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Cryptographic Self-Selection is a subroutine used to select a leader for modern proof-of-stake consensus

protocols. In cryptographic self-selection, each round A has a seed&A . In round A , each account owner is asked

to digitally sign &A , hash their digital signature to produce a credential, and then broadcast this credential to

the entire network. A publicly-known function scores each credential in a manner so that the distribution

of the lowest scoring credential is identical to the distribution of stake owned by each account. The user

who broadcasts the lowest-scoring credential is the leader for round A , and their credential becomes the seed

&A+1. Such protocols leave open the possibility of manipulation: a user who owns multiple accounts that

each produce low-scoring credentials in round A can selectively choose which ones to broadcast in order

to in�uence the seed for round A + 1. Indeed, the user can pre-compute their credentials for round A + 1 for
each potential seed, and broadcast only the credential (among those with low enough score to be leader) that

produces the most favorable seed.

We consider an adversary who wishes to maximize the expected fraction of rounds in which an account

they own is the leader. We show such an adversary always bene�ts from deviating from the intended protocol,

regardless of the fraction of the stake controlled. We characterize the optimal strategy; �rst by proving the

existence of optimal positive recurrent strategies whenever the adversary owns less than 3−
√
5

2 ≈ 38% of the

stake. Then, we provide a Markov Decision Process formulation to compute the optimal strategy.
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1 INTRODUCTION

Proposed by Nakamoto in 2008, Bitcoin was one of the major innovations in peer-to-peer networks
for electronic transactions [15]. Bitcoin is a decentralized currency without an administrator where
anyone is free to join and submit or validate transactions in a public ledger. To modify the state of
the ledger, users must publicly broadcast transactions. Those transactions are included in a block by
miners and validated via a Proof-of-Work (PoW). The signi�cant computational resources required
to validate a block coupled with the reward for validating blocks create an economic incentive for
miners to validate blocks correctly.

Unfortunately, Bitcoin is not without limitations. The proof-of-work consensus mechanism was
designed to be energy-intensive—the global energy consumption from all Bitcoin miners exceeds
that of all but 26 countries [1]. Moreover, the economies of scale from designing and purchasing
large quantities of specialized hardware for proof-of-work mining has demonstrated that Bitcoin
is more prone to centralization than initially thought [2]. In attempt to address the limitations of
proof-of-work, many alternative blockchain designs have been proposed [6, 11, 13, 17].

In particular, proof-of-stake blockchains replace proof-of-work by a randomized mechanism to
select a miner as the leader who proposes a new block. To avoid sybil attacks, where an adversary
impersonates multiple identities, the mechanism hopes to choose a miner with probability propor-
tional to their fraction of owned coins (commonly referred to as their stake in the system). The
main challenge for such systems is to sample a miner without sacri�cing decentralization and, at
the same time, preserve the security and economic properties of the blockchain.

Several proposals for “Bitcoin-like” longest-chain proof-of-stake protocols have been made, but
several drawbacks to this approach still exist. For example, [8] considers a longest-chain proof-stake
blockchain that requires a randomness beacon [12, 16], and proves that this qualitatively preserves
themining incentives of Bitcoin, but the need for a trusted external randomness beacon is prohibitive
in most settings. Without a trusted external randomness beacon, proof-of-stake implementations
often rely on using the own blockchain as a source of pseudorandomness. Because miners can often
predict the randomness in such protocols, Brown-Cohen et al. [3] showed that a large class of longest-
chain proof-of-stake protocols are vulnerable to pro�table deviations that they term “predictable
sel�sh mining.” Thus, the current state of longest-chain proof-of-stake cryptocurrencies must either:
(a) propose a trusted randomness beacon, or (b) propose clever applications of cryptography to
minimize the ability of strategic miners to manipulate the blockchain pseudorandomness. While
active research agendas aim to address both (a) and (b), these are currently notable barriers to
longest-chain proof-of-stake protocols.
One alternative design that relies on neither a trusted beacon, nor even an underlying longest-

chain protocol, is cryptographic self-selection. This procedure is adopted in blockchains like
Algorand [6, 10]. In cryptographic self-selection, each round A has a seed &A−1, used to sample the
leader ℓA to propose the A -th block in the blockchain. In the ideal case where &A−1 is unbiased, a
clever cryptographic construction ensures that a miner owning a U ∈ [0, 1] fraction of the coins
has a probability U of becoming the leader.

Unlike longest-chain blockchains, blockchains using cryptographic self-selection are immutable
because once the leader validates �A , �A cannot be modi�ed. Nevertheless, one limitation of such
protocols is that the leader for round A may have some in�uence over the seed &A+1 for round A + 1.
For example, Chen and Micali [6] note that it is possible for an adversary to bias seeds in future
rounds in Algorand’s cryptographic self-selection. In this work, we study quantitatively the limits
of how much these deviations might bene�t an economically-motivated adversary. Speci�cally, we
assume that the adversary wishes to maximize the fraction of rounds during which they are the
leader. If the adversary were honest, this would be exactly an U fraction. We seek to understand



5 (U) g U , the maximum fraction of rounds that an adversary with an U fraction of the stake can
lead in expectation.1

1.1 Overview of Results and Roadmap

Our main contributions are as follows:

• First, we provide a formal stochastic process that captures the game played by strategic
players who want to be leader as often as possible in a cryptographic self-selection protocol.
We provide a detailed, formal description of the game in Section 2, and prove several basic
facts in Section 3.1. These sections provide a clean stochastic process whose analysis directly
informs the rewards achievable by strategic players in blockchain based on cryptographic
self-selection.
• In this game, it is a priori possible that an extremely strong strategy exists that lets a player
with an U < 1 fraction of the stake win unboundedly-many rounds in a row in expectation.

We prove that when U <
3−
√
5

2
≈ 0.38, this is not possible, and the optimal fraction of rounds

won by a strategic player with U <
3−
√
5

2
is < 1. Note that in many protocols, including [6],

that use cryptographic self-selection, owning U > 1/3 of the stake is already enough to
subvert consensus, so the U < 1/3 is the most relevant range where strategic mining is a
concern. We prove this in Section 4.
• We pose a simple strategy, the 1-Lookahead strategy, which strictly outperforms the honest

strategy for all U . We fully analyze the expected reward of this strategy in Section 5.
• Finally, we describe how the optimal strategy can be found by solving a series of MDPs. As
the MDPs are in�nite, this unfortunately does not immediately give an e�cient algorithm.
This appears in Section 6.

1.2 Related Work

Seminal work of [7] established that strategic mining in Bitcoin is possible. Hundreds of followup
works pushed their ideas in various directions. One notable work, which is similar in spirit to ours,
is [19], who nail down the optimal achievable reward for a miner who has an U-fraction of the
computational power. Follow-up works such as [3, 8] consider similar questions for proof-of-stake
instead of proof-of-work, but to the best of our knowledge, all prior work in this agenda considers

longest-chain protocols. In comparison to this line of work, ours is the �rst (to our knowledge) to
consider a formal model of strategic behavior in cryptographic self-selection, which is used in
protocols based on Byzantine consensus.

Chen andMicali [6] develop the theoretical protocol for Algorand, and propose thatmanipulations
of the cryptographic self-selection protocol may be possible. They do not propose a concrete
manipulation, but do upper bound the maximum fraction of rounds that certain kinds of adversaries
can possibly be leader. In comparison to their work, our work proposes a formal model to capture
the entire strategy space in cryptographic self-selection protocols, and our 1-Lookahead strategy
also provides the �rst concrete pro�table manipulation.

1This is the same objective in prior work [3, 7, 8, 19]. In prior work, this objective function was motivated by the block

reward associated with creation of each block. Even if a protocol has no block reward there is still some economic incentive

associated with creating a block. This could be due to transaction fees [9, 18], or side contracts that the leader is able to

execute in deciding what to include. We do not explicitly model the direct connection between being a leader in a round

and the monetary reward, and treat this per-block incentive as exogenous.



2 BACKGROUND AND SETUP

In this section, we provide our formal model and some preliminary observations. Our model
captures the cryptographic self-selection protocol of [6], but we remind the reader that our model
only concerns leader selection—this process is independent of block creation, consensus, etc.

2.1 Blockchain Protocols with Finality

Many modern proof-of-stake blockchain protocols, such as Algorand [6, 10], di�er signi�cantly
from the longest-chain protocols like Bitcoin. All blockchain protocols maintain a ledger, which
is a sequence of blocks �0, �1, . . . , �C , . . .. Protocols with �nality di�er from Bitcoin in that there
are no forks. Once round C has concluded, there is a single well-de�ned �C , which will stay �xed
throughout eternity.

To produce the block for round C , blockchain protocols with �nality run an underlying consensus
protocol. These consensus protocols often require a leader ℓC , selected based on �1, . . . , �C−1, who
gets to propose the block which could potentially be rati�ed as �C . Note that because there are no
forks, the leader ℓC is well-de�ned.

2.2 Cryptographic Self-Selection to Determine a Leader

One problem that any blockchain protocol with �nality must resolve is how to determine ℓC as a
function of �1, . . . , �C−1, and this must be done with care. For example, if there are # coins indexed
from 1 to # , one naive proposal might simply declare the owner of coin C (mod # + 1) to be the
leader at round C . This is vulnerable to a predictability attack: an attacker knows exactly which
coins they need to own in which rounds, and can be solely responsible for block proposal for many
rounds in a row. Another naive proposal might declare the owner of coin HASH(�C−1) (mod # +1)
to be the leader at round C . This is vulnerable to a grinding attack: ℓC−1 has many options for the
contents they include in �C−1, and can try arbitrarily many contents until HASH(�C−1) results in a
coin they own. In general, the goal of a leader-selection protocol is to pick a leader in a manner so
that:

• When every user honestly follows the intended protocol, the distribution of each ℓC is propor-
tional to the stake, and i.i.d. across rounds. That is, each user with an U fraction of the total
stake is selected as the leader in round C with probability U , independently across rounds.
• A self-interested user has little ability to predict future rounds in which they could become
the leader, or to increase the fraction of rounds in which they are the leader.

Cryptographic self-selection is a clever approach, used by Algorand [6, 10] to select a leader.
Before de�ning the full protocol, we need two basic tools.

2.2.1 Tools for Cryptographic Self-Selection. One useful cryptographic tool towards cryptographic
self-selection is a veri�able random function [14]. For the purposes of this paper, we’ll use an ideal

veri�able random function.

De�nition 2.1 (Ideal Veri�able Random Function). An Ideal Veri�able Random Function (Ideal
VRF) satis�es the following properties:

• Setup. There is an e�cient randomized process to produce a secret key sk and a public key
pk that parameterize the function 5sk (·).
• Private Computability. There is an e�cient algorithm A such that for all sk, A(G, sk) =
5sk (G) (that is, 5 can be e�ciently computed with knowledge of the secret key sk).
• Perfect Randomness. For all inputs G ≠ ~, the random variables 5sk (G) and 5sk (~) are
independent, and uniformly drawn from [0, 1], conditioned on knowledge of pk. In particular,



this implies that 5sk (G) is distributed uniformly on [0, 1] to any user who sees only pk, even
after that user has seen any number of pairs (G1, 5sk (G1)), . . . , (G: , 5sk(G: )), where G8 ≠ G, ∀8 .
• Veri�able. There exists an e�cient algorithm + that takes as input G,~, pk and outputs yes
if and only if ~ = 5sk (G).

Intuitively, an Ideal VRF allows a holder of sk to draw a random number uniformly from [0, 1] in
a way that is unpredictable to anyone without knowledge of sk, yet also in a veri�able manner. The
distinction between an Ideal VRF and VRF lies in perfect randomness: it is generally not possible to
have the random variables {5 (G1), . . . , 5 (G: )} be statistically indistinguishable from independent
uniformly random draws from [0, 1] conditioned on pk. VRFs used in practice instead provide
that the distribution of {5 (G1), . . . , 5 (G: )} be computationally indistinguishable from independent
uniformly random draws from [0, 1], conditioned on pk.2

We omit a formal de�nition of (non-Ideal) VRFs, which is cumbersome and not relevant to our
results. In particular, all proposed deviations work even when the protocol has access to an Ideal VRF,
and therefore they also work when the protocol instead uses a VRF.
To have a simple example of a (non-Ideal) VRF in mind, consider any digital signature scheme

and hash function. On input G , �rst, digitally sign G to obtain SIG(G), and then hash it (this is the
VRF used in [6]). Indeed, with the secret key, a user can e�ciently compute a digital signature of
any G and hash it. Similarly, correct computation of the hash function can be e�ciently veri�ed
by anyone, and correct computation of the digital signature can be e�ciently veri�ed by anyone
with the public key. Any input SIG(G) to the hash function is mapped to a uniformly-random
draw from [0, 1], independently of all other inputs, and the digital signature scheme ensures that
anyone without the secret key cannot guess SIG(G), even with knowledge of G , and any number of
input/output pairs to SIG.

A second tool we will need is a concept that enables the leader to be selected proportional to the
stake, rather than uniformly at random among all accounts.

De�nition 2.2 (Balanced Scoring Function). A scoring function ( (·, ·) is balanced if for all = ∈ N
and all ïU1, . . . , U=ð ∈ R=>0:

Pr
-1,...,-Ĥ←* ( [0,1]Ĥ)

[
arg min

8∈[=]
{( (-8 , U8 )} = 9

]
=

U 9∑=
ℓ=1 Uℓ

.

Observe that, if ties in argmin are broken lexicographically, this implies that for allU , the distribution
of ( (-, U) when - is drawn uniformly from [0, 1] must have no point-masses.

Intuitively, one can think of argmin8 {-8 } as the winner of a random process when each-1, . . . , -=

is drawn independently from the uniform distribution on [0, 1], denoted by * ( [0, 1]), and each
player is equally likely to win. A balanced scoring function allows us to redistribute the probability
of winning to be proportional to U8 instead.

2.2.2 Cryptographic Self-Selection Protocol. Now, we de�ne the cryptographic self-selection proto-
col, the leader-selection protocol analyzed throughout our paper.

De�nition 2.3 (Cryptographic Self-Selection Protocol A). The Cryptographic Self-Selection Proto-
col A (CSSPA) is the following:

• Every account 8 sets up an Ideal VRF with secret key sk8 and public key pk8 . U8 ∈ [0, 1] refers
to the fraction of the total stake that account 8 owns.

2Also, any (pseudo) random number generator used in practice produces output that is uniformly random over {0, 1}Č
for large _, rather than over [0, 1]. For simplicity of exposition, we think of _ →∞. This again does not a�ect our results,

except for error that is exponentially small in _ (due to the tiny possibility of ties).



• &A denotes the seed for round A . The initial seed is a uniformly random number in [0, 1]
constructed via a coin tossing protocol [4].
• In round A , each user 8 computes their credential Cred8A := 5skğ (&A ). Every user can either
broadcast, or not broadcast. �A denotes the set of users who broadcast in round A .3

• There is a publicly-known balanced scoring function ( . The leader ℓA for round A is

argmin
8∈�Ĩ

{( (Cred8A , U8 )}.

• &A+1 := Cred
ℓĨ
A . That is, the seed for round A + 1 is the credential of the leader for round A .

We note a few quick observations about CSSPA:

• Aside from network/security/cryptography attacks, which are not the focus of this paper,
the action space of a single account in each round is binary: broadcast your credential, or
don’t. A single player may own multiple accounts. Therefore, the actions a single player may
take in our game is to: a) decide how to divide their stake among multiple accounts, and b)
pick which subset of credentials to broadcast.
• We’ll refer to the honest strategy as one which announces all credentials in every round.
• Assuming all players are honest, each leader is drawn i.i.d. and proportional to ®U . This follows
immediately from the de�nition of Ideal VRF and balanced scoring function.
• Assuming that all players are honest, the protocol is robust to Sybil attacks. That is, a player
who truly controls an U8 fraction of the total stake can put all of their funds into a single
account, or split their funds arbitrarily over any number of accounts. No matter how they
divide their funds, the probability that an account owned by this player is selected as leader
is exactly U8 .
• Much analysis of CSSPA can be done agnostically to the particular balanced scoring function.
For example, Proposition 2.1 establishes that our analysis holds for a wide class of “canonical”
balanced scoring functions. In particular, our analysis chooses a particularly simple balanced
scoring function for the bene�t of tractability, but our analysis holds for the balanced scoring
function used in [6] as well via Proposition 2.1.

Throughout our paper, we’ll use the balanced scoring function ( (G, U8 ) := − ln(G)Uğ
. This allows us

to leverage basic facts about independent draws from exponential distributions.

De�nition 2.4 (Exponential Distribution). The exponential distribution with rate U is the distribu-
tion with Cumulative Density Function (CDF) �U (G) := 1 − 4−UG , for all G g 0. We refer to Exp (U)
as one independent sample from the exponential distribution with rate U . For simplicity of notation
in later calculations, we will denote by Exp (0) to be a point-mass at +∞.

Exponential distributions have many relevant properties that we remind the reader of in Appen-
dix A.

Lemma 2.1. De�ne ( so that ( (G, U8 ) := − ln(G)Uğ
. Then ( (·, ·) is a balanced scoring function.Moreover,

when G is drawn uniformly from [0, 1], ( (G, U8 ) is distributed according to Exp (U8 ).

Proof. We �rst show that ( (G, U8 ) is distributed according to Exp (U8 ) when G is drawn uniformly

from [0, 1]. This follows essentially because − ln(G)
Uğ

is the inverse reverse-CDF of Exp (U8 ). To see

the claim, we compute the probability that ( (G, U8 ) > ~, for any ~:

3In order to focus on the relevant aspects, we assume that any broadcast is received by all other users. This is consistent

with prior work that focuses on the underlying incentives, and not distributed computing [3, 5, 7, 8].



Pr
G←* ( [0,1])

[( (G, U8 ) > ~] = Pr
G←* ( [0,1])

[ − ln(G)
U8

> ~]

= Pr
G←* ( [0,1])

[ln(G) < −U8 · ~]

= Pr
G←* ( [0,1])

[G < 4−Uğ ·~]

= 4−Uğ ·~

This means that the CDF of ( (G, U8 ), when G is drawn uniformly from [0, 1], is exactly 1 − 4−UğG ,
and therefore this distribution is equal to Exp (U8 ). Now, the fact that ( (·, ·) is a balanced scoring
function follows from Corollary A.1 (which states that the minimum of -1, . . . , -= , when each -8 is
drawn independently from Exp (U8 ) is equal to -8 with probability U8 , for all 8). □

We conclude this section by formally establishing that our analysis extends to a broad class of
scoring functions.

De�nition 2.5. A scoring function ( is canonical if:

• For all U , ( (·, U) is monotone decreasing on domain (0, 1).
• For all =, and U1, . . . , U= , the random variables ( (-,∑=

8=1 U8 ) and min=8=1{( (-8 , U8 )} are identi-
cally distributed when each -,-1, . . . , -= are i.i.d. from* ( [0, 1]).
• ( is continuous inU . That is: for allG andU , if limV→U ( (G, V) exists, then ( (G, U) = limV→U ( (G, V).

Before proceeding, we give quick context for each bullet. Balanced scoring functions where
( (·, U) is not monotone decreasing exist, but assuming that ( (·, U) is monotone decreasing is w.l.o.g.
Indeed, for any U , let �U denote the CDF of the random variable ( (-, U) when- is drawn uniformly
from [0, 1]. Now consider rede�ning ( ′(G, U) := �−1U (1 − G). Then the distribution of ( (-, U) and
( ′(-, U) are identical, but ( ′(·, U) is monotone decreasing. We conjecture that all balanced scoring
functions satisfy the second two bullets, but we suspect that rigorously establishing this will require
signi�cant analysis. As this is not the focus of our paper, we instead treat these bullets as reasonable
assumptions. Indeed, the balanced scoring function used by Algorand is canonical.

Proposition 2.1. The game induced by CSSPA with a canonical balanced scoring function is
independent of the particular canonical balanced scoring function used. Formally, for two distinct
canonical balanced scoring functions (, ( ′, the games induced by CSSPA are identical. Speci�cally,
for all players 8 , there is a bijective mapping 5 from strategies of player 8 in the CSSPA with ( to
strategies of player 8 in the CSSPA with ( ′. For all 8 , the payo� that player 8 receives in the CSSPA
with ( under strategy pro�le ®B is equal to the payo� that 8 receives in the CSSPA with ( ′ under
strategy pro�le ï58 (B8 )ð8 .
A complete proof of Proposition 2.1 appears in Appendix B.

3 OUR MODEL: STRATEGIC MINING IN CRYPTOGRAPHIC SELF-SELECTION

This section formally de�nes our model and, in particular, the optimization problem considered
by a strategic player. Like prior work [5, 7, 8], we consider a single strategic player who is best
responding to a pro�le of honest players. The purpose of this analysis, like in prior work, is to
understand the maximum disruption that can be caused when a 1−U fraction of the stake is owned
by honest players, and an U fraction of the stake is owned by strategic players.4 We now formalize
the strategy space of the strategic player.

4That is, the worst-case scenario, among all scenarios where a 1 − U fraction of the stake is held by honest players, is when

there is a single-strategic player with an U fraction of the stake. Our goal, like prior work, is to understand this scenario.



De�nition 3.1 (Strategy Space in CSSPA). CSSPA is parameterized by U , the fraction of stake
owned by the strategic player, ®U the distribution of remaining stake among honest players, and
V ∈ [0, 1], the network connectivity strength of the strategic player. We’ll refer to this as a V-strong
player. When V = 1, we’ll simply refer to the player as strong, and when V = 0 we’ll refer to the
player as weak. The strategic player knows U, V, ®U .

In round A , the strategic player in CSSPA has the following information and makes the following
decisions, in order:

(1) The strategic player can distribute their total stake of U arbitrarily among as many accounts
as they desire. Refer to this set as �.

(2) The strategic player knows &A , and knows that all other players are honest.
(3) For a set of accounts � such that �∩� = ∅, and∑9 ∈� U 9 = V · (1−U), the strategic player learns

Cred
9
A , for all accounts 9 ∈ �. The strategic player does not learn Cred9

A for any 9 ∉ �∪� (that

is, the player only knows that each ( (Cred9
A , U 9 ) will be drawn from Exp

(
U 9

)
, independently).

(4) Observe that the strategic player can compute Cred8A and also ( (Cred8A , U8 ), for all accounts
8 ∈ �.

(5) Observe further that for all 9 ∈ � ∪ �, Cred9
A is a possible seed for &A+1. So the player can

also pre-compute a hypothetical Cred8A+1, assuming &A+1 = Cred
9
A , for each account 8 ∈ �

and 9 ∈ � ∪ �. But observe that the strategic player cannot execute this computation for
8 ∉ � (because they cannot compute the ideal VRF for accounts ∉ �).

(6) More generally, for any : , and any list of accounts ï80, . . . , 8:ð such that 80 ∈ � ∪ �, and each

8 9 ∈ � for all 9 > 0, the player can also pre-compute what Cred8ġ
A+: would be, assuming that

ℓA+9 = 8 9 for all 9 ∈ {0, . . . , : − 1}.
(7) The strategic player selects a subset �A ¦ �, and broadcasts all credentials in �A .

We will consider optimal strategies for all U, V, ®U . Note that the role of V di�erentiates how much
information they know about other players’ credentials before deciding which credentials of their
own to broadcast. Before getting into our main analysis, we prove some basic facts about optimal
strategies in this model.

3.1 Basic Facts on Optimal Strategies

First, we de�ne the reward achieved by a particular strategy c , which the strategic player aims to
optimize. A priori, the reward can depend on U, V , and the distribution of the remaining (1 − U)
fraction of stake, ®U .

De�nition 3.2 (Reward of a Strategy). A strategy c prescribes an action to take during each round.

-
U,V, ®U
A (c) is an indicator random variable for the event that the strategic player is the leader during

round A , when the game with parameters U, V, ®U is played. The reward of a strategy c is simply the
expected fraction of rounds where the strategic player is the leader. We drop the superscript and
write -A (c) whenever U, V, ®U is clear from context. Formally:

RevU,V, ®U (c) = E
[

lim inf
'→∞

∑'
A=1-

U,V, ®U
A

'

]

(1)

The expectation is taken over the randomness in the Ideal VRFs in every round, assuming that
all non-strategic miners are honest. We use the notation val(U, V, ®U) := supc {RevU,V, ®U (c)}. We say

that a strategy c is Y-optimal for parameters U, V, ®U if Rev(c) g val(U, V, ®U) − Y.



Next, we produce a series of re�nements concerning Y-optimal strategies, which will allow us to
greatly simplify the analysis of strategies in CSSPA. First, we observe that the strategic player need
not consider any set with |�A | > 1.

Observation 3.1. For any strategy c , there is another strategy c ′ that results in exactly the same
leaders as c in every round (and therefore has RevU,V, ®U (c ′) = RevU,V, ®U (c)) for all U, V, ®U), and
always selects an �A with |�A | f 1.

Proof. Observe that the strategic player can compute ( (Cred8A , U8 ) for all 8 ∈ �. If they broadcast
a set �A ≠ ∅, then the leader will be 8∗ := argmin8∈�Ĩ

{( (Cred8A , U8 )} if and only if ( (Cred8∗A , U8∗ ) <
( (Cred9

A , U 9 ) for all 9 ∉ �. Observe that this is exactly what would happen if the strategic player
instead broadcast only {8∗} instead. So c ′ will broadcast only {8∗}, and this results in the same
leader as using c .

If instead the strategic player chooses to broadcast �A = ∅, then c ′ will broadcast ∅ as well. This
clearly results in the same leader as using c , because the actions are identical.

The leader is the same in both cases, and c ′ only ever broadcasts (at most) a single credential. □

Next, we show that optimal strategies split their stake among as many accounts as possible.

Lemma 3.1. Consider a strategy c where strategic player divides their stake into = wallets with
stake U8 > 0, for 8 ∈ [=]. Then there is a strategy c ′ where the strategic player instead divides their
stake into 2= wallets with stake U ′8 > 0, for all 8 ∈ [2=], and Rev(c ′) = Rev(c).
Proof. The strategy c ′ de�nes 2= wallets with stake

U ′8 =

{
Uğ
2

for 8 f =,
Uğ−Ĥ
2

for = < 8 f 2=.

Observe that, conditioned on &A , ( (Cred8A , U8 ) is distributed according to Exp (U8 ), independently
for all 8 . Similarly, ( (Cred9

A , U
′
9 ) is distributed according to an Exp

(
U ′9

)
, independently for all 9 .

De�ne now the random variable 9 (8) := argmin{( (Cred8A , U ′8 ), ( (Cred=+8A , U ′=+8 )}, and denote by

. 8
A := ( (Cred9 (8)

A , U ′
9 (8) ). Then by Lemma A.1, . 8

A is distributed according to Exp
(
U ′8 + U ′=+8

)
=

Exp (U8 ), independently for all 8 ∈ [=]. Therefore, . 8
A and ( (Cred8A , U8 ) are identically distributed.

Therefore, we can couple executions of c and c ′ so that . 8
A = ( (Cred8A , U8 ) for all A, 8 , and also so

that ( (Cred9
A , U 9 ) is identical for all A, 9 ∉ �.

Consider now the strategy c ′ that does the following. If c does not broadcast a credential, then
c ′ also does not broadcast a credential. If c broadcasts 8∗, then c ′ broadcasts 9 (8∗). Observe now
that the score of the credential broadcast by c and c ′ is identical (due to the coupling), and the
scores of credentials broadcast by the honest players are also identical. Therefore, ℓA = 8∗ under
c if and only if ℓA = 9 (8∗) under c ′. Moreover, &A+1 is identical under both executions. We have

therefore coupled the executions of c and c ′ so that -
U,V, ®U
A (c) = -

U,V, ®U
A (c ′) for all A , and therefore

Rev
U,V, ®U (c) = Rev

U,V, ®U (c ′). □

Next, we argue that is w.l.o.g. to consider two honest players, one with a fraction V · (1 − U) of
the stake, and the other with fraction (1 − V) · (1 − U) of the stake.
Observation 3.2. For any U, V , de�ne ®U ′ to have two honest players, one with U ′1 = V · (1 − U),
and another with U ′2 = (1 − V) · (1 − U). Then for any strategy c , RevU,V, ®U (c) = Rev

U,V, ®U′ .

Proof. Let.� := min9 ∈�{( (Cred9
A , U 9 )}, and.� := min9∉(�∩�) {( (Cred9

A , U 9 )}. Then by LemmaA.1,
.� is distributed according toExp (V · (1 − U)), and.� is distributed according toExp ((1 − V) · (1 − U)).



Therefore, we can couple .� and .� in the execution with ®U with ( (Cred1A , U ′1) and ( (Cred2A , U ′2) in
the execution with ®U ′.

Observe, now, that the seed for round A + 1 in the execution with ®U will be the minimum of .�, .� ,
and the score of the credential broadcast by the strategic player. In the execution with ®U ′, the seed
for round A + 1 will be the minimum of ( (Cred1A , U ′1), ( (Cred2A , U ′2), and the score of the credential
broadcast by the strategic player. Therefore, &A+1 is the same in both executions. Moreover, we

also have -
U,V, ®U
A (c) = -

U,V, ®U′
A (c). We have therefore coupled the executions with ®U and ®U ′ so that

-
U,V, ®U
A (c) = -

U,V, ®U′
A (c) for all A , and therefore RevU,V, ®U (c) = Rev

U,V, ®U′ (c). □

We make one �nal observation, which will simplify later de�nitions (it is not necessary for our
analysis, but greatly simpli�es De�nition 4.1).

Observation 3.3. For any strategy c , there is another strategy c ′ satisfying Rev
U,V, ®U (c) =

Rev
U,V, ®U (c ′) for all U, V, ®U , and also such that in any round A where the player learns in step

(3) that min9 ∈�{( (Cred9
A , U 9 )} < min9 ∈�{( (CredA9 , U 9 )}, c ′ does no computation in steps (4)-(6).

Proof. Observe that if min9 ∈�{Cred9
A } < min9 ∈�{Cred9

A }, then the seed &A+1 will be equal to
the minimum credential among all honest nodes, no matter what the strategic player chooses to
broadcast. So no matter what they do this round, they cannot a�ect &A+1. Because the strategic
player’s actions during round A have no impact on the game, they can shift any computation they
originally planned to do in round A later to round A + 1. This results in a strategy c ′ that results in
identical seeds in every round as c , but that does no computation during rounds where their action
has no impact. □

We now state the strategy space of the re�ned CSSPA.

De�nition 3.3 (Re�ned CSSPA). The re�ned CSSPA is parameterized by U , the fraction of stake
owned by the strategic player, and V ∈ [0, 1], the network connectivity strength of the strategic
player. There are two honest players � and� . � owns a V · (1−U) fraction of the stake, and� owns
a (1 − V) · (1 − U)-fraction of the stake.

In round A , the strategic player in CSSPA has the following information and makes the following
decisions, in order:

(1) The strategic player can distribute their total stake of U arbitrarily among as many accounts
as they desire. Refer to this set as �.

(2) The strategic player knows &A , and knows that all other players are honest.
(3) The strategic player learns Cred�A . The strategic player does not learn Cred

�
A (that is, the

player only knows that ( (Cred�A , (1− V) · (1−U)) will be drawn from Exp ((1 − V) · (1 − U)),
independently).

(4) Observe that the strategic player can compute Cred8A and also ( (Cred8A , U8 ), for all accounts
8 ∈ � ∪ {�}. For any : , and any list of accounts ï80, . . . , 8:ð such that 80 ∈ � ∪ {�} and
8 9 ∈ � for all 9 > 0, the player can also pre-compute what Cred8ġ

A+: would be, assuming
that ℓA+9 = 8 9 for all 9 ∈ {0, . . . , : − 1}. If the strategic player learned in Step (3) that

( (Cred�A , V · (1 − U)) < min9 ∈�{( (Cred9
A , U 9 )}, then the player does no computation.

(5) The strategic player selects an account 8∗ to broadcast, or decides not to broadcast.

We let RevU,V (c), val(U, V) denote the reward of a strategy c in the re�ned CSSPA, and the optimal
reward, respectively.

Based on the observations in this section, we conclude the following:

Corollary 3.1. For all U, V, ®U, c : RevU,V (c) = RevU,V, ®U (c). Therefore, val(U, V) = val(U, V, ®U) as
well.



4 EXISTENCE OF OPTIMAL RECURRENT STRATEGIES

Recall we bootstrap the initial seed &0 to be drawn from * [0, 1] via a distributed coin tossing
protocol. Hence &0 is an unbiased seed since it does not favor any player. Formally, we say a seed
&A−1 is unbiased if substituting&A−1 by a fresh independent sample from* [0, 1] results in the same
distribution for -A (c), -A+1 (c), . . . conditioned on all the queries to 5skğ for all 8 up to round A − 1.
Another interpretation is that the adversary did not query any 5skğ on &A−1 before round A begins
which suggests the adversary is indi�erent about replacing &A−1 for a fresh sample from* [0, 1].

The adversary has a probability at most U of becoming the leader for round A if &A−1 is unbiased
because the probability an honest miner samples the lowest scoring credential is equal to 1−U—the
adversary can only reduce their chances of being a leader by not broadcasting their credentials.
How can the adversary build a biased &A provided &A−1 is unbiased? For some intuition, suppose

V = 1, and the adversary has the lowest scoring credential for round A . In other words, the adversary
observes the credentials of all honest miners and knows that if they broadcast some credential
Cred

8∗
A , 8
∗ ∈ � becomes the leader for round A . However, the adversary also has the option to not

broadcast any credential, in which case, some account � becomes the leader. Note that the adversary
already knows Cred�A before deciding if they will broadcast Cred8

∗
A or not (the assumption V = 1

implies the adversary is well connected and get to see all other credentials before taking any
action). Then, the adversary queries 5skğ on Cred

8∗
A and Cred

�
A for all 8 ∈ � and observes which

seed would be more favorable for round A + 1 (would allow the adversary to sample credentials
with the lowest scores for round A + 1). This concludes our example, and in Section 5, we provide a
complete description of one such strategy. As a takeaway, the the adversary can bias the seed &A

unless the credential with the lowest score comes from an account 9 ∉ �.
It will be convenient to ask when the game reaches a round g g 1 where &g+1 is unbiased given

that &0 is unbiased.

De�nition 4.1 (Stopping Time). We call a round g a stopping time if for all possible strategies c ,
the distribution of {-A (c)}A>g , conditioned on &g and all information the adversary has during
round g , is identical to the distribution of {-A (c)}A>g after replacing&g+1 with a uniformly random
draw from [0, 1]. That is, g is a stopping time if the game e�ectively resets at round g + 1, because
the adversary was unable to bias the distribution of &g+1.

We now state the main way in which stopping times arise.

Observation 4.1. Let g be a round such that the adversary does not query any VRF on&g+1 during
any round f g . Then g is a stopping time.

Proof. Because the adversary has not queried &g+1 on any VRF, this means that the adversary
currently believes that every future query to any VRF on &g+1 is independently drawn from
* ( [0, 1]) (by de�nition of VRF). Replacing &g+1 with any other seed that has not been queried
by the adversary has exactly the same distribution. In particular, with probability 1, a uniformly
random draw from [0, 1] has not been queried by the adversary in any previous round, and therefore
g is a stopping time. □

De�nition 4.2 (Positive Recurrence). Let g g 1 be the �rst stopping time induced by c . We say c

is positive recurrent if E [g] < ∞.

Let g0, g1, . . . be a sequence of stopping times. Since we can assume the adversary’s strategy
resets whenever a stopping time is reached, g1 − g0, g2 − g1, . . . and

∑g1
A=g0+1-A (c),

∑g2
A=g1+1-A (c), . . .

are sequences of i.i.d. random variables. The following result simpli�es the expression for revenue
for positive recurrent strategies:



Lemma 4.1. Let c be positive recurrent. Then Rev(c) = E [
∑ă

Ĩ=1 -Ĩ (c )]
E [g ] where g is a stopping time.

Proof. Let g0 = 0, g1, g2, . . . be the sequence of stopping times and let # (C) be the index for the
most recent stopping time by time C . Then

Rev(c) = E


lim inf
)→∞

1
# () )

(∑)
A=gĊ (Đ ) -A (c) +

∑# () )
8=1

∑gğ
A=gğ−1+1-A (c)

)

1
# () )

(
() − g# () ) ) +

∑# () )
8=1 (g8 − g8−1)

)


Since # () ) → ∞ as ) → ∞, the statement follows from the strong law of large numbers
(Lemma A.4). □

Lemma 4.1 provides a nice characterization for the revenue of positive recurrent strategies which
will be critical when studying optimal strategies. In the rest of this section, we aim to show a
su�cient condition for the existence of optimal positive recurrent strategies by proving the following
informal claim: for any strategy c , let g g 1 be the �rst round where argmin8∈[=] S(Cred8g , U8 ) ∉ �,

then g is a stopping time and E [g] < ∞ for U <
3−
√
5

2
≈ 0.38.

De�nition 4.3 (Forced stopping time). Consider round A with seed&A . If argmin8∈[=] S(Cred8A , U8 ) ∉
�, we say A is a forced stopping time with respect to &A .

Lemma 4.2. If A is a forced stopping time, then A is a stopping time.

Proof. The leader ℓA ∉ �, because both � and � always broadcast their credentials, and one
of them has the lowest score. Let 9∗ refer to the account in {�,�} with minimum score. Then

&A = Cred
9∗
A regardless of the adversary’s action.

Now, observe that the probability that &A+1 has been any previous credential in any previous
round < A is 0 (because all credentials are drawn uniformly from [0, 1] when drawn). Moreover,
because ℓA ∉ �, the adversary cannot possibly have known &A+1 prior to round A . This is because
the adversary cannot compute the VRF of ℓA , and ℓA only broadcasts &A+1 during round A . Finally,
the adversary did not query &A+1 after learning &A+1 during round A because either the minimum
account was � (in which case, by de�nition of step (4), the adversary did not query �), or the
minimum account was � (in which case, the adversary does not have a step to query any VRFs
during round A after learning� . Therefore, the adversary certainly did not query&A+1 after learning
&A+1.

The only remaining possibility is that the adversary had previously decided to query &A+1 at
a point when all they know is that &A+1 is drawn independently from * ( [0, 1]), conditioned on
inducing the minimum credential for round A . As this distribution is continuous (even after any
conditioning), the probability that it outputs any particular credential is 0. Therefore, assuming
that the adversary queries a �nite number of inputs across all previous rounds, the probability that
it has previously queried any VRF on &A+1 during any previous round is also 0.
Therefore, &A+1 has not been queried by the adversary in rounds f A , and A is a stopping time.

□

4.1 The Branching Process

Next, we aim to show that the expected value of the forced stopping time is �nite whenever the

adversary owns at most 38% of the stake. Fix the seed &A−1 and let 9∗ = argmin9∉� S(Cred9
A , U 9 ),

the honest account with lowest score when the seed is &A−1. Let, (&A−1) denote all the accounts
that could become leaders during round A when the seed is &A−1:

, (&A−1) = { 9∗} ∪ {8 ∈ � : S(Cred8A , U8 ) < S(Cred9∗
A , U 9∗ )}



The distribution of |, (&A−1) | is related to the growth distribution in a Galton Watson branching
process [20]. To see this, consider a tree Tree(&0) where each node stores a seed. We give a recursive
de�nition for Tree(&0). Initialize the tree to contain only the root &0, which we color black. Then
while Tree(&0) contains some black node & :

• If |, (&) | g 2, for each 8 ∈, (&), we append the edge (&, 5skğ (&)) to Tree(&0). Color & red
and color 5skğ (&) black.
• If |, (&) | = 1, color & red.

Intuitively, a node is colored red without appending new edges whenever that node is a forced
stopping time. A node is colored red after appending a new edge if it is not a forced stopping time
(and then we need to recurse on each possible subgame induced by each possible seed).

The height of Tree(&0) gives an upper bound for how long it takes for a game starting with seed
&A−1 to reach a forced stopping time. To see this, consider an omniscient adversary, who knows all
secret keys (and therefore can query all VRFs in any round). Even this omniscient adversary can
bias the next : g 1 rounds, if and only if |, (&A−1) | g 2 (the adversary has at least two options
for the seed &A ) and there is a value for &A ∈ {Cred8A : 8 ∈ , (&A−1)} such that the omniscient
adversary can bias the next : − 1 rounds. In other words, the omniscient adversary can bias :
rounds if and only if there is a path &0, &1, . . . , &: in the tree.

A real adversary cannot search over the entire tree for the longest path, since the real adversary
cannot compute the VDFs of accounts they do not own in future rounds (they can still compute
VDFs for their own accounts in hypothetical future rounds, which provides statistical information
about what the tree might look like in future rounds, but they do not know the precise tree as the
omniscient adversary does). However, the performance of the omniscient adversary is clearly an
upper bound on the performance of the real adversary, so the height of Tree(&0) provides an upper
bound for the number of rounds the adversary can bias. Hence, showing that the expected height
of Tree(&0) is �nite implies that any strategy played by a strategic miner is positive recurrent.
First, we will characterize the distribution of |, (&A−1) |. Formally, we will show that

%A [|, (&A−1) | − 1 = 9] = U 9 (1 − U) .
The notation min(8) {(} refers to the 8Cℎ-smallest element of ( for 8 g 1 and min(0) {(} := 0.
As a technical tool, we recall a useful property for exponential distributions: for all : g 1,

min
(:)
8∈[=] S(Cred8A , U8 ) is identically distributed to Exp (U) +min

(:−1)
8∈[=] S(Cred

9
A , U: ) where Exp (U)

refers to an independent sample from the exponentially distributed with rate U . We defer the proof
to Appendix C.

Lemma 4.3. Let -1, -2, . . . be i.i.d. copies of an exponentially distributed random variable such
that min=∈N-= is exponentially distributed with rate U . Then, for all 8 ∈ N, the random variable

.8 = min
(8)
=∈N-= is identically distributed to /8 = /8−1 + Exp (U) where /0 := 0.

Remark. Lemma 4.3 provides an useful tool to reduce the computational cost of sampling only the
best credentials for our adversary. If one wants to sample the : lowest scores among accounts in

�, a naive approach would require us to take |�| samples from Exp

(
U
|� |

)
, sort in increasing order

and output the �rst : credentials. However, from Lemma 4.3, it su�ces to sample and output the
sequence -1 = Exp (U) , -2 = -1 + Exp (U) , . . . -: = -:−1 + Exp (U).

We now prove the probability that the adversary has 9 options for the seed of round A given&A−1
is U 9 (1 − U).
Lemma 4.4. Let-1, -2, . . . be i.i.d. exponentially distributed random variables such thatmin=∈N-=

is exponentially distributed with rate U . Let, be exponentially distributed with rate 1 − U . Let
( = {8 ∈ N : -8 <, }. Then %A [|( | = 9] = U 9 (1 − U).



Proof. Let /8 = min
(8)
=∈N-= . Let �8 denote the event /8 <, and let �28 be its complement. Then

|( | = 9 if and only if /1 < /2 < . . . < / 9 <, < / 9+1. Then

%A [|( | = 9] = %A
[
�29+1 ∩ (∩

9
8=1�8 )

]

= %A
[
�29+1 |� 9

] 9∏

8=1

%A [�8 |�8−1]

= %A
[
, < / 9+1 |, > / 9

] 9∏

8=1

%A [, > /8 |, > /8−1] .

From Lemma 4.3, /8+1 is identically distributed to /8 + Exp (U) for all 8 ∈ N. Then

%A [|( | = 9] = %A
[
, < / 9 + Exp (U) |, > / 9

]

×
9∏

8=1

%A [, > /8−1 + Exp (U) |, > /8−1]

= %A [, < Exp (U)]
9∏

8=1

%A [, > Exp (U)] From Lemma A.3,

= (1 − U)
9∏

8=1

U = U 9 (1 − U) From Lemma A.2

□

Corollary 4.1. Let &A−1 de drawn from * [0, 1] and , (&A−1) = {8 ∈ � : S(Cred8A , U8 ) <

min9∉� S(Cred9
A , U 9 )}. Then %A [|, (&A−1) | = 9] = U 9 (1 − U).

Proof. Recallmin9∉� S(Cred9
A , U 9 ) is identically distributed toExp (1 − U) andmin8∈� S(Cred8A , U8 )

is identically distributed to Exp (U) (Lemma A.1). From Lemma 4.4, %A [|, (&A−1) | = 9] = U 9 (1−U)
as desired. □

4.2 Extinction in the Branching Process

Next, we derive necessary conditions for the expected height of Tree(&0) to be �nite. This result
will will imply the existence of optimal positive recurrent strategies.

Lemma4.5. Let&0 be an unbiased seed and letg be the �rst forced stopping time. Then %A [g g :] f(
U (2−U)
1−U

):
.

Proof. Clearly g is upper bounded by the height of Tree(&0), then the event g g : implies the
height of Tree(&0) is at least : + 1. For all : g 0 and & ∈ [0, 1], let �:,& denote the event that

Tree(&) has height at least : + 1. Note %A
[
�0,&

]
= 1. Then, for : g 1, the event �:,& holds if and

only if |, (&) | g 2 and for some child & ′ ∈, (&), the sub-tree Tree(& ′) has height at least : − 1.
Let �: = %A

[
�:,&0

]
. Then,



%A [g g :] f %A
[
�:,&0

]
= �:

=

∞∑

8=1

%A [|, (&0) | = 8 + 1] %A
[
∪9 ∈, (&0)∪{ 90 }�:−1,CredĠ

0

]

= (1 − U)
∞∑

8=1

U8%A
[
∪9 ∈, (&0)∪{ 90 }�:−1,CredĠ

0
| |, (&0) | = 8 + 1

]
From Lemma 4.4,

f (1 − U)
∞∑

8=1

(8 + 1)U8%A
[
�:−1,* [0,1]

]
From the union bound,

=
U (2 − U)
1 − U �:−1

The last line observes the geometric series converges to U (2−U)
1−U . To conclude, we proof by induction

that �: f
(
U (2−U)
1−U

):
. The base case is clear: �0 f 1. For : g 1, the inductive assumption gives

�: =
U (2 − U)
1 − U �:−1 f

(
U (2 − U)
1 − U

):

as desired. This proves the statement. □

Theorem 4.1. Consider any strategy c and let &0 be an unbiased seed. Let g g 1 the �rst forced

stopping time. If U <
3−
√
5

2
≈ 0.38, E [g] < 1−U

1−3U+U2 < ∞. Hence c is positive recurrent.

Proof. Recall that for positive discrete random g , E [g] = ∑∞
8=0 %A [g > 8]. From Lemma 4.5,

E [g] <
∞∑

8=0

(
U (2 − U)
1 − U

)8
=

1 − U
1 − 3U + U2

< ∞

The last inequality observes the geometric series converges for U <
3−
√
5

2
. □

As an application of Theorem 4.1, we derive a theoretical upper bound on the revenue for any
strategy. Figure 1 compares the curve for the theoretical upper bound with the revenue of the
honest strategy.

Theorem 4.2. For U <
3−
√
5

2
≈ 0.38, and all V , val(U, V) f U (2−U)

1−U .

Proof. From Theorem 4.1, for U <
3−
√
5

2
, there is an optimal positive recurrent strategy c . Let

g g 1 be a forced stopping time. From Lemma 4.2, g is a stopping time and

Rev(c) =
E
[∑g

A=1-A (c)
]

E [g] Lemma 4.1,

f E [g − 1]
E [g]

= 1 − 1

E [g] From linearity of expectation,

f U (2 − U)
1 − U From Theorem 4.1.

The �rst inequality observes that if the adversary cannot choose &g , then the adversary does not
create block �g . □







The information available for the adversary can be encoded in a tree where each node is a seed.
For a seed & , constant : g 0, de�ne the & rooted tree Tree: (&) recursively as follows:

• If : = 0, let Tree: (&) contain only the root & .
• If : g 1, let & be the root of Tree: (&). Moreover,
– For each 8 ∈ �, add edge (&,Tree:−1 (5skğ (&))) to Tree: (&) where Tree:−1 (5skğ (&)) be-
comes a 5skğ (&) rooted sub-tree in Tree: (&) connected by the edge (&, 5skğ (&)).

– For each 8 ∉ �, once user 8 already broadcast 5skğ (&), add edge (&,Tree:−1 (5skğ (&))) to
Tree: (&).

Let Tree(&) be the graph obtained when we take : →∞ in Tree: (&). Recall the basic facts for
an optimal strategy c from Section 3.1: (1) c divides its stake U among an in�nite amount of wallets;
(2) c broadcast at most one credential each round. Then, without loss of generality, a strategy
c maps Tree(&) to at most one credential from {5skğ (&)}8∈�, corresponding to the credential c
broadcast in a round with seed & . If the strategy outputs no credential, we write c (Tree(&)) = §.
De�nition 6.1 (Value Function). Let c be a positive recurrent strategy, and let d be a positive
constant. For a tree Tree(&), de�ne

V
d
c (Tree(&)) := E

[
g∑

A=1

(-A (c) − d) |&0 = &

]

where g is stopping time. Taking the expected value with respect to Tree(&) gives
V
d
c := E

[
V
d
c (Tree(&))

]
.

We can derive a recursive formula for the value function as follows:

Proposition 6.1. For any positive recurrent strategy c , positive constant d , tree Tree(&),

V
d
c (Tree(&)) = E

[
(-1 (c) − d) + Vd

c (&1) |&0 = &
]

Theorem 6.1. Let c and c ′ be positive recurrent strategies. Then

• V
d
c = 0 if and only if d = Rev(c).

• Rev(c ′) < Rev(c) if and only if V
Rev(c ′)
c > V

Rev(c )
c .

Proof. From Lemma 4.1 and the assumption c is positive recurrent, Rev(c) = E [∑ă
Ĩ=1 -Ĩ (c )]
E [g ] .

Clearly 1 − Rev(c) = E [
∑ă

Ĩ=1 (1−-Ĩ (c ))]
E [g ] . Then

0 =
E
[∑g

A=1-A (c)
]
E
[∑g

A=1 (1 − -A (c))
]

E [g] −
E
[∑g

A=1-A (c)
]
E
[∑g

A=1 (1 − -A (c))
]

E [g]

= (1 − Rev(c))E
[

g∑

A=1

-A (c)
]

− Rev(c)E
[

g∑

A=1

(1 − -A (c))
]

= E

[
g∑

A=1

(-A (c) − Rev(c))
]

From linearity of expectation,

= V
Rev(c )
c

The chain of inequalities proofs V
d
c = 0 when d = Rev(c) as desired. For the other direction,

observe V
d
c is a strictly decreasing function of d . Hence there is a unique value for d where V

d
c

vanishes to zero. This proves the �rst bullet. The second bullet follows from the fact +
d
c is strictly

monotone decreasing in d . □



Corollary 6.1. Let c∗ ∈ argmaxc̃ Rev(c̃). Then c ∈ argmaxc̃ Rev(c̃) is optimal if and only if

c ∈ argmaxc̃ V
Rev(c∗)
c̃

.

Proof. First we prove that if c ∈ argmaxc Rev(c), then c ∈ argmaxc V
Rev(c∗)
c . From Theo-

rem 6.1, for all strategy c̃ ,

V
Rev(c )
c = 0 = V

Rev(c̃ )
c̃

g V
Rev(c )
c̃

where the �rst and second equality are the �rst bullet in the theorem; the inequality is the second
bullet and the fact Rev(c) = Rev(c∗) g Rev(c̃). Since the inequality holds for any c̃ , we have

c ∈ argmaxc̃ V
Rev(c∗)
c̃

. This proves the �rst part.

For the second part, we proof that if c ∈ argmaxc̃ V
Rev(c∗)
c̃

, then c ∈ argmaxc̃ Rev(c̃). We

already proved that V
Rev(c∗)
c∗ g V

Rev(c∗)
c . The assumption implies V

Rev(c∗)
c g V

Rev(c∗)
c∗ . Hence

V
Rev(c∗)
c = V

Rev(c∗)
c∗ = 0 which proves c is optimal (Theorem 6.1). □

The following is equivalent to Bellman’s principle of optimality.

Lemma 6.1. Let c ∈ argmaxc̃ Rev(c̃) and assume U <
3−
√
5

2
≈ 0.38. Then for all Tree(&):

c ∈ argmax
c̃

V
Rev(c )
c̃

(Tree(&)) .

Proof. Let cA refer to the action of strategy c at round A . From Corollary 6.1, the fact c is optimal
implies

V
Rev(c )
c = max

c̃
V
Rev(c )
c̃

= E

[
max
c̃

V
Rev(c )
c̃

(Tree(&0))
]

= E

[
max
c̃
E

[
(-1 (c̃) − Rev(c)) + VRev(c )

c̃
(Tree(&1)) |&0

] ]

= E

[
max
c̃1

E

[
(-1 (c̃) − Rev(c)) +max

c̃ :c̃1

V
Rev(c )
c̃

(Tree(&1)) |&0

] ]

The second equality is Proposition 6.1. The third equality observes that the optimal strategy
for the sub-game starting with seed &1 is independent of the action taken at round 1. Hence

V
Rev(c )
c (Tree(&)) = maxc̃ V

Rev(c )
c̃

(Tree(&)) for all Tree(&). □

To compute the optimal strategy c∗ ∈ argmaxc̃ Rev(c̃), we can use a similar binary search
algorithm from Sapirshtein et al. [19]. We pick some d ∈ [0, 1] as our guess for Rev(c∗) and
maximize the Markov Decision Process maxc̃ V

d

c̃
. Let c be the strategy the solver outputs. Then

one of the following cases tell us if d is a lower bound or an upper bound on the optimal revenue:

• The case where V
d
c g 0 witnesses that Rev(c∗) g d . To see, recall V

Rev(c )
c = 0 (Theorem 6.1).

Because V
d
c is a strictly decreasing function of d , we conclude d f Rev(c) f Rev(c∗) as

desired.
• Te case where V

d
c < 0 witnesses that Rev(c∗) < d . To see, it su�ces to prove the contra-

positive: if Rev(c∗) g d , then V
d
c g 0. Assume Rev(c∗) g d . Because V

d
c is a strictly

decreasing function of d , we conclude V
d

c∗ g V
Rev(c∗)
c∗ = 0 (Theorem 6.1). By assumption,

V
d
c = maxc̃ V

d

c̃
g V

d

c∗ g 0 as desired.



7 CONCLUSION

We propose a stylized model to study optimal strategic mining in Cryptographic Self-Selection
leader election protocols. We consider rational miners that wish to maximize the fraction of blocks
they create. The same adversary has been studied in the context of Proof-of-Work blockchains
since the discovery of the sel�sh mining attacks against Bitcoin [7].
Prior work largely classi�es existing protocols into two camps: those where su�ciently small

miners cannot pro�tably deviate (longest-chain proof-of-work protocols with block reward and
longest-chain proof-of-stake protocols with a randomness beacon), and those where arbitrarily
small miners can still pro�tably deviate (longest-chain proof-of-work protocols with transaction
fees, longest-chain proof-of-stake protocols without a randomness beacon). Our work classi�es
blockchains based on cryptographic self-selection with the latter group: we give a closed-form
representation for a strategy that outperforms the honest strategy for any amount of stake.
The key open question left by our work is to nail down the optimal fraction of rounds that a

V-strong strategic miner with an U fraction of the stake can earn. While our work states that this
quantity can in principle be determined by performing binary search over in�nitely-sized MDPs,
actually signi�cant innovation seems to be required to actually perform this search, or even to
approximating it computationally-e�ciently.
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A PROBABILITY THEORY BACKGROUND

Lemma A.1. Let -1, -2, . . . , -= be independent random variables where -8 is a copy from Exp (U8 )
where U8 is a positive constant. Then min8∈[=]{-8 } is identically distributed to Exp

(∑=
8=1 U8

)
.

Proof. The proof follows from computing the probability %A [min-8 f G]:

%A [min-8 f G] = 1 − %A
[
'=8=1{-8 > G}

]
= 1 −

=∏

8=1

%A [-8 > G]

= 1 −
=∏

8=1

4−UğG

= 1 − 4−G
∑Ĥ

ğ=1 Uğ .

The last line witness min-8 is exponentially distributed with weight
∑=

8=1 U8 . □

Lemma A.2. Let - and . be drawn independently from an exponential distributions with rate U-
and U. respectively. Then

%A [- < . ] = U-

U- + U.
.

Proof. We have as follows:

%A [- < . ] =
∫ ∞

0

5. (~)%A [- < ~] 3~

=

∫ ∞

0

U.4
−Uĕ ~ (1 − 4−UĔ ~)3~

=

∫ ∞

0

U.4
−Uĕ ~3~ −

∫ ∞

0

U.4
−(Uĕ +UĔ )~3~

= 1 − U.

U- + U.
=

U-

U- + U.
□

Corollary A.1. Let -1, . . . , -= be drawn independently from exponential distributions with rates
U1, . . . , U= , respectively. Then Pr[-8 = min9 ∈[=]{- 9 }] = Uğ∑Ĥ

Ġ=1 U Ġ
.

Proof. We prove this by induction, using Lemmas A.1 and A.2. As a base case, the claim is
clearly true when = = 1, for all U1. Now as an inductive hypothesis, assume that the claim is true
for some =, and all U1, . . . , U= . We now consider the case of = + 1 and any U1, . . . , U=+1.
By Lemma A.1, min9 ∈[=+1]\8 {- 9 } is distributed according to an exponential of rate

∑
9≠8 U 9 . By

Lemma A.2, the probability that -8 = min9 ∈[=+1]{- 9 } = Uğ∑Ĥ+1
Ġ=1 U Ġ

, as desired. This argument holds

for any 8 , and completes the inductive step. □

Lemma A.3 (Memorylessness Property). Let - be drawn from an exponential distribution (with
any rate U), then for any =,< g 0,

%A [- > = +< |- g <] = %A [- > =] .



Proof. We have as follows:

%A [- > = +< |- g <] = %A [- > = +<,- g <]
%A [- g <]

=
%A [- > = +<]
%A [- g <]

=
1 − (1 − 4−U (=+<) )
1 − (1 − 4−U<)

=
4−U (=+<)

4−U<

= 4−U=

= %A [- > =]

□

Lemma A.4 (Strong Law of Large Numbers). Let - be a random variable. Let -1, -2, . . . , -= be
independent copies of - . Then %A

[
lim=→∞ 1

=

∑=
8=1-8 = E [- ]

]
= 1.

B OMITTED PROOFS FROM SECTION 2

Lemma B.1. Let 6(·) be a monotone increasing function with domain (0, 1). De�ne (6 (G, U) :=
6(G1/U ). Then, (6 (·, ·) is a canonical balanced scoring function.

Proof. First, we show that (6 (·, ·) is a balanced scoring function. To see this, we observe that:

Pr
-1,...,-Ĥ←* ( [0,1]Ĥ)

[
arg min

8∈[=]
{(6 (-8 , U8 )} = 9

]
= Pr

-1,...,-Ĥ←* ( [0,1]Ĥ)

[
arg min

8∈[=]
{6(- 1/Uğ

8 )} = 9

]

= Pr
-1,...,-Ĥ←* ( [0,1]Ĥ)

[
arg max

8∈[=]
{- 1/Uğ

8 } = 9

]

= Pr
-1,...,-Ĥ←* ( [0,1]Ĥ)

[
arg max

8∈[=]
{ln(- 1/Uğ

8 )} = 9

]

= Pr
-1,...,-Ĥ←* ( [0,1]Ĥ)

[
arg min

8∈[=]
{− ln(- 1/Uğ

8 )} = 9

]

=
U 9∑=
8=1 U8

Above, the �rst line follows by de�nition of (6 (·, ·). The second line follows as 6(·) is monotone
decreasing. The third follows as ln(·) is a monotone increasing function. The fourth line follows

trivially. The �nal line follows as − ln(- 1/Uğ
8 ) is distributed according to an exponential with rate

U8 by Lemma 2.1, and Corollary A.1 (which states that the minimum of .1, . . . , .= , when each .8 is
drawn independently from Exp (U8 ) is equal to -8 with probability U8 , for all 8)

To see that (6 (·, ·) is canonical, we �rst observe that because 6(·) is monotone decreasing, (6 (·, U)
is monotone decreasing for all U . To see the second bullet, we simply observe the following facts



for any G :

Pr
-←* ( [0,1])

[(6 (-,
=∑

8=1

U8 ) > 6(G)] = Pr
-←* ( [0,1])

[6(- 1/∑Ĥ
ğ=1 Uğ ) > 6(G)]

= Pr
-←* ( [0,1])

[- 1/∑Ĥ
ğ=1 Uğ < G]

= Pr
-←* ( [0,1])

[- < G
∑Ĥ

ğ=1 Uğ ]

= G
∑Ĥ

ğ=1 Uğ .

The �rst line follows by de�nition of (6 (·, ·). The second follows as 6 is monotone decreasing. The
third follows as both -, G > 0, and the �nal line follows as - is drawn uniformly from [0, 1]. For
similar reasons, we have:

Pr
®-←* ( [0,1])Ĥ

[
=

min
8=1
{(6 (-8 , U8 )} > 6(G)] = Pr

®-←* ( [0,1])Ĥ
[

=

min
8=1
{6(- 1/Uğ

8 )} > 6(G)]

= Pr
®-←* ( [0,1])Ĥ

[ =
max
8=1
{- 1/Uğ

8 } < G]

= Pr
®-←* ( [0,1])Ĥ

[- 1/Uğ
8 < G, ∀8]

= Pr
®-←* ( [0,1])Ĥ

[-8 < GU8 , ∀8]

= G
∑Ĥ

ğ=1 Uğ .

Therefore, we see that for all =, and all ïU1, . . . , U=ð, the distributions of (6 (-,∑=
8=1 U8 ) and

min=8=1{(6 (-8 , U8 )} are identical.
□

For example, the canonical scoring rule we use for our analysis is (6 (·, ·) where 6(G) := − ln(G).
The canonical scoring rule used in [6] is (ℎ (·, ·) where ℎ(G) := 1 − G (where U = 1 denotes that the
account owns a single coin).

Lemma B.2. Let ( be a canonical balanced scoring function, and de�ne 6(·) := ( (·, 1). Then ( = (6 .

Proof. The proof follows from three simple steps: (a) we show that ( (·, 1/=) = (6 (·, 1/=) for all
integers =. Then, we use this to show that ( (·, 2/=) = (6 (·, 2/=), for all integers 2 . This concludes
the proof for all rational U , which is all we consider.
We now execute the �rst step. Observe that, because ( is canonical, we know exactly what

the distribution of ( (-, 1/=) must be when - ← * ( [0, 1]). Indeed, we must have, for all G (for



notational convenience below de�ning an inverse, we let (1/= (G) := ( (G, 1/=)):

Pr
®-←* ( [0,1])Ĥ

[
=

min
8=1
{( (-8 , 1/=)} > G] = Pr

-←* ( [0,1])
[( (-, 1) > G]

⇒ Pr
-←* ( [0,1])

[( (-, 1/=) > G]= = Pr
-←* ( [0,1])

[6(- ) > G]

⇒ Pr
-←* ( [0,1])

[( (-, 1/=) > G] = Pr
-←* ( [0,1])

[6(- ) > G]1/=

= Pr
-←* ( [0,1])

[- < 6−1 (G)]1/=

= (6−1 (G))1/=

⇒ (6−1 (G))1/= = Pr
-←* ( [0,1])

[( (-, 1/=) > G]

= Pr
-←* ( [0,1])

[- < (−11/= (G)]

= (−11/= (G)
⇒ (1/= (G) = 6(G=), ∀ G .

We now execute the second step, which has nearly identical calculations.

Pr
-←* ( [0,1])

[( (-, 2/=) > G] = Pr
®-←* ( [0,1])ę

[
2

min
8=1
{( (-8 , 1/=)} > G]

= Pr
-←* ( [0,1])

[( (-, 1/=) > G]2

= Pr
-←* ( [0,1])

[6(-=) > G]2

= Pr
-←* ( [0,1])

[- < 6−1 (G)1/=]2

= 6−1 (G)2/=

⇒ 6−1 (G)2/= = Pr
-←* ( [0,1])

[( (-, 2) > G]

= Pr
-←* ( [0,1])

[- < (−12/= (G)]

= (−12/= (G)
⇒ (2/= (G) = 6(G=/2 ), ∀ G .

□

Proof of Proposition 2.1. By Lemma B.2, we know that both ( and ( ′ are of the form (6 and
(ℎ for some monotone decreasing functions 6, ℎ. We will use this property to couple outcomes of
the two games.

First, we need to de�ne the bijective mapping for each player. The mapping we will use is simple:
in each game, split your stake exactly the same way. When choosing which credentials to broadcast,
observe that in both games player 8 has some information available to them (they see the credentials
of all accounts they control, plus some other credentials of other players). Then given a strategy
for the �rst game, we can de�ne a strategy for the second game: during round A , broadcast the
credential of player 8 if and only if player 8 broadcasts its credential in the �rst game.



Next, we need to couple the two games and claim that under this coupling, for all A , the leader in

both games is the same. We will couple the games so that Cred
9
A is the same for all rounds A and

accounts 9 .
Now, observe that because we have mapped strategies of every player to one which distributes

their stake identically among accounts, and because we have coupled the games so that Cred
9
A is

the same for all rounds 9 and accounts 9 , that for all players 8 , the information available to player
8 is identical in each game. Therefore, player 8 will choose to broadcast exactly the same set of
credentials. The only remaining step is to con�rm that the same leader will be selected in each
round because both ( and ( ′ are canonical.

Indeed, observe that among the set �A of broadcast credentials, the winner in the CSSPA with (

is exactly:

argmin
9 ∈�Ĩ

{( (Cred9
A , U 9 )} = argmin

9 ∈�Ĩ

{6((Cred9
A )1/U Ġ )}

= argmax
9 ∈�Ĩ

{(Cred9
A )1/U Ġ )}

The �rst line follows as ( = (6, and the second line follows as 6(·) is monotone decreasing. By
exactly the same reasoning, we have that the winner in CSSPA with ( ′ is:

argmin
9 ∈�Ĩ

{( ′(Cred9
A , U 9 )} = argmin

9 ∈�Ĩ

{ℎ((Cred9
A )1/U Ġ )}

= argmax
9 ∈�Ĩ

{(Cred9
A )1/U Ġ )}

Therefore, we have shown a mapping between strategies, and a coupling between outcomes,
such that in each round the leader in both games is the same. This completes the proof. □

C OMITTED PROOFS FROM SECTION 4

Proof of Lemma 4.3. Consider instead the �nite stochastic process -1, . . . , -= where each -8 is
an i.i.d. copy from Exp

(
U
=

)
. For all 8 ∈ [=], de�ne the random variables

.8 =
(8)
min({-1, . . . , -=}), /8 = /8−1 + Exp

(
U − (8 − 1)U

=

)
,

and let .0 = /0 = 0.

Claim C.1. For all 8 ∈ [=], .8 is identically distributed to /8 .

Proof. The proof is by induction on 8 g 0. Assume for 8 g 0, /8 is identically distributed to
.8 and observe the base case (8 = 0) follows by de�nition. Then, it su�ces to show that for any
absolute constant G ,

%A [.8+1 > G] = %A [/8+1 > G] = %A

[
/8 + Exp

(
U − 8U

=

)
> G

]
.

Fix .8 = I where I is any absolute constant. For the case G < I, the fact .8+1 g .8 implies

%A [.8+1 > G |G < I = .8 ] = 1 = %A

[
.8 + Exp

(
U − 8U

=

)
> G |G < I = .8

]
.



For the case G g I, let � = { 9 ∈ [=] |- 9 > .8 } and observe that with probability 1, |�| = = − 8 . Fix
� = ( for any set ( ¦ [=]. Then

%A [.8+1 > G |G g I = .8 , � = (] =
∏

9 ∈(
%A

[
- 9 > G |G g I = .8 , � = (

]

=

∏

9 ∈(
%A

[
- 9 > .8 + (G − .8 ) |G g I = .8 , � = (

]

=

∏

9 ∈(
%A

[
- 9 > G − .8 |G g I = .8

]

=

∏

9 ∈(
4−(G−I)

Ă
Ĥ = 4−(G−I) (=−8)

Ă
Ĥ Since |�| = = − 8 ,

= %A
[
Exp

(
(= − 8)U

=

)
> G − .8 |G g I = .8

]

= %A

[
.8 + Exp

(
U − 8U

=

)
> G |G g I = .8

]

The �rst line observes that .8+1 > G if and only if for all 9 ∈ ( , - 9 > G . The third line observes that
9 ∈ ( if and only if - 9 > .8 and invokes the memoryless property (Lemma A.3). By the Law of Total
Probability and combining the case where G < I and G g I, we obtain

%A [.8+1 > G] = %A.ğ [%A� [%A [.8+1 > G |.8 = I,� = (] |.8 = I]]

= %A.ğ

[
%A

[
.8 + Exp

(
U − 8U

=

)
> G |.8 = I

] ]

= %A

[
.8 + Exp

(
U − 8U

=

)
> G

]

as desired. □

From Claim C.1 and taking the limit as = →∞ proves the statement. □
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