


of which soldiers are allocated to a given battle�eld should not matter, merely the number of
soldiers each player has allocated.
This has traditionally made Blotto-like games very well-suited to modeling scenarios like the

�rst and third bullet points above (where units of currency are identical), but somewhat less
suited to modeling scenarios like the second bullet point (where employees are not necessarily
identical). Going even further, it is easy to imagine scenarios where every resource is unique and
non-interchangeable (i.e., nonfungible):

• (Politics) During an election, each candidate may have many campaign surrogates, each
surrogate with di�erent reputation and public sway. On a given week, where should the
candidate send each surrogate to campaign, given that their opposition will also be sending
surrogates of their own?

• (Politics) During an election, on which two-week news cycles should a candidate plan to
release various pieces of scandalous information about their opponent, knowing that their
opponent will also be releasing scandalous pieces of information about them?

• (Business Development) How should a company assign its variously skilled vice-presidents
or project managers across its product development teams, given that companies making
competing products also have variously skilled vice-presidents and project managers that
they too will be assigning? Should a company necessarily place its best people on its version
of a given product if their competition already has more skilled/experienced people working
on a version of the same product?

• (Entertainment) How should a television network assign its TV shows to various time slots
to best compete for viewership against rival networks (given some measure of show quality,
like pilot ratings)?

For these scenarios, every resource being allocated is di�erent from every other resource — such
scenarios cannot be modeled by Blotto or other existing resource allocation games.

To start �lling this gap, we introduce a new variant of Blotto, which we call the Derby game1. A
Derby game consists of a number of rounds and each player is equipped with the same number
of resources. Players assign each resource to a particular round; a player wins round 8 and gets
a payo� of F8 , the weight of round 8 , if they play the better resource (according to a preference
order over resources) in that round, and 0 otherwise. The total payo� is the sum of payo�s for each
round. This game is suited to modeling many scenarios regarding the competitive allocation of
non-interchangeable resources, including those listed above. We formally de�ne Derby games in
Section 2.

1.1 Results

We analyze Nash equilibria in Derby games. While Derby games unsurprisingly admit no pure
Nash equilibria, our main results surprisingly show that Nash equilibria generically exist where one
player plays a pure strategy (and we’ll refer to such equilibria as half-pure). Speci�cally, we show
the following:

• As a warmup, we consider unweighted Derby games. Here, we fully characterize all Nash
equilibria as “e�ectively uniform,” and show that no half-pure Nash equilibria exist (Section 3,
Theorem 3.10).

• We provide necessary and su�cient conditions for a half-pure Nash equilibrium to exist in a
Derby game (Section 5, Corollary 5.16).

1We chose this name to pay homage to Tian Ji’s horse-racing strategy, an ancient Chinese parable closely related to our

work. The parable is told in more detail in Section 2.
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• These necessary and su�cient conditions can already be satis�ed by the simplest non-trivial
Derby game, which we study as a special case in Section 4.

• Our main technical hammer is Theorem 5.4, which we term the Narrow Wins Theorem.
Intuitively, if Player B’s best resource �1 loses only to Player A’s best resource �1, it seems as
though any best response of Player � must only play resource �1 in rounds where there is a
non-zero probability of playing �1. This turns out to be true (Corollary 5.7). More generally, if
the ordering of resources satis�es �8 > �8 > �8+1 (with no resources in between), intuitively
it seems as though any best response of Player� must only play resource�8 in rounds where
there is a non-zero probability of playing �8 (otherwise, it seems as though Player � should
just play �8+1 instead). This intuition is not quite correct, but the Narrow Wins Theorem
establishes that any Nash equilibrium violating this intuition is quite structured. In general,
the Narrow Wins Theorem provides strong conclusions on the structure of Nash equilibria
of Derby games that follow downstream from repeated iterations of this simple intuition
(Section 5.3, Corollary 5.16). In particular, while we apply the Narrow Wins Theorem to
identify necessary and su�cient conditions for the existence of half-pure Nash equilibria,
the Narrow Wins Theorem will be a generally useful tool for any study of Derby games.

To summarize, our main contribution is the introduction of Derby games, the study of their Nash
equilibria, and in particular necessary and su�cient conditions for half-pure Nash equilibria to
exist. We also provide a technical hammer for analyzing equilibria of Derby games, the Narrow
Wins Theorem.

In Section 2, we introduce Derby games. Section 3 considers unweighted Derby games as a
warmup, and establishes that half-pure Nash equilibria never exist. Section 4 considers the simplest
non-trivial weighted case, and �nds necessary and su�cient conditions for half-pure Nash equilibria.
Section 5 provides our main result: necessary and su�cient conditions for half-pure Nash equilibria
in the general case, and our main technical hammer: the NarrowWins Theorem. Section 6 discusses
related work, and Section 7 provides concluding thoughts.

2 DERBY GAMES

Derby games are a generalization of a game described in the parable of Tian Ji’s horse races against
King Wei [13]: we will brie�y summarize this parable, then describe our generalization and give its
formalization, and �nally end this section with an example Derby game.
In the ancient Chinese state of Qi, a general named Tian Ji often competes in horse racing

competitions with the King of Qi, King Wei. In one such competition, Tian Ji and King Wei each
bring three horses, in order to have three rounds of racing one horse each (never reusing a horse).
Both players have a fast horse, a medium horse, and a slow horse, but all of Tian Ji’s horses are
slower than the same class of King Wei’s horses (but are still faster than successive classes).

Tian Ji knows that if he plays his fast horse against King Wei’s fast horse, and his medium horse
against King Wei’s medium horse, and his slow horse against King Wei’s slow horse, he will lose
all three races, so he turns to his strategist, Sun Bin, for advice. Sun Bin thinks for a moment before
o�ering up the following strategy: Play your slow horse against King Wei’s fast horse, your fast horse

against King Wei’s medium horse, and your medium horse against King Wei’s slow horse.With this
strategy, Tian Ji wins the overall competition, since his slow horse loses, but the other two horses
are able to win.

We generalize the game from this parable in three ways: (1) we consider an arbitrary number of
rounds, (2) we allow rounds to have di�erent weights, and (3) we consider an arbitrary total order
on the horses of both players, rather than the alternating order described above. Formally:

De�nition 2.1 (Derby game). A Derby game is de�ned by a tuple (<, �,�, >, ®F) where
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# Channel A Box Television #

A1 Formula 1 Racing Box News B1

A2 Trendy: bomber jackets to bowties Good Food, hosted by Ribo Flavin B2

A3 Opening with A. Anderssen The Number of the Counting B3

A4 Paper: an in-depth video series History of Ancient Civilizations B4

A5 Keeping it simple with Nona Belgroup Basically Besties: Boozy Bougie Brunches B5

(a) Shows planned by each TV network.

A1 > B1 > B2 > B3 > A3 > A2 > A4 > B5 > B4 > A5

(b) Expected performance based on show pilots.

Fig. 1. A Derby game for scheduling TV shows.

• < ∈ N is the number of rounds
• � and � are the sets of resources (or horses) of players A and B respectively, where |� | =
|� | =<

• >¦ (� ∪�)2, the victory relation, is a strict total order over � ∪� .
• ®F ∈ R<

>0 is a vector of round weights. WLOG, we require thatF1 g F2 g · · · g F< .

In a game, A and B play schedules, bijections ? : [<] → � and @ : [<] → � respectively, which
map each round to the resource the player plays in that round. Then for a round 8 the player who
played the winning resource—A if ? (8) > @(8), otherwise B—wins the round and gets a payo� of
F8 . The total payo� of each player is given by

*� (?, @) =

<∑
8=1

1[? (8) > @(8)]F8 ; *� (?, @) =

<∑
8=1

F8 −*� (?, @)

An important feature of this de�nition is that it requires allocating exactly one resource to
each round – unlike Blotto, which also supports many or zero allocated resources. This restriction
is required in order for us to model the competition from the parable, and indeed, many of the
scenarios listed in the introduction. We now take one such scenario from the introduction and use
it as our running example.

Example 2.2 (Running example). Consider two television networks, Channel A (A) and Box
Television (B), as shown in Figure 1. Channel A and Box are both preparing schedules for the various
TV shows they intend to run this season. Both know that whichever network has the better show at
a given time slot will get the lion’s share of viewers (and by extension the lion’s share of advertising
dollars). Moreover, after running pilot episodes for each of their to-be-scheduled shows last season,
both A and Box know (1) what shows the other will schedule and (2) approximately how well the
show will be received. The game describing this example would be (5, {A1, . . . , A5}, {B1, . . . , B5}, >
, ®F), where ®F could represent the average viewership of each time slot.

Naturally, one might ask, does Sun Bin’s strategy generalize to this example and other Derby
games — if all rounds have the same weight, and Box Television’s schedule is �xed, is it a good
strategy for Channel A to schedule their : best shows against Box’s : worst, narrowly winning

those time slots by sacri�cing A’s remaining< − : shows against Box’s< − : best shows? This is
indeed the case:

Remark 2.3 (Optimality of best-vs-worst). For a Derby game, if all rounds have the same

weight and player B’s schedule is �xed, consider a schedule for player A such that (1) for some constant

 ∈ [<], A plays their best resource against B’s (< − + 1)th best resource, their second best resource

∙



against B’s (< −  + 2)th best resource, and so on until A plays their  th best resource against B’s

worst (<th-best) resource, (2) A wins these  rounds while losing the remaining< −  rounds, and (3)

 is the largest such constant where (1) and (2) hold. Then this schedule gives at least as much payo�

as any other schedule A can play.

We show this more formally in Appendix A, but the idea is to start by �nding conditions under
which taking a schedule for player A and swapping two resources produces a schedule that is at
least as good as the original. Then repeated swaps that respect such conditions can be used to
produce the strategy above.

A more interesting scenario occurs when neither player’s strategy is �xed – when both Channel
A and Box Television are free to choose and update their schedules. In the coming sections we will
analyze the Nash Equilibria of such games, even seeing a recurrence of Sun Bin’s best-vs-worst
strategy in the more complex game (see Corollary 5.5).

3 UNWEIGHTED DERBY GAMES

We begin by considering instances of the Derby game where all round weights are equal, i.e., games

of the form (<, �,�, >, ®1). In our running example, this would be the case if all time slots have
roughly the same viewership, e.g., perhaps if each of the �ve time slots corresponds with the same
time on a di�erent weekday.

Since neither player is �xed to any particular schedule, each player plays some strategy. A pure
strategy of player A or player B corresponds to a schedule selected by that player, while a mixed
strategy is a distribution over schedules. We wish to understand the equilibria of this game.

Remark 3.1. In an unweighted Derby game, there are no strictly/weakly dominant strategies: either

(1) A gets the same payo� regardless of how A responds to B’s schedule, or (2) A’s best responding pure

strategy depends on the schedule that B uses (it is the optimal response against B’s strategy described

in Remark 2.3).

Since neither player has a dominant strategy, we next consider Nash Equilibria of the game.
Because the game is �nite, there is guaranteed to be at least one Nash Equilibrium:

Lemma 3.2. Every unweighted Derby game has a Nash equilibriumwhere both players play schedules

uniformly at random.

Proof. If player A plays uniformly at random, every schedule of player B has the same utility.
This is because (1) every round has the same weight, and (2) every round has the same distribution
of resources A can play, ensuring the payo� for B is always the total expected return of B’s resources
against a random resource of A. The argument for player A is similar. □

This gives one Nash equilibrium, but we now seek to characterize all Nash equilibria. Our
approach will be to �rst reintroduce a notion of interchangability to Derby games, and then to use
that notion to give necessary and su�cient conditions for a pair of strategies to be at equilibrium.

3.1 Reintroducing interchangability

Note that with the victory relation in Figure 1 (b), the resources �1, �2, �3 give the same payo�
regardless of which of A’s resources they play against: we might say they are interchangeable, or
equivalent. More generally:

De�nition 3.3 (Resource equivalence). For a (possibly weighted) Derby game (<, �,�, >, ®F), two
resources 51, 52 ∈ � are equivalent if for all resources 6 ∈ � , 51 > 6 ⇐⇒ 52 > 6 (and similarly
for two resources in �). We use this to partition � and � into equivalence classes of resources,
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�1 ∪ · · · ∪�=1
= � and �1 ∪ · · · ∪ �=2

= � , where two resources are in the same equivalence class
�G i� they are equivalent (and similarly for �G ). We also lift the total order > such that for all
�G ,�~ ∈ {�1, . . . , �=1

, �1, . . . , �=2
}, �G > �~ denotes that ∀51 ∈ �G .∀52 ∈ �~ .51 > 52.

Corollary 3.4 (Resources eqivalent iff consecutive). For a Derby game (<, �,�, >, ®F),
two resources 51, 52 ∈ � are in the same equivalence class i� there is no 6 ∈ � such that 51 > 6 > 52 or

52 > 6 > 51. (And similarly with two resources in � .) This means we can represent the equivalence

classes of resources in � and � as �1 > �1 > �2 > �2 > · · · > �= > �= , for some =, with allowance

that �1, �= may be empty.

We can use this to express the Derby game and strategies for the Derby game in a canonical
form, hiding the redundant strategies produced by swapping equivalent resources.

De�nition 3.5 (Canonical Derby game). For a Derby game (<, �,�, >, ®F), we denote its canonical

form by the tuple (<,=, ®�, ®�, ®F) where

• < and ®F are as before
• = ∈ N is the number of equivalence classes �,� are both partitioned into,

• ®� = (�1, . . . , �=), ®� = (�1, . . . , �=) are vectors of the equivalence classes of � and � resp.,
where �1 and �= are potentially empty,

• It holds that �1 > �1 > �2 > �2 > · · · > �= > �= ,

We also reserve the lowercase of each equivalence class to denote its size, i.e. 0G = |�G | and
1G = |�G |.

This canonicalization of the Derby game is why we consider Derby games a variant of Blotto –
like in Blotto we have competitive allocation of interchangeable resources, although resources are
only interchangeable from the perspective of the other player, and that too only if they are of the
same equivalence class.

De�nition 3.6 (E�ective Strategy). For a Derby game (<,=, ®�, ®�, ®F), we de�ne e�ective strategies
of A and B as an< × = matrices %,& ∈ [0, 1]<×= , such that

• each cell %8G or &8G represents the marginal probability of playing a resource from the Gth
equivalence class (�G or �G ) on round 8

• columns of %,& sum to facet counts: ∀G .
∑<

8=1 %8G = 0G , ∀G .
∑<

8=1&8G = 1G
• rows of %,& sum to 1: ∀8 .

∑=
G=1 %8G = 1, ∀8 .

∑=
G=1&8G = 1

We also lift payo� to e�ective strategies:*� (%,&) =
∑<

8=1

∑=
G=1

∑=
~=G F8%8G&8~ . (Note that we sum

from ~ = G since �G wins against �G , . . . , �= .)

Remark 3.7. E�ective strategies in the canonical game abstract mixed strategies in the original

game: (1) every mixed strategy be mapped to e�ective strategies in a utility-preserving way (if ?, @

are mixed strategies mapping to e�ective strategies %,& , then D� (?, @) = D� (%,&)), but also (2) every
e�ective strategy corresponds to at least one mixed strategy.

We show the above remark formally in Appendix B. This feature is another di�erence between
Derby games and Blotto (andmany Blotto variants), in whichmodeling strategies using independent
marginal distributions over rounds does not guarantee that the budget will never be exceeded.

Example 3.8. The television network running example, (5, {A1, . . . , A5}, {B1, . . . , B5}, >, ®F), has
the canonical form (5, 3, {�1, �2, �3}, {�1, �2, �3}, ®F),where (�1, �2, �3) = ({A1}, {A2, A3, A4}, {A5})
and (�1, �2, �3) = ({B1, B2, B3}, {B4, B5}, ∅}).

Henceforth, we no longer need to work with schedules – we will use (<,=, ®�, ®�, ®F) to describe
a Derby game and use e�ective strategies instead of strategies (soon dropping the "e�ective" for
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brevity). Instead, we will say a pure e�ective strategy has either 0 or 1 in every cell, while a mixed
e�ective strategy can have any value in [0, 1].

3.2 Characterizing all Nash Equilibria of the Unweighted Game

Earlier, we remarked that all strategies can be mapped to e�ective strategies that generalize them.
The following is the e�ective strategy that generalizes the uniform strategy mentioned in Lemma 3.2
(see Appendix B for the exact mapping):

De�nition 3.9 (E�ectively uniform strategy). The e�ectively uniform strategy plays each equiva-
lence class with probability proportional to the size of the equivalence class, i.e. for a Derby game

(<,=, ®�, ®�, ®F), the e�ectively uniform strategies for players A and B, Uniform( ®�),Uniform( ®�) ∈

[0, 1]<×= , have the form Uniform( ®�)8G = 0G/<,Uniform( ®�)8G = 1G/<.

Theorem 3.10 (NE iff effectively uniform). For any unweighted Derby game, (<,=, ®�, ®�, ®1),
the only Nash Equilibrium occurs when both players play the (e�ectively) uniform strategy, i.e. at

(Uniform( ®�),Uniform( ®�)).

Proof sketch. (Full proof in Appendix B.) Because e�ective strategies preserve utility, we know
from Lemma 3.2 that there is a Nash equilibrium when both players play e�ectively uniform
strategies. We show this is the only equilibrium by contradiction: suppose there is another Nash

equilibrium (%,&), where % is not Uniform( ®�). Because Derby games are constant-sum, this implies

(%,Uniform( ®�)) is also an equilibrium.2 However, because % is not uniform, there must be two
rounds 8, 9 and some resource �G that is played less frequently on round 8 and more frequently
on round 9 compared to if % was uniform. We can then construct strategies &, ' for player B that
give player B di�erent expected payo�s: let &, ' be pure strategies that di�er only in that & plays
a resource from �G on round 8 and �G−1 on round 9 , while � plays a resource from �G on 9 and a

resource from �G−1 on 8 . One can show that& has higher payo� than ' for player �, so Uniform( ®�),
which plays both strategies with equal probability, cannot be a best response to % . This would

imply (%,Uniform( ®�)) is not a Nash equilibrium, completing the contradiction and establishing
that the only Nash Equilibrium is e�ectively uniform. □

De�nition 3.11 (Non-trivial Derby game). We say a Derby game (<,=, ®�, ®�, ®1) is trivial if at least
one player is restricted to only one e�ective strategy. This occurs when a player only has one
equivalence class of resources. We call all other Derby games non-trivial.

Remark 3.12. No non-trivial unweighted Derby game has a Nash equilibrium in which a player

plays a pure (e�ective) strategy (i.e. an e�ective strategy whose cells are either 0 or 1), since in a

non-trivial Derby game, pure strategies are not e�ectively uniform.

Our use of equivalence classes of resources and e�ective strategies has allowed us to show
that there is e�ectively only one Nash equilibrium for nontrivial instances of the unweighted
game, and in future, it will be fundamental to understanding the weighted Derby game. Before we
tackle the full complexity of the weighted game, we will �rst consider a slightly restricted version
where rounds have arbitrary weights, but the players are limited to only two equivalence classes of
resources.

2This follows from the following well-known fact about constant-sum games (stated formally in e.g., Theorem 1.11 in [9]):

if (%,&) is a Nash equilibrium, then % is a best response to every &′ that is part of a Nash equilibrium
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4 BINARY DERBY GAMES

In a binary Derby game, each player has two equivalence classes of resources. Recall (De�nition
3.11) that a Derby game is trivial if at least one player has only one equivalence class of resources.
Hence, a binary Derby game can be thought of as the simplest non-trivial Derby game. The binary
Derby game is similar to the Boolean Blotto game proposed in prior work [3]; resources in �1 can
represent bids of 1 and resources in �2 can represent bids of 0. While in Boolean Blotto players
who both bid the same value split the value of the battle�eld equally, in binary Derby games there
are no ties as the victory relation is a total order. In other words, ties are broken deterministically
in favor of player A (�1 > �1 and �2 > �2). This makes the optimal strategies and Nash equilibria
in binary Derby games signi�cantly di�erent from Boolean Blotto. In two player Boolean Blotto,
placing bids on the highest valued rounds is a dominant pure strategy for both players, but this
is not the case in binary Derby games. In fact, we will show binary Derby games have no pure
strategy Nash equilibria (Lemma 4.3).
We begin by de�ning the support of an equivalence class in a strategy % as the set of rounds in

which % places resources in that equivalence class with non-zero probability.

De�nition 4.1 (Support of an equivalence class). Given a Derby game (<,=, ®�, ®�, ®F), we de�ne the
support of an equivalence class �G with index G in a strategy % ∈ [0, 1]<×= to be the set of rounds
where a resource in that equivalence class might be played,

supp� (%, G) = {8 | %8G > 0}

Since the equivalence class �1 contains the best resources, player A wins all rounds in which it
plays �1. Also, since player A wins all ties (�1 > �1 and �2 > �2), A has no incentive to play �1 in
a round if �1 is not played there as it can win that round by playing a worse resource in �2. This
leads us to a necessary condition for a Nash equilibrium:

Lemma 4.2. For a non-trivial binary Derby game (<,=, ï�1, �2ð, ï�1, �2ð, ®F), if (%,&) is a Nash
equilibrium, it must be that if A plays �1 with some probability in a given round, then B also plays �1
with some probability in that round: supp� (%, 1) ¦ supp� (&, 1).

Proof. The proof is by contradiction. Suppose supp� (%, 1) ª supp� (&, 1). This implies there is
some round 9 in which A plays �1 sometimes but B never plays �1. Note that A can win round 9 by
always playing �2, which means A can do strictly better by playing a di�erent strategy % ′ which
shifts some probability mass of �1 from 9 to a di�erent round, : , in which A sometimes loses. We
complete the proof by showing that such a round : exists since the game is non-trivial and & is a
best response to % .
Since the game is non-trivial, |�1 | < < and so there exist rounds where A sometimes plays �2

(i.e. supp� (%, 2) ≠ ∅). Note that there must be some round : ∈ supp� (%, 2) such that @:1 > 0 (i.e. B
plays �1 against �2 in round : with non-zero probability and so A sometimes loses) in order for
& to be optimal against % . If this was not the case, then it means B always plays �2 in all rounds
where � sometimes plays �2, making B lose all rounds (B always loses in rounds where A never
plays �2) and get a utility of 0, which means & cannot be optimal against % . □

As a consequence of Lemma 4.2, there is no Nash equilibrium in which both players play pure
strategies.

Lemma 4.3. For a non-trivial binary Derby game (<,=, ï�1, �2ð, ï�1, �2ð, ®F), if both A and B play

pure strategies then they cannot be in equilibrium.

Proof. Let A play a pure strategy % . Since�1 is playedwith probability 1 in rounds in supp� (%, 1),
B will always lose in those rounds and get a utility of 0. Hence, B’s best response pure strategy& will
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place �1 in as many rounds outside supp� (%, 1) as possible. For a non-trivial Derby game, 11 < <
which means& will leave out some round in supp� (%, 1), which means supp� (%, 1) ª supp� (&, 1).
By Lemma 4.2, % and & cannot be at equilibrium. □

Interestingly, it is sometimes possible for a half-pure Nash equilibrium to exist in which only
player A plays a pure strategy. Theorem 4.5 establishes a necessary and su�cient condition for
such an equilibrium to exist. The following lemma establishes a necessary condition.

Lemma 4.4. For a binary Derby game (<,=, ï�1, �2ð, ï�1, �2ð, ®F), if A plays a pure strategy % in a

Nash equilibrium, then (1) the number of resources in �1 must satisfy 11 > < − 01 and (2) the support
of �1 in B’s strategy & , supp� (&, 1) = [<].

Proof. The proof is similar to the proof of Lemma 4.3. By Lemma 4.2, a necessary condition for
a Nash equilibrium is supp� (%, 1) ¦ supp� (&, 1) i.e. B must play B1 in all rounds in supp� (%, 1).
Since B gets a utility of 0 for all rounds in supp� (%, 1), any best responding pure strategy of B will
play �1 in all rounds in [<] \ supp� (%, 1). For the condition in Lemma 4.2 to be satis�ed, B needs to
have enough resources in �1 to play in all rounds in [<] \ supp� (%, 1) as well as in some rounds in
supp� (%, 1). This gives the condition 11 > < − 01 (where supp� (%, 1) = 01 as % is a pure strategy).
B’s optimal mixed strategy& is composed of pure strategy best responses which play �1 in di�erent
rounds in supp� (%, 1) so that supp� (&, 1) = [<] \ supp� (%, 1) ∪ supp� (%, 1) = [<]. □

The necessary condition in Lemma 4.4 can be strengthened to give a necessary and su�cient
condition for the existence of a half-pure Nash equilibrium in which A plays a pure strategy.

Theorem 4.5. For a binary Derby game (<,=, ï�1, �2ð, ï�1, �2ð, ®F), there is a half-pure Nash

Equilibrium where A plays a pure strategy % i�

11 g < − 01 +

01∑
8=1

F (01+1)

F8
.

where % places resources in �1 in the highest weight rounds.

Proof sketch. Let A play a pure strategy % with supp� (%, 1) = ( and let B’s strategy be & . For
(% , &) to be a Nash equilibrium, (1) & must be a best response for B against % and (2) % must be
a best response for A against & . We use (2) and the fact that A plays a pure strategy to derive a
su�cient condition. We then combine it with the necessary condition 11 > < − 01 from Lemma 4.4
to obtain the necessary and su�cient condition above. The complete proof is in Appendix C. □

Thus, we have seen that adding weights to the Derby game has greatly reduced the symmetry of
the game, and we even �nd interesting equilibria where one player plays a pure strategy. In this
section we found necessary and su�cient conditions for player A playing a pure strategy, and we
have paved the way for very similar analysis in the general game.

5 WEIGHTED DERBY GAMES

We now analyze the weighted Derby Game without restricting each player to two equivalence
classes of resources. Consider the TV broadcasting example from sections 2 and 3, in which Channel
A and Box Television are both preparing schedules for the various TV shows they intend to run this
season. The added complication we consider in this section is that not every time slot is equally
valuable: even if Channel A knows it can win the 3-4am time slot if it schedules its best show there,
it may not be worth the relatively low ad revenue from winning that time slot. This gives us an

example of the full weighted game: (<,=, ®�, ®�, ®F) where< is the number of time slots, ®�, ®� are
the equivalence classes of shows each network can schedule, and ®F is the expected increase in ad
revenue from winning each time slot.
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5.1 Nash Equilibria

Channel A and Box Television are both interested in best-response scheduling strategies to the
scheduling strategy of the other. Because the weighted Derby game is a two-player constant-sum
game, one standard approach to �nding an optimal strategy for either player would be to apply the
minimax theorem to design a linear program (LP) giving said optimum [1]. While an LP is useful
for �nding equilibria of a speci�c Derby game, there is further structure to the equilibria of Derby
games under particular resource and weight constraints, which we will soon explore. As a small
teaser, consider the following example:

Example 5.1. In the running example, Channel A and Box Television are competing in a Derby
game (5, 3, {�1, �2, �3}, {�1, �2, �3}, ®F) where (01, 02, 03) = (1, 3, 1) and (11, 12, 13) = (3, 2, 0). Sup-
pose also that ®F = (6, 6, 5, 2, 2). Our results will show that this game has a Nash equilibrium (%,&)
where

% =

©­­­­­«

1/2 1/3 1/6
1/2 1/3 1/6
0 1/3 2/3
0 1 0

0 1 0

ª®®®®®¬
, and & =

©­­­­­«

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

ª®®®®®¬
is a pure strategy!

Moreover, note that Box Television is winning this game 11 to 10, even though (1) Channel A has a
show guaranteed to win and (2) Box Television is completely giving away its strategy.

In general, it is much more common for player A to play a pure strategy at Nash equilibrium
than for player B. Our results on best-response pure strategies for A and B can be found at the ends
of subsections 5.3, and 5.4, respectively. Towards those results, we now de�ne some useful ideas.

Remark 5.2 (Modified strategies). For a Derby game and strategy % : [0, 1]<×= , we can modify

% to % + X , where X : [−1, 1]<×= , every row and column of X sums to 0, and no cell of X subtracts more

than the corresponding cell in % . Then % + X is also a strategy.

Thus, in addition to saying that we are at a Nash equilibrium (%,&) when neither player has a
strategy which gives them a higher utility against their opponent’s strategy, we will also say that
we are at a Nash equilibrium when neither player has modi�cation X which produces a positive
change in their utility when added to their current strategy: ∀X.*� (% + X,&) −*� (%,&) f 0 and
∀X.*� (%,& + X) −*� (%,&) f 0.

De�nition 5.3 (Opposition). For a Derby game (<,=, ®�, ®�, ®F) and pair of strategies (%,&), we
de�ne the opposition of an equivalence class with index G as the set of equivalence class indices
that play against it in some round: opp(G, %,&) = {~ | ∃8 . %8G > 0 and &8~ > 0}.

Theorem 5.4 (Narrow wins). For a Derby game (<,=, ®�, ®�, ®F) with Nash Equilibrium (%,&),
and for any equivalence class index 1 f G f =, it holds that

(1) either supp� (%, G) ¦ supp� (&, G) or for all ~, G < ~ f =,
(a) �~ never plays �G , ..., �= , i.e. opp(~, %,&) ¦ [G − 1]
(b) �~ never plays �G , ..., �= , i.e. opp(~,&, %) ¦ [G − 1]

(2) either supp� (&, G) ¦ supp� (%, G + 1) or for all ~, G < ~ f =,
(a) �~ never plays � (G+1) , ..., �= , i.e. opp(~,&, %) ¦ [G]
(b) �~ never plays � (G+1) , ..., �= , i.e. opp(~, %,&) ¦ [G]

Proof. See Section 5.2 for the complete proof. The general approach to the proof is to use the
idea that at Nash equilibrium, neither player has a modi�cation to their strategy with positive
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change in utility. For the narrow-wins theorem, we need to reason extensively about how possible
swaps and cyclic shifts of probability would modify each player’s utility. □

Many important results in this section use Theorem 5.4, which informally states that at a Nash
Equilibrium, an equivalence class either has a chance to narrowly win against the equivalence class
right after it in the victory relation, or all equivalence classes after it always lose (because they
never have a chance to play against each other).

For example, we can rephrase the Narrow Wins Theorem to emphasize that, at equilibrium, both
players are intentionally sacri�cing some equivalence classes of resources, even when they could
play those resources in rounds with some potential of victory:

Corollary 5.5 (Best-worst sacrificial behavior). For a Derby game (<,=, ®�, ®�, ®F) with Nash

Equilibrium (%,&) and any  ∈ [=].

(1) if supp� (%,  ) ª supp� (&, ), then for all ~ >  , �~, �~ always lose (they only play against

resources that are better according to the victory relation),

(2) if supp� (&, ) ª supp� (%,  + 1), then for all ~ >  , �~, �~ always lose.

Note that this is the same best-worst behavior as described in Section 2, only both players
are playing resources in ways that (with some probability) narrowly beat their opponent (via
Theorem 5.4) and both are sacri�cing resources after some bound (via Corollary 5.5). Moreover,
unlike in the case of Tian Ji’s horse-racing competition, the players are playing best-vs-worst
with (1) weighted rounds, (2) a more general victory relation, and (3) without knowledge of their
opponent’s ordering!

Example 5.6. Continuing the running example, we note that the Nash equilibrium (%,&) de�ned
in Example 5.1 satis�es the conditions of Corollary 5.5, since supp� (%, 2) ª supp� (&, 2) and �3

always loses.

The NarrowWins Theorem also lets us generalize Lemma 4.2 from the Binary Derby Games section:

Corollary 5.7. For a Derby game (<,=, ®�, ®�, ®F) with Nash equilibrium (%,&), it holds that
supp� (%, 1) ¦ supp� (&, 1).

Proof. Follows by contradiction. By Theorem 5.4, if supp� (%, 1) ª supp� (&, 1), then �2 would
never play against �1, . . . , �= . But then, what would �2 play against? □

We will use the above two corollaries when we analyze Nash equilibria in Sections 5.3 and 5.4.

5.2 Proof of NarrowWins Theorem

Throughout the proof of the narrow wins theorem, we rely on the idea that at Nash equilibrium,
neither player has amodi�cation to their strategy with positive change in utility. First, we strengthen
the requirements of how equivalence classes must be played against one another at equilibrium
in Lemmas 5.8 and 5.9 using arguments about modi�cations that swap probability of playing two
resources. Next, we consider more complex modi�cations in Corollary 5.10: cycles of shifting
probability, where each cell moves an equal amount of probability of playing a resource to the next,
until the last cell in the cycle returns an equal probability back to the �rst. Finally, having proven
Corollary 5.10, we make a few simple deductions in Corollary 5.11 before concluding with a proof
of our Theorem 5.4.

We begin with the swap argument: intuitively, we may expect that at Nash equilibrium, when
a resource from equivalence class �G is being played on a round (with some probability), so must a
resource from �G (with some probability), otherwise A would get a higher utility by swapping the
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�G resource with an �G+1 resource on some round where a �G resource is played – if such a round
exists. Indeed, we show that the absence of such rounds is a necessary condition for equilibria in
which �G is played on rounds where �G is not played, ensuring swapping �G and �G+1 will not
increase A’s utility. Formally,

Lemma 5.8. For a Derby game (<,=, ®�, ®�, ®F) with Nash equilibrium (%,&), and any equivalence

class index G ,

(1) If there is a round where a resource in �G may be played, but in which resources in �G are

never played, then �G never plays against � (G+1) : supp� (%, G) ª supp� (&, G) =⇒ (G + 1) ∉
opp(G,&, %).

(2) Likewise, if there exists a round where �G is played, but in which resources in � (G+1) are never

played, then � (G+1) never plays against � (G+1) : supp� (&, G) ª supp� (%, G + 1) =⇒ (G + 1) ∉
opp(G + 1, %,&).

Proof. We show (1) by contradiction, (2) follows similarly. Suppose there is both a round 8 where
�G is played with some probability, but �G isn’t, and a round 9 where both �G and� (G+1) are played
with some probability. Since �G isn’t playing �G at 8 , � (G+1) would do just as well as �G in that
round. Moreover,�G would win (against �G ) where� (G+1) lost. Therefore, the modi�cation X which
swaps some probability of playing �G at round 8 with probability of playing � (G+1) at round 9 leads
to a better strategy for A. This is a contradiction, since if there is a better strategy for A, we can’t
be at NE. □

Next we use use induction on equivalence classes of both players to extend from consider-
ing �G , �G , �G+1 to considering �G , �G , �~, �~+1, for ~ > G .

Corollary 5.9. For a Derby game (<,=, ®�, ®�, ®F) with Nash Equilibrium (%,&), and any equiva-

lence class index G ,

(1) If there is a round where a resource in �G may be played, but in which resources in �G are never

played, then for all ~ g G , �~ never plays against � (~+1) : supp� (%, G) ª supp� (&, G) =⇒
∀~ g G . (~ + 1) ∉ opp(~,&, %).

(2) Likewise, if there exists a round where �G is played, but in which resources in � (G+1) are never

played, then for all~ g G ,� (~+1) never plays against� (~+1) : supp� (&, G) ª supp� (%, G+1) =⇒
∀~ g G . (~ + 1) ∉ opp(~ + 1, %,&).

Proof. Follows by induction using Lemma 5.8: note that Lemma 5.8 (1) for some G implies
Lemma 5.8 (2) for the same G , and Lemma 5.8 (2) for some G implies Lemma 5.8 (1) for G + 1. □

And nowwe reason about cycles: just like Lemma 5.8 gives a necessary condition for equilibria
in which there are rounds where �G does not play �G , by ensuring there is no swap that gives player
A more payo�, we can derive a corollary that gives a gives a necessary condition for such equilibria,
by ensuring there is no sequence of swaps, forming a cycle, that gives player A more payo�.

Corollary 5.10. For a Derby game (<,=, ®�, ®�, ®F) with Nash Equilibrium (%,&), and for any pair

of equivalence class indices 1 f G < ~ f = it holds that

(1) If there is a round where A plays a resource from �G with some probability and B doesn’t play a

resource from �G with any probability, then resources from �~ must only play resources from

�1, ..., � (G−1) or from �~, ..., �= . Formally,

supp� (%, G) ª supp� (&, G) =⇒ opp(~, %,&) ¦ [=] \ {G, . . . , ~ − 1}.
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(2) Likewise, if there is a round where B plays �G and A doesn’t play � (G+1) , then �~ must only

play �1, ..., �G , � (~+1) , ..., �= . Formally,

supp� (&, G) ª supp� (%, G + 1) =⇒ opp(~,&, %) ¦ [=] \ {G + 1, . . . , ~}.

Proof. We show (1) by contradiction, (2) follows similarly. Suppose there exists a round 8 ∈
supp� (%, G) such that 8 ∉ supp� (&, G). At the same time, we also suppose there exists a round
9 where a resource in �~ plays a resource in one of �G , ..., � (~−1) , i.e. ∃ 9 ∈ opp(~, %,&) ∩ {G, G +
1, . . . , ~ − 1}. By applying Corollary 5.9 to our round 8 we know many resources of player A never
play against their corresponding resources of player B: G ∉ opp(G,&, %), (G + 1) ∉ opp(G + 1, &, %),
and so on until (~ − 1) ∉ opp(~ − 1, &, %). Then consider the modi�cation X that rotates a small
amount of the probabilities of A’s strategy according to the cycle(

% 9~ %∗(~−1) %∗(~−2) · · · %∗(G+1) %8G
)

where %∗I represents the probability of playing equivalence class �I on an arbitrary round : ∈
supp� (%, I). Under X , some small probability of �~ being played on round 9 is moved to a round
where � (~−1) was previously played, displacing an equal probability of playing � (~−1) , which is
moved to a round where � (~−2) was played, and so on until an equal probability of playing �G is
moved to round 9 .
Notice that % + X is a better strategy for A than % :

• For all I, G < I <= ~, �I does just as well as �I−1, since Corollary 5.9 told us that �I−1 never
played �I−1 in %

• On round 9 , �G now wins where �~ previously lost, leading to a net gain in utility.

Since there is a better strategy for A, we cannot be at a Nash equilibrium. □

Rewriting and adding some �nal touches,

Corollary 5.11. For a Derby game (<,=, ®�, ®�, ®F) with Nash Equilibrium (%,&), and for any

equivalence class index 1 f G f =, it holds that

(1) either supp� (%, G) ¦ supp� (&, G) or for all ~, G < ~ f =,
(a) �~ never plays �G , ..., � (~−1) , i.e. opp(~, %,&) ¦ [=] \ {G, . . . , ~ − 1}
(b) �~ never plays � (G+1) , ..., �~ , i.e. opp(~,&, %) ¦ [=] \ {G + 1, . . . , ~}

(2) either supp� (&, G) ¦ supp� (%, G + 1) or for all ~, G < ~ f =,
(a) �~ never plays � (G+1) , ..., �~ , i.e. opp(~,&, %) ¦ [=] \ {G + 1, . . . , ~}
(b) �~+1 never plays � (G+1) , ..., �~ , i.e. opp(~, %,&) ¦ [=] \ {G + 1, . . . , ~}

Proof. We show (1), (2) follows similarly. Note �rst that (1a) follows from Corollary 5.10 (1). For
(1b), if supp� (%, G) ¦ supp� (&, G), we are done. Otherwise, by Lemma 5.8, it holds that (G + 1) ∉
opp(G,&, %). Then by Corollary 5.10 (2), it holds that ∀~ > G , opp(~,&, %) ∩ {G + 1, . . . , ~} = ∅. □

And here’s our big theorem!

Theorem 5.4 (Narrow wins). For a Derby game (<,=, ®�, ®�, ®F) with Nash Equilibrium (%,&),
and for any equivalence class index 1 f G f =, it holds that

(1) either supp� (%, G) ¦ supp� (&, G) or for all ~, G < ~ f =,
(a) �~ never plays �G , ..., �= , i.e. opp(~, %,&) ¦ [G − 1]
(b) �~ never plays �G , ..., �= , i.e. opp(~,&, %) ¦ [G − 1]

(2) either supp� (&, G) ¦ supp� (%, G + 1) or for all ~, G < ~ f =,
(a) �~ never plays � (G+1) , ..., �= , i.e. opp(~,&, %) ¦ [G]
(b) �~ never plays � (G+1) , ..., �= , i.e. opp(~, %,&) ¦ [G]
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Proof. We show (1), (2) follows similarly. Consider an arbitrary equivalence class index G . If
suppý (%, G) ¦ suppþ (&, G), we are done. Otherwise, consider an arbitrary ~1 > G : we must show
that for all ~2 g G , it holds that ~2 ∉ opp(~1, %,&).

Case 1: Suppose ~2 < ~1. Then by Corollary 5.11 (1a), it holds that ~2 ∉ opp(~1, %,&).
Case 2: Suppose ~1 f ~2 f =. By Corollary 5.11 (1b), it holds that ~1 ∉ opp(~2, &, %), since

(G + 1) f ~1 f ~2. Thus ~2 ∉ opp(~1, %,&).
This concludes (1). For (2), we proceed like above to show ∀~ > G , opp(~,&, %) ¦ [G] and

opp(~+1, %,&) ¦ [G]. Then because ∀~ > G . (G +1) ∉ opp(~,&, %), we know that opp(G +1, %,&) ¦
[G], also. □

5.3 Nash Equilibria where �1 is fixed

In this subsection, we will give necessary and su�cient conditions for Nash Equilibria (%,&) where
in every round, % either plays a resource from �1 with certainty, or will not play from �1. (In
general we say an equivalence class �Į is �xed when for each round 8 , %ğĮ = 0 or %ğĮ = 1, and
similarly with �Į and & .) Incidentally, these will also be necessary and su�cient conditions for
Nash Equilibria where % is a pure strategy.
We begin with necessary conditions.

Remark 5.12. At an NE (%,&) if �1 is �xed by % , then ∀~ g 2. opp(~, %,&) = opp(~,&, %) = {1}.

Proof. Suppose we have an NE (%,&) where �1 is �xed in % . By Corollary 5.7, we know
that in all the rounds where A plays �1, B must play �1 with some probability. And since �1

is �xed, we know A cannot play �2 in those rounds. Thus, by Theorem 5.4 (2) where G = 1:
∀~ g 2. opp(~, %,&) = opp(~,&, %) = {1}. □

In other words, if �1 is �xed, then �2 and worse are all playing against �1 only, and �2 and
worse are playing �1 only. In this situation, B has no incentive to switch strategies, since B is
guaranteed to lose rounds where �1 is played with certainty, and in this strategy B wins all other
rounds. Likewise, A has no incentive to switch to any strategy that only changes the probabilities
of playing �2, . . . , �Ĥ : since they all continue to lose their rounds, A’s utility is unchanged.
We will give necessary and su�cient conditions for A to have no incentive to change their

strategy, and for this NE to exist.

Lemma 5.13. Consider a Derby game (<,=, ®�, ®�, ®F) and pair of strategies (%,&), such that that �1

is �xed in % and ∀G > 1. opp(G, %,&) = {1}. A has a better strategy against& i� A has better strategy

% + X1 + X2 where

• X1 only modi�es probability in rounds where �1 isn’t played ([<] \ suppý (1, %)), and moreover

ensures ? +X1 plays�2 with some probability on the highest weight round where�1 isn’t played.

• X2 then swaps some probability of playing �1 and �2 between a round where �1 is played and

this highest weight round where �1 isn’t played.

Proof. Consider any alternative strategy for A. We can convert from the alternative strategy
to A’s current strategy by �rst swapping �1 to the correct rounds, and then permuting resource
probabilities in all other rounds. Therefore, we can convert from the current strategy to the
alternative through the reverse process: 1. we permute probabilities in the rounds where�1 doesn’t
play (which doesn’t change utility), and then 2. we swap probability of playing �1 into the rounds
where �1 doesn’t play (which may change utility).

Moreover, if an alternative strategy is better than A’s current strategy, then it must be that at least
one of the swaps in step 2 increases the utility of the strategy. We could do the same permutation
and then do just that swap and still have a better strategy than A’s current.
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Therefore, there exists a better alternative strategy for A i� there exists a better performing
strategy reachable by a permutation of resources in rounds �1 isn’t played followed by a single
swap of resources between a round �1 is always played and a round �1 is never played.
Of these reachable alternative strategies, the best use a the permutation that moves �2 to the

highest weight round where �1 isn’t played, and then swaps �2 with �1: this maximizes the value
of playing �1 to beat �1, and minimizes the loss of swapping �1 out by replacing it with its best
alternative. Thus, there is a better alternative strategy for A *i�* one of this group of strategies is
better. □

Lemma 5.14. Consider a Derby game (<,=, ®�, ®�, ®F) and pair of strategies (%,&), such that that

�1 is �xed in % and ∀G > 1. opp(G, %,&) = {1}. A has no incentive to change their strategy i�

suppý (%, 1) = [01] and

∀8 ∈ [01] . &ğ1 g
F (ėğ+1)

Fğ
.

Proof. Consider any alternative strategy % + X1 + X2 described by Lemma 5.13, where X1 moves
�2 to the highest weight round�1 isn’t playing and then X2 swaps�2 with�1. The change in utility
due to X1 is 0, since it only rearranges always-losing rounds. A has a better strategy i� the change
in utility due to X2 is positive.
Suppose in X2 we swap some probability ? (we will see the exact probability is unimportant,

since it only scales the change in utility).
In the round we replace �1 with �2, suppose it is round 8 , the loss in utility in this round is

?Fğ&ğ1.
In the round where we replace �2 with �1, the gain in utility is ?Faltmax, where Faltmax is the

maximum weight round where �1 isn’t played. (There’s no term for probability of playing �1 since
�1 is played with certainty.)

This swap is therefore better i�,

&ğ1 <
?Faltmax

?Fğ
=
Faltmax

Fğ
.

Thus, there is a better alternative strategy for � i� there is some round indexed 8 where �1 is
certainly played, such that the above holds. Rephrasing, there is no better alternative strategy for
�, i� for all rounds 8 where �1 is played, &ğ1 g

ĭaltmax

ĭğ
.

This cannot be the case whenFėĢĪģėĮ > Fğ , so we know that �1 must be played on the highest
weight rounds, 1, . . . , 0ğ , and soFaltmax = Fėğ+1 (recall the rounds are sorted by descending weight).

□

Theorem 5.15 (NEs where �1 fixed). For a Derby game (<,=, ®�, ®�, ®F) there exists an NE where

A plays a strategy where �1 is �xed i�

11 g < − 01 +

ė1∑

ğ=1

F (ė1+1)

Fğ

Proof. (⇒) Suppose there is an NE where �1 is �xed. By Corollary 5.7 and Theorem 5.4, we
know that �2, �3, and worse resources only play �1.
Moreover, since we are at an NE, we know that A has no incentive to change their strategy, so

by Lemma 5.14 we know that

∀8 ∈ [01] . &ğ1 g
F (ėğ+1)

Fğ
.
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Then

11 =

ģ∑

ğ=1

&ğ1 g

ėğ∑

ğ=1

F (ėğ+1)

Fğ
+

ģ∑

ğ=ė1+1

1 = (< − 01) +

ėğ∑

ğ=1

F (ėğ+1)

Fğ
.

(⇐) Suppose 11 g < −01 +
∑ėğ

ğ=1

ĭ(ėğ+1)

ĭğ
. We will construct an NE (%,&) where A plays a strategy

where �1 is �xed.
We �rst require that �1 is �xed by % , i.e. ∀8 ∈ [01] . %ğ1 = 1. As for the other equivalence classes

of A, they can be played arbitrarily on the remaining rounds (A can even play a pure strategy).
B plays a strategy restricting �1: For 8 ∈ [01], &ğ1 g Fė1+1/Fğ , and for 01 + 1 f 8 f <, &ğ1 = 1.

The other resources are played arbitrarily on the rounds [01], since �1 has �lled the rest of the
rounds. Under this strategy, B has no incentive to change strategies: B is only losing rounds where
�1 is played, and all strategies B could switch to would also lose those rounds (and potentially
others). Also, by Lemma 5.14, we know that A has no incentive to change strategies. □

Corollary 5.16 (NEs where A plays a pure strategy). For a Derby game (<,=, ®�, ®�, ®F) there
exists an NE where A plays a pure strategy i�

11 g < − 01 +

ė1∑

ğ=1

F (ė1+1)

Fğ

We see that Derby games of various sizes< and various equivalence class counts = can have
Nash equilibria where A plays a pure strategy, so long as there are enough resources in �1 to be
played with certainty on the rounds �1 isn’t played in, plus a little.
This leads to two natural follow-up questions: (1) are the Nash equilibria where B plays a

pure strategy similarly general, and (2) are there any pure strategy Nash equilibria in the general
weighted Derby game? In the next section, we answer both questions in the negative.

5.4 Nash Equilibria where �1 is fixed

We begin by showing (1) there are no pure strategy Nash equilibria, (2) the Nash equilibria where B
plays a pure strategy are limited to the case where the number of equivalence classes = f 3. Then
we characterize the Nash equilibria where B plays a pure strategy for = f 3.

Remark 5.17. For a nontrivial Derby game (<,=, ®�, ®�, ®F), and any NE (%,&) of the game, it cannot

be that both �1 is �xed by % and �1 is �xed by & .

Proof. If�1 is �xed and (%,&) is a Nash equilibrium, we know that �1 must be played with some
probability in all rounds �1 is played in and with certainty in all other rounds (by Corollary 5.7
and Theorem 5.4). Thus if �1 is �xed, it must be played with certainty in all rounds, meaning the
Derby game is trivial. □

Corollary 5.18. For a nontrivial Derby game, there are no pure strategy Nash Equilibria.

Theorem 5.19 (At NE, �Ĥ prevents fixing �1). For a nontrivial Derby game (<,=, ®�, ®�, ®F) where
= g 3 with 01 > 0 and 13 > 0, there are no NEs (?, @) where �1 is �xed by @.

Proof. We proceed by contradiction. Suppose we have an NE where B’s strategy �xes �1.
Then it must be the case that there is some round proving suppý (%, 2) ª suppþ (&, 2). (If �1

plays �2 on some round, consider that round, otherwise apply Theorem 5.4 (2) for G = 1).
By Theorem 5.4 (1) where G = 2: ∀~ g 3. opp(~, %,&) = opp(~,&, %) = {1}. Note speci�cally

that this means that equivalence classes �3 and worse play against �1 only.
At the same time, by Corollary 5.7 and since �1 is �xed, �1 plays against �1 only – contradicting

the previous point. □ □
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5.4.1 Nash Equilibria where �1 is fixed and = f 3. Because the proofs below are relatively similar
to cases where �1 is �xed, we give proof sketches rather than complete proofs to save space.

Lemma 5.20. Suppose we have a nontrivial Derby game (<, 3, ï�1, �2, �3ð, ï�1, �2ð, ®F), where
potentially �3 = ∅ (we deviate from the de�nition here because the change lets us analyze both = = 2

and = = 3 ' �3 = ∅ at the same time). For any pair of both players’ strategies (%,&) such that

& is a pure strategy, Player B has no incentive to change their strategy i� suppþ (&, 1) = [11] and

∀8 ∈ [11] . %ğ2 g
ĭĘğ+1

ĭğ
.

Proof. Follows very similarly to Lemma 5.14, but with �1, �2 rather than �1, �1. □

Lemma 5.21. Suppose we have a nontrivial Derby game (<, 3, ï�1, �2, �3ð, ï�1, �2ð, ®F), where
potentially �3 = ∅. Suppose we also have a pair of strategies (%,&) such that & is a pure strategy,

2 ∈ opp(1, &, %), and opp(2, &, %) = {2}. Suppose also that player B has no incentive to change its

strategy. Then A has no incentive to change its strategy i� (1) all the rounds where �1 is played have

the same weight, (2) they are the highest weight rounds where �1 is played, and (3) there are at least⌈
ė1

1−ĭ(Ę1+1)
/ĭ1

⌉
=

⌈
ė1ĭ1

ĭ1−ĭ(Ę1+1)

⌉
such rounds.

Proof. First consider the rounds where �2 plays �2, suppþ (&, 2). We show that any alternate
strategy of A’s that plays a di�erent equivalence class than �2 in these rounds is not optimal:

• if �2 is displaced by �1, then �2 will lose against �1, where �1 used to win, and �1 will do
no better than �2 against �2;

• if �2 is displaced by �3, then �3 will lose against �2, where �2 used to win, and �2 will do
no better than �3 against �1.

Therefore, if A has a better strategy, then A must have a better strategy that doesn’t a�ect the
rounds where �2 is played.

This leaves only the rounds where �1 is played. For these rounds, A’s best strategy is to play �1

as much as possible on the highest weight rounds. Since B has no incentive to change its strategy,
we know from Lemma 5.20 that in A’s current strategy, A must play �2 with some probability on
each of the rounds where �1 is played – even the round with highest weight. So in order for A not
to have any incentive to replace probability of playing �2 with probability of playing �1, there
must be enough rounds of the highest weight that A can use up all its probability of playing �1.
If (from Lemma 5.20) we want each of the highest weight rounds to have at least FĘğ+1/F1

probability of playing �2, then that means that there must be enough highest weight rounds
such that the probability of playing �1 can be distributed among them without cutting into that

probability: the number of rounds must be at least

⌈
ė1

1−ĭ(Ęğ+1)
/ĭ1

⌉
. □

Theorem 5.22. For a nontrivial Derby game (<, 3, [�1, �2, �3], [�1, �2], ®F) where potentially

�3 = ∅, there exists an NE where B plays a strategy where �1 is �xed i� it holds that

(1) 02 g < − 11 +
∑Ę1

ğ=1

ĭ(Ę1+1)

ĭğ
,

(2) F1 = F2 = · · · = FĢ where

⌈
ė1

1−ĭ(Ę1+1)
/ĭ1

⌉
f ; f 11.

Proof. (⇒) Suppose there is an NE where �1 is �xed. We know (1) from Lemma 5.20 and (2)
from Lemma 5.21.

(⇐) Suppose (1), (2) hold. Then consider the pair of strategies (%,&) where

• On rounds 8 ∈ {11 + 1, . . . ,<}, %ğ2 = 1. (This is the< − 11 of (b).)
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• On rounds 8 ∈ [;], %ğ1 = 01/; (by (2) A is guaranteed to leave enough space for �2 such that
B has no incentive to switch).

• On rounds 8 ∈ [11], A plays �2 with probability at least FĘ1+1/Fğ , and arbitrarily �lls any
probability not already taken by �1 or �2 with probability of playing �2 or �3.

For this pair of strategies, note that Lemmas 5.20 and 5.21 hold, and so we are at an NE. □

Theorem 5.22 lets us complete the circle on our earlier example: on one hand, we see that there
are stringent requirements in order for Player B to play a pure strategy in a Nash equilibrium; on
the other, these equilibria manage to exist for many di�erent round counts, weights, and resource
counts, even as player B deals with the fact that A’s best resources outweigh B’s best resources.

5.5 Nash Equilibria where �Į or �Į is fixed, G > 1

Theorem 5.23. For a nontrivial Derby game (<,=, ®�, ®�, ®F), if the game has a Nash Equilibrium

(%,&) where % �xes �Į or & �xes �Į for G > 1, it must be that when A and B play strategies (%,&),
that equivalence class of resources (�Į or �Į ) always loses.

Proof. We show the case where �Į is �xed by contradiction, the case for �Į follows similarly.
Suppose �Į is �xed and has a nonzero chance to win at least one round. By the contrapositive of
Corollary 5.5, this means that

suppý (%, 1) ¦ · · · ¦ suppý (%, G − 1) ¦ suppþ (&, G − 1) ¦ suppý (%, G).

Note that this means that �Į−1 is only played on rounds where �Į is played. However, �Į is �xed,
so �Į is played with certainty on the rounds where it is played. This leaves no room for �Į−1,
causing a contradiction. □

This result explains some of our earlier questions – why is it possible for player A or player B
to play a pure strategy, and speci�cally, why isn’t the other player able to exploit weaknesses or
respond more e�ectively? The reason, as Theorem 5.23 explains, is that the player playing the �xed
equivalence class already intends to lose with the class they are �xing. Thus, the other player can
do no better than to give them what they want.

6 RELATEDWORK

We give a brief overview of some existing games related to Derby games.

Colonel Blotto. There has been much work on identifying Nash equilibria for Colonel Blotto and
its variants [2, 4, 5, 11, 12] but no complete characterization has been found for many of these games
(including Blotto itself). Of these variants, the closest relative to Derby games is Boolean Blotto [3],
as described in Section 4. Also related are Gladiator games [10], a Blotto variant involving two
teams of gladiators having 1v1 �ghts (like Derby games). However, in a Derby game, the players
change the order of resources, whereas in Gladiator games the players change the strengths of each
gladiator (ensuring the total strength is a constant).

Security games. A security game [7] is a game between two players (an attacker and a defender)
who allocate resources over a given number of targets. Each player allocates one resource to a
target to attack or defend it. Both Derby games and security games have multiple rounds (security
games call them targets) and compute utility as a linear combination of round utilities. However
they di�er in that (1) security games need not be zero sum, and (2) players in Derby games can
have more than two kinds of resources.
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Ranking duels. The ranking duel [6], is a two-player zero sum game where two players (e.g.
search engines) rank items (e.g. search results), with the payo� depending on which engine gives
a higher rank to a given item. Ranking duels are similar to a special case of Derby games, where
items are represented by rounds and ranks are represented by alternating resources belonging to
each player (i.e. 51 > 61 > 52 > 62 > ...), but di�er in that they allow ties.

Tian Ji’s horse-racing strategy. There has been limited analysis of Tian Ji’s horse-racing strategy.
Weicheng shows the =-horse version of Tian Ji’s competition — the special case of the unweighted
game where the victory relation is restricted to alternating resources — has a Nash equilibrium
where both players play resources at random [14]. Shu gives the probability of winning with a
random strategy in the above game [13]. Leng and Parlar explore the three-horse game, but with
probabilistic outcomes [8].

7 CONCLUSION AND FUTURE WORK

We have introduced Derby games, which can be used to analyze several forms of competition where
the ordering of elements is the most signi�cant factor. We completely characterize the equilibria
in the unweighted version of the game and provide necessary and su�cient conditions for the
existence of half-pure Nash equilibria in the general case.

One interesting question for future work would be a complete characterization of all equilibria.
In this direction, we expect our Narrow Wins Theorem to be a signi�cant �rst step. Like Blotto
games, variants of Derby games are also apt for future study:

Other victory relations. The victory relation over resources in Derby games is a total order. A
natural extension would be to consider more general victory relations that are not semiconnex (e.g.
allowing ties) and/or are not transitive.

Sequential rounds with simultaneous play. In this version of the Derby game, each round is
played with knowledge of previous rounds, so players can adjust their strategies accordingly. For
example, consider two competing record labels with various albums, choosing which week to
release which album. The album that is more preferred on a given week will top charts, getting
related commendations, while the other will be overshadowed. Each label can use information
from previous weeks to plan their current week’s release, however because the music industry has
a standard global release day (Friday), they don’t know what the other label will release that week.

Sequential rounds with alternating play. This game is similar to the previous game, except player
A plays before player B on each round. If all rounds have equal weight, this game reduces to the
single-player Derby game (described in Appendix A) for player B: B can apply the best-worst
strategy from Remark (2.3) to maximize B’s payo�. In future work, it would be interesting to
analyze the general case when rounds might have di�erent weights.

Variants with incomplete information. Variants of the Derby game and the above games can be
de�ned in which each side has only partial information about the other players’ resources.

We expect the technical tools developed in our work to provide a good starting point to investigate
such variants.
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A SINGLE PLAYER BEST RESPONSE

In Section 2, we remarked that for a Derby game, if all rounds have the same weight and player B’s
schedule is �xed, the following schedule for player A is optimal:

(1) For some constant ∈ [<], A plays their best resource against B’s (<− +1)th best resource,
their second best resource against B’s (< −  + 2)th best resource, and so on until A plays
their  th best resource against B’s worst (<th-best) resource,

(2) A wins these  rounds while losing the remaining< −  rounds, and
(3)  is the largest such constant where (1) and (2) hold.

We will now formalize and prove this remark.

De�nition A.1 (Matching). For an unweighted Derby game (<, �,�, >, ®1), a matching C : � → �

is a bijection from player B’s resources to player A’s resources. Then, knowing B’s ordering
@ : [<] → � , player A plays the ordering ? = C ◦ @.

Because all weights are equal, the payo� for A depends only on the matching C and not the
particular ordering A knows B will play (for all @,*ý (C ◦ @, @) is constant). We de�ne the payo� for
A of matching C ,*ý (C) =

∑
ĝ∈ă 1[C (6) > 6] .

Lemma A.2 (Increasing wins). For an unweighted Derby game (<, �,�, >, ®1) and any matching

C : � → � , there is a matching C ′ : � → � with the same payo� (i.e.*ý (C) = *ý (C
′)), such that C ′ is

increasing on input-output pairings A wins, i.e.

∀61, 62 ∈ �. C
′(61) > 61 ' C

′(62) > 62 ' 61 > 62 =⇒ C ′(61) > C
′(62) .

Proof. We only need to show it is safe to swap one "out-of-order" pair of winning outputs
of C : repeatedly performing such swaps will sort the winning pairings of C to be increasing. Let
the out-of-order outputs be C (61), C (62) for some 61, 62 ∈ � . We know A wins, i.e. C (61) > 61 and
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C (62) > 62, and we know C is decreasing on these resources, i.e. 61 > 62 but C (62) > C (61). Because
C (62) > C (61) > 61 and C (61) > 61 > 62, swapping C (61) and C (62) to produce a new matching
preserves the payo� of C , but produces a matching one step closer to being increasing. □

De�nition A.3 (k-best-vs-worst matching). For an unweighted Derby game (<, �,�, >, ®1), let the
resources of � and� be ranked 51 > 52 > . . . > 5ģ ∈ � , and61 > 62 > . . . > 6ģ ∈ � respectively. We
say a matching C : � → � is :-best-vs-worst if it plays the : best resources of � against the : worst
resources of� , ordered best-to-worst, and it wins all those : rounds. Formally, C is :-best-worst if
∀8 ∈ [:] . 5ğ = C (6ģ−ġ+ğ ) > 6ģ−ġ+ğ .

Lemma A.4 (k-best-worst wins eqally). For an weighted Derby game (<, �,�, >, ®1) and any
matching C : � → � , there is a :-best-vs-worst matching CġĘĭ such that : = *ý (C) = *ý (CġĘĭ).

Proof. First, from C , we use Lemma A.2 to create CğĤę , a matching whose winning pairings are
increasing. Let : = *ý (C) = *ý (CğĤę ), and suppose 61 > · · · > 6ġ ∈ � are the losing resources of �

(so C (61), . . . , C (6ġ ) win). Also, let 5̂1 > · · · > 5̂ġ be the : most preferred resources of � .

We show that there is a matching that pairs 61, . . . , 6ġ to 5̂1, . . . , 5̂ġ (respectively) has the same
payo� as Cğ=2 . Then a similar argument can change the other half of the pairs to the least preferred
resources of 6 to produce a :-best worst matching.

For any increasing matching C ′, we know for each C ′(6ğ ) that there are at least 8−1more preferred

resources in � (speci�cally, C ′(61), . . . , C
′(6ğ−1)). Thus, we know that ∀8 ∈ [:] . C ′(6ğ ) f 5̂ğ . Therefore,

consider the sequence of matchings, where C ′0 = CğĤę and 8 ∈ [:],

Cğ (6) =




5̂ğ if 6 = 6ğ

C ′ğ−1 (6ğ ) if C ′ğ−1 (6) = 5̂ğ

C ′ğ−1(6) otherwise.

; C ′ğ is the increasing matching corresponding with Cğ

Note that*ý (Cğ ) = : :

• If 5̂ğ was already a winning resource of A in C ′ğ−1, since for 9 < 8 , C
′
ğ−1 (6 Ġ ) = 5̂Ġ , this makes 5̂ğ

the 8th largest of the winning resources, meaning it is already paired with 6ğ (since C
′
ğ−1 is

increasing) and does not need to move.

• If 5̂ğ was a losing resource of A, A plays 5̂ğ where A previously won with C ′ğ−1(6ğ ) f 5̂ğ , and A

plays C ′ğ−1 (6ğ ) f 5̂ğ where A previously lost with 5̂ğ , keeping the same payo�.

Then Cġ plays the most preferred resources of F in order in the winning rounds of Cġ , and*ý (Cġ ) = : .
A similar argument can set 61, . . . , 6ġ to the least preferred resources of � , creating the desired
:-best-vs-worst strategy. □

Theorem A.5 (Best-vs-worst is optimal). For an unweighted Derby game (<, �,�, >, ®1), let
 = max{: | ∃C : � → � | C is :-best-vs-worst}. Then for any  -best-vs-worst matching C ,*ý (C) =  
and there is no matching C ′ such that*ý (C

′) > *ý (C).

Proof. First note that for any : , there is no :-best-vs-worst matching with payo� less than :
(by de�nition). Moreover, there cannot be a  -best-vs-worst matching with payo�  ′

>  , since by
Lemma A.4 that would imply there is a  ′-best-vs-worst matching and that  is not the maximum
as assumed. □

B RELATING STRATEGIES AND EFFECTIVE STRATEGIES

De�nition B.1 (Generalizing strategies to e�ective strategies). Suppose for an<-round Derby game,

a player has set of resources � , broken into vector of equivalence classes ®� . For any mixed strategy
(distribution over schedules) ? ∈ ([<] → � ) → [0, 1] of that player, we de�ne the generalization
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of ? to be the e�ective strategy % , where %ğĮ is the total probability of playing an ordering which
plays a resource in equivalence class �Į on round 8 , i.e. %ğĮ =

∑
ĩ : [ģ]→Ă ? (B)1[B (8) ∈ �Į ] .

Remark B.2 (Generalization preserves utility). For any Derby game and strategies (?, @)
of each player, if e�ective strategies %,& are the generalizations of ?, @ respectively, then *ý (%,&) =
*ý (?, @).

Lemma B.3 (Effective strategies describe strategies). Given any Derby game, for any e�ective

strategy % ∈ [0, 1]ģ×Ĥ of a given player, there exists at least one (mixed) strategy ? : ( [<] → � ) →
[0, 1] over schedules of the player’s resources � such that % is a generalization of ? .

Proof. For any e�ective strategy % ∈ [0, 1]ģ×Ĥ
= [%1, . . . , %Ĥ] where % Ġ is the 9

Īℎ column of
% , we construct a square matrix % ′ ∈ [0, 1]ģ×ģ from % using the following procedure: for every
column % Ġ that represents the distribution of resources in equivalence class � Ġ over the rounds,

we add |� Ġ | columns [ 1
|ý Ġ |

% Ġ , . . . ,
1

|ý Ġ |
% Ġ ] to %

′. Note that the sum of entries in each column % Ġ ,∑
ğ %ğ Ġ = |� Ġ |. This transformation assigns each resource in an equivalence class the same probability

of being placed in a given round, keeping the total probability of assigning some resource in an
equivalence class to a round the same as in % . Note that % ′ is a doubly stochastic matrix: each entry
% ′
ğ Ġ g 0, and each row and column sum up to 1. By the Birkho� - von Neumann theorem, % ′ can be

written as a convex combination of< ×< permutation matrices, which represent pure strategies
(resource orderings). Hence, % ′ corresponds to the mixed strategy ? : ( [<] → � ) → [0, 1] with the
coe�cients of the permutation matrices giving the probabilities assigned to the associated pure
strategies.

□

Theorem 3.10 (NE iff effectively uniform). For any unweighted Derby game, (<,=, ®�, ®�, ®1),
the only Nash Equilibrium occurs when both players play the (e�ectively) uniform strategy, i.e. at

(Uniform( ®�),Uniform( ®�)).

Proof. First note that because an e�ective strategy keeps the utility of all strategies it generalizes,
we know from Lemma 3.2 that there is a Nash equilibrium when both players play e�ectively
uniform strategies. We show this is the only equilibrium by showing that no other e�ective strategy
will form a Nash equilibrium with an e�ectively uniform strategy.

We proceed by contradiction. Consider an arbitrary e�ective strategy for player A, % ∈ [0, 1]ģ×Ĥ ,
where % is not e�ectively uniform, and suppose % is part of a Nash Equilibrium. By the rectangle

lemma, (%,Uniform( ®�)) should be an equilibrium, meaning that all of B’s pure e�ective strategies
should have the same payo� against % . We will show this isn’t the case.

Since % is not e�ectively uniform, there must be some equivalence class index G > 1, and round
indices 8, 9 ∈ [<] such that %ğĮ <

ėĮ
ģ

< % ĠĮ . Then consider two pure e�ective strategies for player
B, &, ' such that & and ' di�er only in that & plays �Į−1 on round 8 and �Į on round 9 , while '
plays �Į on round 8 and �Į−1 on round 9 .
Because &, ' are nearly identical, we can simplify their di�erence in utility with respect to % :

*ý (%, ') −*ý (%,&) = %ğĮ − % ĠĮ > 0

This means that against A’s non-uniform e�ective strategy % , B is better o� playing & than ' –
causing a contradiction and showing that % is not part of a Nash Equilibrium. □

∙



C PROOF OF THEOREM 4.5

Theorem 4.5. For a binary Derby game (<,=, ï�1, �2ð, ï�1, �2ð, ®F), there is a half-pure Nash

Equilibrium where A plays a pure strategy % i�

11 g < − 01 +

ė1∑

ğ=1

F (ė1+1)

Fğ
.

where % places resources in �1 in the highest weight rounds.

Proof. We will prove that % is a best response pure strategy by showing that A’s utility
*ý (%,&) g *ý (%

′, &) for an arbitrary pure strategy % ′, where suppý (%, 1) = ( and suppý (%
′, 1) =

) . We denote the di�erence in the utility that A gets on playing the strategies % and % ′ by
�*ý (%, %

′, &) = *ý (%,&) − *ý (%
′, &). The di�erence in utility for a round 8 is denoted by

�*ý (%, %
′, &)ğ .

Since % is a best response to & , we have

*ý (%,&) −*ý (%
′, &) g 0

Rewriting this using our notation for di�erence in utility, we get
∑

ğ∈[ģ]

�*ý (%, %
′, &)ğ g 0

Writing [<] as ( [<] \ ( ∪) ) ∪ (( ∩) ) ∪ (( \) ) ∪ () \ (), we get
∑

ğ∈[ģ]\(ď∪Đ )

�*ý (%, %
′, &)ğ +

∑

ğ∈ď∩Đ

�*ý (%, %
′, &)ğ +

∑

ğ∈ď\Đ

�*ý (%, %
′, &)ğ +

∑

ğ∈Đ \ď

�*ý (%, %
′, &)ğ g 0

(1)

Simplifying using the de�nition of utility (De�nition 2.1), we get

(2)

0 + 0 +
∑

ğ∈ď\Đ

Fğ − (1 −&ğ1)Fğ +
∑

Ġ ∈Đ \ď

0 −F Ġ g 0

∑

ğ∈ď\Đ

&ğ1Fğ +
∑

Ġ ∈Đ \ď

−F Ġ g 0 (3)

Since |( | = |) | = 01, |( \) | = |( | − |( ∩) | = |) | − |( ∩) | = |) \ ( |. Let 81, . . . , 8Ģ and 91, . . . , 9Ģ where
; = |( \) | be the rounds in ( \) and ) \ ( respectively, sorted in increasing order. Rearranging the
terms in (3), we get

Ģ∑

ġ=1

&ğġ1Fğġ −F Ġġ g 0

The condition &ğġ1Fğġ − F Ġġ g 0 for each : ∈ [<] is su�cient for the above condition to hold.
Since % ′ can be any pure strategy, &ğġ1Fğ −F Ġ g 0 for any 8 ∈ ( and 9 ∈ [<] \ ( is su�cient for
*ý (%,&) g *ý (%

′, &) for any pure strategy % ′. Simplifying, we get

&ğ1Fğ g F Ġ ∀8 ∈ ( ∀9 ∈ (
′

&ğ1Fğ g <0G Ġ ∈ď′F Ġ ∀8 ∈ (

&ğ1 g
FģėĮ

Fğ
whereFģėĮ =<0G Ġ ∈[ģ]\ďF Ġ (4)
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Using the fact that
∑

ğ∈[ģ] &ğ1 = 11 and the necessary condition &ğ1 = 1 for all 8 ∈ [<] \ ( (Lemma
4.4), we get the necessary and su�cient condition

11 =
∑

ğ∈[ģ]\ď

1 +
∑

ğ∈ď

&ğ1

11 =< − 01 +
∑

ğ∈ď

&ğ1

Using (4), we get

11 g < − 01 +
∑

ğ∈ď

FģėĮ

Fğ

Since &ğ1 f 1 and &ğ1 g
ĭģėĮ

ĭğ
for all 8 ∈ ( by (4), we get

1 g &ğ1 g
FģėĮ

Fğ
∀8 ∈ (

Fğ g FģėĮ ∀8 ∈ (

which implies that ( is a set of highest weight rounds (as FģėĮ = <0G Ġ ∈[ģ]\ďF Ġ is the highest
weight round in the complement of S), and soFģėĮ = Fė1+1. □
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