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As one of the popular deep learning methods, deep convolutional neural
networks (DCNNs) have been widely adopted in segmentation tasks and have
received positive feedback. However, in segmentation tasks, DCNN-based
frameworks are known for their incompetence in dealing with global relations
within imaging features. Although several techniques have been proposed to
enhance the global reasoning of DCNN, these models are either not able
to gain satisfying performances compared with traditional fully-convolutional
structures or not capable of utilizing the basic advantages of CNN-based
networks (namely the ability of local reasoning). In this study, compared with
current attempts to combine FCNs and global reasoning methods, we fully
extracted the ability of self-attention by designing a novel attention mechanism
for 3D computation and proposed a new segmentation framework (named
3DTU) for three-dimensional medical image segmentation tasks. This new
framework processes images in an end-to-end manner and executes 3D
computation on both the encoder side (which contains a 3D transformer) and
the decoder side (which is based on a 3D DCNN). We tested our framework on
two independent datasets that consist of 3D MRl and CT images. Experimental
results clearly demonstrate that our method outperforms several state-of-the-
art segmentation methods in various metrics.
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1. Introduction

In the recent few years, deep convolutional neural networks (DCNNs) (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016; Badrinarayanan et al., 2017;
Huang et al., 2020; Pan et al., 2020) have achieved considerable progress in medical image
segmentation (Long et al., 2015; Noh et al., 2015; Chen L.-C. et al., 2018; Tokunaga et al.,
2019; Liu et al., 2022; Zhang et al., 2022). However, limited to the local receptive field of
the convolutional filter, DCNN-based frameworks are incapable of capturing long-range
dependencies from global features for semantic segmentation. To tackle this, several
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strategies can be considered. The first is to use the dilated
convolution operation to enlarge the size of the receptive
field of the convolutional filter (Yu and Koltun, 2015; Yang
et al, 2017; Zhang et al, 2017; Liu et al., 2021). However,
this enlarged local receptive field is still limited by the size of
dilation. Another solution is to model the feature map as graph
structures and investigate the long-range dependencies through
the message passing mechanism of different graph learning
models (e.g., graph convolution networks) (Li and Gupta, 2018;
Chen et al.,, 2019; Li et al.,, 2020; Jia et al., 2021). Although
these graph learning models have shown great potential in
enhancing the global reasoning ability of DCNNs, they have
very high requirements for computation and memory due to the
constructed large-size graphs.

The attention mechanism (Hochreiter and Schmidhuber,
1997; Vaswani et al., 2017) is a computation scheme that tries
to generate representations via different types of global features
at each step. Since attention can be regarded as the conversion
and transformation among the query (q), key (k), and value
(v) triplet, attention computation is to generate the q based on
the combination of the k-v pair. As it is natural to integrate
a cycling computation in recurrent cells, traditional attention
mechanisms are integrated within recurrent neural networks
(e.g., Hochreiter and Schmidhuber, 1997; Cho et al., 2014),
which inevitably impairs the efficiency of recurrent networks
compared with linear/residual networks (Vaswani et al., 2017).
To cope with this, Vaswani et al. (2017) proposed a transformer,
a structure consisting of a series of identical encoder blocks
connected with a series of identical decoder blocks, which all
have no convolutional layers and are connected in a residual
way. The original transformer supported by self-attention works
exceptionally well in some tasks like machine translation but not
in visual tasks (Chen et al., 2021). This is mainly due to the lack
of convolution layers that makes the model struggle to detect
local features.

For the aforementioned reasons, convolutional-based
frameworks are still preferred for segmentation tasks. Although
several other models (Goodfellow et al., 2014; Chen Y. et al,,
2018) have been proven feasible, DCNNs remain to be one of the
most effective methods. Multiple variants of DCNNs have been
proposed to make the segmentation process more effective, one
of the most crucial ones is the UNet (Ronneberger et al., 2015),
which is a symmetric structure consisting of convolutional
blocks with skip connections. These convolutional blocks have
descending dimensions on the encoder side and ascending
dimensions on the decoder side. However, due to the intrinsic
fully convolution structure, UNet is suboptimal to relate local
features to global representations with more variant distribution
(Chen et al., 2021). To cope with the drawbacks of UNet, many
methods have been proposed (Liu et al., 2018; Zhou et al,
2019; Diakogiannis et al., 2020; Huang et al., 2020). However,
these methods are either very time-consuming or require
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heavy computations, which make it impossible to be applied to
3D objects.

Under such circumstances, the self-attention mechanism
seems to be a nearly optimal solution. It is highly modulized and
can stretch the number of self-attention cells according to the
training environment. It can also train on vast datasets due to the
training nature of attention. Therefore, researchers combined
the transformer with convolutional layers for medical image
segmentation (Li et al., 2022). On the one hand, the transformer
encodes tokenized image patches from a CNN feature map as the
input sequence for extracting global contexts. On the other hand,
the decoder upsamples the encoded features, which are then
combined with high-resolution CNN feature maps to enable
precise localization.

However, this approach still has some obstacles, especially
in the segmentation of 3D objects. This is partially due to
transformers (Vaswani et al., 2017) requiring the input features
to have temporal information. Since the self-attention does not
compute with a clear direction, features have to be preprocessed
with temporal info (e.g., cosine function) as input embeddings
before training. Although this learning process can be seen
as natural (scanning the features linearly and with order), it
will restrict the performance of high-dimensional data. For
example, many existing transformer approaches (Parmar et al.,
2018; Huang et al,, 2020; Chen et al,, 2021) will cut the 3D
object into 2D slice sequences to meet the temporal encoding
requirement; however, the segmentation performance is actually
worse because the 2D slice cutting will destroy the smoothness
of the object in 3D space. Bi-directional transformer (Devlin
et al, 2018) is a powerful upgrade version of transformer. It
is a structure with no decoder and processes the inputs all at
once with masks to create temporal/spatial continuity. However,
we will show in the experiment section that bi-directional
transformers can serve as a strong encoder but still struggles
to get better results on 3D segmentation. To compensate for
the loss of feature resolution brought by transformers, we
propose 3D transformer UNet (3DTU), which employs a hybrid
CNN-transformer architecture to leverage both detailed high-
resolution spatial information from CNN features and the global
context encoded by our new 3D bi-directional transformer
module. We show that such a design allows our framework to
preserve the advantages of self-attention mechanisms and also
get considerably improved results on 3D image segmentation
compared with previous U-Net-based or transformer-based
methods. To sum up, our contributions to this article can be
summarized as follows:

e We proposed a new 3D bi-directional framework to learn

deep 3D features for medical image semantic segmentation.
e We designed a novel attention mechanism specifically
network self-attention

suitable  for training and

computation for 3D objects.
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e We verified our new framework on multiple datasets,
consisting of different imaging modalities (MRI and CT
images) and different organs (placenta and lungs infected
with COVID) and obtained state-of-the-art (SOTA) results.
Our method beat baselines in performances on multiple

metrics.

2. Related work

2.1. Fully convolutional network in
medical image segmentation

Many studies have attempted to adopt convolutional
networks to medical image segmentation. For example, Liu
et al. (2018) presented a hybrid network consisting of both
3D CNN and 2D CNN in the brain image segmentation for
Alzheimer’s disease (AD) studies. Ronneberger et al. (2015)
presented UNet, one of the most iconic encoder-decoder-
based methods for medical image segmentation. Their method
consists of convolutional blocks that have a U-shaped dimension
variation. Specifically, from the input layer of the encoder to the
input layer of the decoder, each blocK’s dimension is descending.
And the decoder has an ascending dimension that is matched to
the encoder blocks. Such a design makes sure that the learning
ability of the framework is powerful enough to find the abstract
of the locality and output a global representation map. Several
adjustments (e.g., Zhou et al.,, 2019; Huang et al., 2020) have
been made to the original UNet model. For example, U-Net3+
(Huang et al., 2020) and its variations, although proved effective,
still suffer from the locality-heavy learning scheme. Some
researchers tried to boost the local reasoning of convolutional
layers through the residual structure. For example, ResUNet
(Diakogiannis et al., 2020) proposed a residual block between
every two convolutional blocks on both the encoder side and
decoder side as well as skip-connection between residual blocks
with the same dimension between the encoder and decoder.
Isensee et al. (2021) argued that the understanding of the
datasets needed for training is more important than the network
itself since most UNet-based moderations have achieved little
progress. The authors proposed nnUNet, a robust network,
that is designed based on the combination of 2D and 3D
UNet. The authors also made different training configurations
(normalization tricks, cropping, activation functions, etc.) based
on the datasets.

2.2. Transformers
Transformers (Vaswani et al., 2017) were initially proposed
for general NLP tasks and quickly gain widespread attention

by beating previous most state-of-the-art results by a large
margin. Devlin et al. (2018) converted the original transformer
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model into BERT, and introduced the called bi-directional
transformers, which are proven effective again. Naturally,
multiple efforts have been made to adjust the learning ability of
transformers in the computer vision domain. Several variants
of transformers have emerged recently. Parmar et al. (2018)
presented one of the early works to adjust vanilla transformers
by incorporating visual information. This model pre-processes
each pixel of one image through a 1 x 1 convolution layer. Then,
the embeddings are computed with positional embeddings
before feeding into transformers for super-resolution tasks.
In another attempt at visual tasks, Dosovitskiy et al. (2020)
proposed Vision transformer (ViT), which presented a novel
way of input embedding on visual information. It achieved
state-of-the-art on ImageNet classification by directly applying
transformers with global self-attention to full-sized images.
Specifically, ViT flattens an image to fixed-sized pixels, which
then be linearly added to positional embeddings before feeding
to transformer encoders. Valanarasu et al. (2021) presented gated
axial attention that creates a gated scheme to improve learning
ability on the local scale.

2.3. Combination of UNet and
transformer in medical image
segmentation

Multiple attempts have been made to combine the UNet
with transformer in both framework structure and inner
encoder/decoder computation. TransUNet (Chen et al., 2021)
consists of a series of transformer units as the encoder
and the right half of the UNet as the decoder to generate
predictions in medical image segmentation. Both the encoder
and the decoder (Chen et al., 2021) are computed in a 2D
scenario. Yun et al. (2021) introduced SpecTr, a framework
that takes spectral normalization into the computation between
convolution and attention blocks. Their methods achieved
better results than the baseline when training on hyperspectral
medical images. Wang et al. (2021) presented TransBTS
that utilizes 3D CNN to extract input representations. UNet
transformer, presented by Petit et al. (2021), replaces self-
attention modules in transformer encoder/decoder cells by
convolutional blocks and batch normalization computations.
Another attempt is Swin-UNet (Cao et al, 2021), which
instead replaces convolution blocks in the UNet-Structure
network with self-attention modules. Several works follow
similar methods including UNETR (Hatamizadeh et al., 2022b),
SWIN UNETR (Hatamizadeh et al.,, 2022a), CoTr (Xie et al.,
2021), nnFormer (Zhou et al., 2021), DS-TransUNet (Lin et al.,
2022), UTNet (Gao et al., 2021), and PNS-Net (Ji et al., 2021).
In UNETR, the authors presented a novel 3D transformer
encoder and a voxel-wise loss for model training. For the
positional embedding, they adopted a strategy from the Visual
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transformer, which divides the 3D images into 3D patches.
The decoder in their work consists of several convolutional
blocks in different dimensions and skip connections to the
encoder. The SWIN UNETR is proposed for 3D multi-
modal MRI brain image studies, which is different from the
SWIN UNET that is proposed for 2D images. The CoTr
utilized a DeTrans-encoder with a novel attention mechanism
and a CNN-based decoder. The nnFormer utilizes CNN
as part of an encoder, which leverages the ability of local
feature extraction of CNN structures. Moreover, it utilizes
transformer structures as its decoder and the second part of
its encoder. There are two differences between our 3DTU and
the nnFormer. First, we utilize a CNN-based structure (i.e.,
the right part of 3DUNet) as our decoder. Then, we design an
attention mechanism that computes the attention scores from
different directions.

The aforementioned methods adjust the transformers in
visual tasks by introducing their own positional embedding
rules. Although these rules are to an extent useful, their
performance all suffers from the slicing of 3D data to
adjust the positional embeddings. In this study, positional
embeddings are not needed technically, even for 3D data.
We modify the multi-head attention from its original form
to a refined computation scheme that fully utilizes the
potentials of transformer and UNet. More importantly,
our encoder is a refined bi-directional transformer, which
learns the feature from three (ie., along x, y, and z)
directions simultaneously.

3. Methods

We propose a 3D UNet-based framework with bi-directional
transformers (named 3DTU) in this work. The self-attention
mechanism in the proposed bi-directional transformers can
improve the ability of generalization of the framework encoder.
We will delve into the technical details in this section.

As shown in Figure 1, our proposed 3DTU is an encoder-
decoder framework, where the encoder consists of two modules
including a feature extraction module (see Part I in Figure 1)
and a bi-directional transformer module (see Part IT in Figure 1).

Rbxwxdxc ywhere h, w, and d are

Given a 3D image I €
the shapes of the image and ¢ is the image channel number,
the feature extraction module projects the 3D image I as a
latent representation X via basic convolutional neural networks
(CNNs). Then, the 3D bi-directional transformer cells take
the latent representation X as input and yield the masked
latent representation Xy by using Masked-LM (MLM) (Devlin

et al,, 2018) step by step. Finally, the decoder part utilizes the

1 We use the term "bi-directional” by following previous studies.

However, our 3DTU learns the features from three directions instead.
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masked latent representations to reconstruct the segmentation
predictions for loss computation.

3.1. Encoder with 3D bi-directional
transformer

As aforementioned, the encoder of the 3DTU consists
of two parts. The first part of the encoder is a CNN-
based feature extraction module. We aim to convert the
original 3D image (I) into an iso-dimensional latent cube
representation (X € RIXPXP*XP) yig this module as assistance
to capture the image locality for transformer modules, since
the transformer module may not have enough ability to
capture the image local features. We will show this point
in the ablation studies. Particularly, the feature extraction
module includes two convolutional layers followed by a fully-
connected (FC) layer and a max-pooling layer in between the
two convolutional layers. The FC layer is used to adapt the
feature dimension.

The bi-directional transformer module takes the latent cube
representation X as input and computes multi-head attentions
with the MLM strategy (Devlin et al., 2018). Details of the
bi-directional transformer module are shown in Figure 2. In
general, each cell in the bi-directional transformer module
generates the latent feature map X by the following steps:

X = Att(Norm(X)) + X,
X// — FF(Norm(X/)),
X=X +x, )

where Att(-) is the multi-head self-attention operation, Norm(-)
is a 3D normalization operation, and FF(-) is the feed
forward layer (i.e., FC layer). + denotes a pixel-wise add
operation. Particularly, the multi-head attention is computed as
follows:

Att_headf e
MultiHead(Q, K, V)

SDP(Q,K, V) x W,
Concat(head?, headg’, head?), (2)

where SDP(-) is the Scaled Dot-Product Attention, W
is the trainable parameters for linear projections (ie.,
Lg, Ly, and L, in Figure2) and Concat(-) denotes a
QK,
key-value triplets defined by the transformer cell. Note

concatenation operation. and V are the query-

that our proposed attention mechanism can vyield the
attention score by scanning the query-key-value triplets

in three different directions (i.e., along x, y, and =z
axes, respectively), which gain plentiful discriminative
and anisotropic semantic information for the 3D

image segmentation.
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FIGURE 1
The diagram of the 3DTU framework in an encoder—decoder setting. The encoder consists of two parts including feature extraction and
bi-directional transformer.

3.2. UNet-based decoder layer, a 1 x 1 x 1 convolutional layer is used to generate final
segmentation predictions.
As shown in Figure 1, we utilize convolutional blocks
with ascensional dimensions in the decoder part. A residual
connection is adopted between the encoder side and the decoder
side. Particularly, a cascaded of multi-channel feature map (FM) 3.3. Loss function and supervision
blocks are integrated into the decoder part, each of which manner
contains two 3 x 3 x 3 convolutional layers and an upsampling
layer. The channel number of feature maps reduces by half after Since the MLM strategy is used in the encoder part, where
each FM block. In the last FM block, instead of upsampling a portion of image features are masked (i.e., set to 0 values)
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and the other portions remain the same. Hence, our goal is
to use the uncovered portions to predict the masked portions
(Devlin et al., 2018), in which the loss is only estimated based
on the masked regions. Particularly, the loss function can be
formulated as:

L = axlyice(Vmask> Ymask) T (1 =) X EBCEPpmask> Ymask)» (3)

where J,,,,5 and y,,,,. are the masked regions of segmentation
prediction and ground truth, respectively. « € [0,1] is the
loss weight.

4. Experiments

4.1. Datasets

We obtained from different
MRI
lung and infection
Multi-Atlas

three datasets
modalities this study, including Placenta
(Placenta) dataset, COVID-19 CT

(Covid20)

used
for

segmentation dataset, and
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the Vault
Details of data description and preprocessing are shown

Labeling Beyond Cranial (Synapse) dataset.
below.

Placenta MRI dataset was collected from the Washington
University in Saint Louis (WUSTL) (Sun et al., 2022), where all
data were de-identified before processing. The data collection
and related studies were approved by the Institutional Review
Board at the WUSTL. A total of 81 MRI scans were collected
2391 £ 3.02 yo,

mean BMI = 25 =+ 3.66 at recruitment) with normal singleton

from 46 pregnant patients (mean age =

pregnancy who underwent MRI during the third trimester, by
a Siemens 3T VIDA scanner. Of the 46 patients, 21 patients
had the single scan and 25 patients had multiple longitudinal
scans. The average gestational ages (GA) during MRI scans were
34.12 £ 1.07 weeks (Min GA 28 weeks 3 days, max GA 38 weeks
6 days). T2-weighted MRI of the entire uterus was acquired
with a 2D EPI sequence in the left lateral position. The MRI
data has a fixed acquisition matrix of 128 x 128 x 115, and
variable voxel sizes from 3 x 3 x 3 mm to 3.5 x 3.5 x 3.5 mm,
up to the patient’s size. Manual segmentation of the placenta
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TABLE 1 Quantitative segmentation results of different methods on two datasets, where mlOU and DICE are in %.

Placenta dataset Covid20 dataset Synapse dataset
mIOU DICE HD95 mIOU DICE HD95 mIOU DICE HD95
2D UNet 67.6 72.3 12.0 73.6 78.3 1125 56.3 60.6 45.7
3D UNet 72.5 78.6 10.7 78.1 84.0 97.6 59.4 62.2 422
UNet++ 74.5 77.1 8.2 80.3 84.6 63.0 67.1 73.7 34,0
TransUNet 73.6 80.0 7.4 83.1 89.2 45.8 70.2 77.5 317
ViT 72.9 79.7 8.5 84.2 89.0 70.3 65.3 67.9 36.1
nnFormer 78.3 82.1 102 81.0 89.9 66.2 81.8 86.6 10.6
nnUNet 78.9 83.6 8.7 90.3 91.6 59.9 84.2 89.8 16.6
3DTU (Ours) 79.8 84.0 7.2 90.5 92.0 59.4 85.0 87.3 18.4

The best results are shown in red and the second-best results are shown in blue.

regions was conducted by experienced radiologists for all MRI
images.

COVID19-CT-Seg20 dataset (Covid20)
COVID-19 3D CT images, where lungs and infections were

contains 20

annotated by two radiologists and verified by an experienced
radiologist® (Jun et al., 2021). We only focused on the
segmentation of the COVID-19 infections in this study, since it
is more challenging and important.

Multi-atlas labeling beyond the cranial vault (Synapse)
dataset.* We use the 30 abdominal CT scans from the MICCAI
2015 Multi-Atlas Abdomen Labeling Challenge. These scans
were captured during the portal venous contrast phase with
variable volume sizes (512 x 512 x 85-512 x 512 x 198) and
field of views (approximately 280 x 280 x 280 mm>-500 x 500
x 650 mm?). The in-plane resolution varies from 0.54 x 0.54
mm? to 0.98 x 0.98 mm?, while the slice thickness ranges from
2.5 to 5.0 mm. We report the average experimental results on
eight abdominal organs (aorta, gallbladder, spleen, left kidney,
right kidney, liver, pancreas, spleen, and stomach) with 5-fold
validation.

4.2. Implementation details

In the pre-processing step, we simply normalized the
intensities of each 3D image to zero mean and unit variance.
In the training phase, we applied data augmentation techniques
to reduce potential overfitting, including random rotation of
the image by 90° along three dimensions and adjusting the
brightness of the top 3% pixels. The training iterations were
set to 10°. We trained the model using the Adam optimizer
with a batch size of 1 and synchronized batch normalization.
The initial learning rate was set to le — 2 and was decayed

2 https://zenodo.org/record/3757476#.YINGmy1h1B1
3 https://www.synapse.org#!Synapse:syn3193805/wiki/217789
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current_epoch (.9
by @ - max_epoch )
with dropout in the transformer cells. All experiments are

conducted using a 5-fold cross-validation, based on Pytorch
1.7.1 on a workstation with 2 NVIDIA TITAN RTX GPUs.
The data division on the public Covid20 dataset is adopted
by following the division strategy given by Qiu et al
(2021).

As aforementioned, our encoder consists of two parts. In

. We also regularized the training

the feature extraction module, we used a CNN network with
two convolutional layers, one max-pooling layer, and one 1-
D fully-connected layer with the direction of x — y plane to
z coordinate to convert the representations with the original
dimension to a cube. The first convolutional layer, with a
kernel size of 3 x 3 x 3, embeds the input 3-D image into
local representation maps, while the second convolutional layer
project the local representation maps for the second part of the
encoder via a linear transformation. The output dimension of
the feature extraction module is converted (i.e., reshape) to X €
RIX256X256%256 1y the bi-directional transformer module, we
utilize multiple transformer cells with the bi-directional self-
attention mechanism. Specifically, the input embedding strategy
that we adopted is Masked LM (MLM) (Devlin et al., 2018). The
Masked LM has been proven to be useful within the previous
BERT paper (Vaswani et al., 2017), where the image portion
masked in the encoder is matched to that in the loss computation
stage. Moreover, since we do not embed the data with the
positional encoding in our framework, we require a way to learn
the 3D representations through a certain sequence. MLM can
well meet this requirement. We set the number of transformer
cells as 12, 6, and 6 for Placenta, Covid20, and Synapse datasets,
respectively. The number of heads within each transformer cell
is 15, where each direction (i.e., x — y, x — z, and y — z plane)
contains five heads to compute self-attention scores. The length
of each mask is set to 16, 32, and 32 for the Placenta, Covid20,
and Synapse datasets, respectively. Each cube representation is
divided into 16 parts in the training phase.

07 frontiersin.org
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Image + Ground-truth
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FIGURE 3

Visualization of the segmentation results on the Placenta dataset produced by our 3DTU and nnUNet. Columns (A—-C) show the x-y plane, y-z
plane, and x-z plane of 3D segmentation predictions, respectively. The true-positive regions are highlighted in pink. The false-negative regions
are highlighted in red (e.g., the green circle regions in the last row). Better view with colors and zooming in

Image + Ground-truth

nnUNet

3IDTU

Image + Ground-truth

nnUNet

3DTU

4.3. Baseline settings and evaluation
metrics

To evaluate our 3DTU’s performance, we choose the
following frameworks as baselines: 2DU-Net (Ronneberger
et al., 2015), 3D U-Net (Cicek et al.,, 2016), UNet++ (Zhou
et al,, 2019), TransUNet (Chen et al., 2021), ViT (visual
transformer) (Dosovitskiy et al, 2020), nnFormer (Zhou
et al, 2021), and nnUNet (Isensee et al., 2021). Both 2D
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and 3D UNet are FCN-based encoder-decoder structures
with convolutional blocks and skip-connections between the
encoder and decoder. The UNet++ is a nested-connected
encoder-decoder structure, where each convolutional block
is connected to all other blocks. The TransUNet is an
where the encoder of UNet
is replaced by a 2D transformer including a positional

encoder-decoder network,

embedding scheme transformer

(ViT). The nnFormer is a 3D UNet-type framework that

followed by a visual
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FIGURE 4

Image + Ground-truth

nnUNet

Image + Ground-truth

nnUNet

3DTU

Visualization of the infection segmentation results on the Covid20 dataset produced by our 3DTU and nnUNet. Columns (A-C) show the x-y
plane, y—z plane, and x—z plane of 3D segmentation predictions, respectively. The true-positive regions are highlighted in pink. The
false-negative regions are highlighted in red (e.g., the green circle regions in the last row). Better view with colors and zooming in

replaces the convolutional blocks with three different novel
attention mechanisms.

The metrics we used to evaluate our 3DTU include mloU,
DICE score, and Hausdorff Distance (HD). IoU is the area of
overlap between the predicted segmentation and the ground
truth divided by the area of union between them. For binary
(two classes) or multi-class segmentation, the mean IoU (mIoU)
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of the image is calculated by taking the IoU of each class and
averaging them. DICE score is the harmonic mean of precision
and recall of the segmentation results. mIOU and DICE scores
are two overlap-based metrics measuring the similarity between
the ground truths and segmentation predictions. The range
of mIOU and DICE scores is from 0 to 1 and the larger
value indicates better segmentation performance. The directed
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Image + Ground-truth Image + Ground-truth Image + Ground-truth

nnUNet

3DTU

3DTU

FIGURE 5

Visualization of the segmentation results on the Synapse dataset produced by our 3DTU and nnUNet. Columns (A—C) show the x—y plane, y-z
plane, and x-z plane of 3D segmentation predictions, respectively. The green circle indicates part of false-negative regions. Better view with
colors and zooming in.

average Hausdorff distance (HD) from point set X to Y is 4.4. Comparative experiments
computed by the sum of all minimum distances from all points

from point set X to Y divided by the number of points in Table 1 provides the performance of our proposed
X. HD is a shape distance-based metric, which measures the 3DTU and the six competing baselines, including 2D UNet
dissimilarity between the surfaces of the segmentation results (Ronneberger et al., 2015), 3D UNet (Ronneberger et al.,
and the related ground truths. A lower value of HD indicates 2015), UNet++ (Zhou et al., 2019), TransUNet (Chen et al.,
better performance. 2021), visual transformer (ViT) (Dosovitskiy et al., 2020), and

Frontiersin Big Data 10 frontiersin.org


https://doi.org/10.3389/fdata.2022.1080715
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fuetal.

TABLE 2 Dice scores (in %) of our 3DTU on three datasets.

DICE score Placenta Covid20 Synapse
dataset dataset dataset
CNN + UNet decoder 68.6 74.3 59.5
BiT + UNet decoder 66.9 72.8 70.2
CNN + BiT 80.0 89.2 65.1
3DTU 84.0 92.0 87.3

The best results are shown in bold.

TABLE 3 Dice scores (in %) of our 3DTU running on data that has been
preprocessed with/without positional encoding.

Placenta Covid20 Synapse
dataset dataset dataset
3DTU w/o 84.0 92.0 87.3
Positional encoding
3DTU with 82.7 92.1 86.8
Positional encoding

nnFormer (Zhou et al, 2021) on the Placenta and Covid20
datasets. It shows that our 3DTU outperforms all competing
baseline methods consistently in terms of mIOU and DICE
scores on both datasets, while beating most of the methods
in the baseline in the Synapse dataset, indicating that the
segmentation results of our models match well with the ground
truth. For example, our proposed 3DTU outperforms baselines
with at least 0.48% and 0.44% increases in DICE scores on
Placenta and Covid20 datasets, respectively. This may attribute
to the attention mechanism proposed in the 3DTU, which can
compute the attention scores from three different directions
to yield discriminative and anisotropic semantic features for
3D images. In general, the transformer-based methods (e.g.,
TransUNet, ViT, etc.) perform better than the other baseline
methods. In addition, we visualized the segmentation results of
our 3DTU and the best baseline method (i.e., nnUNet) on three
datasets in Figures 3-5, respectively.

4.5. Ablation study

We conducted an ablation study on both datasets (i.e.,
Placenta and Covid20) to evaluate the effectiveness of each
part in our 3DTU framework. Our 3DTU is an encoder-
decoder-based framework, where the encoder consists of a CNN
networks part as well as a bi-directional transformer (BiT) part,
where the decoder is in the UNet decoder setting. Hence, we
designed the following four experiments in our ablation study.

e Weremoved the CNN networks in the encoder and directly
fed the input images to the BiT part.

e We removed the BiT part in the encoder and directly
connected the CNN networks to the UNet decoder.
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e Weremoved the UNet decoder part and considered the BiT
as both (part of) encoder and decoder.

e We designed a comparative experiment where we trained
3DTU with positional encoded representations. We
encoded the representations at the input of the transformer
encoder.

The results in Table 2 show the effectiveness and necessity of
all the sub-parts in our 3DTU. The results in Table 3 indicate
that positional encoding is not necessary in our framework
since our attention mechanism can process the 3D data as
a whole. Compared with the 3DTU w/o positional encoding,
the segmentation dice scores yielded by 3DTU with positional
encoding are not changed or even decreased. When we removed
the CNN networks and only utilized BiT as the encoder (see
results of BiT+Unet decoder in Table 2), the segmentation
performance decreased on both datasets (e.g., DICE decrease
from 84.0 to 66.9% and from 92.0 to 72.8% on Placenta and
COVID datasets, respectively). This indicates an essential role
of CNN-based convolutional layers in the encoder, without
which the self-attention transformer layers may not localize
the raw image pixels precisely. Meanwhile, the segmentation
performance increase when we use BiT instead of UNet as a
decoder (see results of CNN + UNet Decoder and CNN + BiT).
This manifests that, compared with UNet-based methods, the
(bi-directional) transformers are more powerful in boosting the
segmentation results.

4.6. Parameter analysis

We analyze the impact of two parameters, including the
loss weights o and the number of transformer cells, on the
segmentation performance of our proposed 3DTU across two
datasets in Figure 6. In general, Figure 6 indicates that the
segmentation results performed by our 3DTU are consistent.
Figure 6A shows that the dice results increase and then decrease
with the increase of @ from 0 to 1. The best dice scores are
achieved when « = 0.2 on both Placenta and Covid20 datasets.
Figure 6B shows that the segmentation performance improves
when increasing the number of transformer cells from 3 to 6.
However, the performance will keep stable (on the Placenta
dataset) or even slightly decrease (on the Covid20 dataset) when
the framework goes deeper. The reason for the slight decrease
in the performance of the Covid20 dataset may result from the
small size of the dataset. Only 20 3D images are included in the
Covid20 dataset, which may not facilitate the training process
when the network goes deep. Moreover, our 3DTU has a total
of 70M parameters (when training on the Covid20 dataset and
the Synapse dataset), which is more than 2D UNet (7M) and

4 It shows in Devlin et al. (2018) that the bi-directional transformer can

serve as both encoder and decoder.
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FIGURE 6
Impacts of @ and number of transformer cells on segmentation performance. (A) Dice of 3DTU vs. «. (B) Dice of 3DTU vs. number of transformer
cells.

3D UNet (17M) but beats the other transformer-based or hybrid
framework in the baseline (the TransUNet has 80M parameters,
and nnFormer has 158M parameters).

5. Conclusion

In this article, we propose a novel 3D transformer UNet
(3DTU) framework to capture global contextual information for
3D medical image segmentation. A new attention mechanism is
proposed with our 3DTU framework, which is especially suitable
for computing self-attentions for 3D objects. The experimental
results on two 3D medical image datasets demonstrate that our
method can outperform several state-of-the-art segmentation
baselines. In the future, we plan to explore how to reduce the
computation loads in transformer layers, which may improve
the efficiency of most current transformer-based methods.
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