


Since Myerson’s seminal work, it is well-established that revenue-optimal single-dimensional

auctions are exceptionally simple, and satisfy many desirable properties. For example, revenue-
optimal single-bidder single-dimensional auctions o�er the bidder a take-it-or-leave-it price (the
bidder can pay the price and get the item, or not pay and get nothing). Optimal single-bidder single-
dimensional auctions are therefore deterministic, computable in poly-time, revenue-monotone,1

and have menu-complexity one.2 In contrast, optimal single-bidder multi-dimensional mechanisms
(where, e.g., two distinct items are for sale) require randomization [39, 46], are computationally
hard to �nd [15, 16, 20], are non-monotone [31, 44],3 and have unbounded menu complexity [6, 7,
21, 30, 35]. This vast (and still growing) line of works clearly establishes that optimal single-bidder
multi-dimensional mechanisms are extremely complex when compared to their single-dimensional
counterparts.
In the multi-bidder setting, however, the story is less written. Of course, optimal multi-bidder

multi-dimensionalmechanisms inherit all the complexities of optimal single-biddermulti-dimensional
mechanisms. Still, it remains largely unknown to what extent all the complexities of optimal multi-
bidder multi-dimensional auctions already manifest in the single-bidder setting. Indeed, in some
special cases where the optimal single-bidder multi-dimensional auction is tractable, the optimal
multi-bidder multi-dimensional auction is tractable as well [9]. Some further multi-dimensional
special cases even admit formal multi-to-single-bidder reductions [1–3]. In this direction, our work
identi�es a novel complexity of optimal multi-bidder multi-dimensional mechanisms driven by the

multi-bidder aspect. For example, our quantitative measure identi�es complexity in broad classes of
two-bidder multi-dimensional settings, even though the single-bidder problem for every instance
in these classes is quite simple.

Locally-Implementable Mechanisms. Consider the following thought experiment: you run
:-bidder auctions, and your Bayesian prior is that Bidder 8’s valuation function is drawn from �ğ .
When each �ğ remains permanently �xed, it makes sense to hard-code the revenue-optimal auction
for ×ğ�ğ , and plug in each new valuation pro�le ®E as input. But you are continuously gathering
data on bidders’ values to re�ne your beliefs (in fact, every additional auction executed itself re�nes
your beliefs for future auctions). So while just a single ®E is given as input, the problem you aim to

solve is parameterized by the prior ®� .

Definition 1 (Implementing a Revenue Optimal Auction). Given as input : valuation func-

tions E1, . . . , Eġ , and parameterized by : distributions �1, . . . , �ġ , determine Opt ®Ā (®E): an allocation of

items and payments charged on valuation pro�le (E1, . . . , Eġ ) that is consistent with some revenue-

optimal mechanism for ×ğ�ğ .

At the heart of our paper is the following (for now, informally-posed) question: How much do

you really need to know about each �ğ in order to compute Opt ®Ā (®E) for just one particular ®E?

When each �ğ is single-dimensional, not much is needed, and this follows immediately from
Myerson’s theory of (ironed) virtual values [36]. Indeed, if each �ğ is supported on = valuations, and
each valuation has an integer value between 0 and poly(=) for each outcome, and the probability
of each valuation is an integer multiple of 1/poly(=), then $ (log=) bits from each �ğ su�ce to
compute Opt ®Ā (®E). Inspired by the concept of locally-decodable codes (see survey [48]), we term

1Speci�cally, if Ā stochastically dominates Ā′, then the optimal revenue for Ā exceeds that of Ā′.
2The menu-complexity of a single-bidder auction is the number of distinct non-trivial allocations they might receive.
3Speci�cally, there exist distributions over additive valuations for two items Ā and Ā′ which can be coupled so that Ĭ ∼ Ā

values all sets of items more than Ĭ′ ∼ Ā′, yet the optimal revenue for Ā′ is in�nite and the optimal revenue for Ā is 1!
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this property locally-implementable: to compute Opt ®Ā (®E), barely more bits are needed from each

�ğ than the bits needed to state Eğ itself.
4

To quickly see this (see Appendix A for a more detailed sketch), recall that Myerson’s seminal

work de�nes a (ironed) virtual valuation function īĀğ

ğ (·) (which depends only on �ğ and not �−ğ )

such that the revenue-optimal auction gives the item to Bidder 8∗ := argmaxğ {ī
Āğ

ğ (Eğ )} and charges

them price (ī
Āğ∗

ğ∗ )−1 (max{0,maxğ≠ğ∗ {ī
Āğ

ğ (Eğ )}}) (if ī
Āğ∗

ğ∗ (Eğ∗ ) g 0, otherwise no one wins the item).

In particular, the winner can be determined just by knowing īĀğ

ğ (Eğ ) for all 8 , and the payment charged

can be further determined with one additional query to ī
Āğ∗

ğ∗ (·). Moreover, each īĀğ

ğ (E) is the ratio
of two integers of size at most poly(=) (subject to the conditions at the start of this paragraph),
so just $ (log=) bits from each �ğ su�ce to compute Opt ®Ā (®E), while ¬(=) bits are necessary to fully

specify each �ğ .

Our main result shows that optimal multi-dimensional mechanisms are not locally-implementable,
and in fact are as far from locally-implementable as possible: ¬(=) bits from each �ğ are needed to
determine Opt ®Ā (®E) — nearly as many bits as needed to fully specify �ğ , and exponentially more
than theΘ(log=) bits needed to specify Eğ . We further show that this already holds in essentially the
simplest multi-dimensional setting: there are just two bidders, one of whom is single-dimensional,
and another who is “inter-dimensional” according to the FedEx problem [28]. Speci�cally, there
are two options for the item (call them one-day and two-day shipping). The single-dimensional
bidder always has value 0 for two-day shipping. The multi-dimensional bidder either has the same
value for both options, or has value 0 for two-day shipping. Such bidders are a (very) special case of
unit-demand bidders.5 They are also a special case of buyers with a private budget constraint [24],
and single-minded buyers [22]. Formally, we use the lens of communication complexity for the
following problem to establish our main result.

Definition 2. Select-Outcome Problem is a communication problem between Alice and Bob. Alice

is given as input �1, and a valuation E1 in its support. Bob is given �2, and a valuation E2 in its support.

When the input is of size =, each distribution has support-size at most =, all valuations in the support

have integer values f =3 for all outcomes, and all probabilities are an integer multiple of 1
Ę
, for some

integer 1 f =8.6

A solution to Select-Outcome Problem outputs an outcome G such that some revenue-optimal auction

for �1 × �2, on valuation pro�le (E1, E2), selects outcome G with non-zero probability.7

In this language, the previous paragraphs state that Select-Outcome Problem can be solved in
deterministic communication complexity $ (log=) when both bidders are single-dimensional (and
moreover, correct prices can be found in communication $ (log=) as well). Formally, our main
result is that the communication complexity is exponentially higher in multi-dimensional settings.

Theorem 1.1 (Main Result). Even when �2 is single-dimensional, and �1 is a FedEx bidder

with two options, the communication complexity of Select-Outcome Problem is ¬(=). This holds for
deterministic protocols, as well as randomized protocols which succeed with probability g 2/3.

4To draw the (very high-level) conceptual connection to locally-decodable codes, think of the Ĥ-bit codewordÿ as parame-

terizing the decoding algorithm, which is given an index ğ as input (and the desired output isģğ , the ğ
Īℎ bit of the original

message). Locality refers to the fact thatģğ can be determined by querying just ĥ (Ĥ) bits ofÿ . Similarly, locality in our

context refers to the fact that Opt ®Ā (®Ĭ) can be determined using justċ (logĤ) bits from each Āğ .
5A valuation is unit-demand if its valuation for a set of items ď is Ĭ (ď) := maxğ∈ď Ĭ ( {ğ }) .
6The particular choice of Ĥ3 and Ĥ8 are immaterial, and can be any su�ciently large (�xed) polynomials in Ĥ.
7For example, in a single-item auction with two bidders there are three outcomes: give the item to bidder one, bidder two, or

no one. Note that many outcomes may be correct, both due to multiplicity of optimal auctions, and due to optimal auctions

being randomized. Note also that the outcome selected may be the “null” outcome to keep all items with the seller.
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We quickly motivate our precise choices in de�ning Select-Outcome Problem. Because all input
numbers are integers f poly(=), Theorem 1.1 must follow because any solution to Select-Outcome
Problem requires many bits from each distribution (and not because ¬(=) bits are required just
to do arithmetic on the input). Allowing the solution to be consistent with any allocation output
with non-zero probability in any optimal auction ensures that hardness follows for any reasonable
alternative de�nition as well (and not because of some technicality associated with multiplicity or
randomization of optimal auctions).
We further note that the complexity uncovered by Theorem 1.1 arises only in the multi-bidder

setting, as the single-bidder problems for both �1 and �2 are quite simple. Indeed, �2 is a single-
dimensional bidder, so the optimal single-bidder auction for�2 is just a take-it-or-leave-it price. The
optimal single-bidder auction for a FedEx bidder with two options is only slightly more complex: it
has menu complexity at most two,8 is computationally tractable, etc. [28]. Additionally, for every
possible instantiation of �1 or �2 used in our construction, the revenue-optimal single-bidder
auction simply sets a take-it-or-leave-it price of =2 + 1 (see Proposition 4.7). Put another way, every
instantiation of �1 and �2 in our construction admits the simplest possible single-bidder solution.
Yet, the optimal multi-bidder auction for both together is not locally-implementable (and recall
that this phenomenon cannot occur with two single-dimensional bidders).

Finally, we emphasize that locality is an intrinsic measure of complexity for multi-bidder auctions.
In this sense, the communication complexity of Select-Outcome Problem serves not as a problem
to be solved in practice, but rather as a quantitative lens to view the extent to which the output of

an optimal multi-bidder auction for one particular input ®E depends on the underlying prior ®� .

1.1 Extension: Budget-Constrained Bidders

In addition to our main result, we also consider bidders who are barely beyond the classic single-
dimensional setting in a di�erent direction: they have a budget constraint. Speci�cally, bidders
have a value E and a budget �. If they receive the item and are charged ? f �, their utility is E −? as
usual. If they are charged ? > �, their utility is −∞. That is, the bidder’s utility is not quasi-linear.9

If E and � are both private information to the bidder, this is an inter-dimensional setting [24],
and Theorem 1.1 already establishes that optimal mechanisms are not locally-implementable. If
instead the budget is public (known to the designer), then this is still a single-dimensional setting
(because the bidder’s private information is just a single value), but it is non-linear (because the
buyer is not quasi-linear). Again, this is essentially the simplest non-linear setting (and perhaps
the most well-studied within the TCS literature, arguably by a signi�cant margin): the buyer is
still single-dimensional, and her utility with respect to price is piecewise-linear with two segments.
We also show that optimal mechanisms for single-dimensional budget-constrained buyers are not
locally-implementable.

Theorem 1.2. Even when �2 is single-dimensional and quasi-linear, and �1 is single-dimensional

with a public budget constraint, the communication complexity of Select-Outcome Problem is ¬(=).
This holds for deterministic protocols, as well as randomized protocols which succeed with probability

g 2/3.

We again note that this complexity arises in the multi-bidder setting, despite the fact that
each single-bidder problem is quite simple. Again, �2 is single-dimensional and quasi-linear, so
the optimal single-bidder mechanism is just a take-it-or-leave-it price. The optimal single-bidder

8Speci�cally, it o�ers one-day shipping at a take-it-or-leave-it price. It may additionally o�er one (perhaps randomized)

option to receive two-day shipping at a discount.
9A bidder is quasi-linear if their utility for receiving the item is Ĭ − Ħ always. Throughout the paper, bidders will always be

assumed to be quasi-linear unless otherwise speci�ed.
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mechanism for a single-dimensional buyer with a public budget has menu complexity at most two,10

is computationally tractable, etc. [13]. Additionally, for every possible instantiation of�1 or�2 used
in our construction, the revenue-optimal single-bidder auction again sets a take-it-or-leave-it price
of =2 + 1 (see Proposition E.6 in the full version). We additionally emphasize that our constructions
for Theorems 1.1 and Theorem 1.2 overlap signi�cantly (see Section 3), highlighting the robustness
of our technical contributions.

1.2 Additional Implications for Multi-Dimensional Virtual Values

We now provide an additional lens through which to view the implications of our main result.
Speci�cally, several works provide some form of “multi-dimensional virtual values” [2, 9, 11, 12, 29,
42]. Their precise uses and derivations di�er (see Section 1.4 for further detail), but they all share a
theme of connecting truthful revenue maximization to algorithmic virtual welfare maximization.
For example, [11] derives multi-dimensional virtual values through Lagrangian duality, and proves
that for all instances � , there exists a virtual valuation function ¨

Ā
ğ (·) for each bidder 8 such that

for all valuation pro�les ®E , every revenue-optimal auction must select an outcome G maximizing
∑

ğ (¨
Ā
ğ (Eğ )) (G).

In particular, this view shows a correspondence between Lagrangian multipliers/dual variables
in a natural Linear Programming formulation (overviewed in Section 2) and these virtual valuation
functions. This Linear Program has variables, constraints, and dual variables for each bidder.

One additional beautiful aspect of Myerson’s virtual value theory is the following: īĀğ

ğ (·) depends
only on �ğ and not at all on �−ğ . In the language of LP duality, this implies the following remarkable
property: in the LP formulation, the optimal dual variables for Bidder 8 also depend only on �ğ and not

at all on �−ğ ! The fact that the optimal dual variables can be computed separately for each bidder
is remarkable because the optimal primal solution certainly cannot (Bidder 8’s allocation/price
variables in the optimal auction certainly depend on �−ğ ). To emphasize the implications of this
remarkable property: consider writing, separately for each 8 , the LP formulation to optimally
sell a single item to a single bidder whose value is drawn from �ğ . To solve the multi-bidder LP
formulation for : bidders whose values are drawn from ×ğ�ğ , one could try naïvely stapling the :
optimal primals to these single-bidder LPs together. There is no reason to expect this to succeed,
and indeed it fails (in fact, it will generally fail to even produce a feasible primal). On the other
hand, one could alternatively try naïvely stapling together the : optimal dual variables together,
and hope that this produces the optimal dual variables for the :-bidder LP formulation. Somewhat
miraculously, this latter process succeeds in any single-dimensional setting (with quasi-linear bidders).

For multi-dimensional bidders, the [11] framework still establishes the existence of ¨Ā
ğ (·), but not

necessarily that ¨Ā
ğ (·) is agnostic to�−ğ as in the single-dimensional case. Or in the language of LPs,

the optimal dual variables for Bidder 8 may a priori depend on the entire prior, rather than just �ğ .
Viewed through this lens, [2, 29] discover restricted multi-dimensional settings where optimal duals
retain this remarkable “bidder-separable” property. Through the same lens, Theorem 1.1 establishes
that this bidder-separable property does not generally hold in multi-dimensional settings (even
with just two bidders from the two-day FedEx problem). Theorem 1.2 rules out the bidder-separable
property for single-dimensional non-linear settings as well. In addition, Theorems 5.2 and 5.5
further give concrete examples of how optimal dual variables for Bidder 1 can be quite sensitive to
tiny changes in �2.

10Speci�cally, it o�ers the option to receive the item at some price Ħ . If Ħ = þ, it may additionally o�er the option to receive

the item with probability ħ < 1 at price Ĩ < þ.

∙



1.3 Very Brief Technical Overview

The proof of Theorem 1.1 follows by a reduction from Disjointness (formally de�ned in Section 2).
Our reduction makes heavy use of notation and concepts from prior work, so we defer an outline of
the approach to Section 3 once appropriate language is built up. We provide here a brief highlight of
the main challenge: we have just spent several paragraphs in Section 1 describing all the intractable
properties that revenue-optimal auctions possess. To complete a reduction, we not only need to
derive the optimal auction for a single instance, but for an entire class of instances. Moreover, this
class must contain su�ciently many “intractable instances” in order to embed Disjointness. Indeed,
reductions to Bayesian mechanism design are scarce, technically involved, and to-date exist only
for single-bidder settings [10, 15, 16, 18, 20, 25]. In multi-bidder settings, the state-of-the-art only
recently characterized optimal auctions for all instances with two additive bidders and two items
where item values are drawn i.i.d. from distributions supported on {1, 2} [47]!

Fortunately, the FedEx setting is a sweet spot which is both rich enough for optimal mechanisms
to be non-locally-implementable, yet also structured enough for a tractable reduction to optimal
mechanism design. We hope that the proof outline in Section 3 may serve as a roadmap for potential
future reductions, recalling that any complexities established for the FedEx setting extend to the
(signi�cantly more general) multi-dimensional unit-demand setting as well.

1.4 Related Work

Complexity of Multi-Dimensional Mechanism Design.We have already discussed the themat-
ically most-related work, which identi�es formal complexity measures separating revenue-optimal
single- and multi-dimensional mechanisms [6, 7, 15, 16, 20, 21, 30, 31, 35, 39, 44, 46, 47]. Among
these, only [47] explicitly studies the multi-bidder setting, and establishes that while optimal
single-dimensional auctions are dominant-strategy truthful,11 optimal multi-dimensional auctions
are not [47]. In comparison to this line of works, our paper provides a novel complexity unique to

multi-bidder settings. Speci�cally, our work identi�es complexity in broad classes of two-bidder
settings, even thoug the single-bidder problem for every instance in these classes is quite simple.

Multi-Dimensional Virtual Values. Our work uses multi-dimensional virtual values in order to
prove optimality of mechanisms. As previously referenced, several prior works introduce various
notions of multi-dimensional virtual values [2, 9, 11, 12, 29, 42]. Some of these works consider
continuous distributions, and derive multi-dimensional virtual values by explicitly choosing paths
along which the incentive constraints might bind and then doing integration by parts. Others
consider discrete settings, and derive multi-dimensional virtual values by drawing a connection
to LP duality. Because our setting is discrete (and necessarily so, in order for communication
complexity to be a meaningful measure), we adopt the language used in [11], which uses the lens
of LP duality.
Within this line of works, [2, 29] also prove optimality in some multi-bidder settings, and in

particular discover restricted settings where multi-dimensional virtual values are bidder-separable
(termed “revenue-linear” and “MR-log-supermodular”, respectively). In their language, our main
results rule out any extension to two-bidder settings generally (even when one bidder is single-
dimensional, and the other is a two-day FedEx bidder or single-dimensional with a public budget).
In our language, [2, 29] discover restricted multi-dimensional settings where optimal mechanisms
are locally-implementable.

11An auction is dominant-strategy truthful if it is in each bidder’s interest to report their true valuation no matter the other

bidders’ reports. Contrast this with Bayesian Incentive Compatible (de�ned in Section 2).
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Interdimensional Mechanism Design. [28] introduce the FedEx problem, and note that optimal
single-bidder mechanisms inherit some-but-not-all of the nice properties of single-dimensional
settings, along with some-but-not-all of the complexities associated with multi-dimensional settings.
Our main result considers a bidder from the FedEx problem, and therefore our technical setup
is similar to works such as [22–24, 28], but there is not much overlap with these works beyond
Section 2.

Budget-Constrained Bidders. There is a substantial body of work involving mechanism design for
budget-constrained buyers. The most related works to ours design revenue-optimal single-item auc-
tions in Bayesian settings for buyers with a public or private budget constraint. Here, [13, 14, 24, 34]
characterize the optimal single-buyer auction.12 Several works also identify tractable structure for
the optimal auction in restricted cases. For example, [34] consider the case of multiple buyers with
values drawn i.i.d. from the same regular distribution and an identical public budget, and [38] con-
sider the case that each buyer has a private budget and their value is drawn independently of their
budget from an MHR distribution with decreasing density. In this context, our results establish that
while optimal single-bidder mechanisms for budget-constrained buyers are quite tractable, optimal
multi-bidder auctions remain intractable (without the restrictions imposed inworks such as [34, 38]).

Reductions in Bayesian Mechanism Design. We have also brie�y discussed reductions to opti-
mal mechanism design, which previously exist only in single-bidder settings [10, 15, 16, 18, 20, 25].
Other styles of single-bidder reductions have been used to special cases of optimal single-bidder
mechanism design (such as �nding the optimal deterministic auction) [8, 17, 19]. In comparison to
this line of works, our paper provides a technical contribution via the �rst reduction to multi-bidder
Bayesian mechanism design.

Communication Complexity in Multi-Dimensional Mechanism Design. Recent work of [6]
identi�es a connection between the so-called menu complexity of single-bidder auctions and the
deterministic communication required to implement it. More recent work of [45] further considers
the randomized communication complexity required to implement single-bidder auctions, and in
particular establishes that randomized implementations of auctions may sometimes communicate
exponentially fewer bits than deterministic implementations. While this model is incomparable to
ours,13 this context makes it signi�cant that Theorems 1.1 and 1.2 hold for randomized communica-
tion protocols.
There is also a substantial body of work at the intersection of communication complexity and

mechanism design generally, following seminal work of [37]. A parallel line of works following [27]
considers the communication overhead speci�cally to compute payments (on top of any communi-
cation necessary to determine an outcome/allocation). Follow-up works of [5, 26, 43] show that this
overhead can be quite signi�cant, even with just two players. While their model is also incomparable
to ours,14 this context makes it signi�cant that our main results provide communication lower

12Speci�cally, it sets a single price if the budget is public and the valuation distribution is regular [34]. It has menu complexity

at most two if the budget is public, no matter the valuation distribution [13]. It has menu complexity at most ġ if the budget

is private and drawn from a distribution of support at most ġ , and the valuation conditioned on each possible budget

satis�es a condition called “decreasing marginal revenues.” It has menu complexity at most 3 · 2ġ−1 − 1 if the budget is

private and drawn from a distribution of support at most ġ , no matter the joint distribution of (value, budget) pairs.
13Speci�cally, these works study a single-bidder problem where the prior (and therefore the auction) is fully-known. Their

goal is to implement the auction for a particular valuation Ĭ without necessarily learning Ĭ.
14For example, none of these works consider revenue-optimization at all.
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bounds just to solve Select-Outcome Problem (rather than to solve Select-Outcome Problem and to
also determine the payments).

1.5 Summary and Roadmap

We establish that optimal multi-dimensional mechanisms are not locally-implementable: executing
the auction on just a single valuation pro�le requires knowing (essentially) the entire distribution. For-
mally, we study the communication complexity of Select-Outcome Problem. In single-dimensional
settings, Select-Outcome Problem can be solved with$ (log=) bits of communication, while simply
stating the valuation pro�le also requires Θ(log=) bits. In multi-dimensional settings, Theorem 1.1
gives a communication lower bound of ¬(=) on Select-Outcome Problem: exponentially more than
the Θ(log=) bits needed to state the input valuation pro�le, and nearly the Θ(= log=) bits su�cient
to fully de�ne each �ğ . In particular, recall that all �ğ in our construction are especially simple
from the single-bidder perspective: the optimal single-bidder auction sets a take-it-or-leave-it price
of =2 + 1 (Proposition 4.7). This makes clear that non-locality truly arises due to complexity of
multi-bidder multi-dimensional auctions, and not simply due to complexity of the corresponding
single-bidder problem.
Section 2 provides preliminaries. Section 3 provides a high-level overview of our approach.

Section 4 provides our reduction, and Section 5 our analysis. Section 6 provides concluding thoughts.
The appendix contains omitted proofs. In particular, Appendix E in the full version contains our
complete analysis for the case of single-dimensional buyers with a public budget.

2 PRELIMINARIES

Below, we provide detailed preliminaries for our main result (Section 2.1) and detailed background
on Lagrangian duality for Bayesian mechanism design (Section 2.2), so that we can present the key
ideas behind our construction. We also formally de�ne the setting we consider for our extension
to budget-constrained bidders in Section 2.3 but defer to Appendix E in the full version full
preliminaries necessary for the proofs. Section 2.4 quickly states the communication problem of
Disjointness, which we use in our reductions.

2.1 The FedEx Problem

Setup and Notation. Our main result holds already when there are just two bidders and two
options, which we refer to as day1 and day2. Bidders have a value and an interest. A bidder with
(value, interest) pair (E, 1) receives value E if they receive one-day shipping, and 0 if they receive
two-day shipping. A bidder with (value, interest) pair (E, 2) receives value E if they receive either
one-day or two-day shipping. A bidder’s type stores her full (value, interest) pair.

Each of the two bidders 8 have 2=ğ + 1 di�erent types, we label them from C0ğ to C2Ĥğğ . There

are =ğ possible values among all types, which we label as E
Ġ
ğ , for 9 ∈ [=ğ ]. In this labeling, C2ġ−1ğ

represents the (value, interest) pair (Eġğ , 1) and C
2ġ
ğ represents the (value, interest) pair (Eġğ , 2). Finally,

C0ğ represents not participating in the auction, and has value E0ğ := 0. We will alternate between

referring to types as C2ġ+Ġ−2 and (Eġğ , 9), depending on which notation is cleaner. We denote by
5ğ (Cğ ) the probability that bidder 8 has type Cğ , and we use �ğ to represent the distribution of bidder
8 . Finally, we will also use the notation 'ğ ((E

ġ
ğ , 9)) :=

∑

ġ′gġ 5ğ ((E
ġ′

ğ , 9)).
15

15Observe that Ďğ ( ·) is essentially a reverse CDF. Indeed, if there were only one possible interest, the de�nition would

imply that Ďğ ( ·) := 1 − Ăğ ( ·) , where Ăğ ( ·) is the CDF for Bidder ğ .
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Optimal Auctions. We have one item to ship, and can ship it to either bidder using either one- or
two-day shipping.16 Note that this is a “service-constrained” environment, as de�ned in [2]. We seek
the revenue-optimal Bayesian Incentive Compatible (BIC) auction, which asks each bidder to report
their (value, interest) pair, and then decides to whom to ship the item (or to no one) and in how
many days. It is observed in [28] that the revenue-optimal auction w.l.o.g. always ships the item
on the reported interest (that is, it will never ship the item in two days to a bidder whose interest
is day1, or vice versa).17 With this in mind, a mechanism is de�ned by its ex-post allocation rule
- and ex-post payment rule % . Here, -ğ (C1, C2) denotes the probability that bidder 8 is shipped the
item (matching their interest) when the reported types are C1, C2, and %ğ (C1, C2) denotes the payment
made by bidder 8 when the reported types are C1, C2. Because we have one copy of the item to ship,
an allocation rule is feasible i� for all C1, C2, -1 (C1, C2) + -2 (C1, C2) f 1.

An auction is Bayesian Incentive Compatible (BIC) if it is in each bidder’s interest to report their
true type in expectation over the types of the other bidder. More speci�cally, the revenue-optimal
BIC auction is the solution to the following linear program. In the LP, the variables are -, %, c, ? .
- and % refer to the ex-post allocation/price rules, as de�ned above. c, ? refer to the interim
allocation/price rules, which satisfy the equalities in Equations (1) and (2).

max
Ĕ,Č,ÿ,Ħ

∑

ğ

2Ĥğ
∑

Ġ=1

5ğ (C
Ġ
ğ ) · ?ğ (C

Ġ
ğ )

subject to -ğ (C
Ġ
1 , C

ℓ
2) ∈ [0, 1] for all bidders 8 and all 9, ℓ .

-1 (C
0
1 , C

ℓ
2) = %1 (C

0
1 , C

ℓ
2) = 0 for all ℓ ∈ [0, 2=2] .

-2 (C
ġ
1 , C

0
2 ) = %2 (C

ġ
1 , C

0
2 ) = 0 for all : ∈ [0, 2=1].

-1 (C
Ġ
1 , C

ℓ
2) + -2 (C

Ġ
1 , C

ℓ
2) f 1 for all 9 ∈ [2=1], ℓ ∈ [2=2].

cğ (C
Ġ
ğ ) =

2Ĥ3−ğ
∑

ℓ=1

53−ğ (C
ℓ
3−ğ ) · -ğ (C

Ġ
ğ ; C

ℓ
3−ğ ) for all bidders 8 and 9 ∈ [0, 2=ğ ] . (1)

?ğ (C
Ġ
ğ ) =

2Ĥ3−ğ
∑

ℓ=1

53−ğ (C
ℓ
3−ğ ) · %ğ (C

Ġ
ğ ; C

ℓ
3−ğ ) for all bidders 8 and 9 ∈ [0, 2=ğ ] . (2)

cğ ((E
ġ
ğ , 9)) · E

ġ
ğ − ?ğ ((E

ġ
ğ , 9)) g cğ ((E

ġ′

ğ , 9
′)) · Eġğ − ?ğ ((E

ġ′

ğ , 9
′)), (3)

for all bidders 8 , all :, : ′ ∈ [0, =ğ ], and 2 g 9 g 9 ′ g 1.

The objective is simply the expected revenue. Constraints (1) and (2) simply con�rm that the in-
terim rules are computed correctly. Equation (3) guarantees that the mechanism is BIC. In particular,
Equation (3) observes that it is only necessary to ensure that bidders don’t wish to underrepresent
their interest (because overrepresenting their interest guarantees them non-positive utility).

Payment Identity. Myerson’s payment identity provides a closed-form to compute revenue-
maximizing payments for a �xed (monotone) allocation rule. Observe in particular that a payment
rule satisfying the payment identity exists for any (monotone) allocation rule.

16If desired, our construction can be easily modi�ed so that the auctioneer has a copy of the item shippable on each day,

and the bidders are unit-demand (or to many other settings), but we only present one to establish the desired hardness.
17To quickly see this: observe that two-day shipping an item to a bidder with interest day1 gives them zero value, so the

item may as well not be shipped. A bidder with day2 interest is indi�erent between one-day and two-day shipping, so

giving them two-day instead of one-day shipping does not a�ect their utility and makes other types of that bidder less

interested in misreporting this type.
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Definition 3 (Monotone, Payment Identity). An interim allocation rule c is monotone if for
both players 8 and days 9 : cğ ((·, 9)) is monotone non-decreasing. ? satis�es the payment identity for

c if for both players 8 , days 9 , and all : , we have: ?ğ ((E
ġ
ğ , 9)) =

∑ġ
ℓ=1 E

ℓ
ğ · (cğ ((E

ℓ
ğ , 9)) − cğ ((E

ℓ−1
ğ , 9))).

2.2 Lagrangian Duality

The purpose of this section is to build up the necessary notation/concepts in order to state De�ni-
tion 6 and Theorem 2.1 at the end. Theorem 2.1 provides an approach to claim that a mechanism
is or isn’t optimal for a given instance. This approach uses Lagrangian duality, and speci�cally
the language adopted in [11]. More speci�cally, we will put Lagrangian multipliers on the BIC
constraints in the following manner, which creates a Lagrangian relaxation:

(i) For constraints of the form: cğ ((E
ġ
ğ , 2)) · E

ġ
ğ − ?ğ ((E

ġ
ğ , 2)) g cğ ((E

ġ
ğ , 1)) · E

ġ
ğ − ?ğ (E

ġ
ğ , 1)), we use

a Lagrangian multiplier of Uğ (:) (for all bidders 8 and : ∈ [1, =ğ ]).
(ii) For constraints of the form: cğ ((E

ġ
ğ , 9)) · E

ġ
ğ − ?ğ ((E

ġ
ğ , 9)) g cğ ((E

ġ−1
ğ , 9)) · Eġğ − ?ğ ((E

ġ−1
ğ , 9)),

we use a Lagrangian multiplier of _
Ġ
ğ (:) (for all bidders 8 , items 9 , and : ∈ [1, =ğ ]).

(iii) For all remaining BIC constraints, we use a Lagrangian multiplier of 0.
(iv) To emphasize: for all other constraints (i.e. all the constraints which are unrelated to BIC),

we don’t use Lagrangian multipliers, and keep them as constraints.

Constraints in (i) guarantee that the bidder will not misreport its interest, and constraints in
(ii) guarantee that the bidder will not underreport their value by the minimal amount possible.
De�nitions 4 and 5, and Theorem 2.1 below specialize the [11] framework to our setting. We refer
the reader to [11] for further details surrounding their framework, but give brief intuition for
each de�nition throughout. Recall that every choice of Lagrangian multipliers (U, _) induces a
Lagrangian relaxation with objective function:

L(U, _) :=
∑

ğ

2Ĥğ
∑

Ġ=1

5ğ (C
Ġ
ğ ) · ?ğ (C

Ġ
ğ ) +

∑

ğ

Ĥğ
∑

ġ=1

U (:) ·
(

cğ ((E
ġ
ğ , 2)) · E

ġ
ğ − ?ğ ((E

ġ
ğ , 2)) − cğ ((E

ġ
ğ , 1)) · E

ġ
ğ + ?ğ ((E

ġ
ğ , 1))

)

+
∑

ğ

Ĥğ
∑

ġ=1

2
∑

Ġ=1

_
Ġ
ğ (:) ·

(

cğ ((E
ġ
ğ , 9)) · E

ġ
ğ − ?ğ ((E

ġ
ğ , 9)) − cğ ((E

ġ−1
ğ , 9)) · Eġğ + ?ğ ((E

ġ−1
ğ , 9))

)

.

The constraints are the same as in the initial LP, except removing the BIC constraints. The �rst
concept in the [11] framework is that of a �ow:

Definition 4 (Flow). A set of Lagrangian multipliers form a �ow if the following hold for all 8 :

• 5ğ (C
2ġ−1
ğ ) + _1ğ (: + 1) + Uğ (:) = _1ğ (:), for all : ∈ [1, =ğ − 1].

• 5ğ (C
2Ĥğ−1
ğ ) + Uğ (=ğ ) = _1ğ (=ğ ).

• 5ğ (C
2ġ
ğ ) + _2ğ (: + 1) = Uğ (:) + _2ğ (:), for all : ∈ [1, =ğ − 1].

• 5ğ (C
2Ĥğ
ğ ) = Uğ (=ğ ) + _2ğ (=ğ ).

Intuitively, De�nition 4 captures the following. In the relaxation, there are no constraints on the
payment variables at all, so the relaxation is unbounded if any payment variable has a non-zero
coe�cient in L(U, _). (U, _) form a �ow if and only if all payment variables have a coe�cient of
zero in L(U, _).

Definition 5 (Virtual Values). For a given set of Lagrangian multipliers U, _, de�ne:18

¨
Ă,Č
ğ ((Eġğ , 9)) := Eġğ −

(Eġ+1ğ − Eġğ ) · _
Ġ
ğ (: + 1)

5ğ ((E
ġ
ğ , 9))

.

18For simplicity of notation, denote by Č
Ġ
ğ
(Ĥğ + 1) := 0, Ĭ

Ĥğ+1
ğ

:= Ĭ
Ĥğ
ğ
.
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Observation 1 ([11]). For any (U, _) which form a �ow:L(U, _) =
∑

ğ

∑2Ĥğ
Ġ=1 5ğ (C

Ġ
ğ ) ·cğ (C

Ġ
ğ ) ·¨

Ă,Č
ğ (C

Ġ
ğ ).

Intuitively, Observation 1 follows from algebraic manipulation, and De�nition 5 is made for
the sole purpose of yielding Observation 1, as it suggests that any optimal allocation rule for a
particular Lagrangian relaxation should award the item to the bidder with highest virtual value
(according to De�nition 5).

Definition 6 (Witness Optimality). Let (U, _) be a �ow and (-, %) be a BIC auction such that:

• ? satis�es the payment identity for c .

• For all : : Uğ (:) > 0 ⇒ cğ ((E
ġ
ğ , 2)) · E

ġ
ğ − ?ğ ((E

ġ
ğ , 2)) = cğ ((E

ġ
ğ , 1)) · E

ġ
ğ − ?ğ ((E

ġ
ğ , 1)).

• On all (Cġ1 , C
ġ′

2 ), - awards the item to a bidder with highest non-negative virtual value.

Then we say that (U, _) witnesses optimality for (-, %), and (-, %) witnesses optimality for (U, _).19

Theorem 2.1 ([11]). Let (U, _) witness optimality for (-, %). Then (-, %) is a revenue-optimal BIC

auction. Moreover, all revenue-optimal auctions witness optimality for (U, _).

Intuitively, (U, _) and (-, %) witness optimality if (-, %) is optimal for the Lagrangian relaxation
induced by (U, _) (bullet three), and also (U, _) and (-, %) satisfy complementary slackness (bullets
one/two).

2.3 Public Budget Constraints

Setup and Notation. Our main extension considers bidders with a (value, budget) pair. A bidder
with value E and budget � enjoys utility E − ? if they receive the item and pay ? f �, and utility
−∞ if they pay price ? > �. Each of the two bidders 8 have =ğ + 1 di�erent types. Because the
budget is public, their type is fully speci�ed by a value, which we label E0ğ , . . . , E

Ĥğ
ğ . Again, E0ğ refers

to non-participation in the auction.

Optimal Auctions. We have one item for sale, and can give it to either bidder. We again seek
the revenue-optimal BIC auction. Because the bidders are not quasi-linear, we must also specify
that we seek an ex-post individually rational auction.20 That is, even after learning the bid of the
other player, and learning the outcome of all random coins of the mechanism, each bidder has
non-negative utility. Appendix E in the full version provides a linear program for this setting, and
more detailed preliminaries similar to Section 2.1.

2.4 Disjointness

Our communication complexity lower bound provides a reduction fromDisjointness. InDisjointness,
Alice is given ®G ∈ {0, 1}Ĥ , Bob is given ®~ ∈ {0, 1}Ĥ , and their goal is to determine whether there
exists an 8 such that Gğ = ~ğ = 1. It is known that any deterministic communication protocol
resolving Disjointness requires communication at least =, and any randomized protocol resolving
Disjointness correctly with probability at least 2/3 requires communication ¬(=) [32, 33, 41].

3 PROOF OVERVIEW

Our proof of Theorems 1.1 and 1.2 both follow the same outline below. All steps below apply to
both proofs, although the referenced technical sections are for Theorem 1.1 (where signi�cantly
more detail is provided).

19[29] note that some (Ă, Č) cannot be optimal for any instance, because they cannot witness optimality for any incentive

compatible (Ĕ, Č ) . However, note that the optimal ( (Ă, Č), (Ĕ, Č )) witness optimality for each other, by strong Lagrangian

duality and complementary slackness.
20When bidders are quasi-linear, any interim individually rational auction can be made ex-post individually rational with a

simple reduction. This reduction fails when bidders have budget constraints.
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(i) Section 4 de�nes our reduction from Disjointness. Speci�cally, we de�ne a mapping from
Alice’s input G to a distribution �1, and from Bob’s input ~ to a distribution �2. Section 4
states several properties of our reduction that will be used in later proofs. Here is an informal
overview of some key properties.
• For the FedEx setting, all values lie in {=2 + 1, =2 + 2, . . . , =2 + = + 2}. In the public budget
setting, Bidder One’s values lie in {=2 + 1, =2 + 2, . . . , =2 + = + 2}, and Bidder Two’s values
lie in {=2 + 1, =2 + 2, . . . , =2 + = + 1, =2 + = + 1.9}. In all settings, both bidders’ distributions
have support-size = + 2. In the FedEx setting, the interesting index is 1 (the lowest value in
the support). In the public budget setting, the interesting index is = + 2 (the highest value
in the support). For the rest of this outline, refer to the interesting index as 9 .

• All distributions used in our constructions are nearly-uniform. Therefore, the optimal
single-bidder auction for any distribution in our constructions is quite simple, and sets a
price of =2 + 1.

• Depending on the input to Disjointness, the distribution is perturbed slightly at all values.
(ii) Section 5.1 analyzes the canonical “Myerson �ow” (see Section 5.1 for de�nition) for our

construction, which yields virtual values equal to Myersonian virtual values. For the rest of
this outline, refer to this �ow as (U1, _1) for both settings.

• We consider the allocation rule that awards the item to the bidder with maximum ¨
Ă1,Č1
ğ (Cğ )

(and charges prices according to the payment identity). Refer to this auction (-1, %1).
• If and only if Disjointness(G,~) = Yes, (-1, %1) happens to be a second price auction,
breaking ties for Bidder One (De�nition 11).We then show that (-1, %1) witnesses optimality
for (U1, _1) if and only if Disjointness(G,~) = Yes.

• This means that whenDisjointness(G,~) = Yes, we’ve now found the optimal dual ((U1, _1))
and optimal auction (De�nition 11).

• We also show that ¨Ă1,Č1
1 (C

Ġ
1 ) > ¨

Ă1,Č1
2 (C

Ġ
2 ) > 0 in both settings.

• Now, by Theorem 2.1, this leads to our �rst key conclusion: when Disjointness(G,~) = Yes,

every optimal auction must have -1 (C
Ġ
1 , C

Ġ
2 ) = 1.

(iii) Section 5.2 modi�es the canonical Myerson �ow, for instances whereDisjointness(G,~) = No.
• For the FedEx setting, (-1, %1) is not BIC: when Buyer One has (value, interest) pair
(=2 + = + 2, 2), she would rather misreport (=2 + = + 2, 1). For the public budget setting,
(-1, %1) is not budget-respecting: Buyer One with value =2 + = + 2 would have to pay more
than her budget.

• We increase the Lagrangian multiplier for the violated constraint from the previous bullet,
and adjust others in order to preserve �ow-conservation. This step is the most intricate,
and requires a very precise setting of each multiplier. For the rest of this outline, call this
�ow (U2, _2).

• We next �nd an allocation rule that witnesses optimality for (U2, _2), (-2, %2). (-2, %2)
is also a second-price auction, but ties must be broken in a precise (randomized) man-
ner (De�nition 14). We show that (-2, %2) witnesses optimality for (U2, _2) if and only

if Disjointness(G,~) = No. This step is also delicate, as we must simultaneously satisfy
several constraints related to Theorem 2.1.

• We also show that 0 < ¨
Ă2,Č2
1 (C

Ġ
1 ) < ¨

Ă2,Č2
2 (C

Ġ
2 ) in both settings. Notice that the inequalities

are �ipped compared to (U1, _1).
• Now, by Theorem 2.1, this leads to our second key conclusion:whenDisjointness(G,~) = No,

every optimal auction must have -1 (C
Ġ
1 , C

Ġ
2 ) = 0.

(iv) To conclude, (ii) and (iii) together establish that when Disjointness(G,~) = Yes, every optimal

auction awards bidder 1 the item with probability 1 on input (C
Ġ
1 , C

Ġ
2 ). On the other hand, when
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Disjointness(G,~) = No, every optimal auction awards bidder 1 the item with probability 0 on

input (C
Ġ
1 , C

Ġ
2 ). Therefore, if we know any outcome consistent with any optimal auction on

(C
Ġ
1 , C

Ġ
2 ), we know Disjointness(G,~).

4 OUR REDUCTION AND ITS PROPERTIES

In this section, we de�ne our reduction and state some useful properties. First, we de�ne the
type space. Throughout this section, = denotes the size of the input to Disjointness. We state the
concrete lemmas which are relevant to give a detailed technical proof overview, but all proofs
of these lemmas are in Appendix B in the full version. Note that the purpose of this section is
only to de�ne our �ow and state basic properties. We will give intuition for these decisions in the
subsequent sections as it will only become clear once we de�ne our �ow.

The type space. In our reduction, the type space does not depend on G,~ (only the distribution
does). For every input, =1 = =2 = = + 2 (meaning that each bidder has a total of = + 2 non-zero types
per day, and 2= + 4 non-zero types in total). For all : ∈ [= + 2] and both 8 , Eġğ := =2 + : .

The distribution. The distribution in our construction depends on G,~, but in all cases is nearly

uniform. Below, for simplicity of notation let 1 := 10=6, 0 := Ę−Ĥ5

Ĥ+1 . All probabilities will be an integer

multiple of 1
2Ę
. Below, Bidder One’s day1 distribution is �xed, and does not depend on G .

Definition 7 (Bidder One’s day1 distribution). De�ne 51 ((E
ġ
1 , 1)) (for all G) as follows:

(1) De�ne 51 ((E
1
1, 1)) :=

Ę
10Ĥ

2Ę
=

1
20Ĥ

.

(2) For : = 1 to =, �rst de�ne helper Iġ+1 :=
Ę−

∑ġ
Ġ=1 Ĝ1 ( (Ĭ

Ġ
1 ,1)) ·2Ę

Ĥ−ġ+2 , then de�ne 51 ((E
ġ+1
1 , 1)) :=

+İġ+1+
Ĥ3

Ĥ−ġ+2 ,

2Ę
.

(3) For : = = + 1, de�ne helper IĤ+2 := 1 −
∑Ĥ+1

Ġ=1 51 ((E
Ġ
1, 1)) · 21, then de�ne 51 ((E

Ĥ+2
1 , 1)) := İĤ+2

2Ę
.

We quickly establish that the total mass of Bidder One on day1 is always 1/2 in this construction.

Lemma 4.1.
∑Ĥ+2

ġ=1 51 ((E
ġ
1 , 1)) = 1/2.

Lemma 4.2 is one key property which will be useful in our later analysis. It states that Bidder
One’s day1 distribution is nearly-uniform over E21, . . . , E

Ĥ+2
1 (recall that 0 > =5).

Lemma 4.2. 51 ((E
ġ
1 , 1)) · 21 ∈ [0 − 2=3, 0 + 2=3] for all : ∈ [2, = + 2].

We now proceed to construct the day2 distribution for Bidder One. Bidder One’s day2 distribution
depends on G , and is constructed so that Gġ has a signi�cant impact on 51 ((E

ġ+1
1 , 2)).

Definition 8 (Bidder One’s day2 distribution). De�ne 51 ((E
ġ
1 , 2)) (as a function of G) as

follows:

(1) Set 51 ((E
1
1, 2) :=

Ę
10Ĥ

2Ę
=

1
20Ĥ

, for all G .

(2) For : = 1 to =, de�ne helper Iġ+1 =
Ę−

∑ġ
Ġ=1 Ĝ1 ( (Ĭ

Ġ
1 ,2)) ·2Ę

Ĥ−ġ+2 .

• If Gġ = 0, then set 51 ((E
ġ+1
1 , 2)) :=

⌊

İġ+1+
Ĥ3

Ĥ−ġ+2

⌋

2Ę
.

• Otherwise (Gġ = 1), set 51 ((E
ġ+1
1 , 2)) :=

+İġ+1 ,
2Ę

.

(3) For : = = + 1, de�ne helper IĤ+2 := 1 −
∑Ĥ+1

Ġ=1 51 ((E
Ġ
1, 2)) · 21. Set 51 ((E

Ĥ+2
1 , 2)) := İĤ+2

2Ę

The two lemmas below similarly establish that the total mass of Bidder One on day2 is always
1/2, and that Bidder One’s day2 distribution is always nearly-uniform over E21, . . . , E

Ĥ+2
1 .
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Lemma 4.3.
∑Ĥ+2

ġ=1 51 ((E
ġ
1 , 2)) = 1/2.

Lemma 4.4. For all G , 51 ((E
ġ
1 , 2)) · 21 ∈ [0 − =3, 0 + =3] for all : ∈ [2, = + 2].

Finally, we de�ne the distribution for Bidder Two day1. Bidder Two’s distribution will be truly
single-parameter in that their interest is always day1. Bidder Two’s distribution depends on ~, and
is constructed so that ~ġ has a signi�cant impact on 52 ((E

ġ+1
2 , 1)).

Definition 9 (Bidder Two’s distribution). De�ne 52 ((E
ġ
2 , 1)) (as a function of ~) as follows:

(1) Set 52 ((E
1
2, 1)) :=

Ę
10Ĥ −1

Ę
.

(2) For : = 1 to =, de�ne helper Iġ+1 :=
Ę−

∑ġ
Ġ=1 Ĝ2 ( (Ĭ

Ġ
2 ,1)) ·Ę

Ĥ−ġ+2 .

• If ~ġ = 1, then set 52 ((E
ġ+1
2 , 1)) :=

⌊

İġ+1+
Ĥ2

Ĥ−ġ+2

⌋

Ę
.

• Otherwise, set 52 ((E
ġ+1
2 , 1)) :=

+İġ+1−1,
Ę

.

(3) For : = = + 1, de�ne helper IĤ+2 := 1 −
∑Ĥ+1

Ġ=1 52 ((E
Ġ
2, 1)) · 1, set 52 ((E

Ĥ+2
2 , 1)) := İĤ+2

Ę
.

Again, we con�rm quickly that this is a valid distribution, and that it is nearly-uniform over
E22, . . . , E

Ĥ+2
2 .

Lemma 4.5.
∑Ĥ+2

ġ=1 52 ((E
ġ
2 , 1)) = 1.

Lemma 4.6. 52 ((E
ġ
2 , 1)) · 1 ∈ [0 − 2=3, 0 + 2=3] for all : ∈ [2, = + 2].

Finally, we quickly state that the optimal single-bidder auction for any distribution considered in
our reduction is especially simple: it sets the same take-it-or-leave-it price of =2 + 1. The proof is in
Appendix D in the full version.

Proposition 4.7. For all G (resp., ~), the revenue-optimal single-bidder auction for the resulting

distribution �1 (resp. �2) simply sets a take-it-or-leave-it price of =2 + 1 on one-day shipping.

5 CONSTRUCTING A FLOW

In this section, we construct a �ow which is optimal for all instances of our construction. We
proceed in two steps. First, we consider a canonical �ow and establish that this �ow is optimal if
and only if Disjointness(G,~) = yes. Next, we show how to modify the �ow to be optimal when
Disjointness(G,~) = no.

5.1 A Canonical Flow

We �rst de�ne a canonical �ow, and then argue it is optimal when Disjointness(G,~) = yes.

Definition 10 (Canonical Flow). (Uĉ , _ĉ ) is the canonical Myerson �ow, where:

• Uğ (:) = 0 for both bidders 8 and all : ∈ [= + 2].

• _
Ġ
ğ (:) = 'ğ ((E

ġ
ğ , 9)) for both bidders 8 , days 9 , and all : ∈ [= + 2].

It is easy to con�rm that (Uĉ , _ĉ ) is a �ow. We can also quickly execute De�nition 5 (recalling

that Eġğ = =2 + :) to compute ¨Ăĉ ,Čĉ :

Observation 2. For both bidders 8 , days 9 , and all : ∈ [1, =+2], ¨Ăĉ ,Čĉ

ğ ((Eġğ , 9)) = Eġğ −
Ďğ ( (Ĭ

ġ+1
ğ , Ġ))

Ĝğ ( (Ĭ
ġ
ğ , Ġ))

.

Proposition 5.1 below captures the key properties of our construction and this �ow. These
properties are motivated by bullet three of De�nition 6: we need to compare virtual values of types
of Bidder One with those for types of Bidder Two to determine if a certain allocation is optimal.
The proof is in Appendix C in the full version.
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Proposition 5.1. For all G,~, the �ow (Uĉ , _ĉ ) satis�es the following:

• For both 9 : : > : ′ ⇒ ¨
Ăĉ ,Čĉ

1 ((Eġ1 , 9)) > ¨
Ăĉ ,Čĉ

2 ((Eġ
′

2 , 1)).

• For both 9 : : < : ′ ⇒ ¨
Ăĉ ,Čĉ

1 ((Eġ1 , 9)) < ¨
Ăĉ ,Čĉ

2 ((Eġ
′

2 , 1)).

• For all : ∈ [=]: if Gġ = 0 OR ~ġ = 0, then for both 9 : ¨Ăĉ ,Čĉ

1 ((Eġ+11 , 9)) > ¨
Ăĉ ,Čĉ

2 ((Eġ+12 , 1)).

• For all : ∈ [=], if Gġ = 1 AND ~ġ = 1, then: ¨Ăĉ ,Čĉ

1 ((Eġ+11 , 1)) > ¨
Ăĉ ,Čĉ

2 ((Eġ+12 , 1)) >

¨
Ăĉ ,Čĉ

1 ((Eġ+11 , 2)).

• For both 9 : ¨Ăĉ ,Čĉ

1 ((E11, 9)) > ¨
Ăĉ ,Čĉ

2 ((E12, 1)).

• For both 9 : ¨Ăĉ ,Čĉ

1 ((EĤ+21 , 9)) = ¨
Ăĉ ,Čĉ

2 ((EĤ+22 , 1)).

• For both 8 , both 9 , and all : g 1: ¨Ăĉ ,Čĉ

ğ ((Eġğ , 9)) > 0.

The �rst two bullets assert that a bidder with strictly higher value has strictly higher virtual
value as well. The next two bullets concern virtual values when both bidders’ values are the same.
Importantly, they assert that the relative comparison of virtual values when both bidders have
value =2 + : depends only on Gġ and ~ġ , and not on G−ġ or ~−ġ . Just as importantly, they assert
that Bidder One’s interest is only relevant if Gġ = ~ġ = 1. Bullet seven implies that any allocation
rule that witnesses optimality for (Uĉ , _ĉ ) must learn which bidder has higher virtual value. We
analyze a potential such auction next.

Definition 11 (Second-Price Auction, tie-breaking for Bidder One). The second-price
auction, tie-breaking for Bidder One, gives the item to the bidder with highest value and breaks ties

in favor of Bidder One. Payments are charged to satisfy the payment identity.

Theorem 5.2. The second-price auction, tie-breaking for Bidder One, witnesses optimality for

(Uĉ , _ĉ ) if and only if Disjointness(G,~) = yes.

Proof. First, it is well-known (and easy to see) that the second-price auction, tie-breaking
for Bidder One, with the payment identity is BIC. After this, there are three bullets to check
in De�nition 6. We claim that the �rst two hold for all G,~, and the third holds if and only if
Disjointness(G,~) = yes.

The �rst bullet holds trivially, as payments are speci�cally de�ned to satisfy the payment identity.
The second bullet holds vacuously, as Uĉ

ğ (:) = 0 for both 8 and all : (in fact, the implied condition
holds anyway, as the bidders’ allocation/payment doesn’t depend on their interest).
To see that �nal bullet holds if and only if Disjointness(G,~) = yes, observe that the second-

price auction awards the item to the bidder with highest value, tie-breaking for Bidder One.
So the �nal bullet holds if and only if: (a) a higher value implies a higher virtual value (which
immediately follows from the �rst two bullets of Proposition 5.1), (b) all virtual values are non-
negative (which immediately follows from bullet seven of Proposition 5.1), and (c) Bidder One
has a higher virtual value whenever both bidders have the same value (which holds if and only if

Disjointness(G,~) = yes, by bullets three and four of Proposition 5.1).
This completes the proof: De�nition 6 is satis�ed if and only if Disjointness(G,~) = yes. □

Observe that Theorem 5.2 implies that the Second-Price Auction, tie-breaking for Bidder One is
one optimal auction for (�1, �2) when Disjointness(G,~) = yes. We now conclude the following
simple corollary:

Corollary 5.2.1. If Disjointness(G,~) = yes, every optimal BIC auction (-, %) for �1, �2 has

-1 (C
1
1 , C

1
2 ) = 1.

Proof. Because a BIC auction witnesses optimality for (Uĉ , _ĉ ) (by Theorem 5.2), every

optimal BIC auction for �1, �2 witnesses optimality for (Uĉ , _ĉ ). Because ¨
Ăĉ ,Čĉ

1 ((E11, 1)) >

∙



¨
Ăĉ ,Čĉ

2 ((E12, 1)) by Proposition 5.1, bullet three of De�nition 6 asserts that every optimal BIC

auction satis�es -1 (C
1
1 , C

1
2 ) = 1. □

Corollary 5.2.1 proves half of Theorem 1.1: that Bidder One wins the item in all optimal auctions
on (C11 , C

1
2 ) when Disjointness(G,~) = yes. Theorem 5.2 makes clear the key distinction when

Disjointness(G,~) = no: (Uĉ , _ĉ ) does not witness optimality, so we need a new �ow.

5.2 Modifying the Canonical Flow

We now modify the canonical �ow to �nd an optimal (U ′, _′) in the case when Disjointness(G,~) =
no. Fortunately, the necessary modi�cation is simple to describe (although verifying the desired
properties is complex). We will only make one modi�cation, de�ned below, and �rst used in [24].

Definition 12 (Boosting, [24]). Beginning with a �ow (U, _), boosting (U, _) at : for Bidder 8
by Y, for any Y f _2ğ (:

′) for all : ′ f : , produces a new �ow (U ′, _′) with:

• U ′
ğ (:) := Uğ (:) + Y.

• (_′)2ğ (:
′) := _2ğ (:

′) − Y, for all : ′ f : .

• (_′)1ğ (:
′) := _1ğ (:

′) + Y, for all : ′ f : .

• If not already speci�ed, then U ′
= U and _′ = _.

It is not hard to see that Boosting at : preserves the �ow conditions (provided that Y f _2ğ (:
′)

for all : ′ f :). It is also not hard to see that Boosting at : for Bidder 8 increases the virtual value
for all (Eġ

′

ğ , 2) for all :
′
< : , decreases the virtual value for all (Eġ

′

ğ , 1) for all :
′
< : , and leaves all

other virtual values unchanged (see [24, Observation 3] — although we will prove this ourselves
whenever this is used in calculations).

Definition 13 (Modified Flow). The modi�ed �ow (U∗, _∗) proceeds as follows:

(1) Begin with (U, _) = (Uĉ , _ĉ ).
(2) Boost (U, _) at = + 2 for Bidder One by Y. Here, Y is the minimum boost which results in

¨
Ă′,Č′

1 ((Eġ1 , 2)) g ¨
Ă′,Č′

2 ((Eġ2 , 1)) for all : .

The rest of our analysis proceeds as follows. First, we need to establish that this modi�ed �ow in-
deed exists, because the required boost for Bullet 2 is small enough to be valid. Proposition 5.3 states
this, and also several useful properties of this �ow. The proof of Proposition 5.3 is in Appendix C in
the full version, and this relies on many of the precise choices in de�ning our instance.

Proposition 5.3. For all G,~, (U∗, _∗) is a valid �ow. Moreover, it satis�es the following properties:

• For both 9 : : > : ′ ⇒ ¨
Ă∗,Č∗

1 ((Eġ1 , 9)) > ¨
Ă∗,Č∗

2 ((Eġ
′

2 , 1)).

• For both 9 : : < : ′ ⇒ ¨
Ă∗,Č∗

1 ((Eġ1 , 9)) < ¨
Ă∗,Č∗

2 ((Eġ
′

2 , 1)).

• For both 9 , and all : g 2, ¨Ă∗,Č∗

1 ((Eġ1 , 9)) g ¨
Ă∗,Č∗

2 ((Eġ2 , 1)).

• When Disjointness(G,~) = no, there exists a :∗ ∈ [2, = + 1] such that: ¨Ă∗,Č∗

1 ((Eġ
∗

1 , 2)) =

¨
Ă∗,Č∗

2 ((Eġ
∗

2 , 1)).

• When Disjointness(G,~) = no, then: ¨Ă∗,Č∗

1 ((E11, 2)) > ¨
Ă∗,Č∗

2 ((E12, 1)) > ¨
Ă∗,Č∗

1 ((E11, 1)).

• For both 9 : ¨Ă∗,Č∗

1 ((EĤ+21 , 9)) = ¨
Ă∗,Č∗

2 ((EĤ+22 , 1)).

• For both 8 , both 9 , and all : g 1: ¨Ă∗,Č∗

ğ ((Eġğ , 9)) > 0.

We now de�ne an auction that witnesses optimality for (U∗, _∗), and conclude implications for
-1 (C

1
1 , C

1
2 ).

Definition 14 (Second-Price Auction, careful tie-breaking at :∗). The second-price auction

with careful tie-breaking at :∗ ∈ [2, = + 1] gives the item to the bidder with highest value. If both

∙



bidders have the same value =2 + : , break ties in the following manner (in all cases, charge payments

satisfying the payment identity):

• If : ≠ 1, and Bidder One’s interest is day1, give the item to Bidder One.

• If : = 1, and Bidder One’s interest is day1, give the item to Bidder Two.

• If : ≠ :∗, and Bidder One’s interest is day2, give the item to Bidder One.

• If: = :∗, and Bidder One’s interest is day2, give Bidder One the itemwith probability 1−
Ĝ2 ( (Ĭ

1
2 ,1))

Ĝ2 ( (Ĭ
ġ∗

2 ,1))
,

and to Bidder Two with probability
Ĝ2 ( (Ĭ

1
2 ,1))

Ĝ2 ( (Ĭ
ġ∗

2 ,1))
.21

Let us quickly get some intuition for the Second-Price Auction with careful tie-breaking at :∗.
First, observe that when Bidder One’s value is neither =2 + 1 nor =2 + :∗, the allocation rule is
agnostic to Bidder One’s interest. However, when Bidder One’s value is =2 + 1, ties are more often
broken in favor of Bidder One when their interest is day2 versus day1. Similarly, when their value
is =2 + :∗, ties are more often broken in favor of Bidder One when their interest is day1 versus
day2. When calculating the payment identity, this implies that no matter Bidder One’s value, their

payment depends on their interest, even when their allocation probability does not. In particular, the
Second-Price Auction with careful tie-breaking at :∗ is not DSIC, and the precise probability chosen
in bullet four is chosen exactly so that Lemma 5.4 (below) holds.22

Lemma 5.4. For all G,~ such that Disjointness(G,~) = no, the Second-Price Auction with careful

tie-breaking at :∗ is BIC. Moreover, cğ ((E
ġ
ğ , 2)) · E

ġ
ğ − ?ğ ((E

ġ
ğ , 2)) = cğ ((E

ġ
ğ , 1)) · E

ġ
ğ − ?ğ ((E

ġ
ğ , 1)) for all

: > :∗.

With Lemma 5.4 in hand, the proof of Theorem 5.5 follows similarly to that of Theorem 5.2.

Theorem 5.5. When Disjointness(G,~) = no, let :∗ be the index promised by bullet four of

Proposition 5.3. Then the second-price auction with careful tie-breaking at :∗ witnesses optimality for

(U∗, _∗).

Proof. We have already established in Lemma 5.4 that the second-price auction with careful
tie-breaking at :∗ is BIC, so we just need to check the three bullets. We have also explicitly de�ned
payments to satisfy the payment identity, so bullet one is satis�ed. For bullet two, the condition
is vacuously satis�ed for all : < = + 2 because U1 (:) = 0. At : = = + 2, we are guaranteed that
cğ ((E

Ĥ+2
ğ , 2)) · EĤ+2ğ − ?ğ ((E

Ĥ+2
ğ , 2)) = cğ ((E

Ĥ+2
ğ , 1)) · EĤ+2ğ − ?ğ ((E

Ĥ+2
ğ , 1)) by Lemma 5.4, as :∗ < = + 2.

Therefore, bullet two is satis�ed for all : .
Finally, we just need to con�rm bullet three: that the auction always awards the item to a bidder

with highest non-negative virtual value. Indeed, bullets one, two, and seven of Proposition 5.3
imply that the bidder with highest value also has the highest non-negative virtual value, so the
second-price auction with careful tie-breaking at :∗ is correct whenever the two bidders have
di�erent values. Bullet three con�rms that Bidder One’s virtual value is always weakly higher than
Bidder Two’s in case they have the same value > =2 + 1. This implies that the second-price auction
with careful tie-breaking at :∗ breaks ties correctly in all cases when it gives the item to Bidder
One. When both bidders have value =2 + 1 and Bidder One’s interest is day1, bullet �ve con�rms
that Bidder Two has higher virtual value (and the auction gives the item to Bidder Two). When

21Observe that this is feasible, as we’ve guaranteed in our construction that Ĝ2 ( (Ĭ
1
2 , 1)) < Ĝ2 ( (Ĭ

ġ
2 , 1)) for all ġ > 1.

22For example, if Bidder One wins ties in bullet four with any probability > 1 −
Ĝ2 ( (Ĭ

1
2 ,1) )

Ĝ2 ( (Ĭ
ġ∗
2

,1) )
, the auction would remain BIC

(but the ‘Moreover,. . . ’ property in Lemma 5.4 would not hold). If Bidder One wins ties with probability < 1 −
Ĝ2 ( (Ĭ

1
2 ,1) )

Ĝ2 ( (Ĭ
ġ∗
2

,1) )
,

then Bidder One would have strict incentive to misreport their day2 interest as day1 whenever their value is > Ĥ2 + ġ∗.
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both bidders have value =2 +:∗ and Bidder One’s interest is :∗, bullet four con�rms that the bidders
have the same virtual value, so ties can be broken arbitrarily (and in particular, the randomization
proposed is guaranteed to award the item to a bidder of highest virtual value).
This con�rms all three bullets, and the proof. □

Again observe that Theorem 5.5 implies that the Second-Price Auction with careful tie-breaking
at :∗ is one optimal auction for (�1, �2) when Disjointness(G,~) = no. We again conclude the
following corollary:

Corollary 5.5.1. If Disjointness(G,~) = no, every optimal BIC auction (-, %) for �1, �2 has

-1 (C
1
1 , C

1
2 ) = 0.

Proof. Because a BIC auction witnesses optimality for (U∗, _∗) (by Theorem 5.5), every optimal

BIC auction for �1, �2 witnesses optimality for (U∗, _∗). Because ¨Ă∗,Č∗

1 ((E11, 1)) < ¨
Ă∗,Č∗

2 ((E12, 1))
by Proposition 5.3, bullet three of De�nition 6 asserts that every optimal BIC auction satis�es
-1 (C

1
1 , C

2
1 ) = 0. □

This wraps up the proof of Theorem 1.1.

Proof of Theorem 1.1. Corollary 5.2.1 establishes that when Disjointness(G,~) = yes, any opti-
mal BIC auction must allocate the item to Bidder One on (C11 , C

1
2 ) with probability one. Corollary 5.5.1

establishes that when Disjointness(G,~) = no, any optimal BIC auction must allocate the item to
Bidder One on (C11 , C

1
2 ) with probability zero. Because �1 can be constructed only as a function of G ,

and �2 can be constructed only as a function of ~, any communication protocol which correctly
allocates the item on (C11 , C

1
2 ) in accordance with any optimal BIC mechanism (even with probability

2/3) can also solveDisjointness (with probability 2/3). Because any deterministic (resp. randomized,
succeeding with probability 2/3) protocol for disjointness requires communication = (resp. ¬(=)),
this means that any deterministic (resp. randomized, succeeding with probability 2/3) protocol
which can correctly allocate the item on (C11 , C

1
2 ) in accordance with any optimal BIC mechanism

(resp. with probability 2/3) requires communication at least = (resp. ¬(=)). □

6 CONCLUSION

We establish that optimal multi-dimensional mechanisms are not locally-implementable: in order to
evaluate the auction on just a single valuation pro�le, one must know (essentially) the entire distri-
bution. In contrast, optimal single-dimensional mechanisms are locally-implementable: evaluating
the auction on a single valuation pro�le requires barely more bits from each �ğ than simply stating
Eğ itself. Our construction establishes that this separation holds already in (essentially) the simplest
possible multi-dimensional setting: one single-dimensional bidder and one two-day FedEx bidder.
We also show that optimal auctions for single-dimensional buyers with public budget constraints
are not locally-implementable. Moreover, both results follow the same outline, highlighting the
robustness of our techniques.
Our work establishes a novel complexity of optimal multi-dimensional mechanisms distinct

from optimal single-dimensional mechanisms. In particular, unlike prior work, this complexity is
inherently a multi-bidder phenomenon, rather than inherited from the single-bidder setting. Indeed,
every optimal single-bidder auction for any instance considered by our reductions simply sets a
price of =2 + 1. Locality can serve as a quantitative lens for future work to study the complexity of
multi-bidder auctions in multi-dimensional settings where single-bidder auctions are tractable. For
example:

∙



• Do there exist approximately-optimalmulti-dimensional auctions that are locally-implementable?
One signi�cant technical barrier to this direction is an alternative line of attack beyond com-
plementary slackness (as complementary slackness holds only for optimal primal/dual pairs).
Note that the Marginal Revenue Mechanism of [2] is locally-implementable and approxi-
mately optimal in restricted “approximately revenue-linear” settings. But, it remains unknown
whether approximately-optimal locally-implementable mechanisms exist generally.

• What are the implications of (non)-locality for streaming or online-learning variants of opti-
mal auction design? In this direction, it is important that we study locality via communication
complexity, due to the strong connection between communication complexity and streaming
lower bounds [4, 40].
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A OPTIMAL SINGLE-DIMENSIONAL MECHANISMS ARE LOCAL

In this section we are going to show that optimal single-item auctions are local. Our analysis here
adopts the characterization by [11].

We assume each �ğ is a distribution supported on = valuations (E1ğ , E
2
ğ , . . . , E

Ĥ
ğ ), and each valuation

has an integer value between 0 and ? (=) (? is a polynomial in =) for each outcome, and the
probability of each valuation is an integer multiple of 1/6(=) (g is another polynomial in =). We
use the notation 'ğ (E

ġ
ğ ) :=

∑
ġ′gġ 5ğ (E

ġ′

ğ ).23

First we de�ne the discrete Myerson virtual value.

Definition 15 (Single-dimensional Virtual Value). For a discrete distribution �ğ , de�ne

iĀğ (Eġğ ) := Eġğ −
(Eġ+1ğ − Eġğ ) · 'ğ (E

ġ+1
ğ )

5ğ (E
ġ
ğ )

.

We now show that a single virtual value iĀğ (Eġğ ) contains barely more information from �ğ than

the value Eġğ itself (which has zero information from �ğ ).

Lemma A.1. For �xed polynomials ? and 6, given distribution �ğ and : , i
Āğ (Eġğ ) can be represented

in $ (log=) bits.

Proof. We can use Eġğ , E
ġ+1
ğ , 'ğ (E

ġ+1
ğ ), and 5ğ (E

ġ
ğ ) to computeiĀğ (Eġğ ), thus we can trivially encode

each of them into $ (log=) bits separately. □

We will then prove a bit stronger result to show the weighted average virtual value over an
interval can also be represented in $ (log=) bits.

Lemma A.2. For �xed polynomials ? and 6, given distribution �ğ and :, ; , the weighted average

virtual value over [:, ;] ∑Ģ
Ġ=ġ 5ğ (E

Ġ
ğ ) · i

Āğ (E
Ġ
ğ )∑Ģ

Ġ=ġ 5ğ (E
Ġ
ğ )

can be represented in $ (log=) bits.

Proof. Since the denominator
∑Ģ

Ġ=ġ 5ğ (E
Ġ
ğ ) is an integer multiple of 1/6(=) and less than or

equal to 1, it can be easily encoded in $ (log=) bits. So it is su�cient to show that the numerator∑Ģ
Ġ=ġ 5ğ (E

Ġ
ğ ) · i

Āğ (E
Ġ
ğ ) can be represented in $ (log=) bits. To achieve this, observe that:

Ģ∑
Ġ=ġ

5ğ (E
Ġ
ğ ) · i

Āğ (E
Ġ
ğ ) =

Ģ∑
Ġ=ġ

(
5ğ (E

Ġ
ğ ) · E

Ġ
ğ − (Eġ+1ğ − Eġğ ) · 'ğ (E

ġ+1
ğ )

)

23For simplicity of notation, denote by Ďğ (Ĭ
Ĥ+1
ğ ) := 0.

∙



=

Ģ∑
Ġ=ġ

5ğ (E
Ġ
ğ ) · E

Ġ
ğ −

©­«
EĢ+1ğ · 'ğ (E

Ģ+1
ğ ) − Eġğ · 'ğ (E

ġ+1
ğ ) +

Ģ∑
Ġ=ġ+1

5ğ (E
Ġ
ğ ) · E

Ġ
ğ

ª®¬
= 5ğ (E

ġ
ğ ) · E

ġ
ğ − EĢ+1ğ · 'ğ (E

Ģ+1
ğ ) + Eġğ · 'ğ (E

ġ+1
ğ )

= Eġğ · 'ğ (E
ġ
ğ ) − EĢ+1ğ · 'ğ (E

Ģ+1
ğ ).

Note that Eġğ , 'ğ (E
ġ
ğ ), E

Ģ+1
ğ , and 'ğ (E

Ģ+1
ğ ) can all be encoded in $ (log=) bits. □

The following theorem characterizes the optimal mechanism in this single-dimensional setting.

Theorem A.3 ([11, 36]). The revenue-optimal BIC mechanism awards the item to the bidder with

the highest non-negative ironed virtual value (if one exists), breaking ties arbitrarily but consistently

across inputs, where ironed virtual value for type Eġğ : ī
Āğ

ğ (Eġğ ) is the weighted average virtual value

over an interval containing Eġğ .
24 If no such bidder exists, the item remains unallocated.

Finally with Lemma A.2 and Theorem A.3 we conclude the following theorem, which implies
that the optimal single-dimensional auction is local.

Theorem A.4. When each �ğ is single-dimensional, supported on = valuations, and each valuation

has an integer value between 0 and poly(=) for each outcome, and the probability of each valuation is

an integer multiple of 1/poly(=), then $ (log=) bits from each �ğ su�ce to compute Opt(®E, ®�).

24See [11] for explicit expressions of ironed virtual values. Here we only need to know that an ironed virtual value is the

weighted average over an interval of virtual values.
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