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We introduce locality: a new property of multi-bidder auctions that formally separates the simplicity of optimal
single-dimensional multi-bidder auctions from the complexity of optimal multi-dimensional multi-bidder
auctions. Specifically, consider the revenue-optimal, Bayesian Incentive Compatible auction for buyers with
valuations drawn from D := X;D;, where each distribution has support-size n. This auction takes as input a
valuation profile & and produces as output an allocation of the items and prices to charge, Optﬁ(zj). When
each D; is single-dimensional, this mapping is locally-implementable: defining each input v; requires ©(log n)
bits, and Optﬁ(fj) can be fully determined using just ©(log n) bits from each D;. This follows immediately from
Myerson’s virtual value theory [36].

Our main result establishes that optimal multi-dimensional mechanisms are not locally-implementable: in
order to determine the output Optj (9) on one particular input , one still needs to know (essentially) the entire
distribution D. Formally, Q(n) bits from each D; is necessary: (essentially) enough to fully describe D;, and
exponentially more than the ©(log n) needed to define the input v;. We show that this phenomenon already
occurs with just two bidders, even when one bidder is single-dimensional, and even when the other bidder is
barely multi-dimensional. More specifically, the multi-dimensional bidder is “inter-dimensional” from the
FedEx setting with just two days [28].

Our techniques are fairly robust: we additionally establish that optimal mechanisms for single-dimensional
buyers with budget constraints are not locally-implementable. This again occurs even with just two bidders,
even when one has no budget constraint, and even when the other’s budget is public.
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1 INTRODUCTION

Consider the problem of selling multiple items to multiple bidders, where each bidder’s valuation
function (for the items) is drawn independently from a distribution known to the seller. The seller
desires a truthful auction (formally, Bayesian Incentive Compatible. See Section 2) maximizing her
expected revenue.
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Since Myerson’s seminal work, it is well-established that revenue-optimal single-dimensional
auctions are exceptionally simple, and satisfy many desirable properties. For example, revenue-
optimal single-bidder single-dimensional auctions offer the bidder a take-it-or-leave-it price (the
bidder can pay the price and get the item, or not pay and get nothing). Optimal single-bidder single-
dimensional auctions are therefore deterministic, computable in poly-time, revenue-monotone,!
and have menu-complexity one.? In contrast, optimal single-bidder multi-dimensional mechanisms
(where, e.g., two distinct items are for sale) require randomization [39, 46], are computationally
hard to find [15, 16, 20], are non-monotone [31, 44],% and have unbounded menu complexity [6, 7,
21, 30, 35]. This vast (and still growing) line of works clearly establishes that optimal single-bidder
multi-dimensional mechanisms are extremely complex when compared to their single-dimensional
counterparts.

In the multi-bidder setting, however, the story is less written. Of course, optimal multi-bidder
multi-dimensional mechanisms inherit all the complexities of optimal single-bidder multi-dimensional
mechanisms. Still, it remains largely unknown to what extent all the complexities of optimal multi-
bidder multi-dimensional auctions already manifest in the single-bidder setting. Indeed, in some
special cases where the optimal single-bidder multi-dimensional auction is tractable, the optimal
multi-bidder multi-dimensional auction is tractable as well [9]. Some further multi-dimensional
special cases even admit formal multi-to-single-bidder reductions [1-3]. In this direction, our work
identifies a novel complexity of optimal multi-bidder multi-dimensional mechanisms driven by the
multi-bidder aspect. For example, our quantitative measure identifies complexity in broad classes of
two-bidder multi-dimensional settings, even though the single-bidder problem for every instance
in these classes is quite simple.

Locally-Implementable Mechanisms. Consider the following thought experiment: you run
k-bidder auctions, and your Bayesian prior is that Bidder i’s valuation function is drawn from D;.
When each D; remains permanently fixed, it makes sense to hard-code the revenue-optimal auction
for X;D;, and plug in each new valuation profile 3 as input. But you are continuously gathering
data on bidders’ values to refine your beliefs (in fact, every additional auction executed itself refines
your beliefs for future auctions). So while just a single 7 is given as input, the problem you aim to
solve is parameterized by the prior D.

DEFINITION 1 (IMPLEMENTING A REVENUE OPTIMAL AUCTION). Given as input k valuation func-
tions vy, . .., g, and parameterized by k distributions Dy, . .., Dy, determine Optﬁ(ﬁ): an allocation of
items and payments charged on valuation profile (v1, .. .,vx) that is consistent with some revenue-
optimal mechanism for X;D;.

At the heart of our paper is the following (for now, informally-posed) question: How much do
you really need to know about each D; in order to compute Optj (9) for just one particular o?

When each D; is single-dimensional, not much is needed, and this follows immediately from
Myerson’s theory of (ironed) virtual values [36]. Indeed, if each D; is supported on n valuations, and
each valuation has an integer value between 0 and poly(n) for each outcome, and the probability
of each valuation is an integer multiple of 1/poly(n), then O(log n) bits from each D; suffice to
compute Opt (7). Inspired by the concept of locally-decodable codes (see survey [48]), we term

ISpecifically, if D stochastically dominates D’, then the optimal revenue for D exceeds that of D’.

2The menu-complexity of a single-bidder auction is the number of distinct non-trivial allocations they might receive.
3Specifically, there exist distributions over additive valuations for two items D and D’ which can be coupled so that v ~ D
values all sets of items more than o’ ~ D’, yet the optimal revenue for D’ is infinite and the optimal revenue for D is 1!
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this property locally-implementable: to compute Optj (), barely more bits are needed from each
D; than the bits needed to state v; itself.*

To quickly see this (see Appendix A for a more detailed sketch), recall that Myerson’s seminal
work defines a (ironed) virtual valuation function q')l.D “() (which depends only on D; and not D_;)
such that the revenue-optimal auction gives the item to Bidder i* := arg maxi{(plpi (v;)} and charges
them price (@?i* )~ (max{0, max;;- {q‘)lp" (v1)}}) Gf 4[7?"* (vs+) = 0, otherwise no one wins the item).
In particular, the winner can be determined just by knowing (piDi (v;) for alli, and the payment charged
can be further determined with one additional query to @?"* (+). Moreover, each q’)iD “(v) is the ratio
of two integers of size at most poly(n) (subject to the conditions at the start of this paragraph),
so just O(logn) bits from each D; suffice to compute Opt (3), while Q(n) bits are necessary to fully
specify each D;.

Our main result shows that optimal multi-dimensional mechanisms are not locally-implementable,
and in fact are as far from locally-implementable as possible: Q(n) bits from each D; are needed to
determine Opt (7) — nearly as many bits as needed to fully specify D;, and exponentially more
than the ©(log n) bits needed to specify v;. We further show that this already holds in essentially the
simplest multi-dimensional setting: there are just two bidders, one of whom is single-dimensional,
and another who is “inter-dimensional” according to the FedEx problem [28]. Specifically, there
are two options for the item (call them one-day and two-day shipping). The single-dimensional
bidder always has value 0 for two-day shipping. The multi-dimensional bidder either has the same
value for both options, or has value 0 for two-day shipping. Such bidders are a (very) special case of
unit-demand bidders.> They are also a special case of buyers with a private budget constraint [24],
and single-minded buyers [22]. Formally, we use the lens of communication complexity for the
following problem to establish our main result.

DEFINITION 2. Select-Outcome Problem is a communication problem between Alice and Bob. Alice
is given as input D1, and a valuation v, in its support. Bob is given Dy, and a valuation v, in its support.
When the input is of size n, each distribution has support-size at most n, all valuations in the support
have integer values < n® for all outcomes, and all probabilities are an integer multiple of%, for some
integer b < n®.°

A solution to Select-Outcome Problem outputs an outcome x such that some revenue-optimal auction
for Dy X Dy, on valuation profile (vy,0v,), selects outcome x with non-zero probability.”

In this language, the previous paragraphs state that Select-Outcome Problem can be solved in
deterministic communication complexity O(logn) when both bidders are single-dimensional (and
moreover, correct prices can be found in communication O(log n) as well). Formally, our main
result is that the communication complexity is exponentially higher in multi-dimensional settings.

THEOREM 1.1 (MAIN RESULT). Even when D; is single-dimensional, and Dy is a FedEx bidder
with two options, the communication complexity of Select-Outcome Problem is Q(n). This holds for
deterministic protocols, as well as randomized protocols which succeed with probability > 2/3.

4To draw the (very high-level) conceptual connection to locally-decodable codes, think of the n-bit codeword C as parame-
terizing the decoding algorithm, which is given an index i as input (and the desired output is m;, the i*? bit of the original
message). Locality refers to the fact that m; can be determined by querying just o(n) bits of C. Similarly, locality in our
context refers to the fact that Opt; (9) can be determined using just O(log n) bits from each D;.

5 A valuation is unit-demand if its valuation for a set of items S is v(S) := max;es 0({i}).

The particular choice of n* and n® are immaterial, and can be any sufficiently large (fixed) polynomials in 7.

"For example, in a single-item auction with two bidders there are three outcomes: give the item to bidder one, bidder two, or
no one. Note that many outcomes may be correct, both due to multiplicity of optimal auctions, and due to optimal auctions
being randomized. Note also that the outcome selected may be the “null” outcome to keep all items with the seller.
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We quickly motivate our precise choices in defining Select-Outcome Problem. Because all input
numbers are integers < poly(n), Theorem 1.1 must follow because any solution to Select-Outcome
Problem requires many bits from each distribution (and not because Q(n) bits are required just
to do arithmetic on the input). Allowing the solution to be consistent with any allocation output
with non-zero probability in any optimal auction ensures that hardness follows for any reasonable
alternative definition as well (and not because of some technicality associated with multiplicity or
randomization of optimal auctions).

We further note that the complexity uncovered by Theorem 1.1 arises only in the multi-bidder
setting, as the single-bidder problems for both D; and D, are quite simple. Indeed, D, is a single-
dimensional bidder, so the optimal single-bidder auction for D; is just a take-it-or-leave-it price. The
optimal single-bidder auction for a FedEx bidder with two options is only slightly more complex: it
has menu complexity at most two,? is computationally tractable, etc. [28]. Additionally, for every
possible instantiation of D; or D; used in our construction, the revenue-optimal single-bidder
auction simply sets a take-it-or-leave-it price of n? + 1 (see Proposition 4.7). Put another way, every
instantiation of D; and D, in our construction admits the simplest possible single-bidder solution.
Yet, the optimal multi-bidder auction for both together is not locally-implementable (and recall
that this phenomenon cannot occur with two single-dimensional bidders).

Finally, we emphasize that locality is an intrinsic measure of complexity for multi-bidder auctions.
In this sense, the communication complexity of Select-Outcome Problem serves not as a problem
to be solved in practice, but rather as a quantitative lens to view the extent to which the output of
an optimal multi-bidder auction for one particular input 7 depends on the underlying prior D.

1.1 Extension: Budget-Constrained Bidders

In addition to our main result, we also consider bidders who are barely beyond the classic single-
dimensional setting in a different direction: they have a budget constraint. Specifically, bidders
have a value v and a budget B. If they receive the item and are charged p < B, their utility is v — p as
usual. If they are charged p > B, their utility is —co. That is, the bidder’s utility is not quasi-linear.”

If v and B are both private information to the bidder, this is an inter-dimensional setting [24],
and Theorem 1.1 already establishes that optimal mechanisms are not locally-implementable. If
instead the budget is public (known to the designer), then this is still a single-dimensional setting
(because the bidder’s private information is just a single value), but it is non-linear (because the
buyer is not quasi-linear). Again, this is essentially the simplest non-linear setting (and perhaps
the most well-studied within the TCS literature, arguably by a significant margin): the buyer is
still single-dimensional, and her utility with respect to price is piecewise-linear with two segments.
We also show that optimal mechanisms for single-dimensional budget-constrained buyers are not
locally-implementable.

THEOREM 1.2. Even when D, is single-dimensional and quasi-linear, and D; is single-dimensional
with a public budget constraint, the communication complexity of Select-Outcome Problem is Q(n).
This holds for deterministic protocols, as well as randomized protocols which succeed with probability
> 2/3.

We again note that this complexity arises in the multi-bidder setting, despite the fact that
each single-bidder problem is quite simple. Again, D; is single-dimensional and quasi-linear, so
the optimal single-bidder mechanism is just a take-it-or-leave-it price. The optimal single-bidder
8Specifically, it offers one-day shipping at a take-it-or-leave-it price. It may additionally offer one (perhaps randomized)
option to receive two-day shipping at a discount.

%A bidder is quasi-linear if their utility for receiving the item is  — p always. Throughout the paper, bidders will always be
assumed to be quasi-linear unless otherwise specified.
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mechanism for a single-dimensional buyer with a public budget has menu complexity at most two,°
is computationally tractable, etc. [13]. Additionally, for every possible instantiation of D; or D, used
in our construction, the revenue-optimal single-bidder auction again sets a take-it-or-leave-it price
of n? + 1 (see Proposition E.6 in the full version). We additionally emphasize that our constructions
for Theorems 1.1 and Theorem 1.2 overlap significantly (see Section 3), highlighting the robustness
of our technical contributions.

1.2 Additional Implications for Multi-Dimensional Virtual Values

We now provide an additional lens through which to view the implications of our main result.
Specifically, several works provide some form of “multi-dimensional virtual values” [2, 9, 11, 12, 29,
42]. Their precise uses and derivations differ (see Section 1.4 for further detail), but they all share a
theme of connecting truthful revenue maximization to algorithmic virtual welfare maximization.
For example, [11] derives multi-dimensional virtual values through Lagrangian duality, and proves
that for all instances D, there exists a virtual valuation function CIDID (+) for each bidder i such that
for all valuation profiles g, every revenue-optimal auction must select an outcome x maximizing
S0P () (x).

In particular, this view shows a correspondence between Lagrangian multipliers/dual variables
in a natural Linear Programming formulation (overviewed in Section 2) and these virtual valuation
functions. This Linear Program has variables, constraints, and dual variables for each bidder.

One additional beautiful aspect of Myerson’s virtual value theory is the following: gZJl.Di (-) depends
only on D; and not at all on D_;. In the language of LP duality, this implies the following remarkable
property: in the LP formulation, the optimal dual variables for Bidder i also depend only on D; and not
at all on D_;! The fact that the optimal dual variables can be computed separately for each bidder
is remarkable because the optimal primal solution certainly cannot (Bidder i’s allocation/price
variables in the optimal auction certainly depend on D_;). To emphasize the implications of this
remarkable property: consider writing, separately for each i, the LP formulation to optimally
sell a single item to a single bidder whose value is drawn from D;. To solve the multi-bidder LP
formulation for k bidders whose values are drawn from X;D;, one could try naively stapling the k
optimal primals to these single-bidder LPs together. There is no reason to expect this to succeed,
and indeed it fails (in fact, it will generally fail to even produce a feasible primal). On the other
hand, one could alternatively try naively stapling together the k optimal dual variables together,
and hope that this produces the optimal dual variables for the k-bidder LP formulation. Somewhat
miraculously, this latter process succeeds in any single-dimensional setting (with quasi-linear bidders).

For multi-dimensional bidders, the [11] framework still establishes the existence of CDiD (+), but not
necessarily that <I>P () is agnostic to D_; as in the single-dimensional case. Or in the language of LPs,
the optimal dual variables for Bidder i may a priori depend on the entire prior, rather than just D;.
Viewed through this lens, [2, 29] discover restricted multi-dimensional settings where optimal duals
retain this remarkable “bidder-separable” property. Through the same lens, Theorem 1.1 establishes
that this bidder-separable property does not generally hold in multi-dimensional settings (even
with just two bidders from the two-day FedEx problem). Theorem 1.2 rules out the bidder-separable
property for single-dimensional non-linear settings as well. In addition, Theorems 5.2 and 5.5
further give concrete examples of how optimal dual variables for Bidder 1 can be quite sensitive to
tiny changes in D;.

108pecifically, it offers the option to receive the item at some price p. If p = B, it may additionally offer the option to receive
the item with probability g < 1 at price r < B.
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1.3 Very Brief Technical Overview

The proof of Theorem 1.1 follows by a reduction from Disjointness (formally defined in Section 2).
Our reduction makes heavy use of notation and concepts from prior work, so we defer an outline of
the approach to Section 3 once appropriate language is built up. We provide here a brief highlight of
the main challenge: we have just spent several paragraphs in Section 1 describing all the intractable
properties that revenue-optimal auctions possess. To complete a reduction, we not only need to
derive the optimal auction for a single instance, but for an entire class of instances. Moreover, this
class must contain sufficiently many “intractable instances” in order to embed Disjointness. Indeed,
reductions to Bayesian mechanism design are scarce, technically involved, and to-date exist only
for single-bidder settings [10, 15, 16, 18, 20, 25]. In multi-bidder settings, the state-of-the-art only
recently characterized optimal auctions for all instances with two additive bidders and two items
where item values are drawn i.i.d. from distributions supported on {1, 2} [47]!

Fortunately, the FedEx setting is a sweet spot which is both rich enough for optimal mechanisms
to be non-locally-implementable, yet also structured enough for a tractable reduction to optimal
mechanism design. We hope that the proof outline in Section 3 may serve as a roadmap for potential
future reductions, recalling that any complexities established for the FedEx setting extend to the
(significantly more general) multi-dimensional unit-demand setting as well.

1.4 Related Work

Complexity of Multi-Dimensional Mechanism Design. We have already discussed the themat-
ically most-related work, which identifies formal complexity measures separating revenue-optimal
single- and multi-dimensional mechanisms [6, 7, 15, 16, 20, 21, 30, 31, 35, 39, 44, 46, 47]. Among
these, only [47] explicitly studies the multi-bidder setting, and establishes that while optimal
single-dimensional auctions are dominant-strategy truthful,'! optimal multi-dimensional auctions
are not [47]. In comparison to this line of works, our paper provides a novel complexity unique to
multi-bidder settings. Specifically, our work identifies complexity in broad classes of two-bidder
settings, even thoug the single-bidder problem for every instance in these classes is quite simple.

Multi-Dimensional Virtual Values. Our work uses multi-dimensional virtual values in order to
prove optimality of mechanisms. As previously referenced, several prior works introduce various
notions of multi-dimensional virtual values [2, 9, 11, 12, 29, 42]. Some of these works consider
continuous distributions, and derive multi-dimensional virtual values by explicitly choosing paths
along which the incentive constraints might bind and then doing integration by parts. Others
consider discrete settings, and derive multi-dimensional virtual values by drawing a connection
to LP duality. Because our setting is discrete (and necessarily so, in order for communication
complexity to be a meaningful measure), we adopt the language used in [11], which uses the lens
of LP duality.

Within this line of works, [2, 29] also prove optimality in some multi-bidder settings, and in
particular discover restricted settings where multi-dimensional virtual values are bidder-separable
(termed “revenue-linear” and “MR-log-supermodular”, respectively). In their language, our main
results rule out any extension to two-bidder settings generally (even when one bidder is single-
dimensional, and the other is a two-day FedEx bidder or single-dimensional with a public budget).
In our language, [2, 29] discover restricted multi-dimensional settings where optimal mechanisms
are locally-implementable.

11 An auction is dominant-strategy truthful if it is in each bidder’s interest to report their true valuation no matter the other
bidders’ reports. Contrast this with Bayesian Incentive Compatible (defined in Section 2).
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Interdimensional Mechanism Design. [28] introduce the FedEx problem, and note that optimal
single-bidder mechanisms inherit some-but-not-all of the nice properties of single-dimensional
settings, along with some-but-not-all of the complexities associated with multi-dimensional settings.
Our main result considers a bidder from the FedEx problem, and therefore our technical setup
is similar to works such as [22-24, 28], but there is not much overlap with these works beyond
Section 2.

Budget-Constrained Bidders. There is a substantial body of work involving mechanism design for
budget-constrained buyers. The most related works to ours design revenue-optimal single-item auc-
tions in Bayesian settings for buyers with a public or private budget constraint. Here, [13, 14, 24, 34]
characterize the optimal single-buyer auction.!? Several works also identify tractable structure for
the optimal auction in restricted cases. For example, [34] consider the case of multiple buyers with
values drawn i.i.d. from the same regular distribution and an identical public budget, and [38] con-
sider the case that each buyer has a private budget and their value is drawn independently of their
budget from an MHR distribution with decreasing density. In this context, our results establish that
while optimal single-bidder mechanisms for budget-constrained buyers are quite tractable, optimal
multi-bidder auctions remain intractable (without the restrictions imposed in works such as [34, 38]).

Reductions in Bayesian Mechanism Design. We have also briefly discussed reductions to opti-
mal mechanism design, which previously exist only in single-bidder settings [10, 15, 16, 18, 20, 25].
Other styles of single-bidder reductions have been used to special cases of optimal single-bidder
mechanism design (such as finding the optimal deterministic auction) [8, 17, 19]. In comparison to
this line of works, our paper provides a technical contribution via the first reduction to multi-bidder
Bayesian mechanism design.

Communication Complexity in Multi-Dimensional Mechanism Design. Recent work of [6]
identifies a connection between the so-called menu complexity of single-bidder auctions and the
deterministic communication required to implement it. More recent work of [45] further considers
the randomized communication complexity required to implement single-bidder auctions, and in
particular establishes that randomized implementations of auctions may sometimes communicate
exponentially fewer bits than deterministic implementations. While this model is incomparable to
ours,!3 this context makes it significant that Theorems 1.1 and 1.2 hold for randomized communica-
tion protocols.

There is also a substantial body of work at the intersection of communication complexity and
mechanism design generally, following seminal work of [37]. A parallel line of works following [27]
considers the communication overhead specifically to compute payments (on top of any communi-
cation necessary to determine an outcome/allocation). Follow-up works of [5, 26, 43] show that this
overhead can be quite significant, even with just two players. While their model is also incomparable
to ours,' this context makes it significant that our main results provide communication lower

125pecifically, it sets a single price if the budget is public and the valuation distribution is regular [34]. It has menu complexity
at most two if the budget is public, no matter the valuation distribution [13]. It has menu complexity at most k if the budget
is private and drawn from a distribution of support at most k, and the valuation conditioned on each possible budget
satisfies a condition called “decreasing marginal revenues.” It has menu complexity at most 3 - 2K~! — 1 if the budget is
private and drawn from a distribution of support at most k, no matter the joint distribution of (value, budget) pairs.
3Specifically, these works study a single-bidder problem where the prior (and therefore the auction) is fully-known. Their
goal is to implement the auction for a particular valuation v without necessarily learning v.

4For example, none of these works consider revenue-optimization at all.
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bounds just to solve Select-Outcome Problem (rather than to solve Select-Outcome Problem and to
also determine the payments).

1.5 Summary and Roadmap

We establish that optimal multi-dimensional mechanisms are not locally-implementable: executing
the auction on just a single valuation profile requires knowing (essentially) the entire distribution. For-
mally, we study the communication complexity of Select-Outcome Problem. In single-dimensional
settings, Select-Outcome Problem can be solved with O(log n) bits of communication, while simply
stating the valuation profile also requires ©(log n) bits. In multi-dimensional settings, Theorem 1.1
gives a communication lower bound of Q(n) on Select-Outcome Problem: exponentially more than
the ©(log n) bits needed to state the input valuation profile, and nearly the ©(nlog n) bits sufficient
to fully define each D;. In particular, recall that all D; in our construction are especially simple
from the single-bidder perspective: the optimal single-bidder auction sets a take-it-or-leave-it price
of n? + 1 (Proposition 4.7). This makes clear that non-locality truly arises due to complexity of
multi-bidder multi-dimensional auctions, and not simply due to complexity of the corresponding
single-bidder problem.

Section 2 provides preliminaries. Section 3 provides a high-level overview of our approach.
Section 4 provides our reduction, and Section 5 our analysis. Section 6 provides concluding thoughts.
The appendix contains omitted proofs. In particular, Appendix E in the full version contains our
complete analysis for the case of single-dimensional buyers with a public budget.

2 PRELIMINARIES

Below, we provide detailed preliminaries for our main result (Section 2.1) and detailed background
on Lagrangian duality for Bayesian mechanism design (Section 2.2), so that we can present the key
ideas behind our construction. We also formally define the setting we consider for our extension
to budget-constrained bidders in Section 2.3 but defer to Appendix E in the full version full
preliminaries necessary for the proofs. Section 2.4 quickly states the communication problem of
Disjointness, which we use in our reductions.

2.1 The FedEx Problem

Setup and Notation. Our main result holds already when there are just two bidders and two
options, which we refer to as day1 and day2. Bidders have a value and an interest. A bidder with
(value, interest) pair (v, 1) receives value v if they receive one-day shipping, and 0 if they receive
two-day shipping. A bidder with (value, interest) pair (v, 2) receives value v if they receive either
one-day or two-day shipping. A bidder’s type stores her full (value, interest) pair.

Each of the two bidders i have 2n; + 1 different types, we label them from t? to tl.z ™ There
are n; possible values among all types, which we label as vlj , for j € [n;]. In this labeling, tfk‘l
represents the (value, interest) pair (vf, 1) and tfk represents the (value, interest) pair (vl’.‘, 2). Finally,
t? represents not participating in the auction, and has value o) := 0. We will alternate between
referring to types as t**/=2 and (vf, Jj), depending on which notation is cleaner. We denote by
f;(t;) the probability that bidder i has type t;, and we use D; to represent the distribution of bidder
i. Finally, we will also use the notation R,-((vl’.‘, )= 2psk fi((vf’,j)).15

150bserve that R; () is essentially a reverse CDF. Indeed, if there were only one possible interest, the definition would
imply that R; (-) := 1 — F;(-), where F;(-) is the CDF for Bidder i.
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Optimal Auctions. We have one item to ship, and can ship it to either bidder using either one- or
two-day shipping.'® Note that this is a “service-constrained” environment, as defined in [2]. We seek
the revenue-optimal Bayesian Incentive Compatible (BIC) auction, which asks each bidder to report
their (value, interest) pair, and then decides to whom to ship the item (or to no one) and in how
many days. It is observed in [28] that the revenue-optimal auction w.l.o.g. always ships the item
on the reported interest (that is, it will never ship the item in two days to a bidder whose interest
is day1, or vice versa).!” With this in mind, a mechanism is defined by its ex-post allocation rule
X and ex-post payment rule P. Here, X;(#1, t;) denotes the probability that bidder i is shipped the
item (matching their interest) when the reported types are t1, t5, and P;(t1, t;) denotes the payment
made by bidder i when the reported types are t;, t,. Because we have one copy of the item to ship,
an allocation rule is feasible iff for all ¢, t5, X1 (t1, t2) + Xo(t1,22) < 1.

An auction is Bayesian Incentive Compatible (BIC) if it is in each bidder’s interest to report their
true type in expectation over the types of the other bidder. More specifically, the revenue-optimal
BIC auction is the solution to the following linear program. In the LP, the variables are X, P, 7, p.
X and P refer to the ex-post allocation/price rules, as defined above. 7, p refer to the interim
allocation/price rules, which satisfy the equalities in Equations (1) and (2).

2n[

() - pi(d!
nax Z;f(,) pit})

i
subject to Xi(tj, t4) € [0,1] for all bidders i and all j, ¢.

X; (0, 85) = Py(¢), ) = 0 for all £ € [0, 2n].

X, (t5,19) = Py (tF,10) = 0 for all k € [0, 2n4].

Xy (t,88) + Xy (¢], ) < 1forall j € [2n,],¢€ € [2ny].

2n3-;
ﬂi(tlj) = Z Fi(th)) X (t; ti_,) for all bidders i and j € [0, 2n;] . (1)
=1
. 2ns; .
p,-(tij) = Z fimi(ts) «Pi(tl.j; ti_,) for all bidders i and j € [0, 2n;]. (2)
£=1
mi((05, ) - oF = pi((@F, ) = m((0f . ) - oF = pi((0F, ). 3)

for all bidders i, all k, k" € [0,n;],and 2 > j > j' > 1.

The objective is simply the expected revenue. Constraints (1) and (2) simply confirm that the in-
terim rules are computed correctly. Equation (3) guarantees that the mechanism is BIC. In particular,
Equation (3) observes that it is only necessary to ensure that bidders don’t wish to underrepresent
their interest (because overrepresenting their interest guarantees them non-positive utility).

Payment Identity. Myerson’s payment identity provides a closed-form to compute revenue-
maximizing payments for a fixed (monotone) allocation rule. Observe in particular that a payment
rule satisfying the payment identity exists for any (monotone) allocation rule.

161f desired, our construction can be easily modified so that the auctioneer has a copy of the item shippable on each day,
and the bidders are unit-demand (or to many other settings), but we only present one to establish the desired hardness.
17To quickly see this: observe that two-day shipping an item to a bidder with interest day1 gives them zero value, so the
item may as well not be shipped. A bidder with day2 interest is indifferent between one-day and two-day shipping, so
giving them two-day instead of one-day shipping does not affect their utility and makes other types of that bidder less
interested in misreporting this type.
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DEFINITION 3 (MONOTONE, PAYMENT IDENTITY). An interim allocation rule & is monotone if for
both players i and days j: m;((-, j)) is monotone non-decreasing. p satisfies the payment identity for
7 if for both players i, days j, and all k, we have:pi((vf,j)) = Z];:I ol - (mi (0L, j) — m((0F71 1))).

2.2 Lagrangian Duality

The purpose of this section is to build up the necessary notation/concepts in order to state Defini-
tion 6 and Theorem 2.1 at the end. Theorem 2.1 provides an approach to claim that a mechanism
is or isn’t optimal for a given instance. This approach uses Lagrangian duality, and specifically
the language adopted in [11]. More specifically, we will put Lagrangian multipliers on the BIC
constraints in the following manner, which creates a Lagrangian relaxation:

(i) For constraints of the form: ﬂi((vf.‘, 2)) - vllf - pi((vf, 2)) > 7'[1'((0{-(, 1)) - vf —pi(vl’.‘, 1)), we use

a Lagrangian multiplier of ¢;(k) (for all bidders i and k € [1, n;]).

(ii) For constraints of the form: m; ((v%, j)) - v% — p:((0%, ) = m((0F7Y, j)) - oF — pi((0571, j)),
we use a Lagrangian multiplier of A{(k) (for all bidders i, items j, and k € [1, n;]).

(iii) For all remaining BIC constraints, we use a Lagrangian multiplier of 0.

(iv) To emphasize: for all other constraints (i.e. all the constraints which are unrelated to BIC),
we don’t use Lagrangian multipliers, and keep them as constraints.

Constraints in (i) guarantee that the bidder will not misreport its interest, and constraints in
(i) guarantee that the bidder will not underreport their value by the minimal amount possible.
Definitions 4 and 5, and Theorem 2.1 below specialize the [11] framework to our setting. We refer
the reader to [11] for further details surrounding their framework, but give brief intuition for
each definition throughout. Recall that every choice of Lagrangian multipliers (@, 1) induces a
Lagrangian relaxation with objective function:

2n; ni
Lad) =Y > fE) pie)+ 3 3 alk) - (m((@h2) - of = pi((ef,2) = m((@f, 1) - oF + pi( (@, 1))
i =l i k=1
ni 2 )
+ 3N MW - (@ ) - of = pilef ) = m(@EL ) - of + pil(f ).
i k=1 j=1

The constraints are the same as in the initial LP, except removing the BIC constraints. The first

concept in the [11] framework is that of a flow:

DEerFINITION 4 (FLOW). A set of Lagrangian multipliers form a flow if the following hold for all i:
o fi(t2 ) + AL(k +1) + a; (k) = AL(k), for allk € [1,n; — 1].
. fi(tizni_l) +a;(n;) = A}(ni)-
o fi(t2%) + A2(k +1) = a;(k) + A2(k), for allk € [1,n; — 1].
. fi(tfni) = a;(n;) + 22 (n;).
Intuitively, Definition 4 captures the following. In the relaxation, there are no constraints on the
payment variables at all, so the relaxation is unbounded if any payment variable has a non-zero

coefficient in L(a, A). (a, A) form a flow if and only if all payment variables have a coefficient of
zero in L(a, A).

DEFINITION 5 (VIRTUAL VALUES). For a given set of Lagrangian multipliers a, A, define:'®
(1 — %) M (k+1)
(G

n;+1 n
=t
13 1

A .
%M ((oF, j)) = of -

18For simplicity of notation, denote by /1{ (nj+1):=0,0
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OBSERVATION 1 ([11]). Forany (a, A) which form a flow: L(a, 1) = 3 ; ZiZ’l fi(t])) () -@?’A(tlj).

Intuitively, Observation 1 follows from algebraic manipulation, and Definition 5 is made for
the sole purpose of yielding Observation 1, as it suggests that any optimal allocation rule for a
particular Lagrangian relaxation should award the item to the bidder with highest virtual value
(according to Definition 5).

DEFINITION 6 (WITNESS OPTIMALITY). Let (@, 1) be a flow and (X, P) be a BIC auction such that:

e p satisfies the payment identity for .
e Forallk: a;(k) > 0= m((vf, 2)) - Uf.‘ —pi((vf, 2)) = m((vf, 1)) ~vf —pi((vf, 1)).
e Onall (tk, tfl), X awards the item to a bidder with highest non-negative virtual value.

Then we say that (a, 1) witnesses optimality for (X, P), and (X, P) witnesses optimality for (a, 1).!?

THEOREM 2.1 ([11]). Let (@, A) witness optimality for (X, P). Then (X, P) is a revenue-optimal BIC
auction. Moreover, all revenue-optimal auctions witness optimality for (a, A).

Intuitively, («, A) and (X, P) witness optimality if (X, P) is optimal for the Lagrangian relaxation
induced by (e, ) (bullet three), and also (@, 1) and (X, P) satisfy complementary slackness (bullets
one/two).

2.3 Public Budget Constraints

Setup and Notation. Our main extension considers bidders with a (value, budget) pair. A bidder
with value v and budget B enjoys utility v — p if they receive the item and pay p < B, and utility
—oo if they pay price p > B. Each of the two bidders i have n; + 1 different types. Because the
budget is public, their type is fully specified by a value, which we label 07, ..., v}"". Again, v? refers
to non-participation in the auction.

Optimal Auctions. We have one item for sale, and can give it to either bidder. We again seek
the revenue-optimal BIC auction. Because the bidders are not quasi-linear, we must also specify
that we seek an ex-post individually rational auction.?’ That is, even after learning the bid of the
other player, and learning the outcome of all random coins of the mechanism, each bidder has
non-negative utility. Appendix E in the full version provides a linear program for this setting, and
more detailed preliminaries similar to Section 2.1.

2.4 Disjointness

Our communication complexity lower bound provides a reduction from Disjointness. In Disjointness,
Alice is given X € {0,1}", Bob is given § € {0, 1}", and their goal is to determine whether there
exists an i such that x; = y; = 1. It is known that any deterministic communication protocol
resolving Disjointness requires communication at least n, and any randomized protocol resolving
Disjointness correctly with probability at least 2/3 requires communication Q(n) [32, 33, 41].

3 PROOF OVERVIEW

Our proof of Theorems 1.1 and 1.2 both follow the same outline below. All steps below apply to
both proofs, although the referenced technical sections are for Theorem 1.1 (where significantly
more detail is provided).

19129] note that some (, 1) cannot be optimal for any instance, because they cannot witness optimality for any incentive
compatible (X, P). However, note that the optimal ((a, A), (X, P)) witness optimality for each other, by strong Lagrangian
duality and complementary slackness.

20When bidders are quasi-linear, any interim individually rational auction can be made ex-post individually rational with a
simple reduction. This reduction fails when bidders have budget constraints.
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(i) Section 4 defines our reduction from Disjointness. Specifically, we define a mapping from
Alice’s input x to a distribution D;, and from Bob’s input y to a distribution D,. Section 4
states several properties of our reduction that will be used in later proofs. Here is an informal
overview of some key properties.

e For the FedEx setting, all values lie in {n? + 1,n® + 2,...,n? + n + 2}. In the public budget
setting, Bidder One’s values lie in {n? + 1,n% + 2,...,n% + n + 2}, and Bidder Two’s values
liein {n? +1,n% +2,...,n% + n+1,n% + n+ 1.9}. In all settings, both bidders’ distributions
have support-size n + 2. In the FedEx setting, the interesting index is 1 (the lowest value in
the support). In the public budget setting, the interesting index is n + 2 (the highest value
in the support). For the rest of this outline, refer to the interesting index as j.

e All distributions used in our constructions are nearly-uniform. Therefore, the optimal
single-bidder auction for any distribution in our constructions is quite simple, and sets a
price of n? + 1.

e Depending on the input to Disjointness, the distribution is perturbed slightly at all values.

(ii) Section 5.1 analyzes the canonical “Myerson flow” (see Section 5.1 for definition) for our
construction, which yields virtual values equal to Myersonian virtual values. For the rest of
this outline, refer to this flow as (a1, 4;) for both settings.

e We consider the allocation rule that awards the item to the bidder with maximum @?I’A‘ (t;)
(and charges prices according to the payment identity). Refer to this auction (X, P;).

e If and only if Disjointness(x,y) = Yes, (Xj, P1) happens to be a second price auction,
breaking ties for Bidder One (Definition 11). We then show that (X3, P;) witnesses optimality
for (a1, A1) if and only if Disjointness(x,y) = Yes.

o This means that when Disjointness(x, y) = Yes, we’ve now found the optimal dual ((a;, 11))
and optimal auction (Definition 11).

e We also show that (I)‘f"/ll (t{ ) > <I>‘211’/11 (tg ) > 0 in both settings.

e Now, by Theorem 2.1, this leads to our first key conclusion: when Disjointness(x, y) = Yes,
every optimal auction must have X; (t, ti) =1

(iii) Section 5.2 modifies the canonical Myerson flow, for instances where Disjointness(x, y) = No.

o For the FedEx setting, (Xi, P;) is not BIC: when Buyer One has (value, interest) pair
(n? + n+2,2), she would rather misreport (n? + n + 2, 1). For the public budget setting,
(X1, P1) is not budget-respecting: Buyer One with value n? + n + 2 would have to pay more
than her budget.

o We increase the Lagrangian multiplier for the violated constraint from the previous bullet,
and adjust others in order to preserve flow-conservation. This step is the most intricate,
and requires a very precise setting of each multiplier. For the rest of this outline, call this
flow (0!2, /12)

e We next find an allocation rule that witnesses optimality for (az, A2), (X2, P2). (X2, Py)
is also a second-price auction, but ties must be broken in a precise (randomized) man-
ner (Definition 14). We show that (X,, P;) witnesses optimality for (az, A2) if and only
if Disjointness(x, y) = No. This step is also delicate, as we must simultaneously satisfy
several constraints related to Theorem 2.1.

e We also show that 0 < fbfz”lz (t]) < CDZ‘Z”12 (t;) in both settings. Notice that the inequalities
are flipped compared to (e, 41).

o Now, by Theorem 2.1, this leads to our second key conclusion: when Disjointness(x, y) = No,
every optimal auction must have X, (t{, té) =0.

(iv) To conclude, (ii) and (iii) together establish that when Disjointness(x, y) = Yes, every optimal

auction awards bidder 1 the item with probability 1 on input (t], ;). On the other hand, when

886



Session 7B: Multi-Dimensional Mechanism Design - EC °22, July 11-15, 2022, Boulder, CO, USA

Disjointness(x, y) = No, every optimal auction awards bidder 1 the item with probability 0 on
input (t{,1]). Therefore, if we know any outcome consistent with any optimal auction on
(t, té), we know Disjointness(x, y).

4 OUR REDUCTION AND ITS PROPERTIES

In this section, we define our reduction and state some useful properties. First, we define the
type space. Throughout this section, n denotes the size of the input to Disjointness. We state the
concrete lemmas which are relevant to give a detailed technical proof overview, but all proofs
of these lemmas are in Appendix B in the full version. Note that the purpose of this section is
only to define our flow and state basic properties. We will give intuition for these decisions in the
subsequent sections as it will only become clear once we define our flow.

The type space. In our reduction, the type space does not depend on x, y (only the distribution
does). For every input, n; = np = n+ 2 (meaning that each bidder has a total of n + 2 non-zero types
per day, and 2n + 4 non-zero types in total). For all k € [n + 2] and both i, vl’F =n?+k.

The distribution. The distribution in our construction depends on x, y, but in all cases is nearly
uniform. Below, for simplicity of notation let b := 10n°, a :=

multiple of ﬁ Below, Bidder One’s day1 distribution is fixed, and does not depend on x.

DEFINITION 7 (BIDDER ONE’S DAY1 DISTRIBUTION). Deﬁneﬁ((ul, 1)) (for all x) as follows:

(1) Define fi((v1,1)) = ‘°" = 2m-
(2) For k = 1 to n, first define helper zjy; =

3
[Zkr1+ 7% |
2b '

(3) Fork = n+ 1, define helper z,5 :== b — Z”“fl((vl, 1)) - 2b, then deﬁneﬁ((u"+2 1)) = Z"+2

b-35, fi((v],1))-2b
n—k+2

, then define fi((vf*1,1)) :=

We quickly establish that the total mass of Bidder One on day1 is always 1/2 in this construction.
LEmma 4.1. X122 fi((0F,1)) = 1/2.

Lemma 4.2 is one key property which will be useful in our later analysis. It states that Bidder

One’s day1 distribution is nearly-uniform over Uf, e, 01”2 (recall that a > n).

LEMMA 4.2. fi((vF,1)) - 2b € [a - 2n°,a + 2n%] forallk € [2,n+2].

We now proceed to construct the day2 distribution for Bidder One. Bidder One’s day2 distribution
depends on x, and is constructed so that x; has a significant impact on fl((v’f“, 2)).

DEFINITION 8 (BIDDER ONE’S DAY2 DISTRIBUTION). Define ﬁ((v’f,Z)) (as a function of x) as
follows:
b

(1) Set fi( (01,2) o= ﬁ,for all x.
b-35, A((0].2))-2b
n— k+2

2kt g k+2 J

o Ifx; =0, then setfl((v’l‘“, 2)) = -
e Otherwise (xx = 1), set fi((vF*1,2)) = kaﬂ]'
) Fork =+ 1, define helper 2 = b= 31 ((02) - 26, Set f(0%.2) = 3

The two lemmas below similarly establish that the total mass of Bidder One on day2 is always

1/2, and that Bidder One’s day2 distribution is always nearly-uniform over v%, ..., 0"

(2) Fork =1 ton, define helper zy4; =
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LEmmA 4.3. Y1 fi((0F,2)) = 1/2.
LEMMA 4.4. Forall x, fi((v¥,2)) - 2b € [a = n®,a+n®] forallk € [2,n+2].

Finally, we define the distribution for Bidder Two day1. Bidder Two’s distribution will be truly
single-parameter in that their interest is always day1. Bidder Two’s distribution depends on y, and
is constructed so that y has a significant impact on fz((vlz‘“, 1)).

DEFINITION 9 (BIDDER TWO’S DISTRIBUTION). Deﬁnefz((vg, 1)) (as a function of y) as follows:
L1

(1) Set fo((0,,1)) = 1=—.

(2) Fork =1 ton, define helper zj1 :

o Ifyi =1, then set f((vk*1,1)) ==
1 1)) = I_Zk+1 1J

b-35, f((2),1))-b
n— k+2

2kt gz k+2 J

o Otherwise, set fo( (02
(3) Fork = n+ 1, define helper z,15 := b "”fz((vz, 1)) - b, set fo((05*2,1)) := 222,

Again, we confirm quickly that this is a valid distribution, and that it is nearly—uniform over

2 n+2
(YRR S

LEMMA 4.5. X1 f((0k, 1)) = 1.
LEMMA 4.6. f5((v5,1)) - b € [a—2n% a+2n%] forallk € [2,n+2].

Finally, we quickly state that the optimal single-bidder auction for any distribution considered in
our reduction is especially simple: it sets the same take-it-or-leave-it price of n? + 1. The proof is in
Appendix D in the full version.

PROPOSITION 4.7. For all x (resp., y), the revenue-optimal single-bidder auction for the resulting
distribution Dy (resp. D) simply sets a take-it-or-leave-it price of n? + 1 on one-day shipping.

5 CONSTRUCTING A FLOW

In this section, we construct a flow which is optimal for all instances of our construction. We
proceed in two steps. First, we consider a canonical flow and establish that this flow is optimal if
and only if Disjointness(x, y) = yes. Next, we show how to modify the flow to be optimal when
Disjointness(x, y) = no.

5.1 A Canonical Flow

We first define a canonical flow, and then argue it is optimal when Disjointness(x, y) = yes.

DEFINITION 10 (CANONICAL FLow). (aM, AM) is the canonical Myerson flow, where:
e a;(k) = 0 for both bidders i and allk € [n +2].
o M(k) = Ri((vf,j)) for both bidders i, days j, and allk € [n + 2].

It is easy to confirm that (™, AM) is a flow. We can also quickly execute Definition 5 (recalling
that o¥ = n? + k) to compute AN,
K Ri((@F))
fil@ED)
Proposition 5.1 below captures the key properties of our construction and this flow. These
properties are motivated by bullet three of Definition 6: we need to compare virtual values of types
of Bidder One with those for types of Bidder Two to determine if a certain allocation is optimal.
The proof is in Appendix C in the full version.

OBSERVATION 2. For both bidders i, days j, and allk € [1,n+2], (I)“ AN ((v ) =0
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PROPOSITION 5.1. For all x, y, the flow (™, AM) satisfies the following:

o Forboth j:k > k' = @7 " (o, j)) > @ " (0¥, 1)).

.. ’ aM M k - aM M K
e For both j:k < k' = @] (o1, ))) < @, ((v5 ,1)).
o Forallk € [n]: if xx = 0 OR yx = 0, then for both j: @ " ((o¥*1, j)) > ®F" " ((05*1, 1)).
o Forallk € [n], ifxp = 1ANDy = 1, then: @ " ((05*,1)) > &2 M ((0f*,1)) >

aMAM ket
] (07, 2)).
M M M M

o For both j: @ " ((v}, j)) > % " ((0},1)).
o Forboth j: @ " (012, j)) = 02"4" (0242, 1)).
e For both i, both j, and all k > 1: ®" " (%, j)) > 0.

The first two bullets assert that a bidder with strictly higher value has strictly higher virtual
value as well. The next two bullets concern virtual values when both bidders’ values are the same.
Importantly, they assert that the relative comparison of virtual values when both bidders have
value n? + k depends only on x; and yi, and not on x_. or y_x. Just as importantly, they assert
that Bidder One’s interest is only relevant if x; = y; = 1. Bullet seven implies that any allocation
rule that witnesses optimality for (™, AM) must learn which bidder has higher virtual value. We
analyze a potential such auction next.

DEFINITION 11 (SECOND-PRICE AUCTION, TIE-BREAKING FOR BIDDER ONE). The second-price
auction, tie-breaking for Bidder One, gives the item to the bidder with highest value and breaks ties
in favor of Bidder One. Payments are charged to satisfy the payment identity.

THEOREM 5.2. The second-price auction, tie-breaking for Bidder One, witnesses optimality for
(oM, AM) if and only if Disjointness(x, y) = yes.

Proor. First, it is well-known (and easy to see) that the second-price auction, tie-breaking
for Bidder One, with the payment identity is BIC. After this, there are three bullets to check
in Definition 6. We claim that the first two hold for all x, y, and the third holds if and only if
Disjointness(x, y) = yes.

The first bullet holds trivially, as payments are specifically defined to satisfy the payment identity.

The second bullet holds vacuously, as alM (k) = 0 for both i and all k (in fact, the implied condition
holds anyway, as the bidders’ allocation/payment doesn’t depend on their interest).

To see that final bullet holds if and only if Disjointness(x,y) = yes, observe that the second-
price auction awards the item to the bidder with highest value, tie-breaking for Bidder One.
So the final bullet holds if and only if: (a) a higher value implies a higher virtual value (which
immediately follows from the first two bullets of Proposition 5.1), (b) all virtual values are non-
negative (which immediately follows from bullet seven of Proposition 5.1), and (c) Bidder One
has a higher virtual value whenever both bidders have the same value (which holds if and only if
Disjointness(x,y) = yes, by bullets three and four of Proposition 5.1).

This completes the proof: Definition 6 is satisfied if and only if Disjointness(x, y) = yes. O

Observe that Theorem 5.2 implies that the Second-Price Auction, tie-breaking for Bidder One is
one optimal auction for (Dj, D;) when Disjointness(x, y) = yes. We now conclude the following
simple corollary:

CoROLLARY 5.2.1. If Disjointness(x,y) = yes, every optimal BIC auction (X, P) for Dy, D, has
Xi(t], 1) = 1.

PROOF. Because a BIC auction witnesses optimality for (a™, AM) (by Theorem 5.2), every
optimal BIC auction for D;, D, witnesses optimality for (a™, AM). Because @f‘M’AM((U%, 1) >
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ng’M’AM((v;, 1)) by Proposition 5.1, bullet three of Definition 6 asserts that every optimal BIC
auction satisfies X; (t], 1) = 1. O

Corollary 5.2.1 proves half of Theorem 1.1: that Bidder One wins the item in all optimal auctions
on (t},t;) when Disjointness(x,y) = yes. Theorem 5.2 makes clear the key distinction when
Disjointness(x, y) = no: (a™, AM) does not witness optimality, so we need a new flow.

5.2 Modifying the Canonical Flow

We now modify the canonical flow to find an optimal (a’, ") in the case when Disjointness(x, y) =
no. Fortunately, the necessary modification is simple to describe (although verifying the desired
properties is complex). We will only make one modification, defined below, and first used in [24].

DEFINITION 12 (BOOSTING, [24]). Beginning with a flow (a, A), boosting (a, A) at k for Bidder i
by ¢, for any e < A2(k’) for allk’ < k, produces a new flow (a’, A’) with:
o a/(k) = a;(k) +e.
o (M)2(k') = A(k") — ¢, forallk’ < k.
o (W)I(K') =AL(K") +¢, forallk’ < k.
e Ifnot already specified, then @’ = o and A’ = A.

It is not hard to see that Boosting at k preserves the flow conditions (provided that ¢ < A%(k’)
for all K’ < k). It is also not hard to see that Boosting at k for Bidder i increases the virtual value
for all (vf/, 2) for all k’ < k, decreases the virtual value for all (vf/, 1) for all k' < k, and leaves all
other virtual values unchanged (see [24, Observation 3] — although we will prove this ourselves
whenever this is used in calculations).

DEFINITION 13 (MODIFIED FLOW). The modified flow (a*, A*) proceeds as follows:

(1) Begin with (a, 1) = (e, AM).

(2) Boost (a,A) at n + 2 for Bidder One by ¢. Here, ¢ is the minimum boost which results in
% ((05,2)) = @7 ((0k, 1)) for all k.

The rest of our analysis proceeds as follows. First, we need to establish that this modified flow in-
deed exists, because the required boost for Bullet 2 is small enough to be valid. Proposition 5.3 states
this, and also several useful properties of this flow. The proof of Proposition 5.3 is in Appendix C in
the full version, and this relies on many of the precise choices in defining our instance.

PROPOSITION 5.3. For all x,y, (a*, 1) is a valid flow. Moreover, it satisfies the following properties:
e Forbothj:k > k' = cp‘;?{((o’;, i) > CD‘;::’Ai((vg:, 1)).
o Forbothj:k <k’ = % * (*(0*’1‘, M) <oft (*(012‘ ,1)).
e For both j, and all k > 2, ®f A ((v’f, j) = @y A ((vé‘, 1)).
e When Disjointness(x,y) = no, there exists a k* € [2,n + 1] such that: @f*’A*((Uf*,Z)) =
e,k
% (7, ). i o .
o When Disjointness(x, y) = no, then: ®* * ((v},2)) > % * ((v}, 1)) > ¥ ((v}, 1)).
ey ) ‘e
e For both j: ®f " ((v*?, j)) = @5 ° *((*05”2, 1)).
e For both i, both j, and all k > 1: ®f A (0%, j)) > o.

We now define an auction that witnesses optimality for (a¢*, 1*), and conclude implications for
Xi(t},t5).

DEFINITION 14 (SECOND-PRICE AUCTION, CAREFUL TIE-BREAKING AT k™). The second-price auction
with careful tie-breaking at k* € [2,n + 1] gives the item to the bidder with highest value. If both
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bidders have the same value n? + k, break ties in the following manner (in all cases, charge payments
satisfying the payment identity):

e Ifk # 1, and Bidder One’s interest is day1, give the item to Bidder One.

e Ifk =1, and Bidder One’s interest is day1, give the item to Bidder Two.

o Ifk # k*, and Bidder One’s interest is day2, give the item to Bidder One.

e Ifk = k*, and Bidder One’s interest is day2, give Bidder One the item with probability 1—

£((93,1)) 21
fol(og 1)

Let us quickly get some intuition for the Second-Price Auction with careful tie-breaking at k™.
First, observe that when Bidder One’s value is neither n? + 1 nor n® + k*, the allocation rule is
agnostic to Bidder One’s interest. However, when Bidder One’s value is n? + 1, ties are more often
broken in favor of Bidder One when their interest is day2 versus day1. Similarly, when their value
is n? + k*, ties are more often broken in favor of Bidder One when their interest is day1 versus
day2. When calculating the payment identity, this implies that no matter Bidder One’s value, their
payment depends on their interest, even when their allocation probability does not. In particular, the
Second-Price Auction with careful tie-breaking at k* is not DSIC, and the precise probability chosen
in bullet four is chosen exactly so that Lemma 5.4 (below) holds.??

fe((03.1)
H(f 1)’

and to Bidder Two with probability

LEMMA 5.4. For all x,y such that Disjointness(x,y) = no, the Second-Price Auction with careful
tie-breaking at k* is BIC. Moreover, m((vf, 2)) - vf - pi((vf, 2)) = m((vf, 1)) - vf.‘ - pi((vf, 1)) forall
k> k*.

With Lemma 5.4 in hand, the proof of Theorem 5.5 follows similarly to that of Theorem 5.2.

THEOREM 5.5. When Disjointness(x,y) = no, let k* be the index promised by bullet four of
Proposition 5.3. Then the second-price auction with careful tie-breaking at k™ witnesses optimality for

(a, A7).

Proor. We have already established in Lemma 5.4 that the second-price auction with careful
tie-breaking at k* is BIC, so we just need to check the three bullets. We have also explicitly defined
payments to satisfy the payment identity, so bullet one is satisfied. For bullet two, the condition
is vacuously satisfied for all k < n + 2 because a;(k) = 0. At k = n + 2, we are guaranteed that
mi((01%2,2)) - 02 — p; (012, 2)) = (072, 1)) - 072 — p;((07*2, 1)) by Lemma 5.4, as k* < n + 2.
Therefore, bullet two is satisfied for all k.

Finally, we just need to confirm bullet three: that the auction always awards the item to a bidder
with highest non-negative virtual value. Indeed, bullets one, two, and seven of Proposition 5.3
imply that the bidder with highest value also has the highest non-negative virtual value, so the
second-price auction with careful tie-breaking at k* is correct whenever the two bidders have
different values. Bullet three confirms that Bidder One’s virtual value is always weakly higher than
Bidder Two’s in case they have the same value > n? + 1. This implies that the second-price auction
with careful tie-breaking at k* breaks ties correctly in all cases when it gives the item to Bidder
One. When both bidders have value n? + 1 and Bidder One’s interest is day1, bullet five confirms
that Bidder Two has higher virtual value (and the auction gives the item to Bidder Two). When

210bserve that this is feasible, as we’ve guaranteed in our construction that fz((vé, 1) < fz((vf, 1)) forall k > 1.
fa((0h1))

%, the auction would remain BIC
fo((vy 1)

22For example, if Bidder One wins ties in bullet four with any probability > 1 —
£((23,1)
£ 1)’
then Bidder One would have strict incentive to misreport their day2 interest as day1 whenever their value is > n? + k*.

(but the ‘Moreover,...” property in Lemma 5.4 would not hold). If Bidder One wins ties with probability < 1 —
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both bidders have value n? + k* and Bidder One’s interest is k*, bullet four confirms that the bidders
have the same virtual value, so ties can be broken arbitrarily (and in particular, the randomization
proposed is guaranteed to award the item to a bidder of highest virtual value).

This confirms all three bullets, and the proof. O

Again observe that Theorem 5.5 implies that the Second-Price Auction with careful tie-breaking
at k* is one optimal auction for (D;, D;) when Disjointness(x,y) = no. We again conclude the
following corollary:

CoRrOLLARY 5.5.1. If Disjointness(x,y) = no, every optimal BIC auction (X, P) for Dy, D, has
Xi(t,t3) =0.

ProoF. Because a BIC auction witnesses optimality for (a*, A*) (by Theorem 5.5), every optimal
BIC auction for Dy, D, witnesses optimality for (a*, 1*). Because & A ((0},1)) < @ A ((0,1))
by Proposition 5.3, bullet three of Definition 6 asserts that every optimal BIC auction satisfies
Xi(t,£2) =0. ]

This wraps up the proof of Theorem 1.1.

ProoF oF THEOREM 1.1. Corollary 5.2.1 establishes that when Disjointness(x, y) = yes, any opti-
mal BIC auction must allocate the item to Bidder One on (#}, £;) with probability one. Corollary 5.5.1
establishes that when Disjointness(x, y) = no, any optimal BIC auction must allocate the item to
Bidder One on (#{, t;) with probability zero. Because D; can be constructed only as a function of x,
and D, can be constructed only as a function of y, any communication protocol which correctly
allocates the item on (], t;) in accordance with any optimal BIC mechanism (even with probability
2/3) can also solve Disjointness (with probability 2/3). Because any deterministic (resp. randomized,
succeeding with probability 2/3) protocol for disjointness requires communication n (resp. Q(n)),
this means that any deterministic (resp. randomized, succeeding with probability 2/3) protocol
which can correctly allocate the item on (¢}, ;) in accordance with any optimal BIC mechanism
(resp. with probability 2/3) requires communication at least n (resp. Q(n)). o

6 CONCLUSION

We establish that optimal multi-dimensional mechanisms are not locally-implementable: in order to
evaluate the auction on just a single valuation profile, one must know (essentially) the entire distri-
bution. In contrast, optimal single-dimensional mechanisms are locally-implementable: evaluating
the auction on a single valuation profile requires barely more bits from each D; than simply stating
v; itself. Our construction establishes that this separation holds already in (essentially) the simplest
possible multi-dimensional setting: one single-dimensional bidder and one two-day FedEx bidder.
We also show that optimal auctions for single-dimensional buyers with public budget constraints
are not locally-implementable. Moreover, both results follow the same outline, highlighting the
robustness of our techniques.

Our work establishes a novel complexity of optimal multi-dimensional mechanisms distinct
from optimal single-dimensional mechanisms. In particular, unlike prior work, this complexity is
inherently a multi-bidder phenomenon, rather than inherited from the single-bidder setting. Indeed,
every optimal single-bidder auction for any instance considered by our reductions simply sets a
price of n? + 1. Locality can serve as a quantitative lens for future work to study the complexity of
multi-bidder auctions in multi-dimensional settings where single-bidder auctions are tractable. For
example:
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o Do there exist approximately-optimal multi-dimensional auctions that are locally-implementable?
One significant technical barrier to this direction is an alternative line of attack beyond com-
plementary slackness (as complementary slackness holds only for optimal primal/dual pairs).
Note that the Marginal Revenue Mechanism of [2] is locally-implementable and approxi-
mately optimal in restricted “approximately revenue-linear” settings. But, it remains unknown
whether approximately-optimal locally-implementable mechanisms exist generally.

e What are the implications of (non)-locality for streaming or online-learning variants of opti-
mal auction design? In this direction, it is important that we study locality via communication
complexity, due to the strong connection between communication complexity and streaming
lower bounds [4, 40].
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A  OPTIMAL SINGLE-DIMENSIONAL MECHANISMS ARE LOCAL

In this section we are going to show that optimal single-item auctions are local. Our analysis here
adopts the characterization by [11].

We assume each D; is a distribution supported on n valuations (Z}l.l, Uiz, ...,0!), and each valuation
has an integer value between 0 and p(n) (p is a polynomial in n) for each outcome, and the
probability of each valuation is an integer multiple of 1/¢g(n) (g is another polynomial in n). We
use the notation R,—(vf) = Dk f,-(of/).23

First we define the discrete Myerson virtual value.

DEFINITION 15 (SINGLE-DIMENSIONAL VIRTUAL VALUE). For a discrete distribution D;, define
(01 o) R (o)
fi(@f)
We now show that a single virtual value ¢ (vl’.C ) contains barely more information from D; than
the value vf.‘ itself (which has zero information from D).

(pDi(Ul’-‘) = Uf -

LEMMA A.1. For fixed polynomials p and g, given distribution D; and k, ¢ (vl’?) can be represented
in O(log n) bits.

Proor. We can use Ul].‘, vf“, R; (vf”), and f,(vf‘) to compute P (vf.‘), thus we can trivially encode

each of them into O(log n) bits separately. O

We will then prove a bit stronger result to show the weighted average virtual value over an
interval can also be represented in O(log n) bits.

LEMMA A.2. For fixed polynomials p and g, given distribution D; and k, 1, the weighted average
virtual value over [k, ]

S fi@]) - 0P (@)
S fi@])

can be represented in O(log n) bits.

Proor. Since the denominator Zi’:k f,(v{ ) is an integer multiple of 1/g(n) and less than or
equal to 1, it can be easily encoded in O(log n) bits. So it is sufficient to show that the numerator
Zi‘:k fi(o]) - PP (0]) can be represented in O(log n) bits. To achieve this, observe that:

Zl:fi(v{) P (@) = 2 (i) ol = @ = o) - Rief)
Jj=k

=

ZFor simplicity of notation, denote by R; (u;l“) = 0.
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1 1
= > D) ol = o Rl = of - Ri(of ) + Y fio]) o]
Jj=k

j=k+1
= fi(0F) - oF — oM Ri(0lh) + 0F - Ri(0FY)
= vf -Ri(vf) - Uf“ . Ri(vll»ﬂ).
Note that vf, R,—(vf), vf”, and Ri(vlg“) can all be encoded in O(log n) bits. O
The following theorem characterizes the optimal mechanism in this single-dimensional setting.

THEOREM A.3 ([11, 36]). The revenue-optimal BIC mechanism awards the item to the bidder with
the highest non-negative ironed virtual value (if one exists), breaking ties arbitrarily but consistently
across inputs, where ironed virtual value for type z)f.‘: q‘)lp"(vf) is the weighted average virtual value
over an interval containing Uf.z‘* If no such bidder exists, the item remains unallocated.

Finally with Lemma A.2 and Theorem A.3 we conclude the following theorem, which implies
that the optimal single-dimensional auction is local.

THEOREM A.4. When each D; is single-dimensional, supported on n valuations, and each valuation
has an integer value between 0 and poly(n) for each outcome, and the probability of each valuation is
an integer multiple of 1/poly(n), then O(logn) bits from each D; suffice to compute Opt(d, D).

24See [11] for explicit expressions of ironed virtual values. Here we only need to know that an ironed virtual value is the
weighted average over an interval of virtual values.
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