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1 INTRODUCTION

Proposed by Nakamoto in 2008, Bitcoin was one of the major innovations in peer-to-peer networks
for electronic transactions [15]. Bitcoin is a decentralized currency without an administrator where
anyone is free to join and submit or validate transactions in a public ledger. To modify the state of
the ledger, users must publicly broadcast transactions. Those transactions are included in a block by
miners and validated via a Proof-of-Work (PoW). The significant computational resources required
to validate a block coupled with the reward for validating blocks create an economic incentive for
miners to validate blocks correctly.

Unfortunately, Bitcoin is not without limitations. The proof-of-work consensus mechanism was
designed to be energy-intensive—the global energy consumption from all Bitcoin miners exceeds
that of all but 26 countries [1]. Moreover, the economies of scale from designing and purchasing
large quantities of specialized hardware for proof-of-work mining has demonstrated that Bitcoin
is more prone to centralization than initially thought [2]. In attempt to address the limitations of
proof-of-work, many alternative blockchain designs have been proposed [6, 11, 13, 17].

In particular, proof-of-stake blockchains replace proof-of-work by a randomized mechanism to
select a miner as the leader who proposes a new block. To avoid sybil attacks, where an adversary
impersonates multiple identities, the mechanism hopes to choose a miner with probability propor-
tional to their fraction of owned coins (commonly referred to as their stake in the system). The
main challenge for such systems is to sample a miner without sacrificing decentralization and, at
the same time, preserve the security and economic properties of the blockchain.

Several proposals for “Bitcoin-like” longest-chain proof-of-stake protocols have been made, but
several drawbacks to this approach still exist. For example, [8] considers a longest-chain proof-stake
blockchain that requires a randomness beacon [12, 16], and proves that this qualitatively preserves
the mining incentives of Bitcoin, but the need for a trusted external randomness beacon is prohibitive
in most settings. Without a trusted external randomness beacon, proof-of-stake implementations
often rely on using the own blockchain as a source of pseudorandomness. Because miners can often
predict the randomness in such protocols, Brown-Cohen et al. [3] showed that a large class of longest-
chain proof-of-stake protocols are vulnerable to profitable deviations that they term “predictable
selfish mining” Thus, the current state of longest-chain proof-of-stake cryptocurrencies must either:
(a) propose a trusted randomness beacon, or (b) propose clever applications of cryptography to
minimize the ability of strategic miners to manipulate the blockchain pseudorandomness. While
active research agendas aim to address both (a) and (b), these are currently notable barriers to
longest-chain proof-of-stake protocols.

One alternative design that relies on neither a trusted beacon, nor even an underlying longest-
chain protocol, is cryptographic self-selection. This procedure is adopted in blockchains like
Algorand [6, 10]. In cryptographic self-selection, each round r has a seed Q,_1, used to sample the
leader ¢, to propose the r-th block in the blockchain. In the ideal case where Q,_; is unbiased, a
clever cryptographic construction ensures that a miner owning a @ € [0, 1] fraction of the coins
has a probability & of becoming the leader.

Unlike longest-chain blockchains, blockchains using cryptographic self-selection are immutable
because once the leader validates B,, B, cannot be modified. Nevertheless, one limitation of such
protocols is that the leader for round r may have some influence over the seed Q,; for round r + 1.
For example, Chen and Micali [6] note that it is possible for an adversary to bias seeds in future
rounds in Algorand’s cryptographic self-selection. In this work, we study quantitatively the limits
of how much these deviations might benefit an economically-motivated adversary. Specifically, we
assume that the adversary wishes to maximize the fraction of rounds during which they are the
leader. If the adversary were honest, this would be exactly an « fraction. We seek to understand



f(a) > @, the maximum fraction of rounds that an adversary with an « fraction of the stake can
lead in expectation.!

1.1 Overview of Results and Roadmap

Our main contributions are as follows:

e First, we provide a formal stochastic process that captures the game played by strategic
players who want to be leader as often as possible in a cryptographic self-selection protocol.
We provide a detailed, formal description of the game in Section 2, and prove several basic
facts in Section 3.1. These sections provide a clean stochastic process whose analysis directly
informs the rewards achievable by strategic players in blockchain based on cryptographic
self-selection.

In this game, it is a priori possible that an extremely strong strategy exists that lets a player
with an a < 1 fraction of the stake win unboundedly-many rounds in a row in expectation.
We prove that when o < %g ~ 0.38, this is not possible, and the optimal fraction of rounds
won by a strategic player with o < %5 is < 1. Note that in many protocols, including [6],
that use cryptographic self-selection, owning a > 1/3 of the stake is already enough to
subvert consensus, so the @ < 1/3 is the most relevant range where strategic mining is a
concern. We prove this in Section 4.

e We pose a simple strategy, the 1-LOOKAHEAD strategy, which strictly outperforms the honest
strategy for all a. We fully analyze the expected reward of this strategy in Section 5.
Finally, we describe how the optimal strategy can be found by solving a series of MDPs. As
the MDPs are infinite, this unfortunately does not immediately give an efficient algorithm.

This appears in Section 6.

1.2 Related Work

Seminal work of [7] established that strategic mining in Bitcoin is possible. Hundreds of followup
works pushed their ideas in various directions. One notable work, which is similar in spirit to ours,
is [19], who nail down the optimal achievable reward for a miner who has an a-fraction of the
computational power. Follow-up works such as [3, 8] consider similar questions for proof-of-stake
instead of proof-of-work, but to the best of our knowledge, all prior work in this agenda considers
longest-chain protocols. In comparison to this line of work, ours is the first (to our knowledge) to
consider a formal model of strategic behavior in cryptographic self-selection, which is used in
protocols based on Byzantine consensus.

Chen and Micali [6] develop the theoretical protocol for Algorand, and propose that manipulations
of the cryptographic self-selection protocol may be possible. They do not propose a concrete
manipulation, but do upper bound the maximum fraction of rounds that certain kinds of adversaries
can possibly be leader. In comparison to their work, our work proposes a formal model to capture
the entire strategy space in cryptographic self-selection protocols, and our 1-LOOKAHEAD strategy
also provides the first concrete profitable manipulation.

IThis is the same objective in prior work [3, 7, 8, 19]. In prior work, this objective function was motivated by the block
reward associated with creation of each block. Even if a protocol has no block reward there is still some economic incentive
associated with creating a block. This could be due to transaction fees [9, 18], or side contracts that the leader is able to
execute in deciding what to include. We do not explicitly model the direct connection between being a leader in a round
and the monetary reward, and treat this per-block incentive as exogenous.



2 BACKGROUND AND SETUP

In this section, we provide our formal model and some preliminary observations. Our model
captures the cryptographic self-selection protocol of [6], but we remind the reader that our model
only concerns leader selection—this process is independent of block creation, consensus, etc.

2.1 Blockchain Protocols with Finality

Many modern proof-of-stake blockchain protocols, such as Algorand [6, 10], differ significantly
from the longest-chain protocols like Bitcoin. All blockchain protocols maintain a ledger, which
is a sequence of blocks By, By, . .., By, . . .. Protocols with finality differ from Bitcoin in that there
are no forks. Once round t has concluded, there is a single well-defined B;, which will stay fixed
throughout eternity.

To produce the block for round ¢, blockchain protocols with finality run an underlying consensus
protocol. These consensus protocols often require a leader ¢, selected based on By, . .., B;_1, who
gets to propose the block which could potentially be ratified as B;. Note that because there are no
forks, the leader #; is well-defined.

2.2 Cryptographic Self-Selection to Determine a Leader

One problem that any blockchain protocol with finality must resolve is how to determine #; as a
function of By, ..., B;—1, and this must be done with care. For example, if there are N coins indexed
from 1 to N, one naive proposal might simply declare the owner of coin t (mod N + 1) to be the
leader at round ¢. This is vulnerable to a predictability attack: an attacker knows exactly which
coins they need to own in which rounds, and can be solely responsible for block proposal for many
rounds in a row. Another naive proposal might declare the owner of coin HASH(B;_;) (mod N+1)
to be the leader at round ¢. This is vulnerable to a grinding attack: £,_; has many options for the
contents they include in B;_1, and can try arbitrarily many contents until HASH(B;_;) results in a
coin they own. In general, the goal of a leader-selection protocol is to pick a leader in a manner so
that:

e When every user honestly follows the intended protocol, the distribution of each ¢ is propor-
tional to the stake, and i.i.d. across rounds. That is, each user with an « fraction of the total
stake is selected as the leader in round ¢ with probability @, independently across rounds.

o A self-interested user has little ability to predict future rounds in which they could become
the leader, or to increase the fraction of rounds in which they are the leader.

Cryptographic self-selection is a clever approach, used by Algorand [6, 10] to select a leader.
Before defining the full protocol, we need two basic tools.

2.2.1 Tools for Cryptographic Self-Selection. One useful cryptographic tool towards cryptographic
self-selection is a verifiable random function [14]. For the purposes of this paper, we’ll use an ideal
verifiable random function.

Definition 2.1 (Ideal Verifiable Random Function). An Ideal Verifiable Random Function (Ideal
VREF) satisfies the following properties:

o Setup. There is an efficient randomized process to produce a secret key sk and a public key
PK that parameterize the function fs(-).

e Private Computability. There is an efficient algorithm A such that for all sk, A(x, sK) =
fix(x) (that is, f can be efficiently computed with knowledge of the secret key sk).

e Perfect Randomness. For all inputs x # y, the random variables fi(x) and fi(y) are
independent, and uniformly drawn from [0, 1], conditioned on knowledge of pk. In particular,



this implies that fs(x) is distributed uniformly on [0, 1] to any user who sees only PK, even
after that user has seen any number of pairs (x1, fsx (x1)), . . ., (xk, fsx (xk)), where x; # x, Vi.

o Verifiable. There exists an efficient algorithm V that takes as input x, y, Pk and outputs YEs
if and only if y = foc(x).

Intuitively, an Ideal VRF allows a holder of sk to draw a random number uniformly from [0, 1] in
a way that is unpredictable to anyone without knowledge of sk, yet also in a verifiable manner. The
distinction between an Ideal VRF and VREF lies in perfect randomness: it is generally not possible to
have the random variables {f(x1), ..., f(xx)} be statistically indistinguishable from independent
uniformly random draws from [0, 1] conditioned on pk. VRFs used in practice instead provide
that the distribution of {f(x1),..., f(xx)} be computationally indistinguishable from independent
uniformly random draws from [0, 1], conditioned on PK.2

We omit a formal definition of (non-Ideal) VRFs, which is cumbersome and not relevant to our
results. In particular, all proposed deviations work even when the protocol has access to an Ideal VRF,
and therefore they also work when the protocol instead uses a VRF.

To have a simple example of a (non-Ideal) VRF in mind, consider any digital signature scheme
and hash function. On input x, first, digitally sign x to obtain SIG(x), and then hash it (this is the
VREF used in [6]). Indeed, with the secret key, a user can efficiently compute a digital signature of
any x and hash it. Similarly, correct computation of the hash function can be efficiently verified
by anyone, and correct computation of the digital signature can be efficiently verified by anyone
with the public key. Any input SIG(x) to the hash function is mapped to a uniformly-random
draw from [0, 1], independently of all other inputs, and the digital signature scheme ensures that
anyone without the secret key cannot guess SIG(x), even with knowledge of x, and any number of
input/output pairs to SIG.

A second tool we will need is a concept that enables the leader to be selected proportional to the
stake, rather than uniformly at random among all accounts.

Definition 2.2 (Balanced Scoring Function). A scoring function S(-,-) is balanced if for alln € N
and all (@3, ..., a,) € RZ:

. aj
SXia)} =j| = =—2—.
) argir?[lpﬂ{ (X o)}y =1j 2?21 @
Observe that, if ties in arg min are broken lexicographically, this implies that for all «, the distribution
of S(X, @) when X is drawn uniformly from [0, 1] must have no point-masses.

Pr
X1, Xn U ([0,1]7

Intuitively, one can think of arg min;{X;} as the winner of a random process when each X, .. ., X,
is drawn independently from the uniform distribution on [0, 1], denoted by U ([0, 1]), and each
player is equally likely to win. A balanced scoring function allows us to redistribute the probability
of winning to be proportional to ¢; instead.

2.2.2  Cryptographic Self-Selection Protocol. Now, we define the cryptographic self-selection proto-
col, the leader-selection protocol analyzed throughout our paper.

Definition 2.3 (Cryptographic Self-Selection Protocol A). The Cryptographic Self-Selection Proto-
col A (CSSPA) is the following:
e Every account i sets up an Ideal VRF with secret key sk; and public key pk;. a; € [0, 1] refers
to the fraction of the total stake that account i owns.
2Also, any (pseudo) random number generator used in practice produces output that is uniformly random over {0, 1}*

for large A, rather than over [0, 1]. For simplicity of exposition, we think of A — co. This again does not affect our results,
except for error that is exponentially small in A (due to the tiny possibility of ties).



e Q, denotes the seed for round r. The initial seed is a uniformly random number in [0, 1]
constructed via a coin tossing protocol [4].

e In round r, each user i computes their credential CRED!. := fi,(Q,). Every user can either
broadcast, or not broadcast. B, denotes the set of users who broadcast in round r.3

e There is a publicly-known balanced scoring function S. The leader ¢, for round r is

arg min{S(CREDi, a;)}
i€B,

® Qpyp = CREDﬁ’. That is, the seed for round r + 1 is the credential of the leader for round r.

We note a few quick observations about CSSPA:

o Aside from network/security/cryptography attacks, which are not the focus of this paper,
the action space of a single account in each round is binary: broadcast your credential, or
don’t. A single player may own multiple accounts. Therefore, the actions a single player may
take in our game is to: a) decide how to divide their stake among multiple accounts, and b)
pick which subset of credentials to broadcast.

o We'll refer to the honest strategy as one which announces all credentials in every round.

o Assuming all players are honest, each leader is drawn i.i.d. and proportional to &. This follows
immediately from the definition of Ideal VRF and balanced scoring function.

e Assuming that all players are honest, the protocol is robust to Sybil attacks. That is, a player
who truly controls an «; fraction of the total stake can put all of their funds into a single
account, or split their funds arbitrarily over any number of accounts. No matter how they
divide their funds, the probability that an account owned by this player is selected as leader
is exactly «;.

e Much analysis of CSSPA can be done agnostically to the particular balanced scoring function.
For example, Proposition 2.1 establishes that our analysis holds for a wide class of “canonical”
balanced scoring functions. In particular, our analysis chooses a particularly simple balanced
scoring function for the benefit of tractability, but our analysis holds for the balanced scoring
function used in [6] as well via Proposition 2.1.

) i ln(x)

Throughout our paper, we’ll use the balanced scoring function S(x, a; . This allows us

to leverage basic facts about independent draws from exponential d1str1but10ns

Definition 2.4 (Exponential Distribution). The exponential distribution with rate « is the distribu-
tion with Cumulative Density Function (CDF) F,(x) := 1 — e”®, for all x > 0. We refer to Exp (@)
as one independent sample from the exponential distribution with rate a. For simplicity of notation
in later calculations, we will denote by Exp (0) to be a point-mass at +oo.

Exponential distributions have many relevant properties that we remind the reader of in Appen-
dix A.

Lemma 2.1. Define S so that S(x, @;) := = ln(x) . Then S(-, -) is a balanced scoring function. Moreover,
when x is drawn uniformly from [0, 1], S (x ;) is distributed according to Exp (a;).

Proor. We first show that S(x, «;) is distributed according to Exp («;) when x is drawn uniformly
from [0, 1]. This follows essentially because ln(x) is the inverse reverse-CDF of Exp (¢;). To see

the claim, we compute the probability that S(x, al) >y, for any y:

3In order to focus on the relevant aspects, we assume that any broadcast is received by all other users. This is consistent
with prior work that focuses on the underlying incentives, and not distributed computing [3, 5, 7, 8].
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This means that the CDF of S(x, @;), when x is drawn uniformly from [0, 1], is exactly 1 — e™%¥,
and therefore this distribution is equal to Exp («;). Now, the fact that S(-, -) is a balanced scoring
function follows from Corollary A.1 (which states that the minimum of X, . .., Xj,, when each X; is
drawn independently from Exp (¢;) is equal to X; with probability «;, for all i). )

We conclude this section by formally establishing that our analysis extends to a broad class of
scoring functions.

Definition 2.5. A scoring function S is canonical if:

e For all @, S(-, ) is monotone decreasing on domain (0, 1).

e Forall n, and ay, .. ., @y, the random variables S(X, Y., a;) and min]_, {S(X;, ;) } are identi-
cally distributed when each X, Xy, ..., X, are ii.d. from U([0, 1]).

e Sis continuousin . Thatis: for all x and «, if limg_, 4 S(x, f) exists, then S(x, @) = limg_,, S(x, B).

Before proceeding, we give quick context for each bullet. Balanced scoring functions where
S(-, @) is not monotone decreasing exist, but assuming that S(-, &) is monotone decreasing is w.l.o.g.
Indeed, for any «, let F, denote the CDF of the random variable S(X, ) when X is drawn uniformly
from [0, 1]. Now consider redefining S’(x, @) := F, (1 — x). Then the distribution of S(X, &) and
S’'(X, @) are identical, but §’(+, @) is monotone decreasing. We conjecture that all balanced scoring
functions satisfy the second two bullets, but we suspect that rigorously establishing this will require
significant analysis. As this is not the focus of our paper, we instead treat these bullets as reasonable
assumptions. Indeed, the balanced scoring function used by Algorand is canonical.

Proposition 2.1. The game induced by CSSPA with a canonical balanced scoring function is
independent of the particular canonical balanced scoring function used. Formally, for two distinct
canonical balanced scoring functions S, S’, the games induced by CSSPA are identical. Specifically,
for all players i, there is a bijective mapping f from strategies of player i in the CSSPA with S to
strategies of player i in the CSSPA with S’. For all i, the payoff that player i receives in the CSSPA
with S under strategy profile s is equal to the payoff that i receives in the CSSPA with S’ under

strategy profile (f;(si));:.
A complete proof of Proposition 2.1 appears in Appendix B.

3 OUR MODEL: STRATEGIC MINING IN CRYPTOGRAPHIC SELF-SELECTION

This section formally defines our model and, in particular, the optimization problem considered
by a strategic player. Like prior work [5, 7, 8], we consider a single strategic player who is best
responding to a profile of honest players. The purpose of this analysis, like in prior work, is to
understand the maximum disruption that can be caused when a 1 — « fraction of the stake is owned
by honest players, and an « fraction of the stake is owned by strategic players.* We now formalize
the strategy space of the strategic player.

“That is, the worst-case scenario, among all scenarios where a 1 — « fraction of the stake is held by honest players, is when
there is a single-strategic player with an « fraction of the stake. Our goal, like prior work, is to understand this scenario.



Definition 3.1 (Strategy Space in CSSPA). CSSPA is parameterized by a, the fraction of stake
owned by the strategic player, @ the distribution of remaining stake among honest players, and
B € [0, 1], the network connectivity strength of the strategic player. We’ll refer to this as a -strong
player. When f = 1, we’ll simply refer to the player as strong, and when f§ = 0 we’ll refer to the
player as weak. The strategic player knows a, 8, @.

In round r, the strategic player in CSSPA has the following information and makes the following
decisions, in order:

(1) The strategic player can distribute their total stake of & arbitrarily among as many accounts
as they desire. Refer to this set as A.

(2) The strategic player knows Q,, and knows that all other players are honest.

(3) For aset of accounts B such that BNA = 0,and %} ;g a; = - (1-a), the strategic player learns
CREDf, for all accounts j € B. The strategic player does not learn CREDf for any j ¢ AUB (that
is, the player only knows that each S (CRED!, & ;) will be drawn from Exp (o), independently).

(4) Observe that the strategic player can compute CRED.. and also S(CREDL, a;), for all accounts
i €A

(5) Observe further that for all j € AU B, CREDi is a possible seed for Q,;. So the player can

also pre-compute a hypothetical CReD!, |, assuming Q41 = CRED/, for each account i € A
and j € AU B. But observe that the strategic player cannot execute this computation for
i ¢ A (because they cannot compute the ideal VRF for accounts ¢ A).

(6) More generally, for any k, and any list of accounts (i, . . ., ix) such that iy € AU B, and each
ij € Aforall j > 0, the player can also pre-compute what CREDi’jr
tyj=i;forallje{0,....,k—1}.

(7) The strategic player selects a subset A, C A, and broadcasts all credentials in A,.

" would be, assuming that

We will consider optimal strategies for all , f, @. Note that the role of § differentiates how much
information they know about other players’ credentials before deciding which credentials of their
own to broadcast. Before getting into our main analysis, we prove some basic facts about optimal
strategies in this model.

3.1 Basic Facts on Optimal Strategies

First, we define the reward achieved by a particular strategy 7, which the strategic player aims to
optimize. A priori, the reward can depend on «, §, and the distribution of the remaining (1 — a)
fraction of stake, a.

Definition 3.2 (Reward of a Strategy). A strategy r prescribes an action to take during each round.
Xy b **(r) is an indicator random variable for the event that the strategic player is the leader during
round r, when the game with parameters «, f, @ is played. The reward of a strategy = is simply the
expected fraction of rounds where the strategic player is the leader. We drop the superscript and

write X, () whenever a, §, @ is clear from context. Formally:

r=1<r

REV, p5(m) =E R

(1)

R yapa l

lim inf
R—

The expectation is taken over the randomness in the Ideal VRFs in every round, assuming that
all non-strategic miners are honest. We use the notation var(e, f, @) := sup, {REv, g z(7)}. We say
that a strategy r is e-optimal for parameters , §, @ if Rev () > vAL(a, B, &) — €.



Next, we produce a series of refinements concerning e-optimal strategies, which will allow us to
greatly simplify the analysis of strategies in CSSPA. First, we observe that the strategic player need
not consider any set with |A,| > 1.

Observation 3.1. For any strategy r, there is another strategy x’ that results in exactly the same
leaders as 7 in every round (and therefore has REv, 35 (7") = REV, 5 (7)) for all o, B, @), and
always selects an A, with |A,| < 1.

ProOOF. Observe that the strategic player can compute S(CRED., ;) for all i € A.If they broadcast
aset A, # 0, then the leader will be i* := arg min;c, {S(CRED., ;) } if and only if S(CREDf, ) <
S(CREDL, a ;) for all j ¢ A. Observe that this is exactly what would happen if the strategic player
instead broadcast only {i*} instead. So 7’ will broadcast only {i*}, and this results in the same
leader as using 7.

If instead the strategic player chooses to broadcast A, = 0, then 7" will broadcast @ as well. This
clearly results in the same leader as using 7, because the actions are identical.

The leader is the same in both cases, and 7’ only ever broadcasts (at most) a single credential. O

Next, we show that optimal strategies split their stake among as many accounts as possible.

Lemma 3.1. Consider a strategy & where strategic player divides their stake into n wallets with
stake a; > 0, for i € [n]. Then there is a strategy 7’ where the strategic player instead divides their
stake into 2n wallets with stake ] > 0, for all i € [2n], and REv(x’) = REV(7).

Proor. The strategy 7’ defines 2n wallets with stake

ai .
, 3 fori < n,
“n forn <i < 2n.

Observe that, conditioned on Q,, S (CREDi, ;) is distributed according to Exp («;), independently
for all i. Similarly, S (CREDY, a;) is distributed according to an Exp (aj’.), independently for all j.

Define now the random variable j(i) := arg min{S(CRreD., a}), S(CRED"*’, @/, )}, and denote by

i ) =
Exp (;), independently for all i € [n]. Therefore, Yri and S (CREDf,, ;) are identically distributed.
Therefore, we can couple executions of 7 and 7 so that Y! = S(CrEDL, ¢;) for all r, i, and also so
that S(CREDY, ;) is identical for all r, j ¢ A.

Consider now the strategy 7’ that does the following. If 7 does not broadcast a credential, then
n’ also does not broadcast a credential. If 7 broadcasts i*, then 7’ broadcasts j(i*). Observe now
that the score of the credential broadcast by 7 and 7z’ is identical (due to the coupling), and the
scores of credentials broadcast by the honest players are also identical. Therefore, £, = i* under
x if and only if ¢ = j(i*) under z’. Moreover, Q,,; is identical under both executions. We have

Y= S(CREDi(i), (x]’.(i)). Then by Lemma A.1, Y} is distributed according to Exp (a] + a

therefore coupled the executions of 7 and 7’ so that X;" P ’a(n) =X/ P ’&(JI’) for all r, and therefore
REV""ﬂ’“(ﬂ) = REV""ﬁ’“(fr’). m]

Next, we argue that is w.Lo.g. to consider two honest players, one with a fraction - (1 — «) of
the stake, and the other with fraction (1 — ) - (1 — «) of the stake.

Observation 3.2. For any a, 8, define @’ to have two honest players, one with a] = - (1 - a),
and another with & = (1 - ) - (1 — ). Then for any strategy 7, Rev*A4 () = ReverPa

PROOF. Let Yp := minjeg{S(CRED{, a;)}, and Ye := minj¢anp) {S(CRED{, @;)}. Thenby Lemma A.1,
Y is distributed according to Exp (f - (1 — @)), and Y is distributed according to Exp ((1 — f) - (1 — a)).
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Therefore, we can couple Y5 and Y in the execution with & with S(CReD}, a]) and S(CRED?

the execution with @’.

Observe, now, that the seed for round r + 1 in the execution with a will be the minimum of Y, Yc,
and the score of the credential broadcast by the strategic player. In the execution with &’, the seed
for round r + 1 will be the minimum of S (CRED}, a), S (CREDE, @), and the score of the credential
broadcast by the strategic player. Therefore, Q,,; is the same in both executions. Moreover, we

also have X" P ’07(7{) =X P ’&,(JT). We have therefore coupled the executions with @ and @’ so that
Xf’ﬁ’a(n) = Xfl’ﬁ’a () for all r, and therefore REv®A4 (1) = Rev*A (r). O

,ay) in

We make one final observation, which will simplify later definitions (it is not necessary for our
analysis, but greatly simplifies Definition 4.1).

Observation 3.3. For any strategy 7, there is another strategy 7’ satisfying REv®A@ () =
REV*A%(1") for all a, B, @, and also such that in any round r where the player learns in step
(3) that min;cp{S(CrED;, @)} < minjeA{S(CRED;, a;)}, ©’" does no computation in steps (4)-(6).

ProoF. Observe that if min jeB{CRED{} < minje A{CRED{}, then the seed Q™! will be equal to
the minimum credential among all honest nodes, no matter what the strategic player chooses to
broadcast. So no matter what they do this round, they cannot affect Q"*!. Because the strategic
player’s actions during round r have no impact on the game, they can shift any computation they
originally planned to do in round r later to round r + 1. This results in a strategy sz’ that results in
identical seeds in every round as s, but that does no computation during rounds where their action
has no impact. O

We now state the strategy space of the refined CSSPA.

Definition 3.3 (Refined CSSPA). The refined CSSPA is parameterized by «, the fraction of stake
owned by the strategic player, and f € [0, 1], the network connectivity strength of the strategic
player. There are two honest players B and C. B owns a 8 - (1 — «) fraction of the stake, and C owns
a (1—-p) - (1 — a)-fraction of the stake.

In round r, the strategic player in CSSPA has the following information and makes the following
decisions, in order:

(1) The strategic player can distribute their total stake of « arbitrarily among as many accounts
as they desire. Refer to this set as A.

(2) The strategic player knows Q,, and knows that all other players are honest.

(3) The strategic player learns CREDE. The strategic player does not learn CREDS (that is, the
player only knows that S(CReDS, (1 - f) - (1 —)) will be drawn from Exp ((1 - f) - (1 — @)),
independently).

(4) Observe that the strategic player can compute CReD’. and also S(CREDL, ¢;), for all accounts
i € AU {B}. For any k, and any list of accounts (i, ..., ix) such that iy € AU {B} and
ij € Aforall j > 0, the player can also pre-compute what CREDi’jr  would be, assuming
that ¢.,; = ij for all j € {0,...,k — 1}. If the strategic player learned in Step (3) that
S(CreDB, 8- (1-a)) < minjeA{S(CRED{, ;) }, then the player does no computation.

(5) The strategic player selects an account i* to broadcast, or decides not to broadcast.

We let REV,, g(7), vaL(a, f§) denote the reward of a strategy 7 in the refined CSSPA, and the optimal
reward, respectively.

Based on the observations in this section, we conclude the following:

Corollary 3.1. For all a, , @, 7: REV4 () = REV, g 5(7). Therefore, var(a, f) = vaL(a, f, @) as
well.



4 EXISTENCE OF OPTIMAL RECURRENT STRATEGIES

Recall we bootstrap the initial seed Qy to be drawn from U[0, 1] via a distributed coin tossing
protocol. Hence Qy is an unbiased seed since it does not favor any player. Formally, we say a seed
Q,_1 is unbiased if substituting Q,_; by a fresh independent sample from U [0, 1] results in the same
distribution for X, (1), X;4+1(7), . .. conditioned on all the queries to f, for all i up to round r — 1.
Another interpretation is that the adversary did not query any fs, on Q,—; before round r begins
which suggests the adversary is indifferent about replacing Q,_; for a fresh sample from U[0, 1].

The adversary has a probability at most « of becoming the leader for round r if Q,_; is unbiased
because the probability an honest miner samples the lowest scoring credential is equal to 1 — a—the
adversary can only reduce their chances of being a leader by not broadcasting their credentials.

How can the adversary build a biased Q, provided Q,_; is unbiased? For some intuition, suppose
B =1, and the adversary has the lowest scoring credential for round r. In other words, the adversary
observes the credentials of all honest miners and knows that if they broadcast some credential
CREDf, i* € A becomes the leader for round r. However, the adversary also has the option to not
broadcast any credential, in which case, some account B becomes the leader. Note that the adversary
already knows CRED? before deciding if they will broadcast CRED! or not (the assumption f§ = 1
implies the adversary is well connected and get to see all other credentials before taking any
action). Then, the adversary queries fi, on CRED: and CReD? for all i € A and observes which
seed would be more favorable for round r + 1 (would allow the adversary to sample credentials
with the lowest scores for round r + 1). This concludes our example, and in Section 5, we provide a
complete description of one such strategy. As a takeaway, the the adversary can bias the seed Q,
unless the credential with the lowest score comes from an account j ¢ A.

It will be convenient to ask when the game reaches a round 7 > 1 where Q.. is unbiased given
that Qy is unbiased.

Definition 4.1 (Stopping Time). We call a round 7 a stopping time if for all possible strategies 7,
the distribution of {X,(7)},>., conditioned on Q; and all information the adversary has during
round 7, is identical to the distribution of {X, () },-. after replacing Q,,; with a uniformly random
draw from [0, 1]. That is, 7 is a stopping time if the game effectively resets at round 7 + 1, because
the adversary was unable to bias the distribution of Q..

We now state the main way in which stopping times arise.

Observation 4.1. Let 7 be a round such that the adversary does not query any VRF on Q;; during
any round < 7. Then 7 is a stopping time.

ProoF. Because the adversary has not queried Q,4; on any VREF, this means that the adversary
currently believes that every future query to any VRF on Q4 is independently drawn from
U([0,1]) (by definition of VRF). Replacing Q,4; with any other seed that has not been queried
by the adversary has exactly the same distribution. In particular, with probability 1, a uniformly
random draw from [0, 1] has not been queried by the adversary in any previous round, and therefore
7 is a stopping time. m]

Definition 4.2 (Positive Recurrence). Let 7 > 1 be the first stopping time induced by 7. We say =
is positive recurrent if E [7] < oo.

Let 7y, 71, . . . be a sequence of stopping times. Since we can assume the adversary’s strategy

. . . 1 72
resets whenever a stopping time is reached, r; — 79, 72 — 71, . . . and Zr:fo+1 X, (), Zr:TIH X, (7),...
are sequences of i.i.d. random variables. The following result simplifies the expression for revenue

for positive recurrent strategies:



Lemma 4.1. Let 7 be positive recurrent. Then REv () = W where 7 is a stopping time.

ProOF. Let 15 = 0,71, 72, . . . be the sequence of stopping times and let N () be the index for the
most recent stopping time by time ¢. Then

e (S Xr(0) + ZEV B, X ()

N(T) T=TN(T) i=1 r=r;_1+1

Rev(n) =E li¥n inf N
o N(lT) ((T - TN(T)) + Zizl (Ti - Ti—l))

Since N(T) — oo as T — oo, the statement follows from the strong law of large numbers
(Lemma A.4). O

Lemma 4.1 provides a nice characterization for the revenue of positive recurrent strategies which
will be critical when studying optimal strategies. In the rest of this section, we aim to show a
sufficient condition for the existence of optimal positive recurrent strategies by proving the following
informal claim: for any strategy , let T > 1 be the first round where arg min;e[,) S(CRED, a;) & A,

then t is a stopping time and B [1] < oo fora < 3_7\@ ~ 0.38.

Definition 4.3 (Forced stopping time). Consider round r with seed Q. If arg min;e[,,] S(CRED., ;) ¢
A, we say r is a forced stopping time with respect to Q,.

Lemma 4.2. If r is a forced stopping time, then r is a stopping time.

ProoF. The leader ¢, ¢ A, because both B and C always broadcast their credentials, and one
of them has the lowest score. Let j* refer to the account in {B, C} with minimum score. Then
O, = CRED{* regardless of the adversary’s action.

Now, observe that the probability that Q,.; has been any previous credential in any previous
round < r is 0 (because all credentials are drawn uniformly from [0, 1] when drawn). Moreover,
because t, ¢ A, the adversary cannot possibly have known Q,; prior to round r. This is because
the adversary cannot compute the VRF of ¢, and ¢, only broadcasts Q,.; during round r. Finally,
the adversary did not query Q,; after learning Q,., during round r because either the minimum
account was B (in which case, by definition of step (4), the adversary did not query B), or the
minimum account was C (in which case, the adversary does not have a step to query any VRFs
during round r after learning C. Therefore, the adversary certainly did not query Q"*! after learning
Qr+1.

The only remaining possibility is that the adversary had previously decided to query Q"*! at
a point when all they know is that Q"*! is drawn independently from U([0, 1]), conditioned on
inducing the minimum credential for round r. As this distribution is continuous (even after any
conditioning), the probability that it outputs any particular credential is 0. Therefore, assuming
that the adversary queries a finite number of inputs across all previous rounds, the probability that
it has previously queried any VRF on Q"*! during any previous round is also 0.

Therefore, Q"*! has not been queried by the adversary in rounds < r, and r is a stopping time.

O

4.1 The Branching Process

Next, we aim to show that the expected value of the forced stopping time is finite whenever the
adversary owns at most 38% of the stake. Fix the seed Q,_; and let j* = argmin jes S(CREDi, aj),
the honest account with lowest score when the seed is Q,_;. Let W(Q,_1) denote all the accounts
that could become leaders during round r when the seed is Q,_1:

W(Qr1) = {j*} U {i € A: S(CrEDL, ;) < S(CRED] , )}



The distribution of |W(Q,_1)| is related to the growth distribution in a Galton Watson branching
process [20]. To see this, consider a tree Tree(Qy) where each node stores a seed. We give a recursive
definition for Tree(Qy). Initialize the tree to contain only the root Qy, which we color black. Then
while Tree(Qp) contains some black node Q:

o If [W(Q)| = 2, for each i € W(Q), we append the edge (Q, fi, (Q)) to Tree(Qy). Color Q red
and color fi, (Q) black.
o If [W(Q)| = 1, color Q red.

Intuitively, a node is colored red without appending new edges whenever that node is a forced
stopping time. A node is colored red after appending a new edge if it is not a forced stopping time
(and then we need to recurse on each possible subgame induced by each possible seed).

The height of Tree(Qp) gives an upper bound for how long it takes for a game starting with seed
Q-1 to reach a forced stopping time. To see this, consider an omniscient adversary, who knows all
secret keys (and therefore can query all VRFs in any round). Even this omniscient adversary can
bias the next k > 1 rounds, if and only if |W(Q,_;)| > 2 (the adversary has at least two options
for the seed Q,) and there is a value for Q, € {CreD. : i € W(Q,-1)} such that the omniscient
adversary can bias the next k — 1 rounds. In other words, the omniscient adversary can bias k
rounds if and only if there is a path Qo, Q1, . . ., Qk in the tree.

A real adversary cannot search over the entire tree for the longest path, since the real adversary
cannot compute the VDFs of accounts they do not own in future rounds (they can still compute
VDFs for their own accounts in hypothetical future rounds, which provides statistical information
about what the tree might look like in future rounds, but they do not know the precise tree as the
omniscient adversary does). However, the performance of the omniscient adversary is clearly an
upper bound on the performance of the real adversary, so the height of Tree(Qo) provides an upper
bound for the number of rounds the adversary can bias. Hence, showing that the expected height
of Tree(Qy) is finite implies that any strategy played by a strategic miner is positive recurrent.

First, we will characterize the distribution of |W(Q,_1)|. Formally, we will show that

PriW(Qr-1)|-1=jl=d/(1-a).
The notation min”{S} refers to the i*?-smallest element of S for i > 1 and min”{S} := o.

As a technical tool, we recall a useful property for exponential distributions: for all k 1,
]) S(CREDY, ay) where Exp (a)

f:)[n] S(CREDL, ;) is identically distributed to Exp (a) + minlglg[_r:
refers to an independent sample from the exponentially distributed with rate a. We defer the proof
to Appendix C.

\%

min

Lemma 4.3. Let Xj, Xy, ... be i.i.d. copies of an exponentially distributed random variable such
that min, ey X}, is exponentially distributed with rate . Then, for all i € N, the random variable

Y; = mianZN X, is identically distributed to Z; = Z;_; + Exp (a) where Z; := 0.

Remark. Lemma 4.3 provides an useful tool to reduce the computational cost of sampling only the
best credentials for our adversary. If one wants to sample the k lowest scores among accounts in

A, a naive approach would require us to take |A| samples from Exp (ﬁ), sort in increasing order

and output the first k credentials. However, from Lemma 4.3, it suffices to sample and output the
sequence X; = Exp (@), X, = X1 +Exp (@), ... Xk = Xj-1 + Exp ().

We now prove the probability that the adversary has j options for the seed of round r given Q,_4
isa/(1-a).

Lemma 4.4. Let X7, Xy, ... be i.i.d. exponentially distributed random variables such that min, ey X,
is exponentially distributed with rate a. Let W be exponentially distributed with rate 1 — «. Let
S={ieN:X; <W}.ThenPr[|S|=j]l =a/(1 - ).



Proor. Let Z; = minizN X,. Let E; denote the event Z; < W and let E{ be its complement. Then
IS| =jifandonlyif Z; < Z; < ... < Z; <W < Zj41. Then

Pr(Is| = j] = Pr [Ezl n (nf;lE»]

+1|E E |El 1

T :'\.

=Pr[W < Zju|W > Z;] ﬂPr (W > Z|W > Zi_1].

i=1
From Lemma 4.3, Z;4; is identically distributed to Z; + Exp («) for all i € N. Then
Pr([|S| = jl =Pr|W < Z; +Exp (a) [W > Z;]

J
X ]_[Pr [W > Zi_y + Exp () [W > Zi_i]

i=1

Jj
=Pr[W < Exp(a)] 1_[ Pr W > Exp (a)] From Lemma A.3,
i=1

J
= (l—a)nazaj(l—a) From Lemma A.2

Corollary 4.1. Let Q,—; de drawn from U[0,1] and W(Q,-1) = {i € A : S(CrEDL, ;) <
minj¢a S(CRED), @;)}. Then Pr [[W(Q,—1)| = j] = &/ (1 - a).

Proor. Recall minjga S(CRED., ;) isidentically distributed to Exp (1 — «) and min;e4 S(CREDL, ;)
is identically distributed to Exp () (Lemma A.1). From Lemma 4.4, Pr [[W(Q,_1)| = j] = &/ (1 - )
as desired. O

4.2 Extinction in the Branching Process

Next, we derive necessary conditions for the expected height of Tree(Qy) to be finite. This result
will will imply the existence of optimal positive recurrent strategies.

Lemma 4.5. Let Q) be an unbiased seed and let 7 be the first forced stopping time. Then Pr [7 > k] <
(0{(2*0{) )k.

1-a

Proor. Clearly 7 is upper bounded by the height of Tree(Qy), then the event r > k implies the
height of Tree(Qy) is at least k + 1. For all k > 0 and Q € [0, 1], let Ex o denote the event that
Tree(Q) has height at least k + 1. Note Pr [EO,Q] = 1. Then, for k > 1, the event Ej o holds if and

only if [W(Q)| > 2 and for some child Q” € W(Q), the sub-tree Tree(Q’) has height at least k — 1.
Let Ay = Pr [Ex, |- Then,



Pr [t > k] < Pr|Exq,] = Ak

= D PrW(Qo)l =i+1]Pr [Ujew@o)um}Ek_l,cRED{,‘]
i=1

=(1-a) Z a'Pr [UJEW(QO)U{J'O}Ek—l,CREDg| [W(Qo)| =i+ 1] From Lemma 4.4,
i=1
<(1-a) Z(i +1)a'Pr [Ek—l,U[O,l]] From the union bound,
i=1
a(2 -
- MAk_l
l1-«a

The last line observes the geometric series converges to M . To conclude, we proof by induction
that A < (a(zf;{)) . The base case is clear: Ay < 1. For k > 1, the inductive assumption gives

1
a(2-a) a(2—a) k
N JTCE Y

l1-«a l1-«a

as desired. This proves the statement. O

Theorem 4.1. Consider any strategy x and let Qy be an unbiased seed. Let 7 > 1 the first forced

stopping time. If & < %g ~ 0.38,E [7] < 1_;;112 < co. Hence r is positive recurrent.

Proor. Recall that for positive discrete random 7, E [7] = X {2, Pr [ > i]. From Lemma 4.5,

- a(Z—a)i 1-«a
E[T]<Z( 1-a ) :1—3a+a2<oo

i=0

3— \f

The last inequality observes the geometric series converges for o < O

As an application of Theorem 4.1, we derive a theoretical upper bound on the revenue for any
strategy. Figure 1 compares the curve for the theoretical upper bound with the revenue of the
honest strategy.

Theorem 4.2. For a < —‘f ~ 0.38, and all 8, vaL(a, ) < “(12 aa)
V5

Proor. From Theorem 4.1, for a < 3_7, there is an optimal positive recurrent strategy 7. Let
7 > 1 be a forced stopping time. From Lemma 4.2, 7 is a stopping time and

E [¥7 X ()]

Rev(r) = E 7] Lemma 4.1,
< E[r-1]
E [7]
1
=1- From linearity of expectation,
E [r]
2 —
< M From Theorem 4.1.
-«

The first inequality observes that if the adversary cannot choose Q;, then the adversary does not
create block B,. ]
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Fig. 1. Maximum revenue attained by any strategy. In the left, we plot the revenue for the honest strategy
and our upper bound for the maximum revenue. In the right, we plot the maximum revenue improvement
relative to the honest strategy.

ey

The analysis in this section shows the following: for all & < % even an omniscient adversary
2—

with an « fraction of the total stake can win at most an & - =5 < 1 fraction of the rounds in
expectation.

5 THE 1-LOOKAHEAD STRATEGY

This section defines the 1-LOOKAHEAD strategy for a strong adversary (§ = 1), which outperforms
the honest strategy for any value of a. Recall that the adversary divides their stake equally among
an arbitrarily large number of accounts A. Note that this is a concrete strategy that can be used in
CSSPA, and therefore its reward gives a lower bound on vaL(e, 1).

Definition 5.1 (1-LOOKAHEAD strategy). The strategy proceed as follows:

(1) Let r be the current round. Let W(Q,—;) = {i € A : S(CRED., &;) < min;¢4 S(CREDL, 2;)} be
the collection of potential winners for the adversary.

(2) If [W(Q;-1)| = 0, broadcast no credentials. Terminate round r and return to Step 1.

(3) If IW(Qy-1)| = 1, for each potential winner i € W(Q,_1), for each account j € A, sample
credential CREDi’il = fix,(CREDY). Let j(zﬁ).: minjea CREDi’il.

(4) Let i* = arg minjew (g, ,) Minjea S(CRQIZZ’S{l, aj).

J(1

vap at round r + 1.

(5) Broadcast CREDf at round r and CRED
(6) Return to Step 1.

Theorem 5.1. REV,;(1-LOOKAHEAD) = 72 372 o (1 + ﬁ)

Proor. For our strategy, consider the stopping time 7 where 7 = 1 when [W(Qp)| =0 and 7 = 2
when |[W(Qp)| > 1. Observe that this is indeed a stopping time as: (a) when |W(Qy)| =0, 7 =11isa
forced stopping time, and (b) while the adversary queries fi,(Q1) for multiple possible values of
Q1, they do not query fq,(Q2) for any of the possible values for Q,. Therefore, from the perspective
of the adversary, the distribution of any VRF Q, is just U ([0, 1]), and this distribution is identical if
we replace Q; with a fresh seed. Therefore, 7 = 2 is indeed a stopping time when W(Qy) > 1.

Now let’s compute E[7]. The probability [W(Qy)| > 1is equal to the probability min;c4{S(CREDL, ;) } <
min ng{S(CRED{:, ;) }. The first term is exponentially distributed with rate o (Lemma A.1) while
the second is exponentially distributed with rate 1 — a. Hence the probability the adversary has at
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Fig. 2. Revenue for the 1-LookAHEAD strategy. In the left, we have the absolute revenue of the honest and
the 1-LooKAHEAD strategies. In the right, we plot the percentage revenue improvement from 1-LooKAHEAD
relative to the honest strategy.

least one winner is a (Lemma A.2). Then E [7] = (1 — @) + 2a = 1 + . Because the 1-LOOKAHEAD
strategy is positive recurrent Lemma 4.1 implies

E (X, X (m)]
Elr]=1+a
Let’s compute the numerator. If [W(Qy)| > 1, the adversary wins round r since they always reveal a

winning credential. Moreover, for round r+1, they reveal a credential with score min; ey (gy) kea CRED:’:I
which is exponentially distributed with rate - [W(Qp)| (Lemma A.1). From Lemma A.2, the proba-

REV(1-LOOKAHEAD) =

bility the adversary wins round r + 1 given |[W(Qy)| = j is m Hence,
T .
; aj
E X w =jl=1js1+ ——.
> Xl (Q) J] P v

From Corollary 4.1 the probability |[W(Qy)| = j is @/ (1 — ). Then

E|> X:(n) Z [W(Q0) = J1E | ) X(m)|W(Qo) = j]
r=1 j=1 r=1
] 1-— 1+ —
Z‘ ( a)( +1+a(j—1))
as desired. This concludes the proof. O

Figure 2 shows the revenue of the 1-LOOKAHEAD strategy (Theorem 5.1) against the revenue of
the honest strategy. Observe that it is always more profitable than the honest strategy, as expected.

6 MARKOV DECISION PROCESS FOR OPTIMAL STRATEGIES
This section shows how the optimal strategy can be computed by querying a Markov Decision

Process (MDP) solver whenever a < 4 ~ 0.38. Let us recall the available information for the
adversary before choosing an action. Once the game starts, the miner can compute all possible values
for Q1,Qs, ..., Qk assuming £; € AU {B}, by, 05 ..., 81 € A. As a special case, the 1-LOOKAHEAD
strategy only computes the possible values of Q; before choosing which credential to broadcast in
the first round.



The information available for the adversary can be encoded in a tree where each node is a seed.
For a seed Q, constant k > 0, define the Q rooted tree Treex (Q) recursively as follows:
o If k = 0, let Treex (Q) contain only the root Q.
e If k > 1, let Q be the root of Treer (Q). Moreover,
— For each i € A, add edge (Q, Treer_1(fix;(Q))) to Treer(Q) where Treeg_; (fox,(Q)) be-
comes a fg, (Q) rooted sub-tree in Treex (Q) connected by the edge (Q, fix, (Q))-
— For each i ¢ A, once user i already broadcast fs, (Q), add edge (Q, Treex_1(fix, (Q))) to
Treex (Q).

Let Tree(Q) be the graph obtained when we take k — oo in Treei (Q). Recall the basic facts for
an optimal strategy 7 from Section 3.1: (1)  divides its stake o among an infinite amount of wallets;
(2) m broadcast at most one credential each round. Then, without loss of generality, a strategy
x maps Tree(Q) to at most one credential from {fix, (Q)};ca, corresponding to the credential 7
broadcast in a round with seed Q. If the strategy outputs no credential, we write 7(Tree(Q)) = L.

Definition 6.1 (Value Function). Let & be a positive recurrent strategy, and let p be a positive
constant. For a tree Tree(Q), define

Va(Tree(Q)) =E | Y (X, (x) = p)IQo = Q

where 7 is stopping time. Taking the expected value with respect to Tree(Q) gives
V2 =E [VZ(Tree(Q))] .
We can derive a recursive formula for the value function as follows:

Proposition 6.1. For any positive recurrent strategy =, positive constant p, tree Tree(Q),

V7(Tree(Q)) = E [(Xi () - p) + V72(Q1)IQo = Q|
Theorem 6.1. Let 7 and 7’ be positive recurrent strategies. Then
e V7 = 0if and only if p = REV(7).
e Rev(r’) < Rev(r) if and only if VE?™) 5 yRvV(T),

E [Zle Xr(”)]

Proor. From Lemma 4.1 and the assumption 7 is positive recurrent, REv(x) = =00

Clearly 1 — Rev(7) = W

_ E [ ;1::1 Xr(”)] E [2;1::1(1 _Xr(”))] E [ ::1 Xr(ﬂ)] E [25:1(1 _Xr(”))]

E [7] E [7]
Zxr(”)

Z(Xr(ﬂ) - REV(E))] From linearity of expectation,

r=1

. Then

T

2,(1=X(m)

r=1

= (1-Rev(n))E —Rev(n)E

=E

- VE}:V ()

The chain of inequalities proofs V4, = 0 when p = Rev(r) as desired. For the other direction,
observe V7, is a strictly decreasing function of p. Hence there is a unique value for p where V7,
vanishes to zero. This proves the first bullet. The second bullet follows from the fact V/ is strictly
monotone decreasing in p. )



Corollary 6.1. Let 7 € argmax; REv(7). Then 7 € arg max; REV(7) is optimal if and only if
Rev (")
V. .

7T € arg maxs;
Proor. First we prove that if 7 € arg max, REv(x), then 7 € arg max, VEEV(”*). From Theo-
rem 6.1, for all strategy 7,
Vf{[lzv(n) —0= Vf{;:v(ir) > V]l;nv(n')

where the first and second equality are the first bullet in the theorem; the inequality is the second
bullet and the fact REv(rx) = REv(n*) > Rev(7). Since the inequality holds for any 7, we have
7T € arg maxz VISEV(” ). This proves the first part.

Rev (7"

For the second part, we proof that if 7 € argmax; V_ ) then 1 € arg max; REV(7). We

already proved that VREV(”*) > VRV(™) The assumption implies VA7) > Vifv(”*). Hence

yRev(r) - Vifv(” ) = 0 which proves 7 is optimal (Theorem 6.1). ]

The following is equivalent to Bellman’s principle of optimality.
Lemma 6.1. Let 7 € arg max; REV(7) and assume o < 377‘6 ~ 0.38. Then for all Tree(Q):
7 € arg mngR;TEV(”) (Tree(Q)).

Proor. Let 7, refer to the action of strategy s at round r. From Corollary 6.1, the fact 7 is optimal
implies

VEEV () V]R;EV ()

= max
b3

=E m}grix ViEv(n) (Tree(Qo))]

=E >m?xE [(x1 (7) = Rev(n)) + Vi) (Tree(Q,)) |Q0”

=E max]E [(Xl(yr) Rev(r)) + maxVREV(”) (Tree(Ql))lQo”

The second equality is Proposition 6.1. The third equality observes that the optimal strategy
for the sub-game starting with seed Q; is independent of the action taken at round 1. Hence

ViEV(ff) (Tree(Q)) = max; V?_IEV(”) (Tree(Q)) for all Tree(Q). o

To compute the optimal strategy n* € arg max; REV(7), we can use a similar binary search
algorithm from Sapirshtein et al. [19]. We pick some p € [0, 1] as our guess for REv(7*) and
maximize the Markov Decision Process max; Vi’; . Let 7 be the strategy the solver outputs. Then
one of the following cases tell us if p is a lower bound or an upper bound on the optimal revenue:

e The case where V% > 0 witnesses that REv(7*) > p. To see, recall VREV(”) = 0 (Theorem 6.1).
Because V7, is a strictly decreasing function of p, we conclude p < REv(7) < REv(r*) as
desired.

e Te case where V/, < 0 witnesses that REv(z*) < p. To see, it suffices to prove the contra-
positive: if REv(z*) > p, then V% > 0. Assume REv(n*) > p. Because V% is a strictly
decreasing function of p, we conclude Vp > VREV(”*) = 0 (Theorem 6.1). By assumption,

Vp = max; VZ > Vfr* > 0 as desired.



7 CONCLUSION

We propose a stylized model to study optimal strategic mining in Cryptographic Self-Selection
leader election protocols. We consider rational miners that wish to maximize the fraction of blocks
they create. The same adversary has been studied in the context of Proof-of-Work blockchains
since the discovery of the selfish mining attacks against Bitcoin [7].

Prior work largely classifies existing protocols into two camps: those where sufficiently small
miners cannot profitably deviate (longest-chain proof-of-work protocols with block reward and
longest-chain proof-of-stake protocols with a randomness beacon), and those where arbitrarily
small miners can still profitably deviate (longest-chain proof-of-work protocols with transaction
fees, longest-chain proof-of-stake protocols without a randomness beacon). Our work classifies
blockchains based on cryptographic self-selection with the latter group: we give a closed-form
representation for a strategy that outperforms the honest strategy for any amount of stake.

The key open question left by our work is to nail down the optimal fraction of rounds that a
f-strong strategic miner with an « fraction of the stake can earn. While our work states that this
quantity can in principle be determined by performing binary search over infinitely-sized MDPs,
actually significant innovation seems to be required to actually perform this search, or even to
approximating it computationally-efficiently.
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A PROBABILITY THEORY BACKGROUND

Lemma A.1. Let X7, Xy, ..., X, be independent random variables where X; is a copy from Exp («;)
where a; is a positive constant. Then min;¢[,]{X;} is identically distributed to Exp (Z?Zl ai).

Proor. The proof follows from computing the probability Pr [minX; < x]:

n
Pr[minX; < x]=1-Pr [/\;’zl{X,- > x}] =1- nPr [X; > x]
i=1
n
=1- 1_[ e
i=1

=1-¢ ¥ Lim®,
The last line witness min X; is exponentially distributed with weight >}, a;. O

Lemma A.2. Let X and Y be drawn independently from an exponential distributions with rate ax
and ay respectively. Then

ax
ax + ay '

PriX<Y]=
Proor. We have as follows:

PriX <Y]= /0 fr()Pr X <yl dy

=/ aye  Y(1— e XY)dy
0

:/ aye_”‘dey—/ aye_(“Y+“X)ydy
0 0

— ay
B ax + ay
- ax + ay
O
Corollary A.1. Let Xj, ..., X, be drawn independently from exponential distributions with rates
a, . .., ap, respectively. Then Pr[X; = minje,{X;}] = Z,la"a_.
j=1%j

Proor. We prove this by induction, using Lemmas A.1 and A.2. As a base case, the claim is
clearly true when n = 1, for all ;. Now as an inductive hypothesis, assume that the claim is true
for some n, and all y, . . ., @,. We now consider the case of n + 1 and any ay, . . ., &p41.

By Lemma A.1, minje[,41)\;{X;} is distributed according to an exponential of rate }’;,; a;. By
Lemma A.2, the probability that X; = minje[p+11{X;} = ﬁ, as desired. This argument holds

for any i, and completes the inductive step. O

Lemma A.3 (Memorylessness Property). Let X be drawn from an exponential distribution (with
any rate «), then for any n,m > 0,

Pr(X>n+m|X >m]=Pr[X >n].



Proor. We have as follows:

PriX>n+mX > m]
Pr[X = m]
_Pr(X>n+m]
T Pr(X =m]
1— (1 _e—a(n+m))
T T1-(1-eem)

e*(x(n+m)

PriX>n+m|X >m] =

e—am
— e—an

=Pr[X > n]

Lemma A.4 (Strong Law of Large Numbers). Let X be a random variable. Let X3, X5, ..., X}, be
independent copies of X. Then Pr [limn_m Lyn Xi=E [X]] =1.

n

B OMITTED PROOFS FROM SECTION 2

Lemma B.1. Let g(-) be a monotone increasing function with domain (0, 1). Define $9(x, @) =
g(xl/ “). Then, S9(,-) is a canonical balanced scoring function.

Proor. First, we show that S/(-, -) is a balanced scoring function. To see this, we observe that:

arg min {g(X;“)} = j]

in {$9(X;, a;)} = j| = P
arggg[lﬁ{ (X i)} = j Ko n D01 |

Pr
X1, Xn U ([0,1]7)

Pr arg max{X"/%} = j
Xy Xn U ([0,1]7) | gie[n)i{ i=

Pr arg max{In(X"/*)} = j
X, Xn U ([0,1]7) | gie[n)i{ (l b=

= Pr arg min {— In(X"*)} = j
XX U ([0,1]7) | gie[n]{ ( ! =i

aj

Z;‘:l Q;

Above, the first line follows by definition of S/(-, -). The second line follows as g(-) is monotone
decreasing. The third follows as In(+) is a monotone increasing function. The fourth line follows
trivially. The final line follows as — ln(Xil/ “) is distributed according to an exponential with rate
a; by Lemma 2.1, and Corollary A.1 (which states that the minimum of Y3, ..., Y,, when each Y; is
drawn independently from Exp («;) is equal to X; with probability «;, for all i)

To see that S9(-, -) is canonical, we first observe that because g(-) is monotone decreasing, S9(-, c)
is monotone decreasing for all a. To see the second bullet, we simply observe the following facts



for any x:

n

Pr Sg X, a;) > xX)| = Pr Xl/Z?:lai > x
P A Zl )29l = Prlg( ) > g(x)]

= Pr [Xl/zli1 %< x]
X<U([0,1])

=  Pr[X<xZma)
X<U([0,1])

n
= x&i=1 %

The first line follows by definition of S9(-, -). The second follows as g is monotone decreasing. The
third follows as both X, x > 0, and the final line follows as X is drawn uniformly from [0, 1]. For
similar reasons, we have:

Pr [min{S(X,a)} >g(x)] = Pr  [min{g(X/")} > g(x)]
X<U([o1])r =1 X<U([o1] =1

= Pr[max{X/®} <x]
X<U([o1]n =1

= Pr [Xl.l/ai < x, Vil
X—U([0,1])"

= Pr [Xl < X;x, Vl]
X<U([01])"

= xz?:l X .

Therefore, we see that for all n, and all {a;,...,a,), the distributions of S/(X, >, &;) and
min?  {S9(X;, a;)} are identical.
O

For example, the canonical scoring rule we use for our analysis is S9(-, -) where g(x) = —In(x).
The canonical scoring rule used in [6] is S”(-, -) where h(x) := 1 — x (where & = 1 denotes that the
account owns a single coin).

Lemma B.2. Let S be a canonical balanced scoring function, and define g(-) := S(-, 1). Then § = 9.

Proor. The proof follows from three simple steps: (a) we show that S(-,1/n) = §9(-, 1/n) for all
integers n. Then, we use this to show that S(-, ¢/n) = $9(-, ¢/n), for all integers c. This concludes
the proof for all rational @, which is all we consider.

We now execute the first step. Observe that, because S is canonical, we know exactly what
the distribution of S(X, 1/n) must be when X « U([0,1]). Indeed, we must have, for all x (for



notational convenience below defining an inverse, we let S/, (x) := S(x, 1/n)):

Pr [mln{S(Xl, 1/n)} > x] = Pr [S(X,1) > x]
Xeu(foapn =1 X<U([0.1])

Pr  [S(X,1/n) > x]" X) >
xeaho S m >t =  Pr 1g(X) > ]

= Pr [S(X,1/n)>x]= [g(X) > x]/"
X<U([0,1]) X U( [0,1])

= Pr [X<gl'(x]'"
X(_U(r[o’l])[ g (0]

= (g7 ()"

= (@)= P [S(G1n) > ]

= P X < §;}
X<—U(r[0,1])[ < Siyn ()]
= Sl_/ln(x)

= Si/n(x) = g(x™), V x.

We now execute the second step, which has nearly identical calculations.

c
Pr [S(X,c/n) >x] = Pr [min{S(X;, 1/n)} > x]
X<U([o.1]) XeU([o1])e =1

= Pr  [S(X,1/n) > x]¢
X—U([0.1])

= P Xn c
e Br 9 > x]

— P X < -1 1/n7c
X<—U(r[0,lj)[ 9 (X) ]

=g ()l

x)m= P S(X
=g = b S0 >x]

= P X <S}
X<—U(r[01 [X < C/”(x)]

= Sc/ln(x)
= Se/n(x) = g(x”/c), Y x.

]

ProoF oF PrROPOSITION 2.1. By Lemma B.2, we know that both S and S’ are of the form S9 and
S for some monotone decreasing functions g, h. We will use this property to couple outcomes of
the two games.

First, we need to define the bijective mapping for each player. The mapping we will use is simple:
in each game, split your stake exactly the same way. When choosing which credentials to broadcast,
observe that in both games player i has some information available to them (they see the credentials
of all accounts they control, plus some other credentials of other players). Then given a strategy
for the first game, we can define a strategy for the second game: during round r, broadcast the
credential of player i if and only if player i broadcasts its credential in the first game.



Next, we need to couple the two games and claim that under this coupling, for all r, the leader in
both games is the same. We will couple the games so that CREDi is the same for all rounds r and
accounts j.

Now, observe that because we have mapped strategies of every player to one which distributes
their stake identically among accounts, and because we have coupled the games so that CRED! is
the same for all rounds j and accounts j, that for all players i, the information available to player
i is identical in each game. Therefore, player i will choose to broadcast exactly the same set of
credentials. The only remaining step is to confirm that the same leader will be selected in each
round because both S and S’ are canonical.

Indeed, observe that among the set B, of broadcast credentials, the winner in the CSSPA with S
is exactly:

arg min{S(CREDY, a;)} = argmin{g( (Crep])V/%)}
Jj€B, Jj€B,
= arg max{(Crep])/%)}
Jj€Br
The first line follows as S = 9, and the second line follows as g(-) is monotone decreasing. By
exactly the same reasoning, we have that the winner in CSSPA with S’ is:
arg min{S’(CRED/, &)} = arg min{h((CreD])"/%)}
J€B, Jj€EB,
= arg max{(Cren})"/%)}
JE€By

Therefore, we have shown a mapping between strategies, and a coupling between outcomes,
such that in each round the leader in both games is the same. This completes the proof. O

C OMITTED PROOFS FROM SECTION 4

Proor oF LEMMA 4.3. Consider instead the finite stochastic process Xi, . .., X, where each X; is
an iid. copy from Exp (). For all i € [n], define the random variables
(@) i—1
Y, =min({Xy, ..., Xn}),  Zi = Zi1 +Exp (a - u) ,
n

andlet Yy = Z, = 0.
Claim C.1. For all i € [n], Y; is identically distributed to Z;.

Proor. The proof is by induction on i > 0. Assume for i > 0, Z; is identically distributed to
Y; and observe the base case (i = 0) follows by definition. Then, it suffices to show that for any
absolute constant x,

Pr (Y1 > x] =Pr(Ziy1 > x] =Pr

ZﬁExp(a—E) > x
n

Fix Y; = z where z is any absolute constant. For the case x < z, the fact Y;4; > Y; implies

Pr(Yiy1>xlx<z=Y]=1=Pr

io
Yi+EXP(0{——)>x|x<z=Yi].
n



For the case x > z,let A= {j € [n]|X; > V;} and observe that with probability 1, |A| = n — i. Fix
A = S for any set S C [n]. Then
Pr|Yi >xlx>z=Y;,A=S5] =1—[Pr[Xj >x|sz=Yl~,A=S]
jes
=[]prx>Yi+(x-Yolx>z=Y,4=5]
jes
ZHPV[X]' >x - Yi|x > z=Yj]
jes
= 1_[ e D5 = e~ (=ADE GSince |Al =n -,
jes

=Pr[EXP((n—i)E>>x—Y,-|sz=Yi]
n

=Pr

Y,~+Exp(a—g)>x|x22:Yi]
n

The first line observes that Y;,; > x if and only if for all j € S, X; > x. The third line observes that
j € Sifand only if X; > Y; and invokes the memoryless property (Lemma A.3). By the Law of Total
Probability and combining the case where x < z and x > z, we obtain

Pr[Yi > x] = Pry, [Pra [Pr[Yi1 > x|Y; =2, A= 5] |Y; =z]]

= Pry, [Pr

ia
Yi+EXP(0{——) >x|Yi=z”
n

= Pr

i
Yi+EXP(a’— —) >x]
n
as desired. O

From Claim C.1 and taking the limit as n — oo proves the statement. O
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