OCℓ +∆ (and therefore, pℓ − HCℓ � c̃∗ − c̃ℓ +∆).
So, after these substitutions, we get that

∂Uℓ(p,Q)

∂c∗
c̃∗( ) �

2(1− c̃ℓ=c̃
∗)c̃ℓ

(c̃∗)2
+
(| A | −1)(c̃∗ − c̃ℓ +∆)

(c̃∗)2

−
2(c̃∗ − c̃ℓ +∆)

∑

j∈A
c̃j

(c̃∗)3

�
2(1− c̃ℓ=c̃

∗)c̃ℓ

(c̃∗)2
+
(| A | −1)(c̃∗ − c̃ℓ +∆)

(c̃∗)2

−
2(c̃∗ − c̃ℓ +∆)(| A | −1)c̃∗

(c̃∗)3

�

2(c̃∗ − c̃ℓ)c̃ℓ + (| A | −1)(c̃∗ − c̃ℓ +∆)c̃∗

−2(c̃∗ − c̃ℓ +∆)(| A | −1)c̃∗

(c̃∗)3

�
2(c̃∗ − c̃ℓ)c̃ℓ − (c̃∗ − c̃ℓ +∆)(| A | −1)c̃∗

(c̃∗)3

�
(c̃∗ − c̃ℓ)

(c̃∗)3
· 2c̃ℓ − (| A | −1) c̃∗ +

c̃∗∆

c̃∗ − c̃ℓ

( )( )

�
(c̃∗ − c̃ℓ)

(c̃∗)3
· 2c̃ℓ − c̃∗(| A | −1)( ) −

∆(| A | −1)

(c̃∗)2
:

The first equality uses the definition of c̃∗, which implies
that

∑

i∈A(1− c̃=c̃∗) � 1, and therefore, we can replace
∑

j∈Ac̃ j with (| A | −1)c̃∗. The remaining equalities follow
from algebraic manipulation. We now want to conclude
with sufficient conditions for this derivative to be negative
(implying that lowering pℓ by a bit will strictly increase
miner ℓ’s utility). First, observe that c̃∗ > c̃ℓ because ℓ ∈ A,
so the sign depends entirely on the term:

2c̃ℓ − (| A | −1)

(

c̃∗ −
∆c̃∗

c̃∗ − c̃ℓ

)( )

.
We now argue that when | A |≥ 3 and ∆ ≥ 0, the term is

strictly negative. Indeed, when | A |≥ 3, 2c̃ℓ − (| A | −1)c̃∗ ≤

2(c̃ℓ − c̃∗) < 0. When δ ≥ 0, ∆(| A | −1)=(c̃∗)2 ≥ 0. Therefore,

∂Uℓ(p,Q)

∂c∗
(c̃∗) < 0,

and miner ℓ can strictly profit by bringing an inactive
miner into the market.

This completes the proof. To recap the outline, we only
needed Lemma C.3 to claim that in any possible instance
where “no sales” is an equilibrium, it must be the case
that every active miner ℓ can bring some inactive miner
into the market by setting a sufficiently low price pℓ > HCℓ.
After we have this, we establish that this strategy is in-
deed strictly profitable if there is any inactive miner with
weakly lower operational cost. w

At this point, we conclude the proof of Theorem 4.

Proof of Theorem 4. Lemma C.2 establishes I; HCi ≤ HCj

whenever miner i is active and miner j is not. Lemma C.4
establishes II; OCi < OCj whenever miner i is active and
miner j is not. Lemma C.3 establishes III. w

Endnotes
1 The source is www.coinmarketcap.com (accessed March 3, 2021).
2 The source is https://whitepaperdatabase.com/nxt-nxt-whitepaper/,
page 4 (accessedAugust 27, 2021).
3 The source is https://bitcoingold.org/wp-content/uploads/2017/
10/BitcoinGold-Roadmap.pdf (accessed August 27, 2021).
4 The source is http://enterprise.press/wp-content/uploads/2018/
09/BitmainProspectus.pdf (accessed August 27, 2021).
5 The source is https://www.statista.com/statistics/731383/bitcoin
-mining-revenue/ (accessed August 27, 2021).
6 Narayanan et al. (2016) has a deeper explanation of these puzzles
and why they are used.
7 The sources are https://en.bitcoin.it/wiki/Mining_hardware_com
parison and https://en.bitcoin.it/wiki/Non-specialized_hardware_
comparison (accessed August 27, 2021).
8 See https://www.rudebaguette.com/en/2017/05/antbleed-bitmain
-shut-half-bitcoin/ (accessed August 27, 2021).
9 Current pool shares are available at https://blockchain.info/
pools?timespan=4days.
10 This possibility is discussed at https://diar.co/volume-3-issue-1/
(accessed August 27, 2021). and seems likely given that “unknown”
blocks increased dramatically shortly after Bitmain’s stake in multi-
ple large pools attracted attention. Bitmain owns Antpool and BTC.
com and is the sole investor in viaBTC (https://bitcoinmagazine.
com/articles/bitmain-nears-51-network-hash-rate-why-matters-
and-why-it-doesnt) (accessed August 27, 2021).
11 As explained, on average one new block is created every 10 mi-
nutes, and the size of the block reward is fixed. Furthermore, Hu-
berman et al. (2021) conclude that transaction fees should not de-
pend on the hash rate, nor on how it is distributed among miners.
12 The source is https://blog.sia.tech/the-state-of-cryptocurrency-
mining-538004a37f9b (accessed August 27, 2021).
13 The source is https://research.ark-invest.com/hubfs/1_Download_
Files_ARK-Invest/White_Papers/ARKInvest_031220_Whitepaper_
BitcoinMining.pdf, page 13 (accessed August 27, 2021).
14 The source is https://blockchain.info/pools?timespan=4days (ac-
cessed March 3, 2021).
15 A node listens for transactions and blocks and forwards them to
the rest of the network.
16 The analysis of asymmetric contests assesses off-equilibrium
behavior.
17 Our model considers anonymous rather than personalized pric-
ing. However, most of our conclusions hold for personalized pric-
ing as well.
18 An ExaHash is 1018 hashes or 1 million TeraHashes. Data reflect a
seven-day average, taken from https://www.blockchain.com/
charts/miners-revenue and https://www.blockchain.com/charts/
hash-rate (accessed March 3, 2021).
19 Some Bitcoin blogs refer to a “break-even” price of Bitcoin. This is
supposed to be the price at which mining would become unprofit-
able, assuming mining difficulty remains constant. This is an inco-
herent counterfactual; as Dimitri (2017) points out, if the price of Bit-
coin falls, then so will the network hash rate. Our use of the phrase
“break even” is quite different; for a fixed difficulty and price of Bit-
coin, c∗ is a “break-even cost” because miners are able to make a
profit if and only if the cost is below c∗.
20 See https://en.wikipedia.org/wiki/Herfindahl%E2%80%93
Hirschman_Index (accessed August 27, 2021). for more information.
Rhoades (1993) describes how HHI has been used by the Depart-
ment of Justice and the Federal Reserve in the analysis of the com-
petitive effects of mergers. In the industrial organization literature, it
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is common to treat each company’s market share as an integer per-
centage (i.e., 20 instead of 0.2). This results in an HHI that ranges

from 0 to 10, 000. In this paper, we define HHI by (14), so that it

ranges from zero to one.
21 One limitation is that estimating the concentration of hardware

ownership is challenging. Blogs occasionally compute HHI for min-

ing pools, as these data are more readily available. However, as dis-
cussed in Section 1, this is potentially quite different from the HHI

of hardware ownership.
22 Nongeneric costs may result in the existence of multiple equilib-

ria where sales occur; see Example A.1 in Appendix A.
23 Although Example 1 has an equilibrium without sales, there are
situations where the unique equilibrium is for miner 1 to sell, even

though all active miners prefer the “no-sales” outcome to the equi-

librium outcome. This suggests the possibility of collusion among
miners with low mining costs, which we do not model.
24 Theorem 4 establishes that if there are at least three active min-

ers, then OCj ≤ OCi is sufficient for some active miner to want to sell
to inactive miner j. Appendix A.3 provides an example demon-

strating that this condition is not sufficient if there are only two

active miners. However, it remains true that an inactive miner
with sufficiently low operational costs will tempt an active miner

to deviate.
25 In particular, observe that this range is not even necessarily non-

empty. In order for the range to be nonempty, it must be that the

worst hardware among active miners can be profitably used by the

active miner with the highest operational costs.
26 For more information, see https://medium.com/hackernoon/

betterhash-decentralizing-bitcoin-mining-with-new-hashing-
protocols-291de178e3e0 and https://www.coindesk.com/a-plan-to-

decentralize-bitcoin-mining-again-is-gaining-ground (accessed

August 27, 2021).
27 For example, there are large fixed costs associated with setting

up a data center, and large miners may be able to negotiate bulk

discounts from their suppliers. Furthermore, large miners can
slightly increase their share of rewards by deviating from the min-

ing protocol (see, e.g., Eyal and Sirer 2014, Carlsten et al. 2016,

Kiayias et al. 2016, Sapirshtein et al. 2017).
28 If desired, one can also confirm that when c∗(p) is fixed but N(p)

changes, the final expression on the right-hand side does not

change. To set up the calculations, recall that any miners added/re-
moved from A(p) must have OCi + p1 � c∗(p).
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