
Learning to Predict on Octree for Scalable Point Cloud Geometry Coding

Yixiang Mao, Yueyu Hu, Yao Wang
Department of Electrical and Computer Engineering

New York University, Brooklyn, NY 11201, USA
{yixiang.mao, yyhu, yw523}@nyu.edu

Abstract

Octree-based point cloud representation and compres-
sion have been adopted by the MPEG G-PCC standard.
However, it only uses handcrafted methods to predict the
probability that a leaf node is non-empty, which is then used
for entropy coding. We propose a novel approach for pre-
dicting such probabilities for geometry coding, which ap-
plies a denoising neural network to a “noisy” context cube
that includes both neighboring decoded voxels as well as
uncoded voxels. We further propose a convolution-based
model to upsample the decoded point cloud at a coarse
resolution on the decoder side. Integration of the two ap-
proaches significantly improves the rate-distortion perfor-
mance for geometry coding compared to the original G-
PCC standard and other baseline methods for dense point
clouds. The proposed octree-based entropy coding ap-
proach is naturally scalable, which is desirable for dynamic
rate adaptation in point cloud streaming systems.

1. Introduction

Efficient coding of point cloud data is critical for the
continued development of lifelike virtual reality (VR) ex-
periences. For geometry-based point cloud compression,
in order to overcome the memory inefficiency from using
uniform voxel grids, the 3D space is typically recursively
subdivided into smaller cubes using octree where only non-
empty nodes are further subdivided [18]. The octree coding
mode in in the MPEG G-PCC standard uses a handcrafted
context table for context-based entropy coding [4].

We propose a novel entropy coding method for the
octree-based geometry coding. For each non-empty parent
node, to predict the probability that each of its 8 children
nodes is occupied , we form an initial “noise” context cube.
For example, if we use a context that includes 5×5×5 par-
ent nodes (k = 5), the context cube will include 10×10×10
children nodes. The nodes that have been coded in the con-
text cube will have context values of either 1 (occupied) or
0 (empty), nodes that have not been coded will have context
values of 0 if they correspond to empty parent nodes, and

finally the uncoded nodes that correspond to occupied par-
ent nodes will be assigned a value of 0.5. We then apply a
3D convolution-based neural network to denoise the values
in the cube and use the output values of the denoised cube
at the center 2 × 2 × 2 voxels as the predicted probability.
As with G-PCC, we code the non-empty nodes from the top
level of the octree to the next level, sequentially, naturally
yielding a scalable bit-stream.

On the decoder side, if the received bit-stream only in-
cludes a partial representation of the full octree, correspond-
ing to a coarse (lossy) representation of the original point
cloud, we further propose a 3D convolution-based neural
network to upsample the reconstructed point cloud. We
have found that such upsampling at the decoder side can
significantly improve the quality of the reconstructed point
cloud.

In addition to fully convolutional models, we also de-
velop alternative probability estimation and upsampling
models with significantly less complexity while maintain-
ing comparable coding efficiency. We train our proposed
and baseline models on a subset of ShapeNet [7], and
evaluate the performance on the 8iVSLF dataset recom-
mended by MPEG [16]. Compared with G-PCC [4] (using
a handcrafted entropy model) and VoxContext-Net [23] (us-
ing a machine learning method), our method saves around
80% bits for achieving the same reconstruction quality dur-
ing lossy compression (by stopping before the final octree
level), or saves around 30% bits when the point cloud is
losslessly coded.

A key advantage of our work from the prior related stud-
ies is that our octree-based entropy coding model is nat-
urally scalable. The bitstream can be organized into seg-
ments, where each segment corresponds to an octree level.
Hence, decoding an octree level only requires the informa-
tion from the earlier part of the bitstream. This scalable
coding setting benefits the future design of streaming sys-
tems, enabling the streaming system to dynamically change
the delivery rate based on the channel conditions. It would
also enable the streaming systems to perform intelligent
prefetching and correction. For example, the system may
prefetch future video segments at a lower rate to prevent

ar
X

iv
:2

20
9.

02
22

6v
1

 [e
es

s.I
V

]
6

Se
p

20
22

freeze, and fetch additional bits to enhance the quality of
the prefetched version at a later time when more bandwidth
is available.

2. Related works

The point cloud compression (PCC) methods in the lit-
erature can be categorized into two classes: video-based
(V-PCC) and geometry-based (G-PCC) [10]. Video-based
methods usually first generate 3D surface segments by di-
viding the point cloud into some connected regions, called
3D patches. Then, each 3D patch is projected independently
into a 2D plane, and those patches on the 2D plane are orga-
nized and coded by traditional video encoders. Video-based
methods are heavily investigated and the performance ben-
efits from the well-developed 2D video encoders. MPEG-
PCC already released video-based PCC standard (ISO/IEC
23090-5) in 2021 [5]. Meanwhile, geometry-based methods
encode the coordinates and colors of the points directly in
3D space. Geometry-based methods are developing fast in
recent years and experts are exploring both traditional and
deep-learning methods.

For the handcrafted geometry-based methods, tree struc-
tures are usually used (e.g., octree [18] or KD-tree [8]) to
recursively divide the 3D space. Since the first work that
uses the octree to present the 3D geometry [18], more tra-
ditional methods [20, 9, 14, 15, 24] emerged using octree
variants or considering temporal information to further im-
prove the coding efficiency. The MPEG group has been de-
veloping a geometry-based PCC standard (G-PCC) [6] us-
ing a handcrafted entropy model, and its corresponding test
model (TMC13) [2, 4] has been made available and sup-
ports the octree coding mode. Another widely-used open-
source G-PCC software, Google’s Draco, uses a KD-tree
compression method [1].

Several prior studies also exploited geometry-based
point cloud compression using deep learning models. Some
works construct the uniform voxel grids of the entire 3D
space to represent the point cloud [17, 13, 27, 21, 29].
Those works perform the 3D convolution on the voxel grids
and consume an extensive amount of memory space to save
the voxel grids, which leads to the inefficiency of processing
large or sparse point cloud data. A recent work [26] per-
forms sparse convolution on the voxel grids to reduce the
time and space complexity. Another work [11] improves
the performance of G-PCC by both spatially and tempo-
rally adapting to the optimal deep learning entropy model
based on the characteristics of the point cloud. However,
switching between entropy models makes this method not
scalable. Previous study [22] introduces a set of improve-
ments to the entropy model and training strategy to achieve
a lower rate but the codec is also not scalable.

While the MPEG group is working on standardizing the
G-PCC, using the octree is recognized as a good approach

Figure 1. Network architectures for entropy
coding: (a) Model A: the proposed convo-
lution only architecture, (b) Model B: the
convolution + fully connected architecture.
“Conv(n,l)" means a 3D convolutional layer
outputting n feature channels with a 3D filter
of kernel size of l × l × l.

with several benefits (e.g., saving memory consumption and
being scalable). Recently, several studies apply the deep
learning model on the octree nodes [12, 23] that shows
strong potential for performing 3D convolution while still
using octree structure. To predict the probability for the leaf
nodes, the earlier work [12] forms the node’s context only
from the node’s ancestors (parent nodes); the later work,
VoxContext-Net (VCN) [23] uses the context from the spa-
tial neighbors in the previous coded level (one level above).
However, none of them use the strong context information
from the currently coded octree level. Additionally, the co-
ordinate refine model proposed in VCN [23] only adjusts
the node location, which does not realize the full potential
of post-processing at the decoder side.

In this work, we propose to use the context information
from the currently coded octree level for the entropy cod-
ing model; we further propose to use the upsampling as the
post-processing step after lossy decoding. Both approaches
significantly improve the coding performance.

3. Proposed Methods

3.1. Context-Based Entropy Coding for Octree Ge-
ometry: Notation and Basic Ideas

To achieve scalability, we adopt the octree representa-
tion. A point cloud is represented in a sequence of L occu-
pancy levels: X1,X2, · · · ,XL. The octree is coded from
the first level occupancy X1 to the last level XL, sequen-
tially and losslessly. The point cloud can be reconstructed
to level l if the coded bit-streams for X1,X2, · · · ,Xl are
given. When the coded bit-streams for all occupancy levels
are given, we can losslessly reconstruct the original point
cloud.

Each non-empty node xl−1,i at level l − 1, location i
has 8 children at level l, represented in occupancy ṽli =
{vj ∈ {0, 1} : j = 1, 2, · · · , 8}. With context-based en-
tropy coding, we code ṽli into a bit-stream based on the
conditional probability mass function p(ṽli|C̃l

i), where C̃l
i

represents the context. In general C̃l
i may include nodes in

X1,X2, · · · ,Xl−1, as well as the adjacent nodes in Xl that
have been coded. With the same context available at the de-
coder, the decoding process is to map the bit-stream back to
ṽli.

3.2. Conditional Probability Estimation through
Denoising a “Noisy” Context Cube

The main challenge in context-based entropy coding is
how to form the context C̃l

i) and how to estimate the prob-
ability distribution p(ṽli|C̃l

i). To accurately estimate the
probability distribution, it is important to design a context
that fully utilizes all the information from previously de-
coded nodes. When coding an octree node at the current
level Xl, the context should take into account of both the
information at the upper level Xl−1 and the current level.
However, since not all the information at the current level
is known when the current node is being coded, we need to
treat the known and the unknown part separately to ensure
that the context for probability estimation used during the
encoding is available during the decoding process.

In the proposed probability estimation method, we code
the nodes ṽli following a fixed spatial order. We ensure
that when a node at the spatial position (xi, yi, zi) is be-
ing coded, nodes at the same level with coordinates c ∈
{(x, y, z) : z < zi} ∪ {(x, y, z) : y < yi, z = zi} ∪
{(x, y, z) : x < xi, y = yi, z = zi} have already been
coded. When coding ṽli, we form a context cube C̃l

i of size
2k×2k×2k centered at ṽli, corresponding to a cube of size
k × k × k at the level l − 1. The known half of the con-
text cube is filled with the true occupancy, i.e. 0 for empty
voxels and 1 for occupied ones. For the other half of C̃l

i

that has not been coded, we fill them with 0 if their parent
nodes indicate that these children nodes are empty, and 0.5
if their parent nodes indicate that the unknown voxel can
be potentially non-empty. Since this context involves un-
certainty in signal values in the uncoded voxels, we call it
“noisy” context. We propose to use a convolution neural
network to “denoise” this context, so that the output of the
network represents p(ṽli|C̃l

i), the predicted probabilities that
the center 2× 2× 2 voxels are non-empty. These predicted
probabilities will then be used by an entropy coder.

To reduce the complexity, we train one neural network
for probability estimation at all octree levels. To make
use of the level information, along with the original noisy
context we add another 3D input channel with the same
size of 2k × 2k × 2k, and all elements in this channel
are set to the level index l. The resulting 3D tensor pro-

Figure 2. Network architectures for upsam-
pling: (a) the proposed convolution-only ar-
chitecture, (b) the convolution + fully con-
nected architecture.

vides the information about the neighboring voxels’ occu-
pancy (which is noisy for the unknown half) and the level
in the octree. Inspired by the architecture of DnCNN for
image denoising [28], we design the network architecture
shown in Fig. 1(a). The network takes the context cube and
the octree level channel as input. A sigmoid activation is
used at the final layer to generate the probability distribu-
tion p ∈ R8, with each element pj ∈ [0, 1], j = 1, 2, · · · , 8,
where pj := Pr{vj = 1}.

Compared to the network used in VoxelContext-
Net [23], this network does not have fully connected lay-
ers at the end in order to preserve more spatial informa-
tion. We also develop another probability estimation net-
work with fully connected layers, similar to the one used in
the VoxelContext-Net [23], shown in Fig. 1(b). However,
the context in [23] only uses the occupancy information in
the parent level. We will provide performance comparison
of these two network architectures in Sec. 4.3.

3.3. Resolution Enhancement of Decoded Point
Clouds

When the bit-rate is restricted due to the network
throughput constraint, the point cloud cannot be transmit-
ted in full precision. With the proposed scalable coding
method, the bitstream may only contain information up to
level l of the octree. To further enhance the quality of the re-
constructed point cloud, we propose to estimate a finer reso-
lution representation of the point cloud at the decoder side.
After losslessly decoding the bitstream to the l-th level of
the octree, we upsample each octree node at the l-th level,
to a 4×4×4 voxel grid, to generate a lossy reconstruction of
the original octree up to level l+2 without using additional
bits.

We upsample a node based on its neighboring context.
For a node at location i from the decoded l-th level point
cloud, a local voxel context Cl

i centered at this node is
formed. The network takes Cl

i as the input and maps it to

ṽl+2
i that is 4 times larger along each dimension than the

input. The center 4 × 4 × 4 voxels of the Cl+2
i are then

binarized and used to form the upsampled point cloud at
level l + 2. This model is repeatedly applied to each node
at the l-th level without conditional dependency. Thus, the
upsampling of all nodes can run simultaneously on a multi-
threaded processing unit (e.g., a GPU) to vastly reduce the
processing time.

The network architecture is shown in Fig. 2 (a). The
network takes an input tensor with size of k × k × k, and
maps it to a tensor with size 4k× 4k× 4k. From the output
tensor, the center 4 × 4 × 4 cube is cropped, and binarized
with a threshold t to the final predicted occupancy voxel
grid.

Since the density and pattern of points at different levels
on the octree are diverse, we train the upsampling network
separately for every depth level. Note that the model upsam-
ples the octree by two levels only when the decoded point
cloud level l ≤ L − 2, where L is the maximal level of the
original point cloud. When l = L− 1, a similar model with
only one upsampling layer is used to estimate the decoded
point cloud from the l-th level to the full levels. When l = L
(lossless coding), no post-processing model is applied.

For comparison, we also develop an alternative architec-
ture with fully connected layers at the end to predict the up-
sampled points, similar to the one used in the VoxelContext-
Net [23], as shown in Fig. 2 (b). The performance compar-
ison is provided in Sec. 4.3.

3.4. Loss Function

We train the probability estimation network to directly
minimize the expected bits needed to code the occupancy.
This is equal to the binary cross entropy (BCE) loss function
over the ground truth occupancy and the predicted probabil-
ity. The loss for each training sample (corresponding to one
non-empty parent node) is

Le(x,q) = −
8∑

j=1

xj log qj + (1− xj) log(1− qj), (1)

where xj ∈ {0, 1} denotes the occupancy ground truth and
qj is the estimated probability, qj = Pr{vj = 1}.

We adopt the same loss function for the training of the
upsampling network, which upsamples the decoded point
cloud from level l to level l + 2 (when l < L − 1). The
loss function is calculated between the ground truth and the
predicted probabilities both at the target upsampled level.

4. Experiments

4.1. Experimental Setup

4.1.1 Datasets

Table 1. Bits per point (bpp) used for loss-
lessly coding 8i dense point clouds, by MPEG
G-PCC, VoxContextNet(VCN), and our Model
A and our Model B. (VCN, Model A and Model
B all use k = 5)
Models G-PCC VCN Model A Model B
Longdress 1.02 1.25 0.67 0.72
Loot 0.95 1.23 0.65 0.69
Redandblack 1.08 1.31 0.77 0.82
Soldier 1.01 1.28 0.69 0.74
Average (bpp) 1.02 1.26 0.69 0.74
Rate reduction 0 +23.5% -32.1% -27.3%

We train the network based on point clouds sampled from
the ShapeNetCore [7] dataset. The dataset consists of a total
number of 51,300 3D object models in 55 categories, each
with mesh and texture. We randomly choose 1024 objects
across all categories from ShapeNetCore, and densely sam-
ple point clouds on the mesh given by the models. The co-
ordinates of the sampled points are quantized to a bit-depth
of 10, with duplicate points removed. We build voxel grids
and octrees of depth 10 on the point clouds. The voxel grids
and octrees are used to train the proposed networks.

To ensure that our trained networks generalizes to other
dense point clouds besides the simple objects in the train-
ing set, we evaluate the proposed method on the 8i Vox-
elized Surface Light Field (8iVSLF) dataset [16], which
is recommended by MPEG for dense point cloud cod-
ing experiments. We compare with two baseline meth-
ods, G-PCC and VCN, on the four 10-bit point cloud
frames: longdress vox10 1300, loot vox10 1200, redand-
black vox10 1550, and soldier vox10 0690.

4.1.2 Evaluation Metric
We measure the quality of the reconstructed point cloud
with the point-to-point (D1) PSNR [25, 19], calculated us-
ing the MPEG PCC DMetrics software [3]. The bit-rate is
given in bit-per-point (bpp), calculated by dividing the num-
ber of bits over the total point number in the original point
cloud.

4.1.3 Baseline Methods
The first baseline method is MPEG standard Geometry
Point Cloud Compression (G-PCC) [4]. We follow the com-
mon test conditions (CTC) [10] to generate the baseline G-
PCC Rate-distortion (R-D) curve. We use the TMC13 [2]
and enable the G-PCC octree codec to code the dense point
cloud. In order to generate the R-D points for variable bit
rates, we set the G-PCC to code the octree level by level and
truncate at different levels.

The second baseline method is VoxelContext-Net [23].
In this work, the author did both training and testing on the
same ScanNet dataset, which may lead to model overfitting

Figure 3. Visualization of the ground truth, G-
PCC, VCN, and ours.

to the specific dataset and its performance on the MPEG G-
PCC standard dataset is unclear. To fairly compare the per-
formance, we train this baseline method on the same sub-
set of the ShapeNetCore dataset and test the it on 8iVSLF
dataset. Since there is no publicly available source code of
VoxelContext-Net, the training code is reproduced by our-
selves.

4.2. Experiment Results

For lossless compression, we calculate the bpp for G-
PCC, VoxContext-net and the proposed method, on the test
point clouds, the results are shown in Table 1. For the pro-
posed method, we show the results using both Model A,
shown in Fig. 1(a), and Model B, shown in Fig. 1(b). The
context size is k = 5. Note that the upsampling model is
not used for the lossless compression. As shown, Model A
and Model B both outperform the baseline methods. Com-
pared to G-PCC, Model A and Model B reduce the num-
ber of bits by 32.1% and 27.0%, respectively, on average.
For the VoxContext-net model, we observe that it requires
more bits than G-PCC to compress the dense 8iVSLF point
cloud. This differs from the performance gain over G-PCC
reported in [23]. This could be caused by several reasons:
Firstly, we train the model on a subset of the ShapeNet
dataset and test on the 8iVSLF dataset for a fair comparison,
whereas the original paper [23] reports the testing results on
the ShapeNet dataset; Secondly, we used only a subset of
the ShapeNet dataset for training whereas the work in [23]
used the entire training set of the ShapeNet; Finally, the
handcrafted G-PCC explores the previously coded neigh-
bors in the current coding level while VoxContext-net does
not, and such information could be especially useful for the
dense point cloud data.

The rate-distortion (RD) curves of lossy compression by
these methods are shown in Fig. 4. Compared with G-PCC
and VoxContextNet, both our Model A and Model B save
around 80% of bit rate. Model A uses the fully convolu-
tional network in Fig. 1(a) for probability prediction, and

Figure 4. Model A (fully convolutional net-
work) vs. Model B (convolutional+fully con-
nected network).

Table 2. Number of floating point operations
(KFLOPS per node) for the probability esti-
mation (E) and the post-processing (P) pro-
cedures, respectively, with different methods
and at different voxel context sizes for the
Longdress sequence. B(3) means the pro-
posed Model B using context size with k = 3.

VCN(5) A(5) B(3) B(5) B(9)
E 93.2 559.7 30.1 30.4 206.9
P 149.4 404.9 33.2 60.4 73.0

the fully convolutional network in Fig. 2(a) for upsampling.
Model B uses the architectures in Fig. 1(b) and Fig. 2(b), for
probability prediction and upsampling, respectively. Visu-
alization results of longdress vox10 1300 for our proposed
method and baseline methods are shown in Fig. 3.

4.3 Ablation Study

4.3.1 Network Architecture
For both the probability estimation and point cloud up-
sampling tasks, the architecture with fully-connected layers
(Model B) is slightly less efficient in terms of rate-distortion
trade-off than the fully convolutional one (Model A), as
shown in Fig. 4. However, Model B significantly reduces
the computational complexity. Table 2 compares the num-
ber of floating point operations (FLOPS) of these two mod-
els. As shown, inference using Model B takes only about
15% of the FLOPS compared to Model A. Given that the
coding efficiency of using Model B does not drop signif-
icantly compared to Model A, Model B may be preferred
for practical applications.

4.3.2 Upsampling Strategies

Figure 5. Comparison between different post-
processing (upsampling) strategies. For ex-
ample, for the upsampling by 2 levels curve,
the highest rate point is obtained by coding
the octree to level 8 and upsample to level 10;
while the next highest rate point is obtained
by coding the octree to level 7 and upsample
to level 9.

In this ablation study, we compare the proposed scheme
with two alternative upsampling strategies: 1) upsample by
one level only; 2) recursively upsample by one level until
the final level (different models are used at different lev-
els). Fig. 6 compares their R-D performances . The exper-
iments are conducted on longdress vox10 1300. Compared
with upsampling by one level, the model that directly up-
samples by two levels has consistent and significant gain
in reconstruction quality. However, recursively upsampling
by one level sometimes leads to worser quality. This is be-
cause the upsampling error at an earlier level propagates,
and negatively affects the upsampling for the following lev-
els. Therefore, we adopt the two-level upsampling strategy.

4.3.3 Context Cube Size
The dimensionality of the context cube affects the prob-
ability estimation accuracy and upsampling accuracy. To
determine the best size of the context, we train Model B
using different context sizes, and compare their R-D perfor-
mances on the longdress vox10 1300 point cloud in Fig. 6.
The performance gain of using a larger context cube dimin-
ishes when the context size k exceeds 5 (corresponding to
a context cube of 10 × 10 × 10 for probability estimation,
and 5 × 5 × 5 for upsampling). The FLOPS of the models
with different context sizes are given in Table 2. To balance
the performance and the complexity, k = 5 is the preferred
choice and is used in the results shown in Fig. 4, Fig. 6 and
Table 2 . For complexity-sensitive applications, a context
size of k = 3 could also be used, which only suffer from
slight degradation in rate-distortion performance, as shown
in Fig. 6.

5. Conclusions
In this paper, we propose an octree-based point cloud ge-

ometry compression method using machine learning mod-

Figure 6. R-D performances corresponding to
different context sizes. The experiments are
conducted with Model B.

els. Our first contribution considers context-based entropy
coding of octree nodes. We form a “noisy” context us-
ing the occupancy information at the currently coded octree
level, and use 3D convolution-based “denoising” networks
to predict the probability that an octree node is non-empty.
The second contribution considers decoder post-processing
and proposes convolutional networks to upsample a low-
resolution point cloud (corresponding to a low bit rate re-
sulting from coding to a low level of the octree) to a higher
resolution (corresponding to a higher octree level). The
combination of the probability estimation and the upsam-
pling approaches significantly improves the rate-distortion
performance of octree-based geometry coding over the cur-
rent MPEG standard G-PCC as well as several prior works
leveraging machine learning. We further compare differ-
ent network structures for both the probability estimation
task and the upsampling task in terms of both the rate-
distortion performance and computational complexity. Be-
ing an octree-based geometry coding solution, our method
naturally leads to a scalable bit stream and has strong poten-
tial to be adopted in future point cloud streaming platforms.

References

[1] Google Draco. https://github.com/google/
draco.

[2] MPEG G-PCC TMC13. https://github.com/
MPEGGroup/mpeg-pcc-tmc13.

[3] MPEG PCC DMetrics. http://mpegx.int-evry.
fr/software/MPEG/PCC/mpeg-pcc-dmetric.
git.

[4] MPEG Point Cloud Compression. https://mpeg-pcc.
org/index.php/public-contributions/
g-pcc-codec-description.

[5] Information technology–coded representation of immersive
media – part 5: Visual volumetric video-based coding (v3c)
and video-based point cloud compression (v-pcc). ISO/IEC,
pages 23090–5, 2021.

[6] Information technology — coded representation of immer-
sive media — part 9: Geometry-based point cloud compres-
sion. ISO/IEC, pages 23090–9, Under development.

https://github.com/google/draco
https://github.com/google/draco
https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://github.com/MPEGGroup/mpeg-pcc-tmc13
http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.git
http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.git
http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.git
https://mpeg-pcc.org/index.php/public-contributions/g-pcc-codec-description
https://mpeg-pcc.org/index.php/public-contributions/g-pcc-codec-description
https://mpeg-pcc.org/index.php/public-contributions/g-pcc-codec-description

[7] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[8] O. Devillers and P.-M. Gandoin. Geometric compression for
interactive transmission. In Proceedings Visualization 2000.
VIS 2000 (Cat. No. 00CH37145), pages 319–326. IEEE,
2000.

[9] D. C. Garcia and R. L. de Queiroz. Intra-frame context-
based octree coding for point-cloud geometry. In 2018 25th
IEEE International Conference on Image Processing (ICIP),
pages 1807–1811. IEEE, 2018.

[10] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki,
and A. Tabatabai. An overview of ongoing point cloud com-
pression standardization activities: Video-based (v-pcc) and
geometry-based (g-pcc). APSIPA Transactions on Signal
and Information Processing, 9, 2020.

[11] A. F. Guarda, N. M. Rodrigues, and F. Pereira. Adaptive
deep learning-based point cloud geometry coding. IEEE
Journal of Selected Topics in Signal Processing, 15(2):415–
430, 2020.

[12] L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun. Oct-
squeeze: Octree-structured entropy model for lidar com-
pression. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1313–1323,
2020.

[13] T. Huang and Y. Liu. 3d point cloud geometry compression
on deep learning. In Proceedings of the 27th ACM interna-
tional conference on multimedia, pages 890–898, 2019.

[14] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi. A generic
scheme for progressive point cloud coding. IEEE Transac-
tions on Visualization and Computer Graphics, 14(2):440–
453, 2008.

[15] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz,
and E. Steinbach. Real-time compression of point cloud
streams. In 2012 IEEE International Conference on
Robotics and Automation, pages 778–785. IEEE, 2012.

[16] M. Krivokuca, P. A. Chou, and P. Savill. 8i voxelized sur-
face light field (8ivslf) dataset. ISO/IEC JTC1/SC29/WG11
MPEG, input document m42914, 2018.

[17] D. Maturana and S. Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. In 2015
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 922–928. IEEE, 2015.

[18] D. Meagher. Geometric modeling using octree encoding.
Computer graphics and image processing, 19(2):129–147,
1982.

[19] R. Mekuria, S. Laserre, and C. Tulvan. Performance as-
sessment of point cloud compression. In 2017 IEEE Visual
Communications and Image Processing (VCIP), pages 1–4.
IEEE, 2017.

[20] J. Peng and C. J. Kuo. Octree-based progressive geometry
encoder. In Internet Multimedia Management Systems IV,
volume 5242, pages 301–311. SPIE, 2003.

[21] M. Quach, G. Valenzise, and F. Dufaux. Learning convolu-
tional transforms for lossy point cloud geometry compres-
sion. In 2019 IEEE international conference on image pro-
cessing (ICIP), pages 4320–4324. IEEE, 2019.

[22] M. Quach, G. Valenzise, and F. Dufaux. Improved deep
point cloud geometry compression. In 2020 IEEE 22nd
International Workshop on Multimedia Signal Processing
(MMSP), pages 1–6. IEEE, 2020.

[23] Z. Que, G. Lu, and D. Xu. Voxelcontext-net: An octree
based framework for point cloud compression. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6042–6051, 2021.

[24] R. Schnabel and R. Klein. Octree-based point-cloud com-
pression. In PBG@ SIGGRAPH, pages 111–120, 2006.

[25] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro. Ge-
ometric distortion metrics for point cloud compression. In
2017 IEEE International Conference on Image Processing
(ICIP), pages 3460–3464. IEEE, 2017.

[26] J. Wang, D. Ding, Z. Li, and Z. Ma. Multiscale point cloud
geometry compression. In 2021 Data Compression Confer-
ence (DCC), pages 73–82. IEEE, 2021.

[27] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d
object detection from point clouds. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 7652–7660, 2018.

[28] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Be-
yond a gaussian denoiser: Residual learning of deep cnn for
image denoising. IEEE transactions on image processing,
26(7):3142–3155, 2017.

[29] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for
point cloud based 3d object detection. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4490–4499, 2018.

	1 . Introduction
	2 . Related works
	3 . Proposed Methods
	3.1 . Context-Based Entropy Coding for Octree Geometry: Notation and Basic Ideas
	3.2 . blackConditional Probability Estimation through Denoising a ``Noisy'' Context Cube
	3.3 . blackResolution Enhancement of Decoded Point Clouds
	3.4 . Loss Function

	4 . Experiments
	4.1 . Experimental Setup
	4.1.1 Datasets
	4.1.2 Evaluation Metric
	4.1.3 Baseline Methods

	4.2 . Experiment Results
	4.3 Ablation Study
	4.3.1 blackNetwork Architecture
	4.3.2 Upsampling Strategies
	4.3.3 Context Cube Size

	5 . Conclusions

