


1 INTRODUCTION

A tournament consists of = teams competing to win a championship via pairwise matches, and a
tournament rule selects a winner (possibly using randomization) based on the results. The design
of tournament rules has received signi�cant attention within Social Choice Theory [3, 7, 8, 11–
13, 17] (see [4] for a survey). Tournament rules have also become an object of study within the
TCS community over the past decade [1, 2, 6, 9, 10, 15, 16, 18, 19]. In particular, works such
as [1, 2, 6, 15, 16] design fair tournaments that are as minimally manipulable as possible subject to
a precise fairness condition. Our work further contributes to this direction.
In particular, all prior works in this direction consider a set of colluding teams who �x the

outcomes of their matches in order tomaximize the probability that one of them wins the tournament.
This model is natural for theoretical study, and accurately captures settings where there is truly
only one winner and no distinction between the non-winners (e.g. a quali�cation tournament
where only one team can advance, or a tournament rule as a proxy for a voting rule). However,
most modern tournaments o�er rewards for teams beyond the winner. For example, the top four
teams in the English Premier League qualify for the Champions League, and the bottom three are
relegated to a less competitive league. While it is of course more prestigious to win the league
outright, there is a signi�cant di�erence between �nishing fourth versus �fth, and seventeenth
versus eighteenth. For example, one could imagine assigning a monetary value to participation
in the Champions League, and to staying in the Premier League, and therefore the tournament
rule implicitly assigns a monetary prize based on the �nal ranking. Some tournaments, such as the
League of Legends Championship Series, directly award a monetary prize to teams based on their
�nal ranking. We initiate the study of manipulation of tournament rules where teams care about
their �nal ranking, and not just whether they win the tournament.

To have a running example in mind, consider an eSports tournament where prizes are awarded to
top-ranked teams (either implicitly via quali�cation to a more prestigious tournament, or explicitly
via a decreasing sequence of monetary prizes). Speci�cally, say that the 8Cℎ-ranked team takes
home ?8 in prize money. It is not uncommon for one sponsor to back multiple teams in the
same tournament, and this sponsor may seek to maximize their own expected prize winnings
(independently of exactly which teams the winnings come from). In particular, two teams of the
same sponsor may be incentivized to �x the outcome of the match between them in order to
maximize their collective winnings.1 A tournament designer in turn may hope for a tournament
rule that minimizes the maximum possible gains that are possible, while maintaining some formal
guarantee that the produced ranking is fair.

1.1 Our Results

Prior work seeks winner-selection rules that are both Condorcet-Consistent (if there is an undefeated
team, that team wins with probability 1)1 and minimally manipulable subject to this [1, 2, 6, 15, 16].
More speci�cally, they de�ne U: (A ) to be the minimum U such that no set ( of : teams can ever
manipulate the outcomes of matches within ( to improve the probability that A selects a winner in
( by more than U . These works design several tournament rules with U2 (A ) = 1/3, and also prove
that U2 (A ) g 1/3 for any Condorcet-Consistent A [6, 15, 16].
We instead consider tournament rules that output a complete ranking of the teams, and the

8Cℎ-ranked team earns ?8 prize money. We now de�ne U
®?

:
(A ) to be the minimum U such that no set

( of : teams can ever manipulate the outcome of matches within ( to improve their expected prize

1For example, perhaps the top X teams advance to a more prestigious tournament, and the stronger sponsored team feels

pretty con�dent about their chances of advancing. They may choose to take it easy on the weaker sponsored team to

improve the probability that both advance.
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winnings under A with prize vector ®? by more than U (see Section 2 for a formal de�nition). In this

language, prior works study U
ï1,0,...,0ð
2 (A ), but not U

®?
2 (A ) for any other ®? . Our main results designs a

new rule that we call Nested Randomized King of the Hill (NRKotH), and provide tight bounds on
its manipulability over arbitrary prize vectors, and a particular Borda prize vector.

Main Result 1 (see Theorem 3.1). For all nonincreasing prize vectors in [0, 1]= , no pair of teams
can ever manipulate the match between them to improve their expected prize winnings under
Nested Randomized King of the Hill by more than 1/3. This is the best possible guarantee among
all Condorcet-Consistent tournament rules, and even just for the prize vector ï1, 0, . . . , 0ð.

Main Result 2 (see Theorem 4.1) For a tournament on = participants, we de�ne the Borda prize

vector ®? = (?1, ?2, . . . , ?=) ∈ R
= as the vector having ?8 =

=−8
=−1 . Then, we have that U

®?

:
(NRKotH) = 0

for all : f =. That is, no set of teams of any size can gain anything by manipulating NRKotH under
the Borda prize vector. Theorem 4.2 further gives an upper bound on the manipulability of NRKotH
for ®? as a function of how far ®? is from Borda.

Nested Randomized King of the Hill is quite simple: (a) Pick a uniformly random team D, and
�x their ranking to be below all teams who beat D, and above all teams that D beats, then (b)
recurse on the set of teams that beat D, and separately on the set of teams that D beats, to determine
the relative ranking of teams within these two sets. We also quickly note that, while NRKotH is
competitive even with the best Condorcet-Consistent tournament rule, and even with the best
guarantee achievable just on ï1, 0, . . . , 0ð, it achieves a signi�cantly stronger fairness guarantee.
Speci�cally, NRKotH is Cover-Consistent: if team D beats team E and every team that E beats, then
team D is ranked ahead of team E with probability 1 (see Section 2 for a formal de�nition). We now
elaborate on the context for each of our main results.
For Theorem 3.1, we note that NRKotH is indeed inspired by Randomized King of the Hill,

designed in [16].2 Much of our analysis is inspired by [16] as well. Still, we wish to emphasize
that there are many natural extensions from winner-selection rules to full-ranking rules, so the
main technical contribution of Theorem 3.1 is nailing down the right one.3 It is also notable that
a simple Cover-Consistent tournament rule has the optimal manipulability guarantee against all
prize vectors in [0, 1]= , even among Condorcet-Consistent rules, and its analysis is fairly clean.

Theorem 4.1 is the �rst result of its kind in two ways, and the proof approach is quite distinct from
prior work. First, Theorem 4.1 is the only non-manipulability result in this model, at all. Indeed, [1, 2]
establish that Condorcet-consistent winner-selection rules are all manipulable, even by pairs of
teams, [15] clari�es that they are in fact 1/3-manipulable by pairs of teams, and all recent work
designs various tournament rules that match this guarantee. Theorem 4.1 shows that by considering
an alternative, and still natural, prize vector, non-manipulable rules are now possible. Second, there
is scarce prior work considering manipulations from sets of : > 2 teams, and what little work exists
is signi�cantly more technically involved than the : = 2 case. For example, all that is currently

known for any : > 2 is: a) for any Condorcet-consistent A , and all : , U
ï1,0,...,0ð

:
(A ) g :−1

2:−1 [15], b) this

bound can be slightly improved when : g 939 [16], and c) a rule A exists with U
ï1,0,...,0ð

:
f 2/3 [16].

Results b) and c) are quite technical, and in particular are signi�cantly more involved than the

2Randomized King of the Hill is a winner-selection rule. The winner it selects is the �rst-ranked team under NRKotH.
3For example, perhaps the most natural extension from a winner-selection rule to a full-ranking rule would be to run the

winner-selection rule = times, each time removing the most recent winner and ranking them next. It is unclear whether this

extension of RKotH achieves the same guarantees as NRKotH. If so, a proof would likely be signi�cantly more involved.
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simple arguments used to prove Theorem 4.1. Theorem 4.1 therefore also shows that by considering
an alternative prize vector, tractable analysis for manipulating sets of size : > 2 is now possible.

Beyond our main results, Section 5 also draws a formal connection between tournament ranking
rules and sorting algorithms. For example, NRKotH seems similar to QuickSort, and Section 5
makes this formal. We also consider rules based on other sorting algorithms. These rules don’t
retain the same nice properties as NRKotH, further clarifying that there is something ‘right’ about
NRKotH, even in comparison to other structured tournament ranking rules.
With this discussion in mind, the main contributions of our work are (a) initiating the study

of manipulability of full ranking rules, rather than just winner-selection rules, (b) identifying
NRKotH as a simple, natural rule that is optimally-manipulable over worst-case prize vectors,
and non-manipulable over the Borda prize vector, and (c) establishing that the Borda prize vector,
rather than the all-or-nothing prize vector, enables non-manipulable rules and tractable analysis
for manipulating sets of size : > 2.

1.2 Related Work

The model we consider was �rst posed in [2]. Early follow-up work of [1] designed tournaments
with U2 (A ) = 0, but not Condorcet-Consistence, with the goal of maximizing the probability that a
Condorcet winner is guaranteed to be selected.4

Observing that the space of tournaments with U2 (A ) = 0 is quite restrictive, more recent work
of [15] proposed to instead design tournament rules that are Condorcet-Consistent and as minimally-
manipulable as possible. Their main result is a simple tournament rule (that they call Randomized
Single Elimination Bracket) with U2 (A ) = 1/3, the best possible among Condorcet-Consistent rules.
Follow-up works in this direction design alternate rules, such as Randomized King of the Hill [16]
and Randomized Death Match [6] that achieve this same guarantee.

The simplest comparison between Theorem 3.1 and these recent works is as follows: [15] proposes
the model we study, and designs the �rst tournament rule with U2 (A ) = 1/3. [16] considers colluding
sets of more than two teams, and refutes a conjecture of [15] regarding this case. [6] considers a
beyond worst-case model, and aims to understand whether improved manipulability guarantees
are possible when the outcome of matches are ‘close to random’. Each of these works take the
study of manipulability of tournament rules in one new direction, and design one new tournament
rule . Our work is the �rst to consider the manipulability of tournament rules that produce a full
ranking, and designs the new Nested Randomized King of the Hill.

For : > 2, we have previously overviewed prior work. A simple construction in [15] establishes

that U
ï1,0,...,0ð

:
(A ) g :−1

2:−1 for all Condorcet-consistent A . A signi�cantly more involved construction

of [16] improves this to show that U
ï1,0,...,0ð

:
(A ) g 1/2 for all : g 939. [16] also designs a Condorcet-

consistent tournament rule with U
ï1,0,...,0ð

:
(A ) = 2/3 for all : (but this rule is not even monotone —

losing a match can improve a single team’s probability of winning). In comparison to these works,
Theorem 4.1 follows from signi�cantly cleaner arguments, and establishes optimal bounds for
all : , for the Borda prize vector. As previously mentioned, there is no prior work establishing a
non-manipulable Condorcet-consistent tournament rule — Theorem 4.1 is the �rst of this kind.
Beyond this work, the study of tournament rules within TCS focuses speci�cally on single-

elimination brackets, and a designer manipulating seeding in order to get a certain team to win [9,
10, 18, 19]. Other recent works consider strategic manipulation in di�erent particular tournament
rules, including the World Cup qualifying procedure [5, 14]. Aside from the thematic relation, these
works are technically disjoint from ours.

4Example rules to have in mind from their work is one that selects a uniformly random team as a winner, or one that selects

two uniformly random teams to play a match and selects the winner as the tournament winner.
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2 PRELIMINARIES

We introduce notation consistent with prior work [1, 6, 15, 16]. We update terminology slightly to
re�ect that our tournament rules output a ranking, rather than a single winner.

Definition 2.1 (Tournament). A (round robin) tournament ) on = teams is a complete, directed
graph on = vertices whose edges denote the outcome of a match between two teams. Team 8 beats team
9 if the edge between them points from 8 to 9 .

Definition 2.2 (Tournament Ranking Rule). A tournament ranking rule A is a function that
maps tournaments ) to a distribution over rankings f (where f (8) denotes the ranking of 8), where
Af () ) := Pr[A () ) = f] denotes the probability that ranking f is output on tournament ) under rule A .

We use the notation A8, 9 () ) :=
∑

f |f (8)=9 Af () ) to denote the probability that team 8 is ranked 9Cℎ .

Definition 2.3 (Prize Vector). A prize vector is a vector ®? ∈ R= such that ? 9 g ? 9+1 for all 9 .

The semantic meaning is that the team ranked 9Cℎ receives ? 9 in prize money. For a prize vector ®? ,

team 8 , and tournament ranking rule A , we’ll use the notation A
®?
8 () ) :=

∑=
9=1 A8, 9 () ) · ? 9 to denote the

expected prize money earned by team 8 under rule A on tournament ) with prize vector ®? . We’ll also

use the notation A
®?
(
() ) :=

∑
8∈( A

®?
8 () ) to denote the collective prize money of teams in ( .

Whenever we use the term ‘prize vector’ to refer to a vector ®? , this implies that ? 9 g ? 9+1 for all 9 .
For example, when we say “all prize vectors in [0, 1]= ,” this refers to “all vectors ®? ∈ [0, 1]= that satisfy
? 9 g ? 9+1 for all 9 .”

Like prior work, we are interested in tournament rules which satisfy basic notions of fairness.
Prior work mostly considers rules which are Condorcet-Consistent: whenever a team is undefeated,
that team wins (in our language, is ranked �rst) with probability one.

Definition 2.4 (Condorcet-Consistent). Team 8 is a Condorcet winner of a tournament ) if 8
beats every other team (under ) ). A tournament ranking rule A is Condorcet-consistent if for every
tournament ) with a Condorcet winner 8 , A8,1 () ) = 1 (whenever ) has a Condorcet winner, that team
is ranked �rst with probability 1).

For winner-selection rules, Condorcet-Consistence is a minimal, but reasonable notion of fairness.
Like prior work, the quality of our designed tournaments will compete with the best Condorcet-
Consistent tournament ranking rule. However, in order to deem these rules desirable, they should
satisfy stronger properties.5 [16] considers the stronger notion of cover-consistence. We extend
their de�nition to ranking rules, and will design rules that satisfy this stronger property.

Definition 2.5 (Cover-Consistent). Team 8 covers team 9 in tournament ) if 8 beats 9 , and 8
beats every team that 9 beats. A tournament ranking rule is Cover-Consistent if for all ) , and all 8, 9
such that 8 covers 9 in ) , and all f such that Af () ) > 0, f (8) < f ( 9). That is, whenever 8 covers 9 in ) ,
rule A applied to ) should output a ranking where 8 is ahead of 9 with probability 1.

Finally, we are interested in how manipulable tournament ranking rules are.

Definition 2.6 ((-adjacent). Two tournaments ),) ′ are (-adjacent if they are identical except
for matches between two teams in ( .

Definition 2.7 (Manipulating a Tournament). For a set ( of teams, tournament) , tournament

rule A , and prize vector ®? , we de�ne U
®?
(
(A,) ) to be the maximum prize money that ( can possibly gain in

5For example: Consider a rule that ranks a Condorcet winner �rst, if it exists, and ranks all remaining teams uniformly at

random. Then a Condorcet loser could wind up ranked ahead of a team that beats everyone except the Condorcet winner.
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expectation bymanipulating) to an (-adjacent) ′. That is:U
®?
(
(A,) ) := max) ′:) ′ is (-adjacent to) {A

®?
(
() ′)−

A
®?
(
() )}.

We further de�ne U
®?

:
(A ) := max),( : |( | f: {U

®?
(
(A,) )} to be the maximum prize money under ®? that

any set of f : teams can gain in A on any underlying tournament. For a class of prize vectors P we

de�ne UP
:
(A ) := sup®?∈P{U

®?

:
(A )} to be the maximum prize money that any set of f : teams can gain

in A under any ®? ∈ P.
Finally, we de�ne UP

:
:= infCondorcet consistent A {U

P
:
(A )}. That is, UP

:
is the best bound on manipula-

bility achievable by a Condorcet-Consistent tournament ranking rule against collusions of : teams
that holds for all prize vectors in P.

In this notation, prior works analyze UP
2 when P contains the single prize vector ï1, 0, . . . , 0ð. The

key di�erence in our work is that we will study UP
2 when P contains all prize vectors in [0, 1]= , and

when P contains the single prize vector with ?8 :=
=−8
=−1 .

3 MAIN RESULT I: WORST-CASE PRIZE VECTORS

In this section we state and prove our �rst main result, that Nested Randomized King of the Hill is
the least manipulable tournament rule for prize vectors in [0, 1]= . We begin with a formal de�nition
of NRKotH, and then state and prove the result.

Definition 3.1 (Nested Randomized King of the Hill). The tournament ranking rule Nested
Randomized King of the Hill (NRKotH) proceeds as follows, when given as input a tournament ) on =
teams:

(1) If = = 0, return an empty ordering. Else, continue.
(2) Pick a team, D, uniformly at random. Call D the pivot.
(3) Let � denote the teams that beat D, and ! denote the teams that lose to D.
(4) Run NRKotH on � and !, and call the outputs f� and f! respectively.
(5) For all teams 1 ∈ �, set f (1) := f� (1).
(6) Set f (D) := |� | + 1.
(7) For all teams ℓ ∈ !, set f (ℓ) := f! (ℓ) + |� | + 1.
(8) Output f .

That is, NRKotH picks a uniformly random team, D. All teams that beat D are ranked above D, and
all teams that lose to D are ranked below D. With each set of teams, NRKotH is called recursively to
determine their relative ranking. We state our main theorem below.

Theorem 3.1. Let P denote the set of all prize vectors in [0, 1]= . Then UP
2 (NRKotH) = 1/3 = UP

2 .
That is, for any prize vector in [0, 1]= , and any underlying tournament) , no two teams can manipulate
their match to gain expected prize money more than 1/3. Moreover, this is the best possible guarantee
of any Condorcet-Consistent tournament ranking rule.

Before proving Theorem 3.1, we establish that NRKotH is Cover-Consistent,6 and prove some
other basic facts about NRKotH. Recall that Cover-Consistence is a signi�cantly stronger fairness
guarantee than Condorcet-Consistence. Therefore, Theorem 3.1 establishes that there is no loss in
worst-case manipulability due to this stronger fairness guarantee.

6The proof is similar to that of [16, Lemma 6.1], which establishes that no covered team can win in the related tournament

rule Randomized King of the Hill.
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3.1 Properties of NRKotH

Proposition 3.2. NRKotH is Cover-Consistent.

Proof. Consider any team E that covers teamF , and an execution of NRKotH containing both E
andF . Consider the team D selected as pivot:

• If D = E , then because E covers F , F ∈ !, and therefore D �nishes ahead of F . Similarly, if
D = F , E ∈ �, and E �nishes ahead ofF .

• If E beats D and D beatsF , then E �nishes ahead ofF .
• It is not possible to haveF beat D and D beat E , because E coversF .
• If both E,F beat D, or both E,F lose to D, then their relative ranking is determined by a
recursive call. However, that recursive call must eventually terminate in one of the �rst two
cases.

Therefore, E �nishes ahead ofF whenever E coversF . □

Next, we provide an equivalent view of NRKotH that will be helpful in analysis. Essentially, this
view just speci�es a precise order in which to execute the recursive calls, and pre-determines the
selected pivots.

Definition 3.2 (Current Group). During any execution of NRKotH, every team D is currently in
a group. This refers to the set of teams that will be present in the next recursive call containing D. We
will use the notation � (D) to refer to the group containing D, which updates each time a new pivot is
selected.

For example, initially every team is in the same group. After one round of NRKotH, there are
three (possibly empty) groups: the teams that beat the pivot, the pivot, and the teams that lose to
the pivot. In general, after one round of NRKotH is run on a group, the pivot is now in a group by
themselves, teams that beat the pivot form a group, and teams that lose to the pivot form a group.

It will be helpful to couple outcomes of NRKotH on di�erent tournaments via the pivots selected.
Speci�cally, if g (·) denotes a permutation on [=] (where g (8) is the 8Cℎ team in the list), we wish
to couple executions so that within every recursive call on a group, the team that is earliest in g is
selected as the pivot. The de�nition below captures this concept formally.

Definition 3.3 (g-ordered implementation of NRKotH). The g-ordered implementation of
NRKotH proceeds as follows. For 8 = 1 to =: Choose the group � (g (8)) to process and pick g (8) as the
pivot.

Observation 3.1. Drawing g uniformly at random, and then running the g-ordered implementation
of NRKotH produces a ranking that is identically distributed to NRKotH.

Proof. This follows as: (a) the order in which groups are processed does not a�ect the outcome
of NRKotH and (b) the pivots chosen for each group are uniformly random among teams in that
group, when g is uniformly random. □

This view of NRKotH will be helpful in proving our main result.

3.2 Proof of Theorem 3.1

Now, we prove Theorem 3.1. We begin with the following lemma, which establishes some cases
where D and E cannot pro�t by manipulating their match.

Lemma 3.3. If D and E beat exactly the same set of teams in ) , then U
®?

{D,E }
(NRKotH,) ) = 0 for all

®? . That is, D and E cannot increase their expected prize money in NRKotH in any tournament where
they beat exactly the same set of teams, for any prize vector.

∙



Lemma 3.3 follows from similar reasoning as [6, Lemma 5.1], as NRKotH is anonymous. We
include a proof below for completeness, as notation needs to be updated for ranking rules.

Proof. Observe �rst that every round of NRKotH will either select D or E as pivot, or it will keep
D and E in the same group. In the latter case, this is not impacted by the outcome of the match
between D and E (because D and E do not play each other). So we only need to understand what
happens in the former case.

Here, we claim that the prize money won is identically distributed, independently of whether D
beats E or vice versa. Indeed, letF denote the team that wins the (D, E) matchup, and ℓ denote the
other team. Then ifF is pivot, ℓ enters !, along with the teams thatF beats. Importantly, observe
that whetherF = D orF = E , ! \ {ℓ} is exactly the same. Moreover, the �nal ranking of ℓ depends
only on its matches with teams in !, which are also identical whether ℓ = D or ℓ = E . Therefore,
whenF is selected, the rank ofF and rank of ℓ are distributed the same no matter which of {D, E}
is F and which is ℓ . Identical reasoning holds if ℓ is selected (F enters �, the teams in � are the
same, and the matches betweenF and � are also the same, regardless of whetherF = D orF = E).
Finally, observe that F and ℓ are equally likely to be pivot. Putting everything together, this

means that we can write the distribution of prize money won by D and E together by writing the
distribution of prize money won by F and ℓ together, and observe that this is independent of
whetherF = D orF = E . □

We now establish a second case where D and E cannot pro�tably manipulate their match.

Lemma 3.4. Let ) be a tournament where D beats E , and let ) ′ be the {D, E}-adjacent tournament
that �ips the (D, E) match. Then conditioned on E being selected as the �rst pivot, the expected prize
money won by D and E is greater in ) than ) ′ under NRKotH.

Proof. Let �E denote the teams that beat E in ) ′. Observe that in ) , if E is selected as the �rst
pivot, then f (E) = |�E | + 2, and f (D) f |�E | + 1 (because D beats E in ) ). Therefore, the minimum
possible prize money D and E could attain is ? |�Ĭ |+2 + ? |�Ĭ |+1.

In ) ′, if E is selected as pivot, then f (E) = |�E | + 1, and f (D) g |�E | + 2 (because E beats D in ) ′).
Therefore, the maximum possible prize money that D and E could attain in ) ′ is ? |�Ĭ |+1 + ? |�Ĭ |+2.

Putting both together, we conclude thatD and E have greater expected reward in) than in) ′. □

Now, we can complete the proof of Theorem 3.1. The main idea is to show that D and E are
unlikely to be able to positively impact their collective prize money (with probability at most 1/3),
and that when they do, they gain at most 1 by doing so.

Proof of Theorem 3.1. For the rest of this proof, wewill explicitly use the concept of a g-ordered
implementation, and randomly draw g one step at a time. Speci�cally:

(1) Initalize g to be null/empty.
(2) For 8 = 0 to = − 1.
(a) Let - denote the teams that beat D and lose to E , or beat E and lose to D, and are in the same

group as both D and E after the �rst 8 rounds of the g-ordered imlpementation of NRKotH.7

(b) With probability ( |- | + 2)/(= − 8), decide that g−1 (8 + 1) ∈ - ∪ {D, E}.
(i) Then, draw g−1 (8 + 1) uniformly at random from - ∪ {D, E}.

(c) Else (i.e., with probability (= − 8 − |- | − 2)/(= − 8)), decide that g−1 (8 + 1) ∉ - ∪ {D, E}.
(i) Then, draw g−1 (8 + 1) uniformly at random from the remaining teams not in - ∪ {D, E}.

7Observe that to be in the same group as D and E, teams must have not previously been chosen as pivot (as pivots are

immediately placed in their own group).
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Observe that the procedure above indeed draws a g uniformly at random: at each step, it picks a
uniformly random remaining team.

Now, let us consider the very �rst 8 such that step (b) is taken. Our claim breaks down into two
cases:

Lemma 3.5. Consider any run of the process for building g such that step (b) is �rst invoked while
|- | = 0. Then, the outcome of the match between D and E does not a�ect their collective prize money.

Proof. Consider the �rst time that step (b) is invoked, and consider that |- | = 0. This means
that the group containing D and E contains no teams that beat one but not the other. Therefore, by
Lemma 3.3, the outcome of the match between D and E does not a�ect the distribution of rankings
within their group. Also, it is clear that the outcome of the match betweenD and E has not previously
been invoked in any prior iteration of NRKotH, as neither of them were pivot before this round (as
step (b) is the only case where D or E could be pivot). □

Lemma 3.6. Consider any run of the process for building g such that step (b) is �rst invoked while
|- | > 0. Then the probability that the outcome of the match between D and E positively a�ects their
collective prize money is at most 1/3.

Proof. Consider two manipulating teams D and E , and say wlog that D beats E in the original
tournament. Now consider the round at which step (b) is invoked while building g .

• With probability 1/(|- | + 2), E is selected as pivot. By Lemma 3.4, manipulating the (D, E)
match cannot possibly increase their expected prize winnings.

• With probability |- |/( |- | + 2), a team that is currently in the same group as both D and
E , and that beats one of them but not the other, is selected as pivot. When this happens, it
guarantees that the (D, E) match is never played (because D and E are immediately split into
di�erent groups), and therefore its outcome can’t possibly a�ect any prize winnings.

• With probability 1/(|- | + 2), D is selected as pivot. This is the only case where D and E can
increase their joint prize winnings by manipulating their match. But as |- | g 1 by hypothesis,
this case occurs with probability at most 1/3. This completes the proof.

□

We’ve now established that D and E are unlikely to be able to pro�tably manipulate their match.
Our last step is to upper bound their gains by doing so. A trivial upper bound is 2 (because both
make at least 0 and at most 1 in all outcomes), but we’ll need a slightly stronger bound of 1.

Lemma 3.7. If the match between D and E is played, its outcome a�ects the collective prize winnings
of D and E by at most ?1 − ?= .

Proof. If the match between D and E is played, this means that one of them (wlog, say it is D) is
pivot. Let A denote the resulting f (D) if D beats E .
Then if D beats E , their collective prize money is at least ?A + ?= . If E beats D, then f (D) = A + 1,

and so their collective prize money is at most ?1 + ?A+1. Because the prize vector is monotone, their
di�erence is at most ?1 − ?= . □

Now with Lemmas 3.5 and 3.6, we can wrap up the proof of Theorem 3.1. Observe that the �rst
time step (b) is invoked, we either have |- | = 0, or |- | g 1. In both cases, Lemmas 3.5 and 3.6
establish that the probability of selecting a pivot such that D and E can positively a�ect their
collective prize winnings by manipulating their match is at most 1/3. By Lemma 3.7, conditioned
on this occurring, it impacts the collective winnings of D and E by at most 1. Therefore, the
expected prize winnings that D and E can gain by manipulation is at most 1/3. This proves that
UP
2 (NRKotH) f 1/3.
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To wrap-up, recall that [15, Theorem 3.1] proves that every Condorcet-Consistent tournament
rule admits a tournament ) such that some pair of teams can manipulate it and improve their joint

probability of winning by at least 1/3. In our language, this establishes that even U
ï1,0,...,0ð
2 g 1/3.

This implies that UP
2 g 1/3 as well, and completes the proof. □

4 MAIN RESULT II: BORDA PRIZE VECTOR

In this section, we introduce the notion of consistency under expectation and show that NRKotH is
consistent under expectation. We use this fact to prove that, under the Borda prize vector, no set
of : teams can manipulate NRKotH, for any : . We also provide a bound on the manipulability of
NRKotH under a prize vector ℓ∞-close to the Borda prize vector. We �rst state our main results:

Definition 4.1 (Borda Prize Vector). We de�ne a Borda prize vector for a tournament ) on =
participants as the vector ®? = (?1, ?2, . . . , ?=) ∈ R

= where ?8 =
=−8
=−1 .

Definition 4.2 (Y−close to Borda Prize Vectors). We de�ne the class of Y−close to Borda prize
vectors PY to be the set of all prize vectors ®? with ?8 ∈

[
=−8
=−1 − Y, =−8

=−1 + Y
]
for all 8 (i.e. every element is

within Y of the corresponding element in the Borda prize vector).

Theorem 4.1. For the Borda prize vector ®? ∈ R=, we have that U
®?

:
(NRKotH) = 0 for all : f =.

Theorem 4.2. For all : , UPĆ

:
(NRKotH) f 2:Y.

While Theorem 4.2 implies Theorem 4.1, we separate the two proofs to provide the main ideas
�rst in Theorem 4.1. The main workhorse in both proofs is a property of NRKotH that we term
consistency under expectation. Intuitively, this property states that the expected rank of a team under
NRKotH can be determined solely as a function of the number of teams it beats. The de�nitions
below state this formally.

Definition 4.3. For any individual team D and tournament ) , we de�ne F) (D) to be the set of
teams that D defeats in tournament ) .

Definition 4.4. For any team D and rule A , we de�ne fA
)
(D) to be the random variable that is the

ranking of team D under rule A , applied to tournament ) .

Definition 4.5 (Consistent Under Expectation). A tournament rule A is consistent under
expectation if for all =, all tournaments ) on = teams, and all D:

E
[
fA) (D)

]
= = − |F) (D) |

We now begin the proofs of Theorems 4.1 and 4.2. The main idea behind both proofs is Theo-
rem 4.3, which we prove �rst.

Theorem 4.3. NRKotH is consistent under expectation.

Proof. We prove this by strong induction on =. The base case of = = 1 is is easy to verify: for
the single team D, it beats 0 teams and its expected rank is 1 = 1 − 0.
Consider now some = > 1, and assume for inductive hypothesis that the theorem holds for all

=′
< =. Consider now any team D, and let’s analyze the distribution of D’s rank.
During the �rst iteration of NRKotH, let E be the pivot. We compute the expectation of fNRKotH

)
(D)

by conditioning on whether E = D, E defeats D, or E loses to D. Note that since the pivot is selected
uniformly at random, the probability that a given team is the pivot is 1/=. We now observe the
following:
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• If E = D, then the rank of D is immediately set at = − |F) (D) | (because all = − |F) (D) | − 1

teams that beat D are permanently ranked higher, and all |F) (D) | teams that lose to D are
permanently ranked lower.

• If D defeats E , then D’s rank is equal to its rank in the subtournament �E of teams that beat E .
• If D loses to E , then D’s �nal rank is equal to its rank in the subtournament !E of teams that
lose to E , plus the rank of E , which is = − |F) (E) |.

Therefore, we can conclude the following:

E
[
fNRKotH
) (D)

]
=

1

=

©­«
= − |F) (D) | +

∑
E∈FĐ (D)

E
[
fNRKotH
�Ĭ

(D)
]
+

∑
E≠D,E∉FĐ (D)

(
= − |F) (E) | + E

[
fNRKotH
! (E) (D)

] )ª®¬
=

1

=

©­«
= − |F) (D) | +

∑
E∈FĐ (D)

= − |F) (E) | − 1 − |F�Ĭ
(D) |

ª®¬
+
1

=

©­«
∑

E≠D,E∉FĐ (D)

(
= − |F) (E) | + |F) (E) | − |F!Ĭ (D) |

)ª®¬

The �rst equality follows from the three previous bullets. The second follows from our inductive
hypothesis, as both �E and !E are tournaments on < = teams, and have = − |F) (E) | − 1 and |F) (E) |
teams in them, respectively. Let us now investigate some terms that appear in the sums.
First, let us analyze the term |F�Ĭ

(D) |, for a E ∈ F) (D). Observe thatF�Ĭ
(D) contains all teams

that lose to D, but beat E . Put another way, it contains all teams that lose to D, removing E and those
that lose to E . Therefore:

F�Ĭ
(D) = F) (D) \ {F) (E) ∪ {E}}.

Similarly, let us analyze the term |F!Ĭ (D) |, for a E ∉ F) (D). Observe thatF!Ĭ (D) contains exactly
the teams that lose to both E and D. Therefore:

F!Ĭ (D) = F) (E) ∩F) (D).

Substituting these back into our prior bounds, we now have:

∙



1

=

©­«
= − |F) (D) | +

∑
E∈FĐ (D)

= − |F) (E) | − 1 − |F�Ĭ
(D) |

ª®¬
+
1

=

©­«
∑

E≠D,E∉FĐ (D)

(
= − |F) (E) | + |F) (E) | − |F!Ĭ (D) |

)ª®¬
=

1

=

©­«
= − |F) (D) | +

∑
E∈FĐ (D)

= − |F) (E) | − |F) (D) \F) (E) |
ª®¬

+
1

=

©­«
∑

E≠D,E∉FĐ (D)

= − |F) (D) ∩F) (E) |
ª®¬

=
1

=

©­«
= − |F) (D) | +

∑
E∈FĐ (D)

= − |F) (D) | − |F) (E) \F) (D) |
ª®¬

+
1

=

©­«
∑

E≠D,E∉FĐ (D)

= − |F) (D) | + |F) (D) \F) (E) |
ª®¬

= = − |F) (D) | +
1

=

©­«
∑

E≠D,E∉FĐ (D)

|F) (D) \F) (E) | −
∑

E∈FĐ (D)

|F) (E) \F) (D) |
ª®¬
.

The �rst equality follows from our substitutions. The second follows by rewriting |F) (D)∪F) (E) |
and |F) (D) ∩F) (E) |. The third just groups the = terms = − |F) (D) | together. From here it su�ces
to prove that the term inside the parentheses is 0.
To this end, it is helpful to consider any edge 4 = (G,~) and compare its contribution to each

sum. Indeed:∑
E≠D,E∉FĐ (D)

|F) (D) \F) (E) | =
∑

G≠D,~∉{G,D }

I[G ∉ F) (D) ' ~ ∈ F) (D) ' ~ ∉ F) (G)]

∑
E∈FĐ (D)

|F) (E) \F) (D) | =
∑

~≠D,G∉{~,D }

I[~ ∈ F) (D) ' G ∈ F) (~) ' G ∉ F) (D)]

=

∑
~≠D,G∉{~,D }

I[~ ∈ F) (D) ' ~ ∉ F) (G) ' G ∉ F) (D)]

The �rst two equality follows by considering the case when G = E , and which ~ ∈ F) (D) \F) (E).
The second equality follows by considering the case where ~ = E , and which G ∈ F) (E) \F) (D).
The third equality just observes that G ∈ F) (~) ´ ~ ∉ F) (G). We now conclude that the two sums
are equal, which completes the entire proof as well. □

4.1 Proof of Theorem 4.1

Theorem 4.3 is the main workhorse towards Theorem 4.1, as it draws a connection between the
expected rank of a team and the number of matches it wins. The remaining steps are to show: (a)
no set of : teams can manipulate the total number of matches they win, and (b) under the Borda
prize vector, expected rank directly determines the expected prize winnings.
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Lemma 4.4. For any tournament) , any set ( of teams, and any tournament) ′ that is (-adjacent to
) :

∑
D∈( F) ′ (D) =

∑
D∈( F) (D).

Proof. Observe that we can writeF) (D) as the number of matches D wins against teams in ( ,
plus the matches they win against teams ∉ ( . Therefore:

∑
D∈(

|F) ′ (D) | =
∑
D∈(

|F) ′ (D) ∩ ( | +
∑
D∈(

|F) ′ (D) \ ( |

=

(
|( |

2

)
+
∑
D∈(

|F) ′ (D) \ ( |

=

∑
D∈(

|F) (D) ∩ ( | +
∑
D∈(

|F) (D) \ ( |

=

∑
D∈(

|F) (D) |

The �rst and last equalities follow by breaking the teams that D beats into those in ( and those
not in ( . The second inequality follows by observing that the total matches won by teams in (

against teams in ( must be exactly
( |( |
2

)
in both ) and ) ′. The third equality follows as ),) ′ are

(-adjacent.
□

Lemma 4.4 doesn’t reference a tournament rule, nor a prize vector. Lemma 4.5 below connects
the expected rank of a team to its expected prize money under the Borda prize vector.

Lemma 4.5. Let ®? be the Borda prize vector. Then for all tournament rules A , all tournaments) , and
all sets ( of teams:

A
®?
(
() ) =

|( | · = − E[
∑

D∈( f
A
)
(D)]

= − 1
.

Proof. The proof follows from the following calculations:

A
®?
(
() ) =

∑
D∈(

=∑
8=1

Pr[fA) (D) = 8] · ?8

=

∑
D∈(

=∑
8=1

Pr[fA) (D) = 8] ·
= − 8

= − 1

=
|( | · = − E[

∑
D∈( f

A
)
(D)]

= − 1
.

□

Now, we can wrap up the proof of Theorem 4.1. Essentially, there are three ingredients to
the proof: Theorem 4.3 is speci�c to NRKotH, Lemma 4.4 is just a fact about tournaments, and
Lemma 4.5 is speci�c to the Borda prize vector.
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Proof of Theorem 4.1. Let ) be any tournament, ( be any set of teams, ) ′ be any (-adjacent
tournament to ) , and let ®? denote the Borda prize vector. Then we have the following equalities:

A
®?
(
() ) =

|( | · = − E[
∑

D∈( f
A
)
(D)]

= − 1

=
|( | · = −

∑
D∈( (= − |F) (D) |)]

= − 1

=

∑
D∈( |F) (D) |

= − 1

=

∑
D∈( |F) ′ (D) |

= − 1

=
|( | · = −

∑
D∈( (= − |F) ′ (D) |)]

= − 1

=
|( | · = − E[

∑
D∈( f

A
) ′ (D)]

= − 1

= A
®?
(
() ′)

The �rst and �nal equalities follow from Lemma 4.5. The second and penultimate equalities follow
from Theorem 4.3. The third and �fth equalities are basic algebra, and the fourth equality follows
by Lemma 4.4. This concludes the proof. □

4.2 Proof of Theorem 4.2

The proof of Theorem 4.2 follows from Theorem 4.1 with one additional lemma. Essentially, for
two prize vectors that are close in ℓ∞ distance, the expected prize money won by a player in the
same tournament under the di�erent prize vectors cannot be far apart.

Lemma 4.6. Let | ®? − ®@ |∞ f Y. Then for any tournament ) , any tournament rule A , and any set ( of
teams:

|A
®?
(
() ) − A

®@
(
() ) | f |( | · Y.

Proof. The proof follows by coupling executions of A on) with ®? and ®@ so that the same ranking
is selected. Every team D ∈ ( is in the same position in both rankings (by de�nition). Because
| ®? − ®@ |∞ f Y, the prize money D wins is within Y in both executions. Therefore, the sum of prize
money won by ( is within |( | · Y in the two executions. □

Proof of Theorem 4.2. The proof now follows immediately from Theorem 4.1, and two appli-
cations of Lemma 4.6. Let ®@ denote the Borda prize vector, and A denote NRKotH. Then for any
®? ∈ PY , any tournament ) , any set of teams ( , and any (-adjacent ) ′, we have:

A
®?
(
() ′) f A

®@
(
() ′) + |( | · Y = A

®@
(
() ) + |( | · Y f A

®?
(
() ) + 2 · |( | · Y.

□

4.3 An Additional Implication of Consistence Under Expectation

Before wrapping up this section, we brie�y observe a stronger implication than our main result,
that is implied by consistency under expectation. Speci�cally, our work (and all prior work in this
model) studies the maximum gains frommanipulation only by �xingmatches betweenmanipulating
teams. The rules designed in our work (and all prior works) are also monotone: no single team
can improve their own ranking by unilaterally throwing a match. However, prior works do not
consider manipulations that both �x within-coalition matches and throw matches to non-colluding
teams (that is, perhaps by team D throwing a match to team F , it increases the joint expected
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prize-winnings of {ī, Ĭ}). In general, it is not clear that techniques developed to study match-�xing
can also apply to match-throwing. But, our notion of Consistence Under Expectation immediately
enables extensions to this case. In fact, we can reuse most of our prior lemmas, and just need to
update Lemma 4.4.

Lemma 4.7. For any tournament Đ , and any set of teams ď , let Đ ′ be ď-adjacent to Đ . Further let
Đ ′′ be such that if ī beats Ĭ in Đ ′, but Ĭ beats ī in Đ ′′, then ī ∈ ď and Ĭ ∉ ď . Then:

∑
ī∈ď |ĭĐ ′′ (ī) | f

∑
ī∈ď |ĭĐ (ī) |.

Proof. We already know from Lemma 4.7 that
∑

ī∈ď |ĭĐ ′ (ī) | =
∑

ī∈ď |ĭĐ (ī) |. So we just need
to show that |ĭĐ ′′ (ī) | f

∑
ī∈ď |ĭĐ ′ (ī) |. This is fairly quick to see as no ī ∈ ď can win additional

matches in Đ ′′ compared to Đ ′, while some ī ∈ ď can lose matches. □

Corollary 4.7.1. For the Borda prize vector, no set ď of teams can manipulate matches within ď
and/or throw matches to teams outside of ď and improve their expected prize winnings. If ®Ħ is Ć-close
to Borda, then ď can gain at most 2|ď |Ć by manipulating matches within ď and throwing matches to
teams outside of ď .

Proof. The proof follows from Theorem 4.3, Lemma 4.7, and Lemma 4.5 (plus Lemma 4.6). □

5 TOURNAMENT RULES AND SORTING ALGORITHMS

In this section, we draw parallels between certain tournament rules and sorting algorithms. In
particular, we notice that NRKotH is, according to some notion of equivalence, “equivalent to” the
quicksort algorithm. Further, we provide examples of tournament rules equivalent to other sorting
algorithms that are not consistent under expectation.

We can think of a sorting algorithm as a series of batches of comparisons over several rounds. The
comparisons in a given round are determined by the results of the comparisons made in all previous
rounds. For example, during selection sort, in the �rst round, we perform a batch of comparisons
to �nd the smallest element. In the second round, we perform a batch of comparisons to �nd the
second smallest element. In general, in the ġ th round, we perform a batch of comparisons to �nd
the ġ th smallest element. Note that this representation of a sorting algorithm is not necessarily
unique. Thus, we de�ne the canonical batching of a sorting algorithm as follows:

Definition 5.1 (Canonical Batching). The canonical batching of a (deterministic) sorting
algorithm is de�ned as follows:

(1) The �rst batch consists of all comparisons that do not depend upon the results of any other
comparison. That is, these comparisons will get made by the algorithm on every input.

(2) The second batch consists of all remaining comparisons that do not depend upon the results of
any other remaining comparisons. That is, these comparisons will get made by the algorithm on
every input, conditioned on the results of the �rst batch.

(3) In general the ġ th batch consists of all comparisons that are not in the �rst ġ − 1 batches, and do
not depend on the results of any other comparisons outside the �rst ġ − 1 batches.

For example, the canonical batching of QuickSort is as follows: the �rst batch consists of all
comparisons made while running the QuickSelect algorithm on the �rst pivot. The second batch
consists of all comparisons made while running the QuickSelect algorithm on a pivot from each
half. In general, the ġ th batch consists of all comparisons made while running the QuickSelect
algorithm on a pivot from each of the 2ġ−1 blocks.
We notice that this de�nition of a canonical batching can easily extend to certain tournament

rules. For instance, we notice that NRKotH has the same canonical batching as quick sort. We
formalize this notion as follows:
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Definition 5.2 (Eqivalence of a Tournament Rule and a Sorting Algorithm). A deter-
ministic sorting algorithm ĩ and a deterministic tournament rule Ĩ are said to be equivalent if they
share the same canonical batching. Note that while computing the canonical batching of a sorting
algorithm, we compare the values of numbers; in contrast, while computing the canonical batching
of a sorting algorithm, we compare the results of individual matches. Consider running the rule Ĩ
on a complete DAG, and running the sorting algorithm ĩ on the nodes in the same DAG (where the
comparator is the direction of the edge between the nodes). Then, we say ĩ and Ĩ share the same
canonical batching if the comparisons made in each batch are identical.
If a randomized sorting algorithm ĩ and a randomized tournament rule Ĩ can be coupled so that

they are distributions over deterministic sorting algorithms and deterministic tournament rules that
are equivalent, we say ĩ and Ĩ are equivalent as well.

Observation 5.1. NRKotH is equivalent to QuickSort.

Wenow provide examples of tournament rules that are equivalent to themergesort and bubblesort
algorithms:

Definition 5.3 (MergeTR). The tournament ranking rule MergeTR proceeds as follows, when
given as input a tournament Đ on Ĥ teams:

(1) If Ĥ = 0, return an empty ordering. If Ĥ = 1, return the ordering where this team has rank 1. Else,
continue.

(2) For Ĥ > 1, randomly divide the teams into two sets, ý of size +Ĥ/2, and þ of size +Ĥ/2, . Run
MergeTR on ý and þ and call the outputs Ăý and Ăþ respectively. Let the order of the teams in ý
under Ăý be ė1, . . . , ė |ý | and let the order of the teams in þ under Ăþ be Ę1, . . . , Ę |þ | .

(3) Now set ğĤĚ = 1, ğ = 1 and Ġ = 1. While ğ f |ý| and Ġ f |þ |, compare ėğ and Ęğ . If ėğ beat Ęğ ,
set Ă (ėğ ) = ğĤĚ, increment ğ and ğĤĚ by 1 and continue. Otherwise, set Ă (Ęğ ) = ğĤĚ, increment Ġ
and ğĤĚ by 1 and continue.

(4) While ğ f |ý|, set Ă (ėğ ) = ğĤĚ and increment ğĤĚ and ğ by 1.

(5) While Ġ f |þ |, set Ă (Ę Ġ ) = ğĤĚ and increment ğĤĚ and Ġ by 1.

(6) Output Ă.

Definition 5.4 (BubbleTR). The tournament ranking rule BubbleTR proceeds as follows, when
given as input a tournament Đ on Ĥ teams:

(1) First arrange the Ĥ teams in some random order.
(2) Do the following operation Ĥ times: starting from ğ = 1 and ending at ğ = Ĥ − 1, serially swap

the positions of the ğ th and (ğ + 1)st teams if and only if the ğ th team defeated the (ğ + 1)st team.

Lemma 5.1. The MergeTR tournament ranking rule is not consistent under expectation, nor 2-SNM
on the Borda prize vector.

Proof. Consider a tournament with 4 teams (ý, þ, ÿ , and Ā) with the following results: ý beats
to everyone except þ, þ loses to everyone except ý, and Ā beats ÿ .

There are 2 teams that ý beats. We now analyze the expected rank for ý outputted by MergeTR.
With probability 1/3, ý plays þ and ÿ plays Ā in the �rst round, which would result in ý getting
rank 2. With probability 1/3, ý plays ÿ and þ plays Ā in the �rst round, which would result in
ý getting rank 1. Finally, with probability 1/3, ý plays Ā and þ plays ÿ in the �rst round, which
would result in ý getting rank 1. Therefore, the expected rank of ý is 4/3, which is not equal to
4 − 2, so this algorithm is not consistent under expectation.

To see that MergeTR is not 2-SNM on the Borda prize vector, consider the tournament where
ý beats all three teams, and þ beats ÿ , ÿ beats Ā , and Ā beats þ. Consider simultaneously the
tournament where ý and þ �x their match (so þ beats ý). Then because MergeTR is anonymous
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and cover-consistent, ý is always ranked �rst, and þ is equally likely to be anywhere in {2, 3, 4}. So
ý’s expected rank is 1, and þ’s expected rank is 3.

If instead ý and þ collude, then the execution of MergeTR proceeds as follows:

• Perhaps the teams are split so that ý and þ are together. Then þ will be ahead of ý in the list,
while ÿ will be ahead of Ā in the other list. þ will get compared to ÿ and win. Then ý will
get compared to ÿ and win. Their ranks are 1 and 2, and this happens with probability 1/3.

• Perhaps the teams are split so that ý and Ā are together. Then ý will be ahead of Ā , and þ
ahead of ÿ . ý will get compared to þ, and þ will rank �rst. ý will then get compared to ÿ
and rank second. Their ranks are 1 and 2, and this happens with probability 1/3.

• Perhaps the teams are split so that ý and ÿ are together. Then ý will be ahead of ÿ , and Ā

beats þ. ý will get compared to Ā and rank �rst. ÿ will get compared to Ā and lose, so Ā

will get ranked second. Then ÿ will get compared to þ and lose, so þ will rank third. So their
ranks are 1 and 3, and this happens with probability 1/3.

So in total, the sum of expected ranks is 1 + (2/3) · 2 + (1/3) · 3 = 10/3 < 4. So ý and þ strictly
gain from this manipulation (because total payo� under the Borda prize vector is proportional to
expected rank). Intuitively, this manipulation is pro�table because of the �rst two cases: if ý beats
þ, then þ is forced to compete with Ā , and will fall lower in the ranks. But if þ beats ý, then þ is
ranked highly, and ý certainly wins its next match and is ranked immediately afterwards. □

Lemma 5.2. The BubbleTR tournament ranking rule is not consistent under expectation, nor 2-SNM
on the Borda prize vector.

Proof. Consider a tournament with 4 teams (ý, þ,ÿ, andĀ) with the following results:ý loses to
þ andÿ but wins against Ā. þ wins againstÿ but loses to Ā andÿ loses to Ā. Over the randomness
of the initial shu�ing, the expected rank of þ is 2.75 ≠ 4 − 2 = 2.
To see that BubbleTR is not 2-SNM on the Borda prize vector, consider a tournament where

ý loses to all three teams, and þ beats Ā , Ā beats ÿ , and ÿ beats þ. Then because BubbleTR is
anonymous, the rank of ý is always 4, and the expected rank of þ is 2.
If instead ý and þ �ip the outcome of their match, we have the following:

• If in the initial ordering ý and þ �rst and second (in either order) and Ā is third, then ý is
ranked 1 and þ is ranked 2. This happens with probability 1/12.

• If in the initial ordering Ā is last, then ý will �nish ranked 2, and þ ranked 3. This happens
with probability 1/4.

• If in the initial ordering ÿ and Ā are �rst and second (in either order), then ý will �nish
ranked 3 and þ will �nish ranked 4. This happens with probability 1/6.

• If in the initial ordering, ý and Ā are �rst and second (in either order), then ý will �nish
ranked 3 and þ will �nish ranked 4. This happens with probability 1/6.

• If in the initial ordering, þ and Ā are �rst and second (in either order), then þ will �nish
ranked 1 and ý will �nish ranked 4. This happens with probability 1/6.

• If in the initial ordering, ý and ÿ are �rst and second (in either order), and Ā is third, then ý

will �nish 2, and þ will �nish 3. This happens with probability 1/12.
• If in the initial ordering, þ and ÿ are �rst and second (in either order) and Ā is third, then ý

will �nish 4 and þ will �nish 2. This happens with probability 1/12.

So in total, the sum of expected ranks is 3 · (1/12) + 5 · (1/4) + 7 · (1/6) + 7 · (1/6) + 5 · (1/6) + 5 ·
(1/12) + 6 · (1/12) = 67/12 < 6. Therefore, ý and þ strictly pro�t from this manipulation. □

∙



6 CONCLUSION AND OPEN PROBLEMS

We initiate the study of manipulation of tournament rules where teams wish to improve their
rankings (rather than just their probability of winning). Speci�cally, we consider tournaments with
a prize vector ®Ħ , where manipulators wish to improve their collective expected prize winnings. We
design a cover-consistent tournament rule, Nested Randomized King of the Hill, and prove that no
pair of teams can manipulate their match to gain more than 1/3 in expected prize winnings when
all rewards lie in [0, 1] (and this is optimal, even among all Condorcet-Consistent rules). Indeed,
better guarantees are not possible even when restricting attention to the prize vector ï1, 0, . . . , 0ð.
Furthermore, we prove that no set of teams can manipulate their matches to gain any reward
under the uniform prize vector. This shows that the uniform prize vector enables both (a) the
�rst non-manipulability results in this model, at all, and (b) a signi�cantly simpler analysis of
manipulability by sets of ġ > 2 teams when compared to any prior work. We further extend this
result to near-uniform prize vectors with some approximation loss.

A nice direction for future work would be to consider other classes of prize vectors besides the
worst-case and the near-uniform case. In particular, it would be interesting to see whether there
are other classes of prize vectors for which NRKotH is optimal.
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