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Abstract—Streaming of live 360-degree video allows users to
follow a live event from any view point and has already been
deployed on some commercial platforms. However, the current
systems can only stream the video at relatively low-quality
because the entire 360-degree video is delivered to the users under
limited bandwidth. Streaming video falling into user field of
view (FoV) can improve bandwidth efficiency of 360-degree video
delivery. In this paper, we propose to use the idea of “flocking”
to simultaneously improve the accuracy of user FoV prediction
and video delivery efficiency for live 360-degree video streaming.
By assigning variable playback latencies to users in a streaming
session based on their network conditions, a “streaming flock”
is formed and led by “strong” users with low playback latencies
in the front of the flock. We propose a long short-term memory
(LSTM) based collaborative FoV prediction scheme where the
FoV traces of users in the front of the flock are utilized to predict
the FoV of users behind them. Given a predicted FoV, we develop
an optimal rate allocation strategy to maximize the perceptual
quality. By conducting experiments using real-world user FoV
traces and LTE/5G network bandwidth traces, we evaluate the
gains of the proposed strategies over several benchmarks. Our
experimental results demonstrate that the proposed streaming
system can increase the overall quality dramatically by about 10
dB compared with heuristic FoV prediction strategy. In addition,
the network-aware flocking formation can further reduce the
video freeze without influencing video quality. 1

I. INTRODUCTION

Live streaming of 360◦ video facilitates immersive view
experience by allowing users to dynamically choose their view
directions in live events. It has great potential to become popu-
lar in many fields, e.g., live concerts and sports, etc. However,
the bandwidth requirement of 360◦ video is much higher than
the traditional 2D-planar video. How to deliver high-quality
360◦ video with short playback latency over the global Internet
has become a hot topic for both academia and industry. To
address the bandwidth and latency challenges, there is a proven
effective solution: Field-of-View (FoV) adaptive streaming [1].
Instead of streaming the whole 360◦ video, FoV streaming
only streams a fraction of video within the predicted user FoV.
It can significantly reduce the bandwidth requirement of 360◦

video streaming [2]. However, the user Quality-of-Experience
(QoE) of FoV streaming largely hinges on the accuracy of
user FoV prediction [3], [4]. Prediction strategies including
deep neural network (DNN) based prediction and multi-user
collaborative prediction algorithms have been proposed and
demonstrated to be effective [5]. One unique aspect of the
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Fig. 1. User FoV sharing in flocking-based streaming.

live 360◦ video streaming system is that, normally, users view
the video of the same live event with different latencies. For
example, a recent study has shown that the playback latencies
in the commercial live streaming services on Over-the-Top
(OTT) devices range from 10 to 30 seconds [6]. The latency
gap among users creates the possibility to conduct collabora-
tive FoV prediction and network-aware latency control for a
live 360◦ video streaming session.

Firstly, we investigate how the idea of “flocking” can be
used to improve the efficiency of live 360◦ video streaming.
We treat all users watching the same live event as a “streaming
flock”. While all the users play the video at the same speed,
they can be engineered to have different playback latencies
within a short range2 based on their network conditions: users
with good network conditions can stream with short video
buffer to achieve low playback latency, while users with poor
network conditions need longer video buffers (thus larger
playback latency) to absorb bandwidth variations and sustain
smooth video streaming. The relative position of a user in
a streaming flock is therefore determined by her playback
latency as shown in Fig. 1. The latency differences among
users can be exploited to achieve “flocking gain” in both FoV
prediction accuracy and playback smoothness. At a high level,
the view directions of users in the front of a flock, i.e., with
shorter playback latency, serve as valuable inputs to predict
the view directions of users behind them, i.e., with longer
playback latency. Leveraging on this, we develop an LSTM-
based collaborative FoV prediction algorithm that predicts a
target user’s view direction for a video scene based on her own
past FoV trajectory as well as the actual view directions (repre-

2The acceptable user latency ranges vary from sub-second to tens of seconds
for different types of live streaming services with different latency allowances.
For the ease of streaming latency control and the clarity of the presentation,
in this paper, we will focus on live streaming services where latency from
a couple of seconds to ten seconds is acceptable. The flocking concept can
also be applied to live streaming services with sub-second latency requirement,
given that latency control can be effectively done in sub-second latency range.
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sented by shared averaged attention distribution maps) of users
who have watched the same video scene very recently. Given
the predicted view direction (attention distribution), the rate
allocation among different spatial regions in the 360 degree
scope can be optimized to maximize the perceived quality.
We formulate the spatial quality maximization problem and
obtain a close-form solution.

The rest of the paper is organized as follows. Related work
is overviewed in Section II. We formally introduce the concept
of streaming flock and propose network condition aware
user flocking strategies in Section III. Collaborative LSTM-
based FoV prediction algorithms are developed in Section IV.
Temporal and spatial rate allocation algorithms are presented
in Section V, with a focus on spatial quality maximization.
The proposed components are systematically evaluated to
demonstrate their gains using real FoV and bandwidth traces
in Section VI. The paper is concluded in Section VII.

II. RELATED WORK

User FoV prediction plays an important role for all types of
360◦ video streaming applications including video-on-demand
(VoD) [1], [7], [8], [9], [10], [11], [12], [13], [14], live 360◦

video streaming system [15], [16], [17] and interactive 360◦

video applications [18], [19], [20]. In [21], linear regression
and deep neural network (DNN) based solutions are proposed
to predict user future FoV center using historical FoV tra-
jectory. Instead of only using the past FoV trajectory, video
content features are also utilized to predict future FoV in
[22]. In [5], the authors focused on FoV prediction over long
time horizon for on-demand streaming, and multiple LSTM-
based models are proposed. Auto Regressive Moving Average
(ARMA) prediction and transition probability model are ap-
plied in [23] and [24], respectively. In [25], [5], collaborative
FoV predictions based on other users’ viewing directions are
considered. However, these methods are proposed for VoD
streaming and assume that there are always a large number of
users who have watched the same video. Our proposed LSTM-
based collaborative FoV prediction is specifically designed for
live streaming, can work with any variable number of users
and is light-weight.

Given a predicted bandwidth, tile rate allocation aims to
maximize users’ QoE through distributing the limited band-
width budget to each tile. Normally, the tiles with a high
probability to be watched should be assigned with a higher
bitrate than the ones outside the FoV region. In [26], the tile
rate allocation problem is modeled as a multiclass knapsack
problem with a dynamic profit that is a function of the FoV and
the buffer occupancy. DASH SRD-extension is used in [27]
and the rate is allocated to tiles based on their priorities
greedily. A hierarchical buffer based rate adaption algorithm
is adopted in [11] in which the received tiles can still be
updated if the buffer length is safe. Through subjective study,
VMAF is proved to be an efficient way to evaluate 360◦

video quality in [28]. In [18], users’ viewport quality is
optimized by minimizing the distortion and variance based on
the predicted viewing probabilities of all the tiles. In this paper,
we also conduct rate allocation based on the predicted attention

distribution (normalized viewing probabilities of tiles). But,
differently, we predict the attention distribution directly using
both the past attention distributions of the target user and other
users’ attention distributions. The formulated rate allocation
problem is solved by maximizing the weighted sum of WS-
PSNR of all the tiles within the predicted FoV of the user. For
evaluation, we report the weighted sum of WS-PSNR of all the
tiles within the user’s actual FoV, noted as WS-PSNR-FOV.

Live 360◦ video streaming poses more challenges for both
end users and video server compared with on-demand 360◦

video streaming. In [29], the authors proposed a measurement
platform to conduct measurement on the existing commer-
cial live 360◦ video streaming platforms, e.g., Facebook and
YouTube. Authors of [16] proposed a live 360◦ video stream-
ing system which trade-offs between the bandwidth usage
and video quality within user’s FoV. As with VoD, tile-based
video encoding and delivery is widely used to achieve FoV-
adaptive live video streaming [30], [31]. In [32], tiles with
different resolutions are aggregated into one High Efficiency
Video Coding (HEVC) bitstream on-the-fly. Layered coding
scheme is applied in [33], [34] to reduce the occurrences of
video freezes without compromising the quality and band-
width efficiency. We adopt the standard tile-based coding and
streaming in our system. We take advantage of the fact that
viewers are often interested in similar regions in the 360◦

scope. By intentionally assigning varying playback latencies
to users based on their network conditions, we can improve
the accuracy of collaborative FoV prediction, while reducing
the likelihood of video freezing.
Our preliminary work on flocking-based streaming was pub-
lished in [17]. This paper significantly improves over [17]
with more accurate LSTM-based collaborative FoV prediction,
optimal rate allocation among tiles, and systematical evalua-
tion of various gains of flocking.

III. NETWORK-CONDITION-AWARE FLOCKING

Users in a live streaming session naturally have hetero-
geneous network conditions. Users with stable and high-
speed networks can promptly download live video segments
immediately after they are generated. A short video buffer
can be employed to achieve low playback latency. On the
contrary, “weak” users with unstable and low-speed networks
have to use long buffers to avoid video freeze. A longer buffer
leads to not only longer playback latency, but also longer FoV
prediction interval for which lower FoV prediction accuracy
is expected. The basic idea of flocking-based 360◦ video
streaming is to allow users within the same session to help
each other. We borrow the name from bird flocking. When
birds fly as a flock, the birds in the front have to fight harder
against headwind. It is therefore wise to have stronger birds
lead a flock. As illustrated in Fig. 2, we will follow a similar
strategy to place “strong” users with better network conditions
in the front of a streaming flock (with small video buffers and
short playback latencies) and let the relatively “weak” users
stay in the rear (with larger video buffers and longer playback
latencies). In particular, the “weak” users with longer playback
latencies can benefit from the “strong” users’ (with shorter
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Fig. 2. Analogy between birds flock and live streaming flock. “Strong” birds
or users are “flying” in the front so that the “weak” ones in the rear can
benefit.

latency) ground-truth FoV information and thereby improve
FoV prediction accuracy. In this section, we will elaborate
how this can be naturally realized by manipulating the target
playback latency and maximum buffer length on all users.

At any given time t, if a user’s target latency is d, and
the maximum buffer length is B(u) ≤ d, the user should be
watching video generated at time t−d and downloading video
generated at t − d + B + 1 where B ≤ B(u) is the current
buffer length. d and B(u) are two critical parameters for live
360◦ video streaming. Before downloading segment t − d +
B + 1, the user should first estimate its FoV based on her
FoV trajectory up to t − d. Therefore B(u) + 1 determines
the maximum FoV prediction temporal horizon, and the larger
the B(u), the less accurate the trajectory-based self-prediction.
On the other hand, for collaborative FoV prediction (to be
described in Sec. IV), the user can leverage FoV information of
users with shorter playback latency who have watched segment
t−d+B+1. Therefore, the larger the d, the more potential for
collaborative FoV prediction. Meanwhile, a streaming buffer
is important to absorb network bandwidth oscillation, a larger
B(u) is beneficial to achieve high quality.

In our proposed streaming flock, users at the front must
have short playback latency, which means they have to assume
small d and B(u). The immediate requirement is that they
must have high bandwidth and stable network condition so
that they don’t run into video freeze or segment skip even
with a short streaming buffer. Although they have no/low
chance to benefit from collaborative FoV prediction, because
B(u) and consequently the FoV prediction horizon is short,
FoV prediction based on their own FoV history is generally
more accurate. Meanwhile, for users with unstable network
conditions, to maintain smooth streaming, a large B(u) is
necessary. This naturally pushes them to the back of the flock.
The negative impact of a long FoV prediction horizon resulting
from large B(u) can be compensated by collaborative FoV
prediction based on FoV information of users in the front. This
cooperative flocking strategy can improve both the individual
and overall user QoE.

In order to enable such network-aware assignment, before
requesting the first video segment, a user operates a short-
term monitoring on her current network condition. In details,
through comparing her own network capability in terms of
relative standard deviation (σ/µ) to the statistics of the current
active users which can be downloaded from the server, a user
can get her network capability rank. Then the user selects

a latency group and sets her buffer upper bound based on
her rank. To illustrate, in Fig. 3, users are divided into four
groups with different target latencies d1 = G1, d2 = G1+G2,
d3 = G1 +G2 +G3, and d4 = G1 + ...+G4. Since this is live
streaming, the buffer upper bound of Group 1 B

(u)
1 should be

less than G1
3. Then, for latency Group 2, in order to benefit

from Group 1 users’ FoV information, the buffer length of the
users in Group 2 should not exceed where users in Group 1
are watching. In other words, the buffer upper bound of Group
2, B(u)

2 , should not be greater than G2. More generally, to
enable Group k users to benefit from all the previous groups,
its buffer upper bound should satisfy B

(u)
k ≤ Gk. Overall,

through intelligently assigning playback latencies and buffer
upper bounds to users, they can benefit from either their own
superior network condition or “stronger” users “flying” in the
front of the flock.

IV. FLOCKING-BASED COLLABORATIVE FOV PREDICTION

A user’s view direction for 360◦ video is affected by both
the distributions of the attractive objects in a video scene and
her personal preferences to them. FoV prediction for future
frames based on the FoV trajectories of the past frames is
hard because the first appearance of a new object of interests
is not predictable from the past. In this challenging scenario,
knowing which areas other users (earlier viewers) have focused
on for a “future” frame could greatly help the FoV prediction
for the current user (later viewer). Even in the situation when
no new objects appear in a frame, the distribution of the
viewing areas of the earlier viewers can still help to predict
the FoV of the later viewer, especially when the distribution
is non-uniform and has one or a few focuses. In [25], [5],
FoV prediction based on multiuser trajectories was proposed.
With the help of information from other users, the prediction
accuracy for a target user can be greatly improved. These
studies were based on the user FoV traces collected from
VoD streaming and assumed that an equal number of earlier
viewers are always available and is relatively large. However,
in live 360◦ video streaming, the number of earlier viewers
for a target user is variable and dynamically changing. The
flocking formation proposed in the previous section facilitates
collaborative FoV prediction in live 360◦ video streaming. We
develop a LSTM-based collaborative FoV prediction algorithm
that adaptively combines the prediction from the user’s own
past trajectory and the ground truth information of users in the
front of the flock.

A. Attention Distribution Prediction with LSTM

As shown in Fig. 4, we propose a LSTM-based collabora-
tive FoV prediction algorithm. A video segment consists of
multiple frames. A user’s FoV varies for frames in the same
segment. We characterize a user’s FoV for a segment using
attention distribution, which is a 2D map representing how
a user’s attention is distributed among all the tiles within an
Equirectangular Projection (ERP). More specifically, for each

3If the user finishes downloading the latest video segment and the following
video segment is still under encoding or transcoding by the server, the user
has to wait for the server processing to be completed
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Fig. 3. Configuration of Playback Latency and Buffer Upper Bound to Achieve Network-condition-aware Flocking.

Fig. 4. LSTM-based collaborative FoV prediction. The target user u(t)

predicts future attention distribution M̃ by utilizing the average and variance
attention maps M̄ of users in the front of the flock.

frame, given the target user’s view direction, we can calculate
the user’s attention weights for all tiles of the frame: if a tile
falls into the FoV, its attention weight is one; if a tile is outside
the FoV, its weight is zero; for a tile partially overlapping with
the FoV, its attention weight is the ratio of the overlapped area.
The user’s attention distribution on a segment is represented
by the normalized average attention weights of all tiles over
all the frames within the segment. The calculated attention
distribution characterizes the fraction of time and size that a
specific tile falls into the user’s FoV over the whole duration
of a segment.

When a target user u(t) predicts future attention distribution
for a video segment (video segment index is omitted for
simplicity), ground truth FoV information of some other
users who have watched the requested video segment might
be available. To utilize it, each user uk uploads her past
FoV trajectories of each viewed segment to the video server
periodically along with request for future segments. All the
uploaded FoV trajectories will be stored at the video server
and can be converted to the attention distribution maps for all
viewed segments. Then, while distributing Media Presentation
Description (MPD) files, the average attention distributions
M̄i+n of users who have watched segments i + n with n =
1, 2, · · · , T are delivered to the target user who is watching
segment i. To facilitate collaborative FoV prediction, variance
maps of the attention distributions for these segments are also
calculated and delivered to the target user. The variance map
for a segment records the variance of attention weights at each
tile among all earlier viewers for this segment. The shared
average attention distribution M̄ and variance map can be
calculated/updated periodically on the server when more users’

Fig. 5. LSTMs: ConvLSTM + FCN based target users attention distribution
prediction.

FoV trajectories are uploaded. In this way, only the average
and variance of the earlier viewers’ attention distribution are
sent to the target user so that the system scalability can be
improved dramatically compared with [17].

Depending on whether the attention distributions about other
users are available, two prediction models are developed:
a single-user LSTM (LSTMs) and a collaborative LSTM
(LSTMc). Details of these models are introduced below.

1) Self Prediction with LSTMs: Firstly, for the target user
u(t), let O denote the set of other users who have viewed the
requested segment, ifO is empty at time i, she can only predict
M̃ based on her own historical FoV trajectory. Illustrated in
Fig. 5, the target user generates attention distribution Mi−j
for each of the past τ segments (j from τ − 1 to 0) using her
historical FoV trajectory. The sequence of Mi−j is fed into
a Convolutional LSTM (ConvLSTM) encoder to generate a
hidden state hi and cell state ci, which are used to initialize the
LSTM decoder. Then the LSTM decoder recursively generates
the predicted attention distribution for segment i + n, with
n = 1, 2, ...T where T is maximum the prediction horizon.
Specifically, to predict the attention distribution for future time
i + n, the predicted attention M̃i+n−1 (which equals to Mi

when n = 1) and the previous hidden and memory states
hi+n−1 and ci+n−1 are used to generate the hidden state
hi+n using a ConvLSTM decoder. In order for the model
to be aware of the time lapse since the last ground-truth
input in the decoder, the hidden state hi+n is concatenated
with the prediction step indicator n (which is replicated to
form a matrix with the same spatial dimension as hi+n), and
used to predict M̃i+n through a fully convolutional network
(FCN) [5]. This predicted map will be used recursively to
predict the attention distribution for the next segment, until the
prediction for the target segment is determined. This model is
called LSTMs.
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Fig. 6. LSTMc: ConvLSTM + FCN based collaborative attention distribution
prediction. M̄i+n represents the concatenation of the average and variance
maps at segment i + n.

2) Collaborative Prediction with LSTMc: As shown in
Fig. 6, first of all, the target user u(t) still adopts ConvLSTM-
based encoder to capture historical information from her
own historical attention distribution. In addition, to predict
the attention distribution for segment i + n, the statistics of
other users’ attention distribution M̄i+n is fed into FCN2 to
convert it to the same feature domain as the hidden state
of the target user. Specifically, we concatenate the average
and variance distribution maps, where the value for each tile
is either the mean or the variance of the attention values
among all collaborating viewers for segment i + n. The
purpose of introducing variance is to take into consideration
the variability of users’ attention distributions for a particular
tile. Before concatenating hidden state hi+n and the shared
attention M̄i+n, these two maps are point-wise attenuated to
take into account of the prediction step n and the number of
collaborating viewers Cn = |O|i+n. In more detail, 1 if the
prediction horizon n is large, the prediction accuracy based
on the past information is likely low. Therefore, we introduce
a decay function e−(α1n+β1) to shrink the contribution from
hi+n. 2 Besides, if M̄i+n is generated by a large group of
users, it is likely a good reflection of the visual saliency of
different regions in the scene and hence a better indication of
the target user’s potential attention distribution. Therefore, an
exponentially increasing function eα2Cn+β2 is used to adjust
the impact of M̄i+n based on Cn. Given the two weighted
attention distributions (hi+n and ground truth M̄i+n), FCN1

is utilized to generate the final attention distribution M̃i+n.
We call this collaborative FoV prediction model as LSTMc.

3) LSTMs and LSTMc Model Design: Both the encoder and
decoder contain 3 ConvLSTM layers with 64, 32 and 16 filters
respectively. The output shape is same as the input attention
distribution shape with spatial dimension of 16 × 32. For
LSTMs, the hidden state outputs from all the 3 ConvLSTM
decoder layers are concatenated and fed into FCN. In addition,
n is expanded into the same shape of the hidden state output
hi+n with 16 channels and concatenated with hi+n. The
FCN also has three layers, generating 32, 64 and 1 channel
hidden-state feature maps, with the last one being the predicted
attention map. In the LSTMc model, FCN1 uses three layers

of 64, 128 and 1 filters and FCN2 consist of two layers with
32 and 64 filters. The parameters (α1, α2, β1, β2) in the decay
functions are trained together with other model parameters. KL
divergence is utilized as the loss function during the training
phase.

4) System Overhead Analysis: To support the collaborative
prediction, users have to upload his/her true FoV trajectory
to the server and download the shared (average and variance)
distribution maps from the server. More specifically, in the
uploading phase, if a user’s FoV viewing direction is sampled
in the format of (timestamp, yaw, pitch, roll) with frequency
of 30 Hz, then, for each second, the uploading data overhead
equals 30 × 4 × 4 = 480 bytes (assuming each value of a
sample takes 4 bytes). In the downloading part, users have to
download two maps that are cut into 32 × 16 tiles. The total
data size of the two maps would be 2×32×16×4 = 4 KBytes.
Both the uploading and downloading of the FoV information
can be piggybacked with the video segment request and video
segment, respectively, without introducing extra latency. Com-
pared with the video content data at rate of tens or hundreds
of Mbps, these FoV information overheads are negligible.

V. TEMPORAL AND SPATIAL RATE ALLOCATION

Similar to 2D-planar video streaming, to cope with dynamic
network bandwidth, the streaming rate of live 360◦ video
has to be adapted over time. It can be achieved by parti-
tioning a 360◦ video into temporal segments with a chosen
duration, e.g., one second, and encoding (at the server) each
video segment to multiple versions with different rates. A
streaming client will dynamically select the rate version for
each requested video segment based on the network condition.
Additionally, to cope with user view direction changes, rate
allocation over different spatial regions on the 360◦ sphere
within the same segment has to be adapted. In a tile-based
design, each 360◦ video segment is spatially partitioned into
multiple tiles in the Equirectangular Projection (ERP) format,
and each tile is coded with multiple rates. The rate and
consequently the quality chosen for a tile should be determined
by the likelihood that this tile will be viewed by the user.
The tiles within the predicted FoV should be allocated with
more bits than the tiles around the boundary or outside of the
predicted FoV. In addition, the impact of the rate difference
between two spatially adjacent tiles on the user perceived
video quality should also be considered.

We use segment+tile based design to achieve temporal
and spatial rate adaption. Similar to DASH for 2D-planar
video, we can select the video rate for a 360◦ video segment
using buffer-based and/or rate-based algorithms. Each segment
consists of multiple frames, and a user’s view direction can
change at the frame-level. A tile within a user’s FoV at one
frame may fall out of her FoV at the next frame. Instead of
predicting one view direction for each segment, as presented
in Section IV, we predict the tile attention distribution M̃,
i.e., the fraction of time that a specific tile falls into the
user’s FoV over the whole duration of a segment. Given the
predicted attention distribution, we further solve the spatial
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rate allocation problem using Lagrange multiplier so that the
rendering quality within the user’s predicted FoVs over the
entire segment is maximized.

A. Bandwidth Prediction and Temporal Rate Allocation

Due to the dynamic network environment, adaptive rate
control becomes crucial to video streaming especially for live
video streaming with short buffer. Bandwidth prediction is one
of the most important parts in adaptive rate control. In our
system, bandwidth prediction is an independent component,
and any effective bandwidth prediction algorithm can be ap-
plied. In the simulation results shown later, the harmonic mean
of the download bandwidth of the past 10 video segments is
calculated as the predicted bandwidth for the next segment.
Instead of video rate, user QoE is also affected by the rate
fluctuation between two adjacent video segments. In order
to solve this problem, temporal rate adaption should be opti-
mized. For example, model predictive control (MPC) [35], [36]
can be applied to get the optimal temporal rate allocation for
a given sequence of predicted bandwidth. In addition, model-
free based solution, e.g., reinforcement learning (RL) [37],
[38], [39], can also solve this problem efficiently through
exploring the optimal rate allocation in the environment. In
our current work, we operate temporal rate allocation based
on one-step bandwidth prediction and will explore potential
gain of different temporal rate adaption algorithms in future
work.

B. Optimal Spatial Rate Allocation

As each 360◦ video segment is spatially divided into
multiple tiles and requested independently, given a limited
bandwidth budget, we want to allocate more bits for the tiles
that have high likelihood of being viewed. Based on the study
in [10], the quality-rate (Q-R) functions of tiles differs with
tile position. For example, to obtain the same quality, the
tiles near the equator and south pole require more bits than
the tiles near the north pole. Therefore, we jointly consider
the location-dependent weight (affected by the tile’s vertical
position) and the predicted attention distribution (viewing
probability) of tiles while allocating the predicted bandwidth
budget. Specifically, we formulate rate allocation problem for
a video segment as following:

max
{rj}

Q =
J∑
j=1

pjwjQj(rj)

subject to
J∑
j=1

rj = c

rj ≥ 0, j = 1, 2, ..., J

(1)

where c is the total rate budget for the segment, rj is the
number of bits allocated for tile j, Qj(·) is the Q-R function
of tile j which is modeled by a logarithmic function Qj(rj) =
aj log(rj)+bj , following the findings in [10]. Note that Qj(·)
is a tile-specific function which is fitted to the weighted-to-
spherically-uniform peak-signal-to-noise ratio (WS-PSNR) of
the jth tile under different rates. Therefore, Q represents the

weighted average of the WS-PSNR of all the tiles within user’s
FoV. As shown in [10], tiles at different vertical positions
in the ERP (corresponding to different latitudes in the 360◦

sphere) have quite different Q-R characteristics (with varying
aj and bj). pj is the predicted users’ attention to the jth tile by
the LSTM models, and wj is a location-dependent weight of
tile j, proportional to the area that this tile contributes in the
360◦ sphere. Specifically, the weight of a tile j is the average
weight of all the pixels in tile j and the weight of a pixel is
represented by cos θ where θ is the latitude of the pixel. For
example, a tile near the north or south pole corresponds to a
smaller area than a tile near the equator.

To solve the constrained maximization problem, Lagrange
multiplier can be introduced so that we can reformulate the
problem as following:

Q′ =
J∑
j=1

pjwjaj log(rj) + λ(
J∑
j=1

rj − c) +
J∑
j=1

pjwjbj

=

J∑
j=1

zj log(rj) + λ(

J∑
j=1

rj − c) +

J∑
j=1

pjwjbj

(2)

with zj = pjwjaj .
Through setting derivate of Q′ to rj to zero:

∂Q
∂rj

=
zj
rj

+ λ = 0, for all j ∈ [1, J ]

J∑
j=1

rj = c,

(3)

we obtain the following the close-form rate allocation solution:

rj =
zj∑J
j=1 zj

c, for all j ∈ [1, J ]. (4)

The result reveals that the rate for a tile should not only depend
on its viewing probability but also its location (which affects
its quality-rate slope reflected by aj and the spherical area
it contributes indicated by wj). In practice, each tile is only
encoded into a finite set of bitrates. Therefore, we quantize
the optimal rate allocation solution generated by Eq. (4) by
selecting the highest encoded bitrate that is less than or equal
to the optimal solution.

VI. EXPERIMENTS AND EVALUATION

A. Experiments Configuration

The proposed live 360◦ streaming system is evaluated using
real LTE/5G network bandwidth traces [40] and users’ FoV
dataset [41]. The bandwidth traces were collected under the
mobile scenarios with cellular access mode switching between
5G and LTE. As the original bandwidth can be either too
high (more than 100 Mbps in 5G scenario) or too low (being
zero for several seconds during handover) for the live 360◦

video streaming, we filter the bandwidth traces with lower
and upper bounds of 3 and 80 Mbps. As each of the videos in
the FoV dataset [41] includes traces from different numbers
of users, we filter the dataset by selecting videos with at least
31 users’ traces. Finally, 55 videos are selected. FoV traces of
33 videos are used for the LSTMs and LSTMc training, and
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the other 22 are used for validation/testing. Both LSTMs and
LSTMc models are trained in 1,000 epochs. In order to avoid
overfitting, we adopt early stopping during the training so that
when the validation loss keeps increasing for several epochs,
the training will terminate.

The Q-R curve is generated by performing video coding on
a JVET 360◦ video testing sequence [42]. HEVC reference
software under JVET common test conditions is used for the
video coding. The Q-R curve is fitted to the WS-PSNR with
different quantization parameters (QP). The entire 360◦ video
(8K resolution) is divided into 32× 16 tiles with 256 × 256
pixels in each tile [20]. The user FoV span size is assumed to
be 90◦ × 90◦. To allow adaptive streaming, the original 360◦

video is coded into multiple bitrates as: {3, 5, 10, 20, 40, 70,
100} Mbps. Each video segment is of 1 second.

We use tile overlap ratio (TOR) [5] between the actual
attention map and the predicted attention map to evaluate the
FoV prediction performance. Firstly, for each video segment,
we find all the N tiles with non-zero values in the ground
truth attention distribution. Then, in the predicted attention
distribution, we sort the tiles on their predicted viewing
probabilities. The overlap ratio between the N largest tiles
in the predicted attention distribution and the ground truth is
defined as the tile overlap ratio.

B. Evaluation of different FoV prediction methods

1 2 3 4 50.3

0.4

0.5

0.6

0.7

0.8 TLP
Co-TLP

LSTMsLSTMc

Prediction Horizon (s)

Ti
le

 O
ve

rla
p 

Ra
tio

Fig. 7. Tile overlap ratio of different heuristic and LSTM based prediction
algorithms for different prediction horizons.

1) Comparison of LSTM and TLP based FoV prediction:
We compare the LSTM based FoV predictions (LSTMs and
LSTMc) with heuristic FoV prediction algorithms: truncated
linear prediction (TLP) and Collaborative truncated linear pre-
diction (Co-TLP) proposed in [17]. For each of the algorithms,
we run FoV prediction for all the 31 users for 10 videos
in the testing dataset. At each step, attention distributions of
future 5 seconds are predicted. For LSTM based prediction,
the distributions of the past 10 seconds are considered as the
input. TLP first truncates the past FoV trajectory so that the
remaining segment trajectory is monotonic and then predicts
the FoV centers of the future seconds by linearly extrapolating
the truncated trajectory using linear regression. The attention
map M̆ is then generated from the predicted FoV centers. Co-
TLP additionally combines the predicted attention M̆ with
a weighted average distribution M̂ of other users’ ground

truth attention distributions as the final prediction. To generate
the weighted average distribution M̂, the trajectory distance
between each other user and the target user is calculated based
on their historical FoV and the weight is reversely proportional
to the trajectory distance [17]. For the FoV prediction of each
target user, we assume the future ground-truth FoV of all the
other 30 users are available in Co-LTP and LSTMc.

As shown in Fig. 7, without benefiting from FoV infor-
mation of other users, TLP leads to lower TOR than Co-
TLP. In addition, the TOR of TLP decreases rapidly for
long prediction horizons. With Co-TLP, by collaboratively
utilizing other users’ ground truth attention distribution, the
prediction performance is improved significantly compared to
TLP, especially for long horizons. For LSTMs which adopts
deep neural network to predict future attention distribution,
higher TOR can be achieved for long prediction interval, e.g.
≥ 3 seconds. By adopting LSTMc, the highest TOR can be
achieved for horizons larger than two seconds. However, while
predicting one or two seconds ahead, Co-TLP still performs
the best. Overall, LSTM based predictions perform better
than TLP heuristic algorithms for long prediction horizons.
In addition, a collaborative prediction (Co-TLP or LSTMc)
always achieves higher TOR than a self prediction (TLP or
LSTMs), suggesting that the flocking-based collaborative FoV
prediction is always helpful.
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Fig. 8. FoV prediction accuracy with different numbers of other users with
shorter latency.

2) Impact of number of available collaborating users:
Generally, for different users, the numbers of users in front of
them in the flock vary corresponding to their relative latencies.
Therefore we evaluate how the collaborative FoV prediction
is affected by the number of users in the front of the target
user. Fig. 8 shows the average TOR for all the 31 users for
the 10 testing videos with different numbers of collaborating
users. Compared with TLP, with just 6 collaborating users, the
TOR of Co-TLP can be improved significantly. With more
users available, FoV prediction becomes more accurate, but
the gain is small. For LSTM based prediction, similar trend
is observed. In addition, for longer prediction interval, the
relative improvement brought by having more collaborating
users becomes more significant.

3) Comparison of different LSTM input lengths: We com-
pare the performance of the LSTMs FoV prediction model
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with different lengths of users’ past attention distribution as
input. We use the identical experiment settings to Sec. VI-B.
The results in Fig. 9 demonstrate that longer past attention dis-
tribution can improve the prediction accuracy. Especially when
the input length is increased from 5s to 10s, the improvement is
the most significant. However, the FoV prediction performance
of 10s and 15s input length are roughly the same for prediction
horizons of 1s or 2s. For longer prediction horizons, 15s past
attention distribution leads to slightly better performance than
10s input length. During the training phase, utilizing 15s input
length takes 638 epochs to converge which is almost 1.5 times
as long as using 10s input length (434 epochs). Overall, we
consider using the past 10s attention distribution as the best
tradeoff between FoV prediction accuracy and training time.
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Fig. 9. Tile overlap ratio of LSTMs prediction model for taking different
lengths of users’ past attention distribution as input.

C. System Performance Evaluation

To evaluate the gains from different components of the
proposed “flocking” system, we simulate and compare the
system performance under different settings:
• Non-Flocking which is a non-flocking streaming strategy.

The future FoV attention distribution is predicted only
based on the target user’s own past FoV trajectory using
LSTMs. Playback latency and buffer upper bound are
randomly assigned.

• Flocking which is the proposed flocking strategy in this
paper. LSTMc is utilized if other users’ ground truth
FoV information is available. Network condition based
latency and buffer upper bound assignment are adopted.
Rate allocation is determined by optimizing the quality,
as explained in Sec. V-B.

• Flocking with Random Latency and Buffer Assignment
(Flocking-rand) which uses LSTMc for collaborative
FoV prediction without adopting network condition based
latency and buffer upper bound assignment. The latency
and buffer upper bound are randomly assigned to each
user. All the other configurations are identical to the
proposed Flocking strategy.

• Flocking with Proportional Rate Allocation (Flocking-
prop) which is the same as Flocking, except that it does
not use quality optimized rate allocation for tiles. Rate is
directly assigned to each tile proportional to the predicted
viewing probability.

TABLE I
ABLATION STUDY: SYSTEM SETTINGS

Algorithms FoV Prediction Co-
Prediction

Lat/Buff
Assign

Rate Al-
location

Non-Flocking LSTMs 7 7 3

Flocking LSTMs/LSTMc 3 3 3

Flocking-rand LSTMs/LSTMc 3 7 3

Flocking-prop LSTMs/LSTMc 3 3 7

Flocking-TLP TLP/Co-TLP 3 3 3

• Flocking with TLP FoV prediction (Flocking-TLP)
which is same as the Flocking system, except that it
uses the Co-TLP for FoV prediction, which includes TLP
as a special case when there are no collaborating users
available.

Table I summarizes the algorithm settings of these benchmark
systems. Table II reports the performances of these systems
in terms of three QoE metrics: FoV prediction accuracy
measured by TOR, duration of freeze in seconds, and the
rendering quality (WS-PSNR-FOV) in terms of the weighted
average of the WS-PSNR of tiles covered by users’ FoV
where the weights are the actual user attention. We report
the performances for different latency groups as well as the
average performance among all users. The initial latency and
buffer upper bound of each group is defined in Table II.

1) Benefit from collaborative FoV prediction: First, we
evaluate the flocking-based FoV prediction using the user FoV
and LTE/5G network bandwidth traces discussed in Sec. VI-A.
For this experiment, 8 videos are selected from the testing set.
For each video, there are 31 users and each of them is assigned
a unique FoV trajectory. The results show the average of the 8
videos. For this study, the latency assignment is not based on
the network conditions as discussed in Sec. III, rather users
are assigned to the 4 latency groups randomly with 8 users in
each group (except for the last group which has 7 users). The
same assignment is used for the evaluation of different FoV
prediction methods. We choose to have 4 latency groups, with
latency of 3s, 8s, 13s and 19s, respectively. We set the actual
initial latency of each user to be slightly different from the
group average latency by adding a random noise. The buffer
upper bounds for groups 1 to 4 are set as: 2s, 3s, 4s and 5s
respectively, following Fig. 3.

Fig. 10 illustrates the average TOR between the predicted
and the ground truth tile attention distribution for all video
segments. Self-prediction means that only LSTMs is used.
However, in collaborative prediction, if other users’ ground-
truth is available, LSTMc is utilized to predict future tile
attention distribution. For latency group 1, as they seldom
have earlier viewers to enable the use of LSTMc, LSTMs

and LSTMc achieve almost the same TOR. However, the
improvement brought by collaborative prediction increases as
the group latency increases. The results confirm our hypothesis
that the users with long latency can benefit from front users
regarding the FoV prediction. While comparing the TOR
for each user, we find that collaborative prediction always
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TABLE II
QOE METRICS FOR DIFFERENT SYSTEMS

Algorithms Group 1 (3s, 2s) Group 2 (8s, 3s) Group 3 (13s, 4s) Group 4 (19s, 5s) Overall

TOR Freeze Quality TOR Freeze Quality TOR Freeze Quality TOR Freeze Quality TOR Freeze Quality

Non-Flocking 0.42 1.74 44.4 0.46 1.07 44.6 0.47 0.7 45.1 0.43 0.75 43.8 0.44 1.06 44.5
Flocking 0.48 0.73 45.9 0.52 0.79 45.4 0.52 0.79 45.7 0.48 0.72 44.6 0.5 0.76 45.4

Flocking-rand 0.48 1.74 45.4 0.51 1.08 45.3 0.55 0.7 45.8 0.52 0.77 45.0 0.52 1.07 45.4
Flocking-prop 0.48 0.7 45.7 0.52 0.72 44.9 0.52 0.73 45.0 0.48 0.71 43.3 0.5 0.72 44.7
Flocking-TLP 0.39 0.61 21.5 0.43 0.71 29.6 0.43 0.76 42.5 0.37 0.72 42.2 0.4 0.7 34.0

[*]Initial latency and buffer upper bound are shown after each group index. For example, initial latency and buffer upper bound for group 1 are 3s and 2s.
TOR is the tile overlap ratio defined in Sec. VI-A. Freeze represents the time of video freeze/stall in seconds. Quality (WS-PSNR-FOV) is the weighted
average WS-PSNR of all the tiles within user’s FoV for all the frames in dB.
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Fig. 10. Tile overlap ratio comparison between self prediction and collaborative prediction based on LSTMs and LSTMc respectively.

performs better than or equally to self-prediction (except for
one user in latency group 2), even for the users with short
latency, which suggests that leveraging other users’ attention
distributions is always beneficial.

In addition, in Table II, comparing the Non-Flocking and
Flocking-rand systems, using LSTMs and LSTMc, respec-
tively, we see that collaborative prediction improves the TOR
for all latency groups, leading to 18.2% higher overall TOR
than Non-Flocking (using self prediction). Consequently, the
overall averaged quality is also improved by 1 dB. The
results demonstrate that, FoV prediction accuracy and video
quality can be significantly improved by adopting collaborative
predicting. Because both of these systems assigned the users
randomly into the latency groups, compared to the proposed
Flocking system, both suffer from higher freeze for users in
groups with short latency/buffer upper bounds.

2) Benefit from latency and buffer upper bound assignment:
For the network condition based latency and buffer upper
bound assignment, the relative standard deviation (RSD) of
user’s bandwidth is calculated. Through comparing it with
the predefined RSD thresholds, a user’s network condition is
classified so that the user can be assigned to a latency group
accordingly. In order to make a fair comparison, the bandwidth
traces are pre-selected to guarantee that, even with network
aware latency group assignment, the number of users assigned
into each latency group is the same 4.

Compared to Flocking-rand (with random latency and buffer
upper bound assignment), the Flocking system (with network
aware assignment) can significantly reduce the freeze duration
for the first two groups with short latencies without degrading

4For all the experiments, the same set of selected FoV and bandwidth traces
are utilized.

the TOR and more importantly the quality in all users. For
example, the overall average freeze is reduced from 1.07s
to 0.76s over the entire streaming period of 200s, while the
average rendering quality remained the same. So, we can
draw the conclusion that both the individual and overall user
experience can be improved with appropriate latency and
buffer upper bound assignment.

3) Benefit from quality-optimized rate allocation: As de-
scribed in Sec. V-B, given a predicted tile attention distribution
and a bandwidth budget, the rate allocation among tiles should
be optimized so that the overall quality can be maximized. To
demonstrate the effectiveness of such quality-optimized rate
allocation, we contrast the performance of the Flocking system
with the Flocking-prop system, which assign rate to tiles
proportional to the predicted viewing probability, rather than
using the optimized rate allocation. We find that, compared to
Flocking-prop, even with the same FoV prediction accuracy,
Flocking can achieve 0.7 dB higher quality. For each latency
group, quality-optimized rate allocation always leads higher
video quality.

4) Heuristic vs. LSTM based FoV prediction: Finally, we
evaluate the gain from using LSTM-based FoV prediction vs.
heuristic prediction by comparing the Flocking and Flocking-
TLP systems. As shown in Table II, we find that the overall
average TOR is improved dramatically by adopting LSTM
based FoV prediction for all latency groups. Note that even
though TLP/CO-TLP has better prediction for prediction hori-
zon up to 2 seconds, as shown in Fig 7, Group 1 users tend
to reach the buffer upper bound of 2 seconds to minimize
video freeze, leading to a prediction horizon of 3 seconds,
for which LSTMs or LSTMc outperform than TLP or Co-
TLP, respectively. Other latency groups will have even longer
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Fig. 11. CDF of quality and freeze time for all the 31 users.

prediction horizons and can greatly benefit from LSTMc

compared to Co-TLP. Overall, Flocking with LSTM based
prediction achieves consistent gain in TOR than Flocking-TLP,
leading to significantly higher quality.

5) Overall Comparison: The CDF of video quality and
freeze time of all the 31 users are illustrated in Fig. 11.
Fig. 11(a) shows that all the streaming systems using LSTM-
based FoV prediction achieve much higher quality than
Flocking-TLP which adopts TLP or Co-TLP. This demon-
strates the effectiveness of the proposed LSTM based FoV
prediction. While zooming into the range between 40-45 dB,
Flocking can achieve higher quality than Non-Flocking (due to
collaborative prediction) and Flocking-prop (due to optimized
rate allocation). In addition, as shown in Fig. 11(b), Flocking
can also stream with the lowest freeze together with Flocking-
TLP and Flocking-prop. For example all users in the Flocking
system have a freeze duration less than 1.2 seconds. On the
contrary, close to 40% of users in the Non-Flocking and
Flocking-rand systems suffer from freeze duration greater
than 1.2 seconds, and over 10% users have freeze longer
than 2 sec. These are likely users who have poor network
conditions but are randomly assigned short latencies and
buffer upper bounds. Overall, the proposed Flocking strategy
which integrates LSTM based collaborative FoV prediction,
network aware latency and buffer upper bound assignment and
optimized rate allocation, can achieve the highest quality with
minimal freeze time.
In practice, the flocking concept works for any live streaming
system as long as there exists “workable” latency gap between
the front and rear users. Meanwhile, for ultra-low latency
live streaming, due to its very short streaming buffer, it
will be more challenging to accurately control user playback
latency to form a stable (latency-based) flocking structure and
optimize the overall flock performance, e.g., maximizing the
chance to conduct collaborative FoV prediction for the rear
users and reducing the freeze time for the front users. Flocking
for ultra-low and sub-second services will be an interesting
topic for future study.

6) Superiority over benchmarks: We compare the perfor-
mance of our proposed Flocking system with two benchmarks,
uniform viewport quality (UVP) [43] and hierarchical resolu-
tion degrading (HRD) [7]. Both systems employ tile-based
streaming. UVP divides the tiles into the viewport and non-
viewport regions. The lowest bitrate is selected for all the non-
viewport tiles. For the viewport tiles, the bitrate is uniformly

TABLE III
QOE METRICS COMPARISON WITH BENCHMARKS.

Systems TOR Freeze (s) Quality (dB)

UVP 0.4 0.66 34.0
HRD 0.41 0.76 35.4

UVP with LSTMc 0.5 0.74 44.5
HRD with LSTMc 0.5 0.88 45.1

Flocking 0.5 0.76 45.4

increased based on the available bandwidth budget. In HRD
system, titles are grouped into three regions: viewport, view-
port surrounding, and non-viewport. The bitrate is assigned
based on the priority of each region.
Detailed QoE metrics of all the benchmarks and Flocking sys-
tem are shown in Table III. Both UVP and HRD system adopt
TLP based FoV prediction. In addition, to prove the efficiency
of LSTM based collaborative FoV prediction, we enhance the
benchmarks by replacing the TLP with the LSTMc attention
prediction model while keeping all other parts identical to
the original settings. The experiment settings are identical to
those in Sec. VI-C. The results show that UVP and HRD with
TLP based FoV prediction achieve about 0.4 TOR leading to
just 34.0 dB and 35.4 dB quality in terms of WS-PSNR-FOV,
which is the weighted average WS-PSNR of all tiles within
user FoV. If the FoV prediction method is replaced by LSTMc,
TOR can be improved significantly to 0.5, which results in
much higher quality to 44.5 dB and 45.1 dB for UVP and
HRD. With the same FoV prediction strategy, Flocking still
outperforms all the benchmarks by achieving 45.4 dB quality.
UVP performs the best in terms of the video freeze time. All
the other strategies result in roughly the same stall time except
HRD with LSTMc, which suffers the longest freeze time of
0.88 s. Overall, Flocking achieves the best performance among
all the benchmarks by generating the highest video quality and
moderate video freeze time.

VII. CONCLUSION

In this paper, we demonstrated that the idea of “flock-
ing” can be used to improve the efficiency of live 360◦

video streaming from the aspects of both FoV prediction
and video freeze avoidance. By assigning users to different
latency groups and making use of the actual FoV attention
distributions of the front users who have watched the same
video segment, the FoV prediction accuracy for a latter user
can be improved, leading to a significant increase of the video
quality. The proposed LSTM based collaborative FoV predic-
tion algorithms are also shown to improve the FoV prediction
accuracy, especially for long prediction intervals, compared
with heuristic prediction, leading to an overall quality gain
of 10 dB, compared to using the TLP-based approach in our
prior work [17]. In addition, the optimized rate allocation
can increase the overall video rendering quality by 0.7 dB
compared with simply assigning the rate proportional to the
predicted viewing probability. Furthermore, by assigning users
into groups with different latencies and buffer upper bounds
based on their network conditions, the seemly conflicting goals
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of low video freeze ratio (requiring long streaming buffer)
and high FoV prediction accuracy (requiring short streaming
buffer) on individual users can be simultaneously achieved,
improving QoE for all users. The flocking idea can also
benefit content caching and transcoding, as revealed in our
preliminary work in [17]. We will further explore the gain of
flocking-based 360◦ streaming in our future work.
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