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As one of the popular deep learning methods, deep convolutional neural

networks (DCNNs) have been widely adopted in segmentation tasks and have

received positive feedback. However, in segmentation tasks, DCNN-based

frameworks are known for their incompetence in dealing with global relations

within imaging features. Although several techniques have been proposed to

enhance the global reasoning of DCNN, these models are either not able

to gain satisfying performances compared with traditional fully-convolutional

structures or not capable of utilizing the basic advantages of CNN-based

networks (namely the ability of local reasoning). In this study, compared with

current attempts to combine FCNs and global reasoning methods, we fully

extracted the ability of self-attention by designing a novel attentionmechanism

for 3D computation and proposed a new segmentation framework (named

3DTU) for three-dimensional medical image segmentation tasks. This new

framework processes images in an end-to-end manner and executes 3D

computation on both the encoder side (which contains a 3D transformer) and

the decoder side (which is based on a 3D DCNN). We tested our framework on

two independent datasets that consist of 3D MRI and CT images. Experimental

results clearly demonstrate that our method outperforms several state-of-the-

art segmentation methods in various metrics.
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1. Introduction

In the recent few years, deep convolutional neural networks (DCNNs) (Krizhevsky

et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016; Badrinarayanan et al., 2017;

Huang et al., 2020; Pan et al., 2020) have achieved considerable progress in medical image

segmentation (Long et al., 2015; Noh et al., 2015; Chen L.-C. et al., 2018; Tokunaga et al.,

2019; Liu et al., 2022; Zhang et al., 2022). However, limited to the local receptive field of

the convolutional filter, DCNN-based frameworks are incapable of capturing long-range

dependencies from global features for semantic segmentation. To tackle this, several
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strategies can be considered. The first is to use the dilated

convolution operation to enlarge the size of the receptive

field of the convolutional filter (Yu and Koltun, 2015; Yang

et al., 2017; Zhang et al., 2017; Liu et al., 2021). However,

this enlarged local receptive field is still limited by the size of

dilation. Another solution is to model the feature map as graph

structures and investigate the long-range dependencies through

the message passing mechanism of different graph learning

models (e.g., graph convolution networks) (Li and Gupta, 2018;

Chen et al., 2019; Li et al., 2020; Jia et al., 2021). Although

these graph learning models have shown great potential in

enhancing the global reasoning ability of DCNNs, they have

very high requirements for computation and memory due to the

constructed large-size graphs.

The attention mechanism (Hochreiter and Schmidhuber,

1997; Vaswani et al., 2017) is a computation scheme that tries

to generate representations via different types of global features

at each step. Since attention can be regarded as the conversion

and transformation among the query (q), key (k), and value

(v) triplet, attention computation is to generate the q based on

the combination of the k–v pair. As it is natural to integrate

a cycling computation in recurrent cells, traditional attention

mechanisms are integrated within recurrent neural networks

(e.g., Hochreiter and Schmidhuber, 1997; Cho et al., 2014),

which inevitably impairs the efficiency of recurrent networks

compared with linear/residual networks (Vaswani et al., 2017).

To cope with this, Vaswani et al. (2017) proposed a transformer,

a structure consisting of a series of identical encoder blocks

connected with a series of identical decoder blocks, which all

have no convolutional layers and are connected in a residual

way. The original transformer supported by self-attention works

exceptionally well in some tasks like machine translation but not

in visual tasks (Chen et al., 2021). This is mainly due to the lack

of convolution layers that makes the model struggle to detect

local features.

For the aforementioned reasons, convolutional-based

frameworks are still preferred for segmentation tasks. Although

several other models (Goodfellow et al., 2014; Chen Y. et al.,

2018) have been proven feasible, DCNNs remain to be one of the

most effective methods. Multiple variants of DCNNs have been

proposed to make the segmentation process more effective, one

of the most crucial ones is the UNet (Ronneberger et al., 2015),

which is a symmetric structure consisting of convolutional

blocks with skip connections. These convolutional blocks have

descending dimensions on the encoder side and ascending

dimensions on the decoder side. However, due to the intrinsic

fully convolution structure, UNet is suboptimal to relate local

features to global representations with more variant distribution

(Chen et al., 2021). To cope with the drawbacks of UNet, many

methods have been proposed (Liu et al., 2018; Zhou et al.,

2019; Diakogiannis et al., 2020; Huang et al., 2020). However,

these methods are either very time-consuming or require

heavy computations, which make it impossible to be applied to

3D objects.

Under such circumstances, the self-attention mechanism

seems to be a nearly optimal solution. It is highly modulized and

can stretch the number of self-attention cells according to the

training environment. It can also train on vast datasets due to the

training nature of attention. Therefore, researchers combined

the transformer with convolutional layers for medical image

segmentation (Li et al., 2022). On the one hand, the transformer

encodes tokenized image patches from a CNN featuremap as the

input sequence for extracting global contexts. On the other hand,

the decoder upsamples the encoded features, which are then

combined with high-resolution CNN feature maps to enable

precise localization.

However, this approach still has some obstacles, especially

in the segmentation of 3D objects. This is partially due to

transformers (Vaswani et al., 2017) requiring the input features

to have temporal information. Since the self-attention does not

compute with a clear direction, features have to be preprocessed

with temporal info (e.g., cosine function) as input embeddings

before training. Although this learning process can be seen

as natural (scanning the features linearly and with order), it

will restrict the performance of high-dimensional data. For

example, many existing transformer approaches (Parmar et al.,

2018; Huang et al., 2020; Chen et al., 2021) will cut the 3D

object into 2D slice sequences to meet the temporal encoding

requirement; however, the segmentation performance is actually

worse because the 2D slice cutting will destroy the smoothness

of the object in 3D space. Bi-directional transformer (Devlin

et al., 2018) is a powerful upgrade version of transformer. It

is a structure with no decoder and processes the inputs all at

once with masks to create temporal/spatial continuity. However,

we will show in the experiment section that bi-directional

transformers can serve as a strong encoder but still struggles

to get better results on 3D segmentation. To compensate for

the loss of feature resolution brought by transformers, we

propose 3D transformer UNet (3DTU), which employs a hybrid

CNN–transformer architecture to leverage both detailed high-

resolution spatial information fromCNN features and the global

context encoded by our new 3D bi-directional transformer

module. We show that such a design allows our framework to

preserve the advantages of self-attention mechanisms and also

get considerably improved results on 3D image segmentation

compared with previous U-Net-based or transformer-based

methods. To sum up, our contributions to this article can be

summarized as follows:

• We proposed a new 3D bi-directional framework to learn

deep 3D features for medical image semantic segmentation.

• We designed a novel attention mechanism specifically

suitable for network training and self-attention

computation for 3D objects.
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• We verified our new framework on multiple datasets,

consisting of different imaging modalities (MRI and CT

images) and different organs (placenta and lungs infected

with COVID) and obtained state-of-the-art (SOTA) results.

Our method beat baselines in performances on multiple

metrics.

2. Related work

2.1. Fully convolutional network in
medical image segmentation

Many studies have attempted to adopt convolutional

networks to medical image segmentation. For example, Liu

et al. (2018) presented a hybrid network consisting of both

3D CNN and 2D CNN in the brain image segmentation for

Alzheimer’s disease (AD) studies. Ronneberger et al. (2015)

presented UNet, one of the most iconic encoder–decoder-

based methods for medical image segmentation. Their method

consists of convolutional blocks that have a U-shaped dimension

variation. Specifically, from the input layer of the encoder to the

input layer of the decoder, each block’s dimension is descending.

And the decoder has an ascending dimension that is matched to

the encoder blocks. Such a design makes sure that the learning

ability of the framework is powerful enough to find the abstract

of the locality and output a global representation map. Several

adjustments (e.g., Zhou et al., 2019; Huang et al., 2020) have

been made to the original UNet model. For example, U-Net3+

(Huang et al., 2020) and its variations, although proved effective,

still suffer from the locality-heavy learning scheme. Some

researchers tried to boost the local reasoning of convolutional

layers through the residual structure. For example, ResUNet

(Diakogiannis et al., 2020) proposed a residual block between

every two convolutional blocks on both the encoder side and

decoder side as well as skip-connection between residual blocks

with the same dimension between the encoder and decoder.

Isensee et al. (2021) argued that the understanding of the

datasets needed for training is more important than the network

itself since most UNet-based moderations have achieved little

progress. The authors proposed nnUNet, a robust network,

that is designed based on the combination of 2D and 3D

UNet. The authors also made different training configurations

(normalization tricks, cropping, activation functions, etc.) based

on the datasets.

2.2. Transformers

Transformers (Vaswani et al., 2017) were initially proposed

for general NLP tasks and quickly gain widespread attention

by beating previous most state-of-the-art results by a large

margin. Devlin et al. (2018) converted the original transformer

model into BERT, and introduced the called bi-directional

transformers, which are proven effective again. Naturally,

multiple efforts have been made to adjust the learning ability of

transformers in the computer vision domain. Several variants

of transformers have emerged recently. Parmar et al. (2018)

presented one of the early works to adjust vanilla transformers

by incorporating visual information. This model pre-processes

each pixel of one image through a 1×1 convolution layer. Then,

the embeddings are computed with positional embeddings

before feeding into transformers for super-resolution tasks.

In another attempt at visual tasks, Dosovitskiy et al. (2020)

proposed Vision transformer (ViT), which presented a novel

way of input embedding on visual information. It achieved

state-of-the-art on ImageNet classification by directly applying

transformers with global self-attention to full-sized images.

Specifically, ViT flattens an image to fixed-sized pixels, which

then be linearly added to positional embeddings before feeding

to transformer encoders. Valanarasu et al. (2021) presented gated

axial attention that creates a gated scheme to improve learning

ability on the local scale.

2.3. Combination of UNet and
transformer in medical image
segmentation

Multiple attempts have been made to combine the UNet

with transformer in both framework structure and inner

encoder/decoder computation. TransUNet (Chen et al., 2021)

consists of a series of transformer units as the encoder

and the right half of the UNet as the decoder to generate

predictions in medical image segmentation. Both the encoder

and the decoder (Chen et al., 2021) are computed in a 2D

scenario. Yun et al. (2021) introduced SpecTr, a framework

that takes spectral normalization into the computation between

convolution and attention blocks. Their methods achieved

better results than the baseline when training on hyperspectral

medical images. Wang et al. (2021) presented TransBTS

that utilizes 3D CNN to extract input representations. UNet

transformer, presented by Petit et al. (2021), replaces self-

attention modules in transformer encoder/decoder cells by

convolutional blocks and batch normalization computations.

Another attempt is Swin-UNet (Cao et al., 2021), which

instead replaces convolution blocks in the UNet-Structure

network with self-attention modules. Several works follow

similar methods including UNETR (Hatamizadeh et al., 2022b),

SWIN UNETR (Hatamizadeh et al., 2022a), CoTr (Xie et al.,

2021), nnFormer (Zhou et al., 2021), DS-TransUNet (Lin et al.,

2022), UTNet (Gao et al., 2021), and PNS-Net (Ji et al., 2021).

In UNETR, the authors presented a novel 3D transformer

encoder and a voxel-wise loss for model training. For the

positional embedding, they adopted a strategy from the Visual
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transformer, which divides the 3D images into 3D patches.

The decoder in their work consists of several convolutional

blocks in different dimensions and skip connections to the

encoder. The SWIN UNETR is proposed for 3D multi-

modal MRI brain image studies, which is different from the

SWIN UNET that is proposed for 2D images. The CoTr

utilized a DeTrans-encoder with a novel attention mechanism

and a CNN-based decoder. The nnFormer utilizes CNN

as part of an encoder, which leverages the ability of local

feature extraction of CNN structures. Moreover, it utilizes

transformer structures as its decoder and the second part of

its encoder. There are two differences between our 3DTU and

the nnFormer. First, we utilize a CNN-based structure (i.e.,

the right part of 3DUNet) as our decoder. Then, we design an

attention mechanism that computes the attention scores from

different directions.

The aforementioned methods adjust the transformers in

visual tasks by introducing their own positional embedding

rules. Although these rules are to an extent useful, their

performance all suffers from the slicing of 3D data to

adjust the positional embeddings. In this study, positional

embeddings are not needed technically, even for 3D data.

We modify the multi-head attention from its original form

to a refined computation scheme that fully utilizes the

potentials of transformer and UNet. More importantly,

our encoder is a refined bi-directional transformer, which

learns the feature from three (i.e., along x, y, and z)

directions simultaneously.1

3. Methods

Wepropose a 3DUNet-based framework with bi-directional

transformers (named 3DTU) in this work. The self-attention

mechanism in the proposed bi-directional transformers can

improve the ability of generalization of the framework encoder.

We will delve into the technical details in this section.

As shown in Figure 1, our proposed 3DTU is an encoder–

decoder framework, where the encoder consists of two modules

including a feature extraction module (see Part I in Figure 1)

and a bi-directional transformermodule (see Part II in Figure 1).

Given a 3D image I ∈ Rh×w×d×c, where h, w, and d are

the shapes of the image and c is the image channel number,

the feature extraction module projects the 3D image I as a

latent representation X via basic convolutional neural networks

(CNNs). Then, the 3D bi-directional transformer cells take

the latent representation X as input and yield the masked

latent representation XM by using Masked-LM (MLM) (Devlin

et al., 2018) step by step. Finally, the decoder part utilizes the

1 We use the term “bi-directional” by following previous studies.

However, our 3DTU learns the features from three directions instead.

masked latent representations to reconstruct the segmentation

predictions for loss computation.

3.1. Encoder with 3D bi-directional
transformer

As aforementioned, the encoder of the 3DTU consists

of two parts. The first part of the encoder is a CNN-

based feature extraction module. We aim to convert the

original 3D image (I) into an iso-dimensional latent cube

representation (X ∈ R1×p×p×p) via this module as assistance

to capture the image locality for transformer modules, since

the transformer module may not have enough ability to

capture the image local features. We will show this point

in the ablation studies. Particularly, the feature extraction

module includes two convolutional layers followed by a fully-

connected (FC) layer and a max-pooling layer in between the

two convolutional layers. The FC layer is used to adapt the

feature dimension.

The bi-directional transformer module takes the latent cube

representation X as input and computes multi-head attentions

with the MLM strategy (Devlin et al., 2018). Details of the

bi-directional transformer module are shown in Figure 2. In

general, each cell in the bi-directional transformer module

generates the latent feature map X1 by the following steps:

X
′

= Att(Norm(X))+ X,

X
′′

= FF(Norm(X
′

)),

X1 = X
′

+ X
′′

, (1)

where Att(·) is the multi-head self-attention operation, Norm(·)

is a 3D normalization operation, and FF(·) is the feed

forward layer (i.e., FC layer). + denotes a pixel-wise add

operation. Particularly, the multi-head attention is computed as

follows:

Att_head
x,y,z
i = SDP(Q,K,V)×W,

MultiHead(Q,K,V) = Concat(headxi , head
y
i , head

z
i ), (2)

where SDP(·) is the Scaled Dot-Product Attention, W

is the trainable parameters for linear projections (i.e.,

Lq, Lk, and Lv in Figure 2) and Concat(·) denotes a

concatenation operation. Q,K, and V are the query-

key-value triplets defined by the transformer cell. Note

that our proposed attention mechanism can yield the

attention score by scanning the query-key-value triplets

in three different directions (i.e., along x, y, and z

axes, respectively), which gain plentiful discriminative

and anisotropic semantic information for the 3D

image segmentation.
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FIGURE 1

The diagram of the 3DTU framework in an encoder–decoder setting. The encoder consists of two parts including feature extraction and

bi-directional transformer.

3.2. UNet-based decoder

As shown in Figure 1, we utilize convolutional blocks

with ascensional dimensions in the decoder part. A residual

connection is adopted between the encoder side and the decoder

side. Particularly, a cascaded of multi-channel feature map (FM)

blocks are integrated into the decoder part, each of which

contains two 3× 3× 3 convolutional layers and an upsampling

layer. The channel number of feature maps reduces by half after

each FM block. In the last FM block, instead of upsampling

layer, a 1 × 1 × 1 convolutional layer is used to generate final

segmentation predictions.

3.3. Loss function and supervision
manner

Since the MLM strategy is used in the encoder part, where

a portion of image features are masked (i.e., set to 0 values)
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FIGURE 2

Encoder Part II: bi-directional transformer with a multi-head attention mechanism.

and the other portions remain the same. Hence, our goal is

to use the uncovered portions to predict the masked portions

(Devlin et al., 2018), in which the loss is only estimated based

on the masked regions. Particularly, the loss function can be

formulated as:

L = α×ℓdice(ŷmask, ymask)+(1−α)×ℓBCE(ŷmask, ymask), (3)

where ŷmask and ymask are the masked regions of segmentation

prediction and ground truth, respectively. α ∈ [0, 1] is the

loss weight.

4. Experiments

4.1. Datasets

We used three datasets obtained from different

modalities for this study, including Placenta MRI

(Placenta) dataset, COVID-19 CT lung and infection

segmentation (Covid20) dataset, and Multi-Atlas

Labeling Beyond the Cranial Vault (Synapse) dataset.

Details of data description and preprocessing are shown

below.

Placenta MRI dataset was collected from the Washington

University in Saint Louis (WUSTL) (Sun et al., 2022), where all

data were de-identified before processing. The data collection

and related studies were approved by the Institutional Review

Board at the WUSTL. A total of 81 MRI scans were collected

from 46 pregnant patients (mean age = 23.91 ± 3.02 yo,

mean BMI = 25 ± 3.66 at recruitment) with normal singleton

pregnancy who underwent MRI during the third trimester, by

a Siemens 3T VIDA scanner. Of the 46 patients, 21 patients

had the single scan and 25 patients had multiple longitudinal

scans. The average gestational ages (GA) during MRI scans were

34.12± 1.07 weeks (Min GA 28 weeks 3 days, max GA 38 weeks

6 days). T2-weighted MRI of the entire uterus was acquired

with a 2D EPI sequence in the left lateral position. The MRI

data has a fixed acquisition matrix of 128 × 128 × 115, and

variable voxel sizes from 3 × 3 × 3 mm to 3.5 × 3.5 × 3.5 mm,

up to the patient’s size. Manual segmentation of the placenta
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TABLE 1 Quantitative segmentation results of different methods on two datasets, where mIOU and DICE are in %.

Placenta dataset Covid20 dataset Synapse dataset

mIOU DICE HD95 mIOU DICE HD95 mIOU DICE HD95

2D UNet 67.6 72.3 12.0 73.6 78.3 112.5 56.3 60.6 45.7

3D UNet 72.5 78.6 10.7 78.1 84.0 97.6 59.4 62.2 42.2

UNet++ 74.5 77.1 8.2 80.3 84.6 63.0 67.1 73.7 34.0

TransUNet 73.6 80.0 7.4 83.1 89.2 45.8 70.2 77.5 31.7

ViT 72.9 79.7 8.5 84.2 89.0 70.3 65.3 67.9 36.1

nnFormer 78.3 82.1 10.2 81.0 89.9 66.2 81.8 86.6 10.6

nnUNet 78.9 83.6 8.7 90.3 91.6 59.9 84.2 89.8 16.6

3DTU (Ours) 79.8 84.0 7.2 90.5 92.0 59.4 85.0 87.3 18.4

The best results are shown in red and the second-best results are shown in blue.

regions was conducted by experienced radiologists for all MRI

images.

COVID19-CT-Seg20 dataset (Covid20) contains 20

COVID-19 3D CT images, where lungs and infections were

annotated by two radiologists and verified by an experienced

radiologist2 (Jun et al., 2021). We only focused on the

segmentation of the COVID-19 infections in this study, since it

is more challenging and important.

Multi-atlas labeling beyond the cranial vault (Synapse)

dataset.3 We use the 30 abdominal CT scans from the MICCAI

2015 Multi-Atlas Abdomen Labeling Challenge. These scans

were captured during the portal venous contrast phase with

variable volume sizes (512 × 512 × 85–512 × 512 × 198) and

field of views (approximately 280× 280 × 280mm3–500 × 500

× 650 mm3). The in-plane resolution varies from 0.54 × 0.54

mm2 to 0.98 × 0.98 mm2, while the slice thickness ranges from

2.5 to 5.0 mm. We report the average experimental results on

eight abdominal organs (aorta, gallbladder, spleen, left kidney,

right kidney, liver, pancreas, spleen, and stomach) with 5-fold

validation.

4.2. Implementation details

In the pre-processing step, we simply normalized the

intensities of each 3D image to zero mean and unit variance.

In the training phase, we applied data augmentation techniques

to reduce potential overfitting, including random rotation of

the image by 90◦ along three dimensions and adjusting the

brightness of the top 3% pixels. The training iterations were

set to 105. We trained the model using the Adam optimizer

with a batch size of 1 and synchronized batch normalization.

The initial learning rate was set to 1e − 2 and was decayed

2 https://zenodo.org/record/3757476#.Y1NGmy1h1B1

3 https://www.synapse.org#!Synapse:syn3193805/wiki/217789

by (1 −
current_epoch
max_epoch )0.9. We also regularized the training

with dropout in the transformer cells. All experiments are

conducted using a 5-fold cross-validation, based on Pytorch

1.7.1 on a workstation with 2 NVIDIA TITAN RTX GPUs.

The data division on the public Covid20 dataset is adopted

by following the division strategy given by Qiu et al.

(2021).

As aforementioned, our encoder consists of two parts. In

the feature extraction module, we used a CNN network with

two convolutional layers, one max-pooling layer, and one 1-

D fully-connected layer with the direction of x − y plane to

z coordinate to convert the representations with the original

dimension to a cube. The first convolutional layer, with a

kernel size of 3 × 3 × 3, embeds the input 3-D image into

local representation maps, while the second convolutional layer

project the local representation maps for the second part of the

encoder via a linear transformation. The output dimension of

the feature extraction module is converted (i.e., reshape) to X ∈

R1×256×256×256. In the bi-directional transformer module, we

utilize multiple transformer cells with the bi-directional self-

attention mechanism. Specifically, the input embedding strategy

that we adopted is Masked LM (MLM) (Devlin et al., 2018). The

Masked LM has been proven to be useful within the previous

BERT paper (Vaswani et al., 2017), where the image portion

masked in the encoder is matched to that in the loss computation

stage. Moreover, since we do not embed the data with the

positional encoding in our framework, we require a way to learn

the 3D representations through a certain sequence. MLM can

well meet this requirement. We set the number of transformer

cells as 12, 6, and 6 for Placenta, Covid20, and Synapse datasets,

respectively. The number of heads within each transformer cell

is 15, where each direction (i.e., x − y, x − z, and y − z plane)

contains five heads to compute self-attention scores. The length

of each mask is set to 16, 32, and 32 for the Placenta, Covid20,

and Synapse datasets, respectively. Each cube representation is

divided into 16 parts in the training phase.
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FIGURE 3

Visualization of the segmentation results on the Placenta dataset produced by our 3DTU and nnUNet. Columns (A–C) show the x–y plane, y–z

plane, and x–z plane of 3D segmentation predictions, respectively. The true-positive regions are highlighted in pink. The false-negative regions

are highlighted in red (e.g., the green circle regions in the last row). Better view with colors and zooming in.

4.3. Baseline settings and evaluation
metrics

To evaluate our 3DTU’s performance, we choose the

following frameworks as baselines: 2DU-Net (Ronneberger

et al., 2015), 3D U-Net (Çiçek et al., 2016), UNet++ (Zhou

et al., 2019), TransUNet (Chen et al., 2021), ViT (visual

transformer) (Dosovitskiy et al., 2020), nnFormer (Zhou

et al., 2021), and nnUNet (Isensee et al., 2021). Both 2D

and 3D UNet are FCN-based encoder–decoder structures

with convolutional blocks and skip-connections between the

encoder and decoder. The UNet++ is a nested-connected

encoder–decoder structure, where each convolutional block

is connected to all other blocks. The TransUNet is an

encoder–decoder network, where the encoder of UNet

is replaced by a 2D transformer including a positional

embedding scheme followed by a visual transformer

(ViT). The nnFormer is a 3D UNet-type framework that
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FIGURE 4

Visualization of the infection segmentation results on the Covid20 dataset produced by our 3DTU and nnUNet. Columns (A–C) show the x–y

plane, y–z plane, and x–z plane of 3D segmentation predictions, respectively. The true-positive regions are highlighted in pink. The

false-negative regions are highlighted in red (e.g., the green circle regions in the last row). Better view with colors and zooming in.

replaces the convolutional blocks with three different novel

attention mechanisms.

The metrics we used to evaluate our 3DTU include mIoU,

DICE score, and Hausdorff Distance (HD). IoU is the area of

overlap between the predicted segmentation and the ground

truth divided by the area of union between them. For binary

(two classes) or multi-class segmentation, the mean IoU (mIoU)

of the image is calculated by taking the IoU of each class and

averaging them. DICE score is the harmonic mean of precision

and recall of the segmentation results. mIOU and DICE scores

are two overlap-based metrics measuring the similarity between

the ground truths and segmentation predictions. The range

of mIOU and DICE scores is from 0 to 1 and the larger

value indicates better segmentation performance. The directed
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FIGURE 5

Visualization of the segmentation results on the Synapse dataset produced by our 3DTU and nnUNet. Columns (A–C) show the x–y plane, y–z

plane, and x–z plane of 3D segmentation predictions, respectively. The green circle indicates part of false-negative regions. Better view with

colors and zooming in.

average Hausdorff distance (HD) from point set X to Y is

computed by the sum of all minimum distances from all points

from point set X to Y divided by the number of points in

X. HD is a shape distance-based metric, which measures the

dissimilarity between the surfaces of the segmentation results

and the related ground truths. A lower value of HD indicates

better performance.

4.4. Comparative experiments

Table 1 provides the performance of our proposed

3DTU and the six competing baselines, including 2D UNet

(Ronneberger et al., 2015), 3D UNet (Ronneberger et al.,

2015), UNet++ (Zhou et al., 2019), TransUNet (Chen et al.,

2021), visual transformer (ViT) (Dosovitskiy et al., 2020), and
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TABLE 2 Dice scores (in%) of our 3DTU on three datasets.

DICE score Placenta
dataset

Covid20
dataset

Synapse
dataset

CNN+ UNet decoder 68.6 74.3 59.5

BiT+ UNet decoder 66.9 72.8 70.2

CNN+ BiT 80.0 89.2 65.1

3DTU 84.0 92.0 87.3

The best results are shown in bold.

TABLE 3 Dice scores (in%) of our 3DTU running on data that has been

preprocessed with/without positional encoding.

Placenta
dataset

Covid20
dataset

Synapse
dataset

3DTU w/o
Positional encoding

84.0 92.0 87.3

3DTU with
Positional encoding

82.7 92.1 86.8

nnFormer (Zhou et al., 2021) on the Placenta and Covid20

datasets. It shows that our 3DTU outperforms all competing

baseline methods consistently in terms of mIOU and DICE

scores on both datasets, while beating most of the methods

in the baseline in the Synapse dataset, indicating that the

segmentation results of our models match well with the ground

truth. For example, our proposed 3DTU outperforms baselines

with at least 0.48% and 0.44% increases in DICE scores on

Placenta and Covid20 datasets, respectively. This may attribute

to the attention mechanism proposed in the 3DTU, which can

compute the attention scores from three different directions

to yield discriminative and anisotropic semantic features for

3D images. In general, the transformer-based methods (e.g.,

TransUNet, ViT, etc.) perform better than the other baseline

methods. In addition, we visualized the segmentation results of

our 3DTU and the best baseline method (i.e., nnUNet) on three

datasets in Figures 3–5, respectively.

4.5. Ablation study

We conducted an ablation study on both datasets (i.e.,

Placenta and Covid20) to evaluate the effectiveness of each

part in our 3DTU framework. Our 3DTU is an encoder–

decoder-based framework, where the encoder consists of a CNN

networks part as well as a bi-directional transformer (BiT) part,

where the decoder is in the UNet decoder setting. Hence, we

designed the following four experiments in our ablation study.

• We removed the CNNnetworks in the encoder and directly

fed the input images to the BiT part.

• We removed the BiT part in the encoder and directly

connected the CNN networks to the UNet decoder.

• We removed the UNet decoder part and considered the BiT

as both (part of) encoder and decoder.4

• We designed a comparative experiment where we trained

3DTU with positional encoded representations. We

encoded the representations at the input of the transformer

encoder.

The results in Table 2 show the effectiveness and necessity of

all the sub-parts in our 3DTU. The results in Table 3 indicate

that positional encoding is not necessary in our framework

since our attention mechanism can process the 3D data as

a whole. Compared with the 3DTU w/o positional encoding,

the segmentation dice scores yielded by 3DTU with positional

encoding are not changed or even decreased. When we removed

the CNN networks and only utilized BiT as the encoder (see

results of BiT+Unet decoder in Table 2), the segmentation

performance decreased on both datasets (e.g., DICE decrease

from 84.0 to 66.9% and from 92.0 to 72.8% on Placenta and

COVID datasets, respectively). This indicates an essential role

of CNN-based convolutional layers in the encoder, without

which the self-attention transformer layers may not localize

the raw image pixels precisely. Meanwhile, the segmentation

performance increase when we use BiT instead of UNet as a

decoder (see results of CNN + UNet Decoder and CNN + BiT).

This manifests that, compared with UNet-based methods, the

(bi-directional) transformers are more powerful in boosting the

segmentation results.

4.6. Parameter analysis

We analyze the impact of two parameters, including the

loss weights α and the number of transformer cells, on the

segmentation performance of our proposed 3DTU across two

datasets in Figure 6. In general, Figure 6 indicates that the

segmentation results performed by our 3DTU are consistent.

Figure 6A shows that the dice results increase and then decrease

with the increase of α from 0 to 1. The best dice scores are

achieved when α = 0.2 on both Placenta and Covid20 datasets.

Figure 6B shows that the segmentation performance improves

when increasing the number of transformer cells from 3 to 6.

However, the performance will keep stable (on the Placenta

dataset) or even slightly decrease (on the Covid20 dataset) when

the framework goes deeper. The reason for the slight decrease

in the performance of the Covid20 dataset may result from the

small size of the dataset. Only 20 3D images are included in the

Covid20 dataset, which may not facilitate the training process

when the network goes deep. Moreover, our 3DTU has a total

of 70M parameters (when training on the Covid20 dataset and

the Synapse dataset), which is more than 2D UNet (7M) and

4 It shows in Devlin et al. (2018) that the bi-directional transformer can

serve as both encoder and decoder.
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FIGURE 6

Impacts of α and number of transformer cells on segmentation performance. (A) Dice of 3DTU vs. α. (B) Dice of 3DTU vs. number of transformer

cells.

3D UNet (17M) but beats the other transformer-based or hybrid

framework in the baseline (the TransUNet has 80M parameters,

and nnFormer has 158M parameters).

5. Conclusion

In this article, we propose a novel 3D transformer UNet

(3DTU) framework to capture global contextual information for

3D medical image segmentation. A new attention mechanism is

proposed with our 3DTU framework, which is especially suitable

for computing self-attentions for 3D objects. The experimental

results on two 3D medical image datasets demonstrate that our

method can outperform several state-of-the-art segmentation

baselines. In the future, we plan to explore how to reduce the

computation loads in transformer layers, which may improve

the efficiency of most current transformer-based methods.
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