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ABSTRACT

Mobile apps are increasingly relying on high-throughput and low-latency content delivery, while the
available bandwidth on wireless access links is inherently time-varying. The handoffs between base
stations and access modes due to user mobility present additional challenges to deliver a high level of
user Quality-of-Experience (QoE). The ability to predict the available bandwidth and the upcoming
handoffs will give applications valuable leeway to make proactive adjustments to avoid significant
QoE degradation. In this paper, we explore the possibility and accuracy of realtime mobile bandwidth
and handoff predictions in 4G/LTE and 5G networks. Towards this goal, we collect long consecutive
traces with rich bandwidth, channel, and context information from public transportation systems. We
develop Recurrent Neural Network models to mine the temporal patterns of bandwidth evolution in
fixed-route mobility scenarios. Our models consistently outperform the conventional univariate and
multivariate bandwidth prediction models. For 4G & 5G co-existing networks, we propose a new
problem of handoff prediction between 4G and 5G, which is important for low-latency applications
like self-driving strategy in realistic 5G scenarios. We develop classification and regression based
prediction models, which achieve more than 80% accuracy in predicting 4G and 5G handoffs in a

recent 5G dataset.

1. Introduction

The growth of mobile Internet traffic has accelerated in
the recent years, thanks to both the breakthroughs in wireless
access technologies, such as mmWave and massive MIMO,
and a fast-growing array of mobile multimedia apps, ranging
from video streaming/conferencing, Virtual Reality, Aug-
mented/Mixed Reality, to autonomous driving, etc. While
the next-generation mobile access infrastructure, such as 5G
network, is designed to deliver high-throughput, low-latency,
and high-reliability, the actual Quality-of-Service delivered
to users is still vulnerable to various impairments to the phys-
ical channel quality between user devices and access points.
It is well-known that wireless signals can be attenuated by
interference, path loss, static and mobile blockage, etc. The
current 4G/LTE mobile access is much more volatile and
unpredictable than WiFi and wireline accesses. While 5G
mmWave transmission can deliver data rates over 1Gbps,
mmWave signals at higher frequency bands (20 -100 GHz)
incur higher free-space path loss, blockage loss, and pene-
tration loss [1]. The bandwidth variations experienced by
users of the initial batch of commercial 5G deployments,
both mmWave and Sub-6GHz, are much more dramatic than
4G/LTE [20, 22].

How to deliver a high level of user Quality-of-Experience
under volatile mobile access conditions is a main challenge
for mobile app developers and multimedia application ser-
vice providers. For delay-tolerant applications, bandwidth
variations can be “absorbed" by sacrificing application-level
latency. In the example of on-demand video streaming, a
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video buffer of tens of seconds is typically employed so that
video can be streamed smoothly as long as the video rate
matches the average bandwidth over ten seconds. However,
such long buffers are not possible for low-latency live video
streaming and video conferencing. With low/no video buffer,
the selected video rate has to closely track the instantaneous
network bandwidth to avoid video freeze. To deliver high
user QoE for such applications, the available bandwidth has
to be accurately estimated in realtime to guide video rate
adaption. Over-estimate will lead to video freeze, and under-
estimate will lead to unnecessarily low video quality. Vari-
ous realtime bandwidth prediction (for the next second) al-
gorithms have been adopted by video streaming systems to
guide video rate adaption [28, 31, 11, 32]. The emerging
VR/AR/MR applications also hinge on high-rate and low-
latency delivery of 360° video/virtual objects over mobile
connections to facilitate seamless integration of physical and
virtual worlds and support user interactions. Realtime band-
width prediction will again play an important role there. An-
other direction to cope with bandwidth variations is mul-
tipath transmission, such as MPTCP [23]. Realtime band-
width prediction can be used by multipath routing algorithms
to proactively adjust the traffic split ratios among all the avail-
able paths. In this paper, we study realtime prediction of
available bandwidth and handoff in 4G/5G mobile networks.
Our first effort is to develop deep-learning based realtime
bandwidth prediction models that generate predictions for
the available bandwidth in the next few seconds based on
the past bandwidth measurement as well as wireless channel
and context information. Specially, we focus on fixed-route
mobility scenarios, covering routine daily commutes through
public transportation and self-driving. We collect long con-
secutive 4G/LTE traces with a rich set of features in New

Lifan Mei et al.: Preprint

Page 1 of 12


lifan@nyu.edu

Realtime Mobile Bandwidth and Handoff Predictions in 4G/5G Networks

York City MTA public transportation system. Through fea-
ture analysis, we identify features with significance for pre-
dicting future bandwidth. We then demonstrate that Long
Short Term Memory (LSTM) Recurrent Neural Networks [9],
in particular TPA-LSTM [25], can effectively mine the latent
temporal patterns embedded in channel and context informa-
tion for accurate multivariate prediction. Our LSTM-based
prediction models consistently outperform the conventional
univariate and multivariate prediction models in both 4G and
5G bandwidth traces.

For handoff prediction, due to the limited initial 5G cov-
erage, and the different deployment plan for 5G and 4G/LTE
on urban and rural areas, 5G and 4G/LTE will co-exist in
the long time. During an application session, a mobile de-
vice will likely switch back-forth between 5G and 4G access
modes. Due to the vast disparity between QoS offered by 4G
and 5@, it is of even greater importance to predict handoffs
between the two access modes in realtime so that applica-
tions can make adjustments in advance to anticipate dramatic
QoS changes resulted from handoffs. As the example of self-
driving vehicle, 5G/4G brings different latency, which trig-
gers totally disparate control strategies. Our second effort is
to predict handoffs between 4G and 5G access modes based
on realtime measurement of bandwidth and channel/context
information. We propose two versions of handoff predic-
tion: in binary prediction, we predict whether the device will
handoff from 4G to 5G or vice versa in the next second; in
continuous prediction, we predict the probability/fraction of
5G access in a short future time window. We demonstrate
that Gradient Boosting Machine (GBM) [4] based classifi-
cation and regression can achieve high accuracies in binary
and continuous 4G/5G handoff predictions.

The rest of the paper is organized as the following. The
related work on realtime bandwidth prediction is reviewed in
Section 2. We motivate and define the realtime bandwidth
prediction problem for fixed-route mobility and present our
LTE dataset in Section 3. TPA-LSTM prediction model is
introduced in Section 4, followed by prediction accuracy com-
parison with baselines. In Section 5, we first present 5G
bandwidth prediction results, then introduce the handoff pre-
diction problem and present GBM-based classification and
regression models for binary and continuous handoff predic-
tion. The paper is concluded with future work in Section 6.

2. Related Work

Realtime bandwidth prediction has been a challenging
problem for the networking community.

Authors of [11] and [32] used the Harmonic Mean of
TCP throughput for downloading the previous chunks as the
TCP downloading throughput prediction for the next chunk.
A simple history-based TCP throughput estimation algorithm
was proposed in [8]. Authors of [14] used an adaptive fil-
ter, Recursive Least Squared (RLS), to make realtime band-
width prediction for the cellular scenario. For the conven-
tional statistical and machine learning models, in [19], the
authors proposed that training a Support Vector Regression

(SVR) model [26] to estimate TCP throughput. In the con-
text of DASH video streaming, in [28], authors adopted pre-
diction algorithm in [8] to guide the realtime chunk rate se-
lection, and used a customized SVR model similar to [19]
for DASH server selection. In the context of video con-
ferencing, in [31], the cellular link is modeled as a single-
server queue driven by a doubly-stochastic service process,
and future bandwidth prediction is generated by probabilis-
tic inference based on the single-server queue model. Au-
thors of [27] used Hidden Markov Model (HMM) for band-
width prediction. Authors of [33] proposed a Random For-
est framework to make realtime LTE bandwidth prediction
based on the context information. The conventional statis-
tical or machine learning methods are based on short se-
quence history, and it is not easy to dig out the temporal
patterns embedded in rich and complex information struc-
tures. For deep leaning methods, in [24], a Deep Neural Net-
work (DNN) based method is applied for bandwidth burst
prediction for Human to Machine (H2M) communication.
[30], [17], and [15] developed a Long Short Term Mem-
ory (LSTM) [6] based method to estimate future bandwidth
based on past bandwidth measurements. In [18], authors dis-
cussed the feasibility of LSTM models on generalized ap-
plication scenarios. For the multivariate time series we are
facing, complex and non-linear inter-dependencies between
variables at different time steps complicate the prediction
task. Instead of the vanilla LSTM, we adopt the recently pro-
posed Temporal Pattern Attention LSTM (TPA-LSTM) [25]
for bandwidth prediction. It applies attention mechanisms to
select the most relevant time steps and variables for predic-
tion. For handoffs, [5] and [12] studied handoff prediction
between cells within the same access mode (LTE or 3G). We
study handoffs between different access modes, specifically,
between 4G and 5G.

3. Realtime Bandwidth Prediction under
Fixed-route Mobility

3.1. Fixed-route Mobility

Most people’s daily network access patterns are rather
predictable. He/She is either at home or office or on the way
between the two, as shown in Figure 1. At home and office,
there is usually good WiFi coverage, leading to good net-
work Quality of Service (QoS). For the commute between
home and office, either driving or taking public transporta-
tion, the routes are also relatively fixed. In Metropolitan ar-
eas, commuters access the Internet through mobile 4G/5G
connections. The mobile access bandwidth is inherently time-
varying, especially with user mobility. It is, therefore, im-
portant to predict future bandwidth to deliver a high-level of
application QoE to commuting users. We choose to focus on
realtime bandwidth prediction for fixed-route mobility not
only because it covers a wide range of daily commute scenar-
ios, but also it enables a DNN model to learn the bandwidth
variation regularity resulted from fixed-routes for accurate
prediction.
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Figure 1: BW Prediction for Fixed-route Mobility

3.2. Realtime Bandwidth Prediction
Let b(?) be the bandwidth available for a user at time 7.
User mobile device periodically measures the quality of the
mobile access link with a certain frequency, e.g., every 1
second. It can obtain a discrete time series of {X(¢),t =
1,2,---.}, where X(r) € R”" is a vector of n types of mea-
sured information, including b(#) and other metrics about the
connection. The realtime bandwidth prediction problem at
time ¢ is to estimate the available bandwidth at some future
time instant ¢ 4 7 given all the collected measurements up to
1
bt +7)=f({X(k),k=1,2,-,1}), €8

where 7 is the future horizon value. For prediction based
on recent history, we use only { X(t — w + 1), -+, X ()} to
predict b(t + 7), where w is the sliding window size. In uni-
variate bandwidth prediction, we only use past bandwidth
measurement to predict future bandwidth, namely

bt +7) =tW ({bk),k = 1,2, - ,1}). 2)

In a multi-variate bandwidth prediction, we use measured
channel and context data in addition to the past bandwidth
measurement for the prediction.

For univariate bandwidth prediction, there are many meth-
ods to construct the prediction function f™(-), from simple
history-repeat, i.e., B(t + 7) = b(¢), Exponential Weighted
Moving Average (EWMA), B(t +1)=(1- a)B(t) + ab(1),
Harmonic Mean, b(+7) = h/zz;é 1/b(t — k), etc., to more
sophisticated signal processing approaches, such as Kalman
filter [2] and Recursive Least Squares (RLS) [7]. In [14],
RLS is used for realtime bandwidth prediction. By assuming
bt +1) = ZZ;(I) w(k)b(t — k), RLS can recursively find the
coefficients w that minimize the weighted linear least squares
cost function. [14] showed that RLS achieves higher accu-
racy than other averaging and signal processing algorithms,
such as Least Mean Square and EWMA etc. For multivari-
ate bandwidth prediction, machine learning tools, such as
Support Vector Machine [19] and Random Forest [33], have
been proposed. In [17] and [30], they show that LSTM deep
neural networks can achieve higher accuracy than the con-
ventional bandwidth prediction methods.

3.3. High-level Design and Rationale

For fixed-mobility, we propose a Deep-learning based
smart agent for mobile bandwidth prediction. Our frame-
work consists of data measurement, model training and model
running steps. Specifically, in the measurement step, for a
fixed commute route, the agent repeatedly takes measure-
ments on multiple trips from the start to the end. Bandwidth
and related metrics are recorded. In the model training step,
one DNN model is trained offline for each commute route,
using all the data collected from that route. For the running
step, the agent picks the model trained for the current route
to generate realtime bandwidth prediction at each time step
based on recent measurement.

Deep Learning for Prediction: Deep Neural Networks
(DNNGs) have recently gained lots of momentum due to the
dramatic increase in data volume and computing power. They
have become the new state-of-art in specific fields, such as
computer vision, speech recognition, and natural language
processing, etc. What they have in common is strong tem-
poral and spatial patterns.

In particular, LSTM-based deep learning method has an
unparalleled advantage over the conventional time series anal-
ysis tools due to its special recurrent kernel structure. We
explore the temporal patten of mobile bandwidth variations
over fixed-routes using LSTM-based DNN.

Easy Adoption: Users of public transportation systems
have strong needs for realtime bandwidth prediction. For a
user watching online video, the video player can adapt the
quality of the video to be downloaded based on the realtime
downlink bandwidth prediction. For a user in a video confer-
ence, the conferencing app can dynamically change the reso-
lution and frame rate of the video to be coded and uploaded
to other users in the conference, based on realtime uplink
bandwidth prediction. Under our proposed smart agent, us-
ing off-the-shelf software and hardware, any ordinary smart-
phone can easily take the measurements. In practice, mea-
surement can be done by network optimization team, by crowd-
sourcing, or even by transportation company. The offline
trained prediction models can run in realtime on local phone
or on edge to improve user QoE in various mobile apps.

3.4. LTE Dataset in NYC

Towards our goals, we conducted a measurement study
on the public transportation system of NYC. Different from
other LTE mobile bandwidth datasets, our dataset is mul-
tivariate and focused on fixed public transportation routes.
We pick five bus/subway routes of the NYC MTA system,
as illustrated in Figure 2a to 2e. The LTE data is collected
from Nov, 2019 to the end of Jan, 2020. For each route, we
collected long uninterrupted traces by taking around eight
trips from one end to the other in both directions, with the
duration of each trip to be more than 30 minutes. The total
duration of our LTE dataset is around 30 hours. We mea-
sured bandwidth, channel, and context related information
using N et M onitor Pro, a mobile network monitoring tool
designed for Android devices. We installed this app on a
Google Pixel 1 phone with unlimited 4G LTE Data Plan. To
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Figure 2: Sample LTE Measurement Routes of Public Transportation System of New York City

Table 1
Statistics of NYC Public Transportation Bandwidth Traces (Mbps)
7 Train Bus B16 Bus B61 Bus B62 Bus M15
Average 8.67 13.71 17.80 18.34 20.63
Median 6.85 12.80 16.00 15.80 19.10
Max 37.40 45.00 47.40 50.40 44.30
Min 0 0 0 0 0
Std 8.29 9.55 11.69 12.16 9.53
Length (s) 15116 22,277 21,174 22,000 23,103
Table 2
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Figure 3: Sample LTE Bandwidth Traces from Subway #7 and
Bus #B62

record the bandwidth, we run i Per f to download data from
our lab server located on our NYC campus, and record TCP
download throughput every 1,000 millisecond. The band-
width is logged on the mobile phone with timestamps, so
we can use timestamps to match the channel and context in-
formation logged by N et M onitor Pro. Figure 3a and 3b vi-
sualize two collected bandwidth traces, one from a subway,
one from a bus. Table 1 presents the bandwidth statistics of
the collected traces.

3.5. LTE Feature Analysis

Other than the bandwidth, we recorded a total of 52 mo-
bile channel and context related features. Out of all the fea-
tures, we conduct feature selection by calculating the cross-
correlation between each feature and bandwidth. Only eight
features are selected as the input for the prediction models,
as illustrated in Table 2. We further analyzed the importance
of each selected feature for bandwidth prediction using Ran-
dom Forest [16]. We use all the eight features at #— 1 as input
of a Random Forest model, the output is the bandwidth at ¢.

Selected Features

Information Captured

download throughput in Mbps
number of LTE cells the device can
switch to

Feature
Bandwidth(BW)
LTE-neighbors

RSSI power level of received signal

RSRQ quality of received signal

Echng(Ech) whether ENodeB has changed from
previous second

TA time advance needed to reach the EN-
odeB

Speed moving speed of device

Band frequency band of signal

Table 3 shows the importance weights of all features on all
traces.

As expected, Bandwidth at b(t — 1) has the highest predic-
tion weight on b(¢). Band has the second highest weight. This
is because high speed LTE data transmission is provided in
frequency bands like Band 1900 and 2100, while relatively
low speed transmission is provided in others, like Band 700.
Bandwidth tends to be high when the signal is transmitted
in an ideal band, and becomes low when switched to a non-
ideal band. The third most important feature is RSSI, which
indicates whether the signal power between the base station
and the mobile device is strong or not. Meanwhile, feature
RSRQ’s weight is not as high, since it is calculated from RSSI.
The importance weights of the remaining features are not
very high. But this does not mean they are not important
for bandwidth prediction. It is only that when all eight fea-
tures are used together, their prediction power is dominated
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Table 3
Feature Importance on LTE Dataset
Bandwidth Band RSSI RSRQ TA LTE_neighbors Speed Echng
7 Train 0.5805 0.1105 0.1189 0.0601 0.0393 0.0540 0.0338 0.0028
Bus B16 0.6698 0.1382 0.0612 0.0283 0.0585 0.0195 0.0230 0.0014
Bus B61 0.5170 0.1253 0.1890 0.0634 0.0660 0.0192 0.0184 0.0017
Bus B62 0.5392 0.2310 0.1212 0.0294 0.0491 0.0119 0.0173  0.0009
Bus M15 0.6062 0.2383 0.0497 0.0281 0.0178 0.0269 0.0319 0.0010

by other more powerful features, such as Bandwidth, Band, and
RSSI. But they still might provide complementary informa-
tion in certain scenarios. For example, Echng indicates hand-
off of ENodeB. Since our device keeps moving, the hand-
offs occur frequently. Due to handoff, there is a short period
of time when the device receives no service from any EN-
odeB and bandwidth dips to zero. We recorded the ID of the
ENodeB that our device is connected to. Whenever the EN-
odeB ID changes, we consider a handoff happens. Similarly,
Speed should be an important feature for mobile bandwidth
prediction. Both the signal quality and handoff frequency
are highly dependent on device moving speed. But its im-
portance weight calculated by Random Forest is not high.
This suggests that its impact on bandwidth is indirectly car-
ried by BAND/RSSI and Echng. We feed all the eight selected
features to our DNN models, which are expected to exploit
the complementary prediction power of all features (better
than Random Forest) for more accurate prediction.

4. TPA-LSTM based Bandwidth Prediction

4.1. Introduction to TPA-LSTM
We pick Temporal Pattern Attention Long Short-Term

Memory (TPA-LSTM) [25] as our core DNN prediction model.

TPA-LSTM extends the vanilla LSTM [9] with the Atten-
tion Mechanism [29]. Figure 4a shows the internal structure
of the vanilla LSTM unit. LSTM shows great performance
in time series analysis due to its special internal memory
cell, forget gate, input gate, and output gate. Due to re-
current update, LSTM can keep “long memory" of a time
series. Through training, LSTM can learn which part of a
time series is important and which is not for predicting the
output. Meanwhile, the conventional Attention Mechanism
looks back information from the previous time steps, uses
the relevance to improve the prediction accuracy. But it is
difficult to deal with long time sequences. TPA-LSTM [25]
combines the merits of LSTM and Attention Mechanism.
It uses a set of Convolution Neural Network (CNN) filters
to extract time-invariant temporal patterns. It makes the di-
mension of attention to be feature-wise, so that it can learn
the inter-dependencies among multiple features over a long
history time window. Figure 4b illustrates the architecture of
TPA-LSTM. Let A, be the LSTM hidden state at time ¢. In-
stead of using A, to generate prediction for 7+ 1, TPA-LSTM
learns the “importance” of the hidden states {h,_y, -+, h,_,, }
of the previous w steps. Specifically, k 1-D CNN filters with
length w are applied to {h;_y, -+, h,_,,}, as shown in Fig-

ure 4b. Each CNN filter makes convolution over hidden fea-
ture values. All filters produce a new matrix HC. The atten-
tion part calculates the attention (importance) weights of all
the convoluted hidden features. The scoring function calcu-
lates a weight for each row of HC by comparing it with the
current hidden state /,. The rows of HC is then weighted
summed by their corresponding weights to get a new vec-
tor V;, which is concatenated with A, to generate an updated
hidden state h; for the final prediction [25]. The CNN filters
and attention calculation enhance the capability of vanilla
LSTM to mine periodic temporal patterns in time series.
Through experiments on Multivariate Time Series datasets,
such as currency exchange rate among several countries and
electricity among multiple clients, it has been demonstrated
that TPA-LSTM can achieve higher accuracy than LSTM in
multivariate time series prediction, even when the periodic
pattern is weak [25]. For our mobile bandwidth prediction
problem, in some cases, the future bandwidth may be more
dependent on history data farther back than the most recent
history. TPA-LSTM, using its CNN, can look back further to
dig out the inter-dependencies among multiple variables that
are multiple time steps apart. In addition, TPA-LSTM per-
fectly suits the fixed-route mobility scenarios under study.
As mentioned in Section 3.3, for repeated long trips along
the same route, periodic patterns on bandwidth, and the re-
lated channel features are expected within a single trip and
cross multiple trips. TPA-LSTM can effectively mine those
patterns for more accurate prediction.

4.2. Prediction Performance
4.2.1. Methods for Comparison

Here we make a comparison between TPA-LSTM method
and other baselines univariate and multivariate methods:

e RLS: Recursive Least Square adaptive algorithm [14]
e RF: Random Forest [33]
e LSTM: Vanilla Long Short-Term Memory [30]

Among them, RLS is for univariate with previous bandwidth
measurement as its only input feature. The rest of the meth-
ods are for multivariate bandwidth prediction, with all the
eight features as the input.

4.2.2. Model Settings

For neural network methods, the network structure is: 3
layers, and every layer has 32 units with dropout 0.2. We di-
vide our LTE dataset into a training set, validation/development

Lifan Mei et al.: Preprint

Page 5 of 12



Realtime Mobile Bandwidth and Handoff Predictions in 4G/5G Networks

Other part of the network

Signal control
—

the output gate Output Gate

fmrﬁ&y
Cell
~

— Input Gate LSTM

Other part of the network

(a) LSTM Unit

e

Forget Signal control
l—
Gate the forget gate

Signal control
the input gate

(1 ]

he N Vi
T\
e — O R R OR
. N ~ coring AN - p hl‘

A ; Function :

: - ( % ) — X
( 3
(b) TPA-LSTM

.

Figure 4: DNN Architecture: a) Internal Structure of LSTM Unit; b) TPA-LSTM Network

Table 4
Evaluation on Bus M15

M15 Mean:  22.7147  Std: 9.2526
Horizon =1 RLS RF LSTM  TPA-LSTM
RMSE 47040 4.4912 4.1899 4.0038
MAE 3.3713  3.3682 3.1052  2.9043
CORR 0.8647 0.8804 0.8939  0.9025
Horizon =2 RLS RF LSTM  TPA-LSTM
RMSE 5.1766  4.7689 4.6514 4.6102
MAE 3.6173 3.4236 3.2973  3.2362
CORR 0.8357 0.8601 0.8663  0.8671
Horizon =3 RLS RF LSTM  TPA-LSTM
RMSE 55763 5.2344 5.1524  5.0779
MAE 3.8503 3.7594 3.6317  3.5488
CORR 0.8087 0.8288 0.8309 0.8362

set, and test set, according to ratios of 60% : 10% : 30%.
We use Adam [13] as optimizer with the default learning rate
of 0.001. The loss function is Mean Square Error (MSE) of
the predicted bandwidth. For features unique to TPA-LSTM
method [25], we set the CNN filter number to 32. For Ran-
dom Forest, we use the same model setting as [33]. We set
the criterion as Mean Square Error (MSE). The max-features
is set to be Square Root (SQRT). To obtain good perfor-
mance, the number of decision trees is set to be 1,200. The
max-depth of the trees is set to be 20. The minimum number
of samples to be split is 10. The minimum samples kept in
one leaf is set to be 2.

4.2.3. Performance Metrics

We use Root Mean Square Error (RMSE) and Mean Ab-
solute Error (MAE) as the main metrics for prediction errors,
and use Pearson Correlation (CORR), ranging from —1to 1,
as the reference metric for sequence correlation between the
prediction and the ground-truth.

4.3. Results and Analysis

We compare the performance of all the models at dif-
ferent prediction horizons, 7 = 1,2, 3 seconds. For the his-
tory window size, we set W to 5 for RLS, LSTM, and TPA-

Table 5
Evaluation on Subway Train 7

Train7 Mean: 8.3430 Std: 8.0403
Horizon =1 RLS RF LSTM  TPA-LSTM
RMSE 4.8929 4.6958 4.3964 4.3483
MAE 3.4632 3.5091 3.2936 3.1941
CORR 0.8003 0.8120 0.8405 0.8414
Horizon =2 RLS RF LSTM  TPA-LSTM
RMSE 5.0092 4.8089 4.6065 4.5884
MAE 3.4660 3.5488 3.3622 3.2710
CORR 0.7901 0.8025 0.8216 0.8222
Horizon =3 RLS RF LSTM  TPA-LSTM
RMSE 5.3253 4.9537 4.8869 4.8781
MAE 3.7218 3.6556 3.5845 3.4617
CORR 0.7610 0.7900 0.7953 0.7963

LSTM. For RF, according to the conclusion from [33], a too
large W would decrease the accuracy, so we set W = 7.

Table 4 to Table 5 show the detailed evaluation result
on two representative dataset traces Bus M15 and Subway
Train 7. Table 6 shows the RMSE from B61, B62, and B16
for Horizon equals 1 to 3. The unit over all datasets is Mbps.
Among those tables, bold fonts represent the best one for
each metric. We can find that TPA-LSTM is the best method
on RMSE, MAE, and CORR almost over all the datasets and
all the prediction horizons. Taking 7 = 1 as an example, for
RMSE, TPA-LSTM is on average 11.7% better than the other
methods; the improvement over the second-best method is
3.6%. For MAE, TPA-LSTM is on average 15.28% better
than other methods, the improvement over the second-best
is 5.8%. It shows that TPA-LSTM fits our bandwidth pre-
diction problem well. Also, for the horizon value, as the
horizon becomes longer, the prediction performance of each
algorithm gets worse. The decreasing trend is also reflected
by CORR values. E.g., in Table 5, CORR of TPA-LSTM de-
creases from 0.8414 to 0.7963 when horizon increases from
1 to 3.

In addition, we found that the relative performance order
is RLS<RF<LSTM<TPA-LSTM in general. As a univari-
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Table 6
RMSE for B61, B62, and B16 Bus Traces

Horizon = 1 Horizon = 2 Horizon = 3
RMSE RLS RF LSTM TPA RLS RF LSTM TPA RLS RF LSTM TPA
B61 4.3403 | 4.8865 | 4.2137 | 4.0452 4.7124 | 4.8845 | 45162 | 4.4607 5.1202 | 5.2650 | 4.9645 | 4.8987
B62 4.8097 | 4.6408 | 4.4797 | 4.2138 || 5.3032 | 5.0046 | 4.8975 | 4.8286 || 5.7675 | 5.4324 | 5.4020 | 5.3250
B16 3.7693 | 5.4915 | 3.6762 | 3.5362 || 3.9959 | 4.7346 | 3.8984 | 3.7348 || 4.2284 | 5.0466 | 4.0465 | 3.9697

ate algorithm, RLS is not as good as the other multivariate
algorithms. Even though RLS is already a good adaptive fil-
ter for univariate bandwidth prediction [14], it cannot utilize
other useful channel and context information, so it hardly
can reach the performance of the other multivariate algo-
rithms. Random Forest is multivariate, and utilizes the chan-
nel and context information through feature pattern mining.
However, for multivariate time series, it is also very im-
portant to mine temporal patterns in the long-term time do-
main. Random Forest does not have enough mining capacity
for the long-term temporal patterns. In [33], it was shown
that longer history window size not only cannot help predic-
tion, but could decrease the performance. LSTM-based al-
gorithms are designed to mine both long and short-term tem-
poral patterns. This explains why LSTM-based algorithms
are better than Random Forest even though they use the same
input features. Taking Train7 in Table 5 as an example, at
horizon 1, RMSE of RF is 4.6958, however LSTM and TPA-
LSTM are 4.3964 and 4.3483, repectively. The gap is large.
For MAE, the gap is also clear. MAE of RF is 3.3591, but
for LSTM and TPA-LSTM, MAE are 3.2936 and 3.1941 re-
spectively. LSTM and TPA-LSTM have similar architecture:
recurrent neural network between input and output, and use
various gates to control input and output. That is why the
performance gap between LSTM and TPA-LSTM is smaller
than the gaps to the others. The small gain of TPA-LSTM
comes from its attention mechanism, which allows it to work
with longer time windows and a wider range of features at
each time step.

5. Bandwidth and Handoff Prediction in 5G
Networks

The fifth generation (5G) mobile networks have started
to be deployed for commercial use world-wide since 2019.
It will become more and more prevalent in the near future.
5G not only promises higher bandwidth throughput but also
lower latency than 4G LTE. Figure 5 from [3] visualizes the
10x reduction of the target end-to-end and air latency from
4G to 5G. At the same time, 5G PHY layer operates at higher
frequency bands, e.g., millimeter Wave (24-100GHz), which
are more vulnerable to higher free space path loss, blockage
loss, and penetration loss [1]. This poses a significant chal-
lenge to deliver stable 5G mobile access.

5.1. Realtime 5G Bandwidth Prediction
5.1.1. 5G Dataset

We were planning to extend our measurement campaign
to commercial 5G deployment in NYC after finishing our

E2E Latency <5ms
| 50 ms

H Sms 5G

A Tenth of E2E Latency
E2E Latency

Air Latency < 1 ms

ATenth of Air Latency

Air Latency

Figure 5: Target Latency in 5G vs 4G [3]

LTE measurement. However, due to the unexpected COVID-
19 pandemic, we could not go out for taking measurements
in the hardest hit city in the world. We had to turn to 5G
datasets collected by other groups before the pandemic. We
got to know two recent public datasets; one is from the Uni-
versity of Minnesota (UMN), USA [20], the other one is
from the University College Cork (UCC), Ireland [22]. The
UMN trace was collected in several metropolitan areas in
USA. However, their traces are relatively short, e.g. around
300 seconds per mobility trace, and the channel information
and context information were not published. On the other
hand, the UCC 5G traces were collected in Cork, Ireland
with uplink/downlink bandwidth, as well as rich channel and
context information. Even though the traces were not col-
lected on the public transportation system, we picked the car
driving traces along fixed-routes (based on analyzing GPS
location information) and focus on download bandwidth pre-
diction to make them comparable to our own LTE traces.

Since 5G networks do not have complete coverage yet,
the current practice is to fall back to 4G/LTE whenever a
UE moves outside of 5G coverage.

In the driving traces, the mobile access mode alternates
between 5G and 4G. Table 7 shows the full statistics of band-
width on the 5G dataset. The first row is the overall statistics
for mixed 5G/4G access modes. The total length is 18,043
seconds. The average bandwidth in Mpbs is 39.78. The me-
dian is 12.68. The highest is 532.91. The lowest is 0. The
standard deviation is as high as 66.73, even twice as the av-
erage value! The second row is for 5G access mode only,
and the third row is for 4G access mode only. It is obvious
that while the 5G access mode has higher average bandwidth
than 4G access mode, it also has higher variance than 4G as
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Table 7

Statistics of UCC 5G Driving Dataset (Mbps)

Average Median  Max  Min  Std  Duration (s)
5G/4G 39.78 12.68 532.91 0 66.73 18,043
5G-only 57.35 19.887 532.91 0 78.95 10,837
4G-only 13.36 8.33 372.53 0 24.77 7,210
Table 8 40
Selected 5G Features —_ — LE
- &2- —_— 5G
Feature Informatlon Captured_ 30! @ LEtwsG
DL downlink throughput in Mbps 0
uL uplink throughput in Mbps = @ SGrolLTE
RSSI power level of received signal r=4 20
RSRQ quality of received signal %
RSRP reference signal receive power g
NRXSRP RSRP in neighbor cell - 10
NRXSRQ RSRQ in neighbor cell %
SNR ratio of signal power to the fan
noise power (in db) 0 i : : :
oI channel quality indicator 10 20 30 40
NetworkMode current access mode (5G/LTE) Time(s)

indicator for horizontal handoff
between cells of the same mode
moving speed of device

Cell-handoff

Speed

expected. It poses a significant challenge for accurate band-
width prediction, especially when the access mode switches
back-forth between 5G and 4G.

5.1.2. 5G Features Analysis

There are totally 26 features recorded in the UCC dataset.
Similar to Section 3.5, we selected 12 features for 5G band-
width prediction using the Random Forest for importance
analysis, as shown in Table 8. RSSI and RSRQ have similar
meaning as in 4G. NRxSRP and NRxSRQ are signal quality in
neighboring cells (NR stands for Neighbor). Cell-handoff
is similar to Echng for LTE, indicating handoff between cells.
The feature importance for predicting the next-second down-
load bandwidth is reported in Table 9. We can find that the
feature with the highest importance is DL, with the impor-
tance of 0.585. The second highest is UL with importance of
0.17. The importance of other features are less than 0.10,
but they are still taken into account for bandwidth predic-
tion because they have complementary channel and context
information for bandwidth prediction.

5.1.3. Prediction Results

Table 10 shows the bandwidth prediction accuracy on the
5G driving trace. The models and parameter settings are
the same as in Section 4.2. We can find that on the 5G
dataset, TPA-LSTM is still better than the other prediction
models. We can also find that the accuracies for all meth-
ods are universally worse than their accuracies in our LTE
datasets. This is expected because the 5G signal is more dy-
namic: the mean of the testset is around 27.579, however, the
standard variance is as high as 51.276, which is totally differ-
ent than the five LTE datasets. For Horizon = 3 in Table 10,

Figure 6: Sample Trace with 5G/LTE Handoffs

Random Forest is slightly better than TPA-LSTM in terms
of RMSE and CORR, while TPA-LSTM is better in terms
of MAE. The large variance of 5G bandwidth and the long
prediction horizon of three jointly make the prediction task
more challenging, and TPA-LSTM’s accuracy improvement
is not as big as in the less challenging 4G cases and shorter
prediction horizons.

5.2. LTE/5G Handoff Prediction

It is expected that 5G and 4G/LTE will coexist for a long
time in the transition phase. A mobile device will frequently
switch between 4G and 5G access. Figure 6 shows a sam-
ple bandwidth trace of 40 seconds in the UCC 5G driving
dataset. The handoffs between 4G and 5G are marked in red
circles. The handoffs occur frequently, and the device stays
within one mode for only around 10 seconds before switch-
ing to the other mode, largely due to the driving speed of
43.65 km/h. Table 11 shows the handoff statistics of the
whole driving trace. The average sojourn time with each
mode after a handoff is less than 100 seconds and the fre-
quency of handoff is as high as 265 times in a trace of 18, 047
seconds.

As witnessed in Table 7, there are apparent bandwidth
differences between 5G and 4G accesses. In addition to high
bandwidth, 5G is also designed with other new QoS tar-
gets, such as ultra-reliable and low-latency communication
(URLLC) [10], which is completely absent from LTE net-
works. 5G is expected to have a QoS leap. In many applica-
tion scenarios, high data throughput is not the only QoS con-
sideration. For example, in remote surgery and autonomous
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Table 9
Feature Importance on 5G Dataset in percentage(%)
DL UL NRxSRP RSRP  NetworkMode RSSI NRxSRQ Speed SNR RSRQ CQI Cell-handoff
58.50 17.40 5.04 3.95 3.81 2.54 241 1.98 1.97 1.21 1.14 0.05
Table 10 riod. We introduce a continuous version of the handoff prob-
Bandwidth Prediction Accuracy on 5G Driving Trace lem. Namely, we introduce a continuous variable p(?) as the
fraction of time that 5G accesAs is used in a future window
. t+A-1
5G_Driving _Mean:  27.5/97 STD: _ 51.2763 [t.0+A—1],1e, p(t) = 2,2, m(k)/A. We can then es-
Horizon = 1 RLS RE LSTM TPALLSTM timate the probability that the device will have 5G access in
RMSE 30.8272 25 2600 251736 24.8120 a future time window starting atr + t as:
MAE 12.6288 10.7901 10.0174 9.0615 .
CORR 0.8016  0.8713  0.8713  0.8771 pt+7) =G ({ Xk k=t-—w=1,1}). (4
Horizon =2 RLS RE STM TPALSTM This can be studied as a regression problem.
RMSE 38.3078 34.5933 34.4389 33.6579 . . .
MAE 161722 167128 15.7254 13.5419 5.2.2.. GBM-b.ased Bm.ary Handoff ?’redzctwn
CORR 0.6734 0.7503 0.7476 0.7605 Gradient Boosting Machine (GBM) [4] is an Ensemble Learn-
ing method for prediction problems. The main idea of GBM
Horizon = 3 RLS RE LSTM TPA-LSTM is to ensemble many weak prediction models, generating many
RMSE 420236 39.2689 399783 40.2299 sequential decision trees, to build a strong prediction model.
MAE 18.4830 20.4666 19.9049 17.0739 To be specific, for inputs that consist of many parameters, ev-
CORR 0.5680  0.6547  0.6506  0.6331 ery GBM decision tree would generate an output. Outputs

driving, the key is that the command and feedback signals
should be sent and received with low latency. In autonomous
driving, if the control signals cannot be sent and received in
time, it will lead to critical consequences. If one can esti-
mate whether a mobile device will have 5G access in the
near future, it will provide valuable information for many
applications to adapt their operations. Going back to the au-
tonomous driving example, if one can predict the availability
of 5G access, the autonomous driving application can plan
ahead for “normal strategy" or “conservative strategy" that
works with short or long latencies. For a mobile AR applica-
tion, the low latency of 5G access can support more frequent
user interaction with virtual objects and more real-time feed-
back, meanwhile the high throughput of 5G access can facil-
itate data-intensive computation offload to edge servers. We
now study 4G/5G handoff prediction.

5.2.1. Handoff Prediction Problem

Let m(t) be an indicator variable representing whether the
current access mode is 5G or not. A handoff from 5G to
4G/LTE occurs at ¢ if m(r — 1) = 1 and m(t) = 0. Similarly,
a handoff from 4G/LTE to 5G occurs at ¢ if m(t — 1) = 0 and
m(t) = 1. To predict handoff at a future time 7+ 7, we simply
need to estimate:

mit+1) =Gy ((X(k),k=t—w+1,-,1}), (3)

where w is the history window size, X (k) is the past mea-
surements, including m(k). This can be studied as a binary
classification problem.

Due to the frequent handoffs back-forth between 5G and
4G, m(t) oscillates between 0 and 1 during the transient pe-

of all decision trees are fused to generate the final output.
Compared with the other traditional machine learning classi-
fication models, Ensemble Learning algorithms are more ro-
bust against over-fitting when the number of input features is
large. Typically, there are two categories, Gradient Boosting
Classifier (GBC), which is to solve classification problems,
and Gradient Boosting Regressor (GBR), which is to solve
regression problems. In our LTE/5G handoff Prediction, we
apply GBC to predict binary handoff events (i.e. whether
network mode will change or not), and apply GBR to pre-
dict the continuous version of handoffs, (i.e., the chance of
5G access in the near future). We use the Scikit-Learn [21]
library to build our GBC and GBR models.

Data Pre-processing: For handoff prediction, we use
the same UCC 5G driving dataset [22]. We use the past data
from the last 5 seconds, i.e., w = 5, to predict whether the
access mode will change in the near future. Since handoff
prediction is for applications to adjust their operations, to
give applications additional time to prepare for upcoming
changes, we mark a handoff if the access mode will switch
within the next three seconds. Based on that, we create the
dataset to train and test our handoff prediction models: ex-
tracting all 750 input-output pairs where handoffs happened,
and randomly picking 750 input-output pairs where there is
no handoff. Among the 750 negative samples without hand-
off, half of them are temporally close to the positive hand-
off samples, and the remaining half are far from the handoff
samples.

Features for Handoff Prediction:

As discussed, we use data from the last 5 seconds for hand-
off prediction. For each second, we first consider all the fea-
tures from our bandwidth prediction experiments. Here, in-
stead of the calculated Cell-handoff feature, we use the raw
Cell1D. Additionally, we further process the raw NetworkMode
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Table 11

4G/5G Handoff Statistics in UCC 5G Driving Trace

56 - LTE LTE - 5G Avg. 5G Sojourn

Avg.

LTE Sojourn  STD 5G Sojourn STD LTE Sojourn

132(times)  133(times) 81.48(s)

54.21(s) 147.25(s) 104.74(s)

Table 12
Different feature sets for our handoff prediction experiments.

The BW feature set contains bandwidth features only, and the 1.0
w.o. BW set contains all features except for the bandwidth
features. 0.8
Features  # features per second total features %
All 13 65 506
BW Only 2 10 v
w.0. BW 11 55 ';_g 0.4
g
Table 13 02 Do et Use Bandwidth (AUC = 08
Accuracy on Validation Set with Different Learning Rates (All only Use Bandwideh (AUC = 0.65)
features) o ® Model Selection
Learning Rate 001 004 00475 005 0.0525 8o T T
Average Accuracy 0.737 0.767 0.751 0.766 0.763
Learning Rate 0.055 0.1 0.25 0.5 0.75 . .
Average Accuracy 0.756 0759  0.753 0740 0.724 Figure 7: ROC Curve for Unified Model
feature in the previous steps to inform the model whether the
access mode has switched in the recent past. Finally, we con- 1.0
catenate the second-wise features from 5 seconds together. }_’f_l
This results in 13 x 5 = 65 features in total. Other than using Z08 ’
the entire features, we also try two other feature combination £
sets to predict handoffs: 1) only use the bandwidth features 2 0.6 /,
UL_bitrate and DL_bitrate as input features; 2) use all fea- Z, ' F
tures except for UL_bitrate and DL_bitrate bandwidth fea- E HI
tures. Table 12 summarized the different feature sets for our %0'4
handoff prediction experiments. We also tried to add statis- 2
= —— LTE to 5G (AUC = 0.90)
tical features, such as average, variance, median, etc., to the 0.2 5G to LTE (AUC = 0.87)
raw features, but did not achieve significant improvement. . handom Suess
We just use raw features in the rest of the study. R 04 06 08 1.0

Parameter Tuning: In Gradient Boosting Classifier, we
mainly tune four parameters: n_estimators, learning_rate,
max_features, and max_depth in the training stage.

For example, for learning rate, we tried different val-
ues. For each candidate learning rate, we do 5-fold valida-
tion, where we will get 5 disjoint train-validation set split.
For each split, we compute the prediction accuracy when the
model built on the training set is run on the testset. We then
compute the average accuracy of these five disjoint configu-
rations as the performance of this specific learning rate. As
we can see at Table 13, for experiments that use all features,
when the learning rate equals 0.04, we can get the highest
average accuracy, which is 0.767. So, we set the learning
rate as 0.04. Similarly, the best learning rate for only using
bandwidth features is obtained as 0.1, and the best learning
rate for the feature set without bandwidth features is 0.0475.
Similarly, we set the other parameters as: n_estimators =
500, max_features = 65 (10 for BW Only feature set, and 55
for w.o BW feature set); and max_depth = 8.

False Positive Rate (FPR)

Figure 8: ROC Curve for Separated Models

Table 14
Confusion Matrices, the values within each cell are for different
feature combinations: All/BW/w.o. BW

Predicted 0
164/138/168 (TP)
53/80/44 (FN)

Predicted 1
67/93/63 (FP)
166/139/175 (TP)

Actual 0
Actual 1

Results: For the dataset, 70% of the data is in the training
set, the rest 30% is in the test set. The confusion matrices for
three feature sets are compared in Table 14. “0" represents
no handoff, and “1" represents handoff. Table 15 reports the
True Positive Rate (TPR), False Positive Rate (FPR), Accu-
racy, F1 Score for each feature set.

We also draw Receiver Operating Characteristics (ROC) curves
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Table 15

Prediction Performance of Different Feature Combinations

Features TPR FPR  Precision Recall Accuracy F1
All 0.758 0.290 0.712 0.758 0.733 0.735

BWOnly 0.635 0.403 0.599 0.635 0.616 0.616

w.o. BW 0799 0.273 0.735 0.799 0.762 0.766

4
©

o
o

o
>

Prediction Value

o
)

|l (

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
p Value

Figure 9: Box Plots for Prediction Accuracy at Different p
Values

and compute the Area Under the Curve (AUC) for GBC with
three feature sets in Figure 7. We also mark the selected
TP/FP trade-off point on the curve in red. For the bandwidth-
only feature set, the AUC is only 0.65, which means this
model has poor discrimination. When we use all features or
all except for bandwidth features, the AUC is 0.82 and 0.83,
respectively, which means these two models have excellent
discrimination. It is clear that only using bandwidth features
cannot predict the handoff well. Other channel quality and
context features can significantly improve the accuracy. No-
tice that the green curve and the blue curve are very close.
This implies that adding bandwidth information into the fea-
ture set does not really improve accuracy (made it slightly
worse instead). However, in our previous correlation anal-
ysis, bandwidth and mode switch have a high correlation
with handoffs. This suggests that correlation does not nec-
essarily translate into causality. In our setting, handoffs are
triggered by channel quality changes, resulted from device
mobility, and bandwidth variation is also a consequence of
channel quality changes and handoffs. Therefore, it is im-
portant to look into channel and context information when
predicting handoffs and bandwidth variations in near future.

5.2.3. Separated 4G — 5G and 5G — 4G Prediction
Models

All the experiments above only consider whether network

mode will switch, no matter the switch is from 4G to 5G or

5G to 4G. It is expected that the two types of handoffs follow

very different patterns. Now we build separated models for

two types of handoffs. We divide the handoft datasets into

two subsets, one with all samples where the current access
mode is 5G, the other one with all samples where the current
access mode is 4G. Then we train separated GBC models us-
ing 5-fold cross validation and optimal learning rate tuning.
The prediction results are shown in Table 16. We also draw
Receiver Operating Characteristics (ROC) curve and com-
pute the Area Under the Curve (AUC) for these two models
in Figure 8. As expected, while the prediction accuracies for
the two types of handoffs are similar, the performance of the
separated models are better than the single model for both
types of handoffs. This demonstrates that customized hand-
off models can better mine the latent characteristics of each
type of handoff for more accurate prediction.

5.2.4. GBR-based Continuous Handoff Prediction

For the continuous version of the handoff prediction, we
use all the features from the past 10 seconds as input, i.e.,
window size w = 10, and set the future window size A = 8.
Then p(t) is the fraction of time that the device will have
5G access within [t,¢ + 8]. For example, p = 1 means the
access mode in every second of the next 8 seconds is 5G.
We draw boxplots of the predicted p values for all ground-
truth p values ranging from O to 1, in Figure 9. Most test
samples have p value of either 0 or 1. As we can see, the
prediction errors and their variances for p = 0 or p = 1 are
small, reflected by the narrow boxes centered around the true
value. The variances of predictions for samples with p value
between 0 and 1 is large, reflected by the wide boxes. In
general, the prediction median is in line with the ground truth
value ranging from 0 to 1. The RMSE between the predicted
value and the ground-truth is 0.109. This suggests that GBR
can predict well the probability/fraction of 5G access in the
near future. Such prediction can provide valuable hints for
applications to adjust their operations based on the expected
QoS metrics in each access mode.

6. Conclusion

In this paper, we studied the realtime mobile bandwidth
and handoff prediction problem using 4G and 5G traces. For
fixed-route mobility scenarios, we collected long consecu-
tive traces with rich features, and demonstrated that LSTM,
TPA-LSTM in particular, can effectively mine temporal pat-
terns in channel and context information for accurate future
bandwidth prediction. For 4G & 5G co-existing networks,
we proposed a new 5G/4G handoff prediction problem to
mobile networking and multimedia system community. For
binary and continuous 5G/4G handoff prediction problems,
we developed GBM-based classification and regression mod-
els to achieve 80 + % prediction accuracy. As future work,
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Table 16

Performance of Separated Handoff Prediction Models

Handoff  TPR FPR  Precision Recall Accuracy F1
5G to 4G 0.853 0.254 0.767 0.853 0.799 0.808
4G to 5G 0.882 0.243 0.789 0.882 0.820 0.833

we will collect a more extensive 5G dataset in NYC MTA
system to further improve our prediction models. We also
plan to integrate the developed prediction models into low-
latency live video streaming and AR application designs to
demonstrate how realtime bandwidth and handoff predic-
tions can improve application QoE.

References

(1]

[2]
[3]
[4]

[3]

[6]

[7]

[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

Al-Falahy, N., Alani, O.Y., 2019. Millimetre wave frequency band as
a candidate spectrum for 5g network architecture: A survey. Physical
Communication 32, 120-144.

Brown, R.G., Hwang, P.Y,, et al., 1992. Introduction to random sig-
nals and applied Kalman filtering. volume 3. Wiley New York.
Burbank, J.L.., 2019. 5g vs 4g latency. URL: https://futurenetworks.
ieee.org/images/files/pdf/FirstResponder/2019/Jack-Burbank.pdf.
Friedman, J.H., 2001. Greedy function approximation: a gradient
boosting machine. Annals of statistics , 1189-1232.

Ge, H., Wen, X., Zheng, W., Lu, Z., Wang, B., 2009. A history-based
handover prediction for lte systems, in: 2009 International Sympo-
sium on Computer Network and Multimedia Technology, IEEE. pp.
1-4.

Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to forget:
Continual prediction with Istm .

Haykin, S., 2008. Adaptive filter theory. pearson education india, in:
27th Annual International Conference of the Engineering in Medicine
and Biology Society, IEEE Press. pp. 1212-1215.

He, Q., Dovrolis, C., Ammar, M., 2007. On the predictability of large
transfer tcp throughput. Computer Networks 51, 3959-3977.
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory.
Neural computation 9, 1735-1780.

Ji, H., Park, S., Yeo, J., Kim, Y., Lee, J., Shim, B., 2018. Ultra-
reliable and low-latency communications in 5g downlink: Physical
layer aspects. IEEE Wireless Communications 25, 124-130.

Jiang, J., Sekar, V., Zhang, H., 2014. Improving fairness, efficiency,
and stability in http-based adaptive video streaming with festive.
IEEE/ACM Transactions on Networking (ToN) 22, 326-340.

Kim, T.H., Yang, Q., Lee, J.H., Park, S.G., Shin, Y.S., 2007. A mobil-
ity management technique with simple handover prediction for 3g Ite
systems, in: 2007 IEEE 66th vehicular technology conference, IEEE.
pp- 259-263.

Kingma, D.P,, Ba, J., 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 .

Kurdoglu, E., Liu, Y., Wang, Y., Shi, Y., Gu, C., Lyu, J., 2016. Real-
time bandwidth prediction and rate adaptation for video calls over cel-
lular networks, in: Proceedings of the 7th International Conference on
Multimedia Systems, ACM. p. 12.

Lee, J., Lee, S., Lee, J., Sathyanarayana, S.D., Lim, H., Lee, J., Zhu,
X., Ramakrishnan, S., Grunwald, D., Lee, K., et al., 2020. Per-
ceive: deep learning-based cellular uplink prediction using real-time
scheduling patterns, in: Proceedings of the 18th International Confer-
ence on Mobile Systems, Applications, and Services, pp. 377-390.
Liaw, A., Wiener, M., et al., 2002. Classification and regression by
randomforest. R news 2, 18-22.

Mei, L., Hu, R., Cao, H,, Liu, Y., Han, Z., Li, F, Li, J., 2019. Real-
time mobile bandwidth prediction using Istm neural network, in: In-
ternational Conference on Passive and Active Network Measurement,
Springer. pp. 34-47.

Mei, L., Hu, R., Cao, H., Liu, Y., Han, Z., Li, F., Li, J., 2020. Realtime

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

mobile bandwidth prediction using Istm neural network and bayesian
fusion. Computer Networks 182, 107515.

Mirza, M., Sommers, J., Barford, P., Zhu, X., 2007. A machine learn-
ing approach to tcp throughput prediction, in: ACM SIGMETRICS
Performance Evaluation Review, ACM. pp. 97-108.

Narayanan, A., Ramadan, E., Carpenter, J., Liu, Q., Liu, Y., Qian,
F., Zhang, Z.L., 2020. A first look at commercial 5g performance
on smartphones, in: Proceedings of The Web Conference 2020, pp.
894-905.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., etal.,
2011. Scikit-learn: Machine learning in python. the Journal of ma-
chine Learning research 12, 2825-2830.

Raca, D., Leahy, D., Sreenan, C.J., Quinlan, J.J., 2020. Beyond
throughput, the next generation: a 5g dataset with channel and con-
text metrics, in: Proceedings of the 11th ACM Multimedia Systems
Conference, pp. 303-308.

Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M., Duchene, F.,
Bonaventure, O., Handley, M., 2012. How hard can it be? designing
and implementing a deployable multipath tcp, in: NSDI.

Ruan, L., Dias, M.PI., Wong, E., 2019. Machine learning-based
bandwidth prediction for low-latency h2m applications. IEEE Inter-
net of Things Journal 6, 3743-3752.

Shih, S.Y., Sun, F.K., Lee, H.y., 2019. Temporal pattern attention for
multivariate time series forecasting. Machine Learning 108, 1421—
1441.

Smola, A.J., Scholkopf, B., 2004. A tutorial on support vector regres-
sion. Statistics and computing 14, 199-222.

Sun, Y., Yin, X,, Jiang, J., Sekar, V., Lin, F., Wang, N., Liu, T., Sinop-
oli, B., 2016. Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction, in: Proceedings of the 2016
ACM SIGCOMM Conference, ACM. pp. 272-285.

Tian, G., Liu, Y., 2012. Towards agile and smooth video adaptation
in dynamic http streaming, in: Proceedings of the 8th international
conference on Emerging networking experiments and technologies,
ACM. pp. 109-120.

Wang, Y., Huang, M., Zhu, X., Zhao, L., 2016. Attention-based Istm
for aspect-level sentiment classification, in: Proceedings of the 2016
conference on empirical methods in natural language processing, pp.
606-615.

Wei, B., Kawakami, W., Kanai, K., Katto, J., Wang, S., 2018. Trust: A
tep throughput prediction method in mobile networks, in: 2018 IEEE
Global Communications Conference (GLOBECOM), IEEE. pp. 1-6.
Winstein, K., Sivaraman, A., Balakrishnan, H., 2013. Stochastic fore-
casts achieve high throughput and low delay over cellular networks,
in: Presented as part of the 10th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 13), pp. 459—
471.

Yin, X., Jindal, A., Sekar, V., Sinopoli, B., 2015. A control-theoretic
approach for dynamic adaptive video streaming over http, in: ACM
SIGCOMM Computer Communication Review, ACM. pp. 325-338.
Yue, C., Jin, R., Suh, K., Qin, Y., Wang, B., Wei, W., 2018. Link-
forecast: Cellular link bandwidth prediction in Ite networks. IEEE
Transactions on Mobile Computing , 1582-1594.

Lifan Mei et al.: Preprint

Page 12 of 12


https://futurenetworks.ieee.org/images/files/pdf/FirstResponder/2019/Jack-Burbank.pdf
https://futurenetworks.ieee.org/images/files/pdf/FirstResponder/2019/Jack-Burbank.pdf

