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Abstract— Recently, brain networks have been widely adopted
to study brain dynamics, brain development, and brain diseases.
Graph representation learning techniques on brain functional
networks can facilitate the discovery of novel biomarkers for
clinical phenotypes and neurodegenerative diseases. However,
current graph learning techniques have several issues on brain
network mining. First, most current graph learning models are
designed for unsigned graph, which hinders the analysis of many
signed network data (e.g., brain functional networks). Meanwhile,
the insufficiency of brain network data limits the model perfor-
mance on clinical phenotypes’ predictions. Moreover, few of the
current graph learning models are interpretable, which may not
be capable of providing biological insights for model outcomes.
Here, we propose an interpretable hierarchical signed graph
representation learning (HSGPL) model to extract graph-level
representations from brain functional networks, which can be
used for different prediction tasks. To further improve the model
performance, we also propose a new strategy to augment func-
tional brain network data for contrastive learning. We evaluate
this framework on different classification and regression tasks
using data from human connectome project (HCP) and open
access series of imaging studies (OASIS). Our results from
extensive experiments demonstrate the superiority of the pro-
posed model compared with several state-of-the-art techniques.
In addition, we use graph saliency maps, derived from these
prediction tasks, to demonstrate detection and interpretation of
phenotypic biomarkers.

Index Terms—Brain functional networks, contrastive
learning, data augmentation, hierarchical graph pooling (HGP),
interpretability, signed graph learning.

I. INTRODUCTION

NDERSTANDING brain organizations and their rela-
Utionship with phenotypes (e.g., clinical outcomes,
behavioral, or demographical variables) are of prime impor-
tance in the modern neuroscience field. One of the important
research directions is to use noninvasive neuroimaging data
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(e.g., functional magnetic resonance imaging or fMRI) to iden-
tify potential imaging biomarkers for clinical purposes. Most
previous studies focus on voxelwise and region-of-interests
(ROIs) imaging features [1], [2], [3]. However, evidences show
that the brain is a complex system whose function relies on
a diverse set of interactions among brain regions. These brain
functions will further determine human clinical or behavioral
phenotypes [4], [5], [6], [7], [8], [9], [10], [11], [12], [13].
Therefore, more and more studies have been conducted to pre-
dict those phenotypes using the brain network as the delegate
of interactions among brain regions [14], [15], [16]. In addi-
tion, compared with the traditional neuroimaging features,
brain network has more potential to gain interpretable and
system-level insights into phenotype-induced brain dynam-
ics [17]. A brain network is a 3-D brain graph model, where
graph nodes represent the attributes of brain regions and graph
edges represent the connections (or interactions) among these
regions.

Many studies have been conducted to analyze brain net-
works based on the graph theory; however, most of these
studies focus on predefined network features, such as clus-
tering coefficient and small-worldness [18], [19], [20], [21],
[22]. This may be suboptimal since these predefined network
features may not be able to capture the characteristics of the
whole brain network. However, the whole brain network is dif-
ficult to be analyzed due to the high dimensionality. To tackle
this issue, graph neural network (GNN), as one of embedding
techniques, has gained increasing attentions to explore the
biological characteristics of brain network—phenotype asso-
ciations in recent years [23], [24], [25]. GNN is a class of
deep neural networks that can embed the high-dimensional
graph topological structures with graph node features into
low-dimensional latent space based on the information passing
mechanism [26], [27], [28]. A few studies proposed different
GNNs to embed the nodes in brain networks and applied
a global readout operation (e.g., global mean or sum) to
summarize all the latent node features as the whole brain
network representation for downstream tasks (e.g., behavioral
score regression, clinical disease classification) [4], [24], [25],
[29]. However, the message passing of GNNs is inherently
“flat” which only propagates information across graph edges
and is unable to capture hierarchical structures rooted in
graphs which are crucial in brain functional organizations [30],
[31], [32], [33]. To address this issue, many recent studies
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introduce hierarchical GNNs, including node embedding and
hierarchical graph pooling (HGP) strategies, to embed the
whole brain network in a hierarchical manner [30], [34], [35],
[36], [37].

Although GNNs have achieved great progresses on brain
network mining, several issues should be addressed. First,
most existing GNNs are designed for unsigned graphs in
which all the graph nodes are connected via nonnegative edges
[i.e., edge weights are in the range of [0, co)]. However, signed
graphs are very common in brain research (e.g., functional
MRI-derived brain networks or brain functional networks),
which leads to a demand of signed graph embedding models.
To tackle this issue, a few recent studies proposed signed
graph embedding models based on the balance theory [38],
[39], [40], [41]. The balance theory, motivated by human
attitudes in social networks, is used to describe the node
relationship in signed graphs, where nodes connected by
positive edges are considered as “friends,” otherwise are
considered as “opponents.” In the realm of the brain func-
tional networks, the positive edge means coactivation and the
negative edge indicates antiactivation between those connected
nodes. Meanwhile, the balance theory defines four higher order
relationships among graph nodes: 1) the “friend” of “friend” is
“friend;” 2) the “opponent” of “friend” is “opponent;” 3) the
“friend” of “opponent” is “opponent;” and 4) the “opponent”
of “opponent” is “friend.” These definitions are accorded with
the nodal relationships in the functional brain network, which
indicates that the balance theory is applicable in brain func-
tional network embedding. In this study, we adopt the balance
theory to coembed the positive and negative edges as well as
local brain nodes. Therefore, generated latent node features
include balanced and unbalanced feature components. Beyond
focusing on local structures, we also consider the hierarchical
structure in graphs as one of the global graph features. As sug-
gested by literature [30], [42], [43], [44], the graph hierarchical
structure can facilitate to yield whole graph representations
and to enable the graph-level tasks (i.e., clinical disease
classification based on the whole brain networks). Particularly,
we propose a new hierarchical pooling module for signed
graphs based on the information theory and extend the current
methods on signed graph from local embedding to global
embedding.

The second issue is that most of the current GNNs on brain
network studies are not interpretable, and thus are incapable
of providing biological explanations or heuristic insights for
model outcomes. This is mainly due to the black-box nature
of neural networks. To address this issue, we propose a signed
graph learning model with an interpretable graph pooling
module. Previous studies indicated that brain networks are
hierarchically organized by some regions as neuro-information
hubs and peripheral regions, respectively [45], [46], [47], [48].
In our graph pooling module, we compute an information
score (IS) to measure the information gain for each brain
node and choose top-K nodes with high information gains
as information hubs. The information of other peripheral brain
nodes will be aggregated onto these hubs. Hence, the proposed
pooling module can be interpreted as a brain information hub
generator. Apparently, the outcome of this pooling module
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is a subgraph of the original brain network without creating
any new nodes. Therefore, yielded subgraph nodes can be
regarded as potential biomarkers to provide heuristic biological
explanations for tasks.

To further boost the proposed model performance on pre-
diction tasks, we introduce graph contrastive learning into
our proposed hierarchical signed graph representation learning
(HSGRL) model. A data augmentation strategy to generate
contrastive brain functional network samples is necessary to
achieve graph contrastive learning. The data augmentation for
contrastive learning aims at creating reasonable data samples,
by applying certain transformations, which are similar to
the original data samples. For example, image rotation and
cropping are common transformations to generate new samples
in the image classification tasks [49], [50], [51], [52], [53].
In graph structural data, a few studies proposed to use graph
perturbations (i.e., add/drop graph nodes, manipulate graph
edges) and graph view augmentation (e.g., graph diffusion) to
generate contrastive graph samples from different views [54],
[55], [56], [57], [58]. These strategies, although boosting
the model performance on large-scale benchmark datasets
(e.g., CORA, CITESEER), may not be suitable to generate
contrastive brain network samples. On one hand, each node in
brain networks represents a defined brain region with specific
brain activity information so that the brain node cannot be
arbitrarily removed or added. On the other hand, add/drop
operations on the brain network may lead to unexpected
model outcomes which are difficult to explain and understand
from biological views. Motivated by [59], [60], we generate
contrastive brain functional network samples directly from the
fMRI blood-oxygen-level-dependent (BOLD) signals, where
the generated contrastive samples are similar to the original
ones, and the internal biological structure is therefore main-
tained. Our main contributions are summarized as follows.

1) We propose an HSGRL model to embed the brain
functional networks and we apply the proposed model
on multiple phenotype prediction tasks.

2) We propose a contrastive learning architecture with our
proposed HSGRL model to boost the model perfor-
mance on several prediction tasks. A graph augmentation
strategy is proposed to generate contrastive samples for
the fMRI-derived brain network data.

3) The proposed HSGPL model is interpretable which
yields heuristic biological explanations.

4) Extensive experiments are conducted to demonstrate the
superiority of our method. Moreover, we draw graph
saliency maps for clinical tasks, to enable interpretable
identifications of phenotype biomarkers.

II. RELATED WORKS
A. GNNs and Brain Network Embedding

GNNs are generalized deep learning architectures which
are broadly used for graph representation learning in many
fields (e.g., social network mining [61], [62], molecule stud-
ies [63], [64], and brain network analysis [65]). Most existing
GNN models (e.g., graph convolutional network (GCN) [26],
GAT [27], GraphSage [66]) focus on node-level representation
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learning and only propagate information across edges of
the graph in a flat way. When deploying these models on
graph-level tasks (e.g., graph classification, graph similarity
learning, [42], [43], [44], [67]), the whole graph represen-
tations are obtained by a naive global readout operation
(e.g., sum or average all the node feature vectors). However,
this may lead to poor performance and low efficiency in
graph-level tasks since the hierarchical structure, an important
property that existed in graphs, is ignored in these models.
To explore and capture hierarchical structures in graphs, a few
HGP strategies are proposed to learn representations for the
whole graph in a hierarchical manner [30], [34], [35], [68],
[69]. The traditional methods to extract brain network patterns
are based on the graph theory [18], [19], [20], [21], [22],
[70] or geometric network optimization [71], [72], [73], [74].
A few recent studies [24], [25], [75] introduce GNNs to
discover brain patterns for phenotypes’ predictions. However,
hierarchical structures in the brain networks are not considered
in these models, which limit the model performance in a way.
Recently, a few hierarchical brain network embedding models
are proposed [36], [65], [76].

However, all the aforementioned GNNs are designed for
unsigned graph representation learning. A few recent studies
are proposed to handle the signed graphs; however, they only
consider the ode-level representation learning [39], [41], [77],
[78]. In this work, we design a signed graph hierarchical
pooling strategy to extract graph-level representations from
the brain functional networks.

B. Interpretable Graph Learning Model

Generally, the mechanism about how GNNs embed the
graph nodes can be explained as a message passing process,
which includes message aggregations from neighbor nodes
and message (nonlinear) transformations [28], [36], [79].
However, most current hierarchical pooling strategies are not
interpretable [30], [34], [35]. A few recent studies try to
propose interpretable graph pooling strategies to make the
pooling module intelligible to the model users. Most of these
pooling strategies downsample graphs relying on network
communities which are one of the important hierarchical
structures that can be interpreted [36], [37], [80], [81]. For
example, [36] proposed an HGP neural network relying on the
brain network community to yield interpretable biomarkers.
The hierarchical pooling strategy proposed in this work relies
on the network information hub which is another important
hierarchical structure in the brain networks.

C. Data Augmentation for Graph Contrastive Learning

Most current graph contrastive learning methods augment
graph contrastive samples by manipulating graph topological
structures. For example, [55], [56] generate the contrastive
graph samples by dropping nodes and perturbing edges. Other
studies generate contrastive samples by changing the graph
local receptive field, which is named as graph view augmen-
tation [54], [82]. In this work, we introduce graph contrastive
learning into the brain functional network analysis and gener-
ate contrastive samples from the fMRI BOLD signals.

III. PRELIMINARIES OF BRAIN FUNCTIONAL NETWORKS

We denote a brain functional network with N nodes as
G = {V,E} = (A, H). V is the graph node set where each
node (i.e., v;,i = 1,..., N) represents a brain region. E is
the graph edge set where each edge (i.e., ¢; ;) describes the
connection between nodes v; and v;. A € RV*V is the graph
adjacency matrix where each element, a; ; € A, is the weight
of edge e;;. H € R"*C is the node feature matrix where
H; € H is the ith row of H representing the feature vector
of v;. Let B € RY*P be the fMRI BOLD signal matrix,
where D is the signal length. Generally, the edge weight
in the brain functional network can be computed from the
fMRI BOLD signal by a;; = corr(b;, bj), where b; is the
ith row of B representing the BOLD signal of v;, and corr(-)
is the correlation coefficient operator. Note that a; ; can be
either positive or negative value so that the brain functional
network is a signed graph. For each subject, we use "~ and " to

denote a functional brain network contrastive sample pair [i.e.,
G=(A,H)and G = (A, H)].

IV. METHODOLOGY

In this section, we first propose a data augmentation strat-
egy to generate contrastive samples for the brain functional
networks. Second, we introduce our proposed HSGRL model
with node embedding and HGP modules. Finally, we deploy
the contrastive learning framework on our proposed HSGRL
model to yield the representations for the whole graph, which
can be applied to downstream prediction tasks.

A. Contrastive Samples of Brain Functional Networks

The generation of contrastive samples aims at creating rea-
sonable and similar functional brain network pairs by applying
certain transformations. Here, we propose a new strategy to
generate the brain functional network contrastive samples from
the fMRI BOLD signals. For each node v;, we generate two
sub-BOLD signals (b; and b;) by manipulating its original bold
signal b;. Specifically, we use a window (size = d) to clamp
b; from the signal head and tail, respectively,

bi =bild+1,d+2,...,D]

bi = b;[1,2,...,D —d]. (D

Obviously, b; € R™P?, b, and b; € R"*P=9_ To keep the
similarity between G and G, we set the window size d < D.
After we generate a pair of subbold signals, we can compute
edge weights of the pairwise contrastive brain functional
network samples by

&i,j = COI‘I'(I;[, l;j)

Cvl,',j = COI'I'([;,', l;,) (2)
where a;; € A and d;; € A are the weights of e;; in
two contrastive samples. We do not consider the contrastive
node features in this work, and therefore, X = X = X. The
generated contrastive sample pairs are similar to the same node
features and slightly different edge weights. We will show this
similarity in Section V-C.
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Fig. 1.

Diagram of the proposed contrastive graph learning framework (in the bottom black box) with the HSGRL model (in the top black box) for the

functional brain network embedding and downstream tasks (i.e., phenotype classification or regression). The HSGRL model consists of the cascaded balanced
and unbalanced embedding (BUE) and HGP modules to extract graph-level representations of contrastive brain functional network pairs (i.e., Xg and X¢)
in a hierarchical manner. X and X participate to build up the contrastive loss for graph contrastive learning. Meanwhile, a concatenate operation is used
to generate the fused graph feature by Xg = [X¢||XG1). The fused graph feature X¢ is used for downstream prediction tasks (i.e., graph classification and

regression).

B. HSGRL Model

We present our HSGRL model in Fig. 1. The HSGRL model
includes the BUE module and HGP module.

1) BUE Module: The balance theory is broadly used to
analyze the node relationships in the signed graphs. The theory
states that given a node v; in a signed graph, any other node
(i.e., vj) can be assigned into either balanced node set or
unbalanced node set to »; regarding a path between v; and
v;. Specifically, if the number of negative edges is even in the
path between v; and v;, then v; belongs to the balanced set
of v;. Otherwise, v; belongs to the unbalanced set of v;. The
balance theory indicates that the following.

1) Each graph node, v;, can belong to either the balanced
or unbalanced node set of a given target node v;.

2) The path between v; and v; determines the balance
attribute of v;.

Motivated by this, we adopt the idea of the signed graph atten-
tion networks from [41] to embed brain functional network
nodes to generate latent node features with the balanced and

unbalanced components

XBaXU = sign(A> H) (3)

where Fijon(+) is the signed graph attention encoder [41]. X B
and XY are the node balanced and unbalanced components
of node latent features, respectively. We fuse the two feature
components as the node latent features by

X =[x"Ix"] 4)

where [||] denotes the concatenate operation.

2) Hierarchical Signed Graph Pooling: As shown in Fig. 1,
the proposed HGP module consists of four steps including:
1) ISs computation; 2) top-K informative hubs selection;
3) features’ aggregation; and 4) graph pooling.

a) IS computation: The IS of each node is also consid-
ered to contain the balanced and unbalanced components to
measure the information quantity that each node gains from
the balanced node set and unbalanced node set, respectively.
We first split the signed graph (i.e., with adjacency matrix
as A) into positive subgraph (with adjacency matrix as A.)
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and negative one (with adjacency matrix as A_). Then we use
the Laplace normalization to normalize these two adjacency
matrices as

1 1
*A_ID_? 5)

where A is the normalized adjacency matrix. D, and D_
are degree matrices of A, and |A_|, respectively. Note that
the ith line in A, denoted by A;, represents the connectivity
probability distribution between v; and any other nodes. For
each node (i.e., v;), we, respectively, define the balanced and
unbalanced components of IS by

ISP = AL, @ X%z, + 1AL, ® XY |1,
ISV = AL, @ X |z, + 1AL, ® X*|;, (6)

where |||z, is the linewise L; norm, and ® is the scalar
multiplication between each line of two matrices. T represents
the transpose of vector. Then the IS of v; can be obtained by

IS; =1S? +1SY. (7)

b) Top-K node selection and feature aggregation: After
we obtain the IS for each brain node, we rank the IS and
select K brain nodes, with top-K IS values, as informative
network hubs. For the other nodes, we aggregate their features
on the selected K network hubs based on the feature attention.
Particularly, the feature attention between v; and v; is com-
puted by x,-ij. We weighted add (i.e., set feature attentions as
weights) the feature of each unselected node to one of the hub
features, where the attention value between these two nodes
is the biggest.

c) Graph pooling: After feature aggregation, we down-
scale the graph node by removing all the unselected nodes.
In another word, only the selected top-K network hubs and
the edges among them will be preserved after graph pooling.
Since the functional brain network is a fully connected graph,
no isolated node existed in the down-scaled graph.

C. Contrastive Learning Framework With BUE and HGP

The contrastive learning framework with HSGRL is pre-
sented in Fig. 1. Assume that we forward a pair of contrastive
graph samples into the proposed HSGRL model, we will
obtain two node latent features, X and X, after the last pooling
module. We first generate the graph-level representations of
two functional brain networks based on the latent node features
by a readout operator

N’

v
Xg =D % Xo=D % (®)
i=1 i=1

where %; and ¥; are the ith row of X and X, respectively.
N’(< N) is the number of nodes in the down-scaled graph
generated by the last pooling module.

1) Contrastive Loss: The normalized temperature-scaled
cross entropy loss [83], [84], [85] is used to construct the
contrastive loss. In the framework training stage, we randomly
sample M pairs from the generated contrastive graph samples
as a mini-batch and forward them to the proposed HSGRL
model to generate contrastive graph representation pairs (i.e.,
XG and )V(G). We use m € {1,..., M} to denote the identity
number (ID) of the sample pair. The contrastive loss of the
mth sample pair is formulated as

exp((l)(f(g, )v(g)/a)
21 P (P(XG, XG) /)

where a is the temperature parameter. @ (-) denotes a similarity
function that

gm = - 1Og

C))

o(&g, Xg) = Xg" Xo/||X¢]|[[XE]]- (10)
The batch contrastive loss can be computed by
| M
£conlraslive = M % Cm. (11

2) Downstream Task and Loss Functions: We use an multi-
layer perceptron (MLP) to generate the framework prediction
for both the classification and regression tasks. Specifically,
prediction can be generated by Ypeq = MLP([X5 1 Xc]).
We use negative log likelihood loss (NLLLoss) and LjLoss
as supervised loss functions (Lsupervised) Of the classification
and regression tasks, respectively. The whole framework can
be trained in an end-to-end manner by optimizing

L=m £supervised + 1 Lcontrastive (12)

where #; and 7, are the loss weights.

V. EXPERIMENTS

A. Datasets and Data Preprocessing

Two publicly available datasets were used to evaluate our
framework. The first includes 1206 young healthy subjects
(mean age 28.1947.15, 657 women) from the Human Connec-
tome Project (HCP) [86]. The second includes 1326 subjects
(mean age = 70.4248.95, 738 women) from the Open Access
Series of Imaging Studies (OASIS) dataset [87]. Details
of each dataset can be found on their official websites':?
CONN [88] was used to preprocess fMRI data, and the
preprocessing pipeline follows our previous publications [89],
[90]. For HCP data, each subject’s network has a dimension
of 82 x 82 based on 82 ROIs defined using FreeSurfer
(V6.0) [91]. For OASIS data, each subject’s network has a
dimension of 132 x 132 based on the Harvard-Oxford Atlas and
automated anatomical labeling (AAL) Atlas. We deliberately
chose different network resolutions for HCP and OASIS to
evaluate whether the performance of our new framework is
affected by the network dimension or atlas.

Uhttps://www.oasis-brains.org
Zhttps://wiki.humanconnectome.org
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Fig. 2.
contrastive sample pair is generated using a window size d = 10.

B. Implementation Details

We randomly split the entire functional brain network
dataset into five disjoint subsets for five-fold cross-validations
in our experiments. The values in the adjacency matrices
(A and A) of the brain functional networks are within the
range of [—1, 1]. We compute the kurtosis and skewness values
of the fMRI BOLD signals as the node feature matrices (H).
We use the Adam optimizer [92] to optimize the loss functions
in our model with a batch size of 128. The initial learning rate
is 1e~* and decayed by (1 — (current_epoch/max_epoch))®?.
We also regularized the training with an L, weight decay of
le~3. We set the maximum number of training epochs as 1000,
and following the strategy in [34] and [93], stop training if the
validation loss does not decrease for 50 epochs. The experi-
ments were deployed on one NVIDIA RTX A6000 graphics
processing unit (GPU).

C. Similarities of Contrastive Samples

We use the L; distance and Cosine similarity to measure
the similarities of the adjacency matrices of contrastive brain
networks. Here, we set the window size d = 10 to generate
the contrastive adjacency matrices. The inner pair similarity is
computed by (1/M) ZrA:=1 W(A™, A™), and the interpair sim-
ilarity is computed by (1/M?) > ¥ ™ w(A™, A"), where
Y(-) is the similarity function (i.e., L; distance or Cosine
similarity). The inner pair L; distances on HCP and OASIS

Averaged Contrastive Sample
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Averaged Contrastive Sample

Visualization of the averaged adjacency matrices for the original and contrastive samples on (a) HCP dataset and (b) OASIS dataset. The averaged

data are 0.1301 and 0.0915, respectively. The inner pair Cosine
similarities on HCP and OASIS data are 0.9283 and 0.9466,
respectively. The interpair L; distances on HCP and OASIS
data are 0.2925 and 0.3137, respectively. The interpair Cosine
similarities on HCP and OASIS data are 0.7311 and 0.7014,
respectively. We visualize the averaged adjacency matrices on
HCP and OASIS data in Fig. 2(a) and (b), respectively, to show
their similarities. The original sample is generated using the
whole fMRI BOLD signal (i.e., d = 0).

D. Classification Tasks

1) Experiment Setup: For comparison, we adopted seven
baseline models, which include two traditional graph
embedding models (tensor-based brain network embed-
ding (t-BNE) [73] and multimodal CCA+ joint ICA
(mCCA-ICA) [74]), one basic GNN (i.e., GCN [26]), two deep
graph representation learning models designed for brain net-
work embedding (BrainChey [25] and BrainNet-convolutional
neural networks (CNNs) [24]), and two hierarchical GNNs
with graph pooling strategies (hierarchical graph representa-
tion learning with differentiable pooling (DIFFPOOL) [30]
and self-attention graph pooling (SAGPOOL) [34]). As afore-
mentioned, the existing GNN-based models cannot directly
take signed graphs as the input, and we therefore compute
the absolute values of graph adjacency matrices as the input
for these baseline models, which is consistent with previous
studies [36], [94]. Meanwhile, we compare our model with
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TABLE I

CLASSIFICATION ACCURACY WITH STD VALUES UNDER FIVEFOLD CROSS-VALIDATION ON GENDER CLASSIFICATION, ZYGOSITY
CLASSIFICATION, AND AD CLASSIFICATION TASKS. THE VALUES IN BOLD SHOW THE BEST RESULTS

HCP OASIS
Method Gender Zygosity AD
Acc. Pre. F1. Acc. Macro-F1. Acc. Pre. F1.
t-BNE 63.84(2.09) 64.17(1.90) 63.264(2.12) | 37.19(2.65) 39.67(3.04) | 61.26(2.31) 63.58(2.06) 62.05(1.97)
mCCA-ICA 61.21(4.03) 63.11(3.75)  62.20(3.59) 35.51(4.64) 38.71(3.34) | 63.37(1.98) 62.06(2.12) 64.37(2.09)
GCN 66.76(2.22)  65.09(3.13)  67.58(2.84) 46.66(2.14)  47.21(2.51) | 67.37(2.69) 69.21(2.00) 68.51(4.29)
SAGPOOL 68.12(3.07)  69.96(2.48)  67.51(2.65) 49.91(2.22) 51.07(2.31) | 67.23(2.15) 68.83(1.13) 67.51(2.51)
DIFFPOOL 72.06(2.28)  74.05(1.90)  73.07(2.42) 53.37(1.88)  54.28(2.14) | 72.79(1.66)  71.55(2.15)  70.83(2.01)
BrainCheby 75.08(1.98)  76.14(2.38)  74.09(1.84) 56.25(2.12)  57.37(2.05) | 72.55(2.45) 73.36(1.88)  72.62(1.33)
BrainNet-CNN 74.092.49)  73.71(1.96)  73.27(2.21) 54.03(2.20)  55.25(2.46) | 68.37(1.71)  69.97(1.30)  68.51(2.02)
Ours w/o Contrastive | 78.86(2.18)  80.06(1.33)  77.52(1.69) 61.05(1.70)  63.24(2.51) | 76.26(2.32) 75.42(1.62) 76.80(1.72)
Ours 81.51(1.14)  82.37(1.95)  80.69(2.03) 63.33(2.06) 64.51(1.74) | 77.51(1.84) 78.83(1.78) 78.28(1.95)
TABLE II

REGRESSION MAE WITH STD UNDER FIVEFOLD CROSS-VALIDATION. THE VALUES IN BOLD SHOW THE BEST RESULTS

Method OASIS HCP
MMSE Flanker Card-Sort ~ Aggressive  Intrusive  Rule-Break
t-BNE 2.02(0.36) | 1.69(0.19)  1.58(0.22)  1.89(0.10)  1.84(0.22) 1.77(0.41)
mCCA-ICA 2.68(0.19) | 1.82(0.21) 1.67(0.17) 1.47(0.26)  1.97(0.13)  1.61(0.29)
GCN 2.05(0.07) | 1.67(0.15) 1.46(0.11)  1.59(0.32)  1.66(0.24)  1.69(0.08)
SAGPOOL 1.84(0.33) | 1.55(0.06)  1.44(0.13)  1.52(0.18)  1.50(0.24)  1.74(0.23)
DIFFPOOL 1.27(0.20) | 1.34(0.14)  1.16(0.30)  1.27(0.41)  1.25(0.07)  1.43(0.15)
Brain-Cheby 1.51(0.67) | 1.17(0.26)  1.24(0.31)  0.79(0.06) ~ 1.09(0.21)  1.58(0.41)
BrainNetCNN 1.26(0.19) | 1.43(0.24)  0.91(0.11) 1.33(0.23)  1.14(0.13)  1.29(0.19)
Ours w/o Contrastive | 1.02(0.11) | 0.89(0.13)  0.97(0.20)  0.74(0.17)  0.96(0.15)  1.15(0.11)
Ours 0.83(0.24) | 0.66(0.17) 0.69(0.14)  0.45(0.12)  0.73(0.08) 1.02(0.16)

and without optimizing contrastive loss to demonstrate the
effectiveness of contrastive learning in boosting the model per-
formance. The results for gender and Alzheimer disease (AD)
classification are reported in accuracy, precision, and F1-score
with their standard deviation (std). The results for zygosity
classification (i.e., three classes’ classification task with class
labels as: not twins, monozygotic twins, and dizygotic twins)
are reported in accuracy and Macro-F1-score with their std.
The number of the cascaded BUE and HGP modules is set to
three, and the number of top-K nodes in the pooling module is
50% of the number of nodes in the current graph. We search
the loss weights #; and 7, in the range of [0.1,1,5] and
[0.01, 0.1, 0.5, 1], respectively, and determine the loss weights
as 1 1 and m 0.1. The temperature parameter in
contrastive loss is set as 0.2. Details of the hyperparameters
analysis are shown in Section V-F.

2) Results: Table I shows the results of gender classifica-
tion, zygosity classification, and AD classification. It shows
that our model achieves the best performance compared with
all the baseline methods on three tasks. For example, in gen-
der classification, our model outperforms the baselines with
at least 8.56%, 8.18%, and 8.91% increases in accuracy,
precision, and Fl-scores, respectively. In general, the deep
GNNs are superior than the traditional graph embedding
methods (i.e., t-BNE and mCCA-ICA). When we remove the
supervision of the contrastive loss, the performance, though
comparable to baselines, decreases in a way. This manifests the
effectiveness of contrastive learning which can substantially
boost the model performance.

E. Regression Tasks

1) Experiment Setup: In the regression tasks, we use the
same baselines for comparisons. The regression tasks include

predicting mini-mental state exam (MMSE) scores on OASIS
data, Flanker scores, Card-Sort scores, and three Achenbach
adult self-report (ASR) scores (i.e., Aggressive, Intrusive,
and Rule-Break scores) on HCP data. Particularly, MMSE
test [95], Flanker test [96], and Wisconsin Card-Sort test [97],
[98], [99] are three neuropsychological tests designed to mea-
sure the status and risks of human neurodegenerative disease
and mental illness. The ASR is a life function which is used
to measure the emotion and social support of adults. The
structure of the proposed model remains unchanged. The loss
weights are set as 7y = 0.5 and #, = 1. The regression results
are reported in average mean absolute errors (MAEs) with its
std under fivefold cross validations.

2) Results: The regression results are presented in Table II.
It shows that our model achieves the best MAE values com-
pared with all the baseline methods. Similar to the classifica-
tion tasks, the deep GNNs are superior than the traditional
graph embedding methods (i.e., t-BNE and mCCA-ICA).
Comparing our method with and without the supervision of the
contrastive loss, we can hold the conclusion that contrastive
learning can further boost the model performance.

F. Ablation Studies

In this section, we investigate the effect of four hyperpara-
meters on our model performance, including: 1) the window
size (d) which we used to clamp the fMRI BOLD signals
when generating contrastive functional brain network samples;
2) temperature parameter (a) within contrastive loss; 3) the
number of the BUE and HGP modules used in the HSGRL
model; and 4) loss weights #; and 7,. First, we set the window
size as [0, 5, 10, 20, 30, 40, 50], respectively, and generate dif-
ferent contrastive samples as the input of our proposed model.
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Fig. 4. Loss weights analysis on the classification tasks. (a) Analysis on gender classification. (b) Analysis on zygosity classification. (c) Analysis on AD
classification. The red points represent best results, where #; = 1 and 7, = 0.1.

The first column in Fig. 3 shows the analysis of the window
size parameter. It indicates that the best window size is around
d = 10. When the window size decreases to 0, the model per-
formance declines since the data are only duplicated without
any substantial new samples. It is interesting that the perfor-
mance when d = 0 is even worse than that obtained without
contrastive learning but with contrastive samples generated
with d = 10 (see ours w/o contrastive in Tables I and II). The
reason is that data augmentation is introduced in the latter case
but not in the first case. Second, we increase the temperature
o from 0.1 to 1.0 with a step of 0.1. The second column in
Fig. 3 demonstrates the analysis of the temperature parameter.
It shows that the best temperature value for our framework is
a = 0.2. Moreover, we set the number of the BUE and HGP
modules as [1, 2, 3, 4, 5], respectively, for our framework. The
third column in Fig. 3 shows the analysis of this parameter.
It manifests that the framework performance is consistent and

steady when different numbers of the BUE and HGP modules
are deployed. The best number of the modules for almost all
the tasks is three, except for the regression tasks on Flanker
and Aggressive. Finally, we present the loss weights analysis
(see Fig. 4) on the three classification tasks, and the best results
are achieved when #; =1 and 7, = 0.1.

G. Interpretation With Brain Saliency Map

Within our new graph pooling module, an IS is designed
to measure the information gain for each brain node and only
top-K nodes with high information gains will be preserved
as brain information hubs, while the information of other
peripheral nodes will be aggregated onto these hubs. These
hubs, through the final pooling layer, will serve as the delegate
of the whole brain network and then be linked to clini-
cal phenotypes (e.g., clinical/behavior scores or diagnosis).
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HCP mzygnc

Fig. 5. Brain saliency maps for the classification tasks. Here we identify: 1) top 15 regions associated with AD and NC from OASIS and 2) top 10 regions
associated with each sex and each zygosity from HCP.

HCP Intrusive HCP RuleBresk

Fig. 6. Brain saliency maps for regression tasks. Here we identify: 1) top 15 regions associated with MMSE from OASIS and 2) top 10 regions associated
with Flanker score, Card-Sort score, Aggressive score, Intrusive score, and Rule-Break score from HCP.

Therefore, they can provide hints for further clinical analyses network from the global view. We use the class activation
on how this phenotype is associated with the brain functional mapping (CAM) approach [100], [101], [102] to generate
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TABLE III

L1ST OF HIGHLIGHTED BRAIN REGIONS FOR THE OASIS DATASET, INCLUDING AD AND NC CLASSIFICATION TASKS AND MMSE REGRESSION TASK

Planum Frontal Operculum Supracalcarine Left-Caudate Supramarginal Superior Temporal Middle Temporal Gyrus, ~ Superior Temporal Gyrus,
AD Polare Left Cortex Left Cortex Left Gyrus, anterior division Right Gyrus, anterior division Right posterior division Left posterior division Left
Heschl’s Intracalcarine Middle Frontal Planum Temporal Fusiform Middle Temporal Supracalcarine .
Gyrus Left Cortex Left Gyrus Left Polare Right Cortex, anterior division Left Gyrus, temporooccipital part Left Cortex Right
Paracingulate Intracalcarine . Cerebelum I ] .
NC Gyrus Right Cortex Right Frontal Pole Right 6 Right Paracingulate Gyrus Left Left-Putamen Cerebelum 8 Left Cerebelum 7b Right
Heschl’s . Cerebelum Lateral Occipital . .
Gyrus Left Cuneal Cortex Right ~ Precuneous Cortex Crus? Left Cortex, superior division Right Brain-Stem Cerebelum § Right —
. ] ] . Planum Cerebelum Middle Temporal Temporal Occipital Temporal Occipital Middle Temporal Gyrus,
MMSE Right-Caudate - Temporal Pole Right Temporale Left ~ Crusl Right Gyrus, posterior division Right Fusiform Cortex Left Fusiform Cortex Right  temporooccipital part Left
Planum Frontal Orbital . Temporal Middle Temporal
Temporale Right Cortex Left Vernis 9 Pole Left ~ Gyrus, temporooccipital part Right Left-Caudate Temporal Pole Left -

TABLE IV

L1ST OF HIGHLIGHTED BRAIN REGIONS FOR CLASSIFICATION TASKS ON THE HCP DATASET

(2)

Male

Female

Not Twins

Monozygotic

Dizygotic

ctx-lh-precuneus
ctx-rh- superiorparietal
Right-Hippocampus

ctx-rh- parahippocampal
Right-Amygdala

ctx-lh-pericalcarine

ctx-lh-
transversetemporal
ctx-rh-
transversetemporal
ctx-rh- lateralorbitofrontal
ctx-lh- temporalpole

ctx-rh-superiorfrontal
Right-Accumbens-area
ctx-rh- caudalmiddlefrontal

ctx-lh-parsorbitalis
Right-Amygdala
ctx-rh-paracentral
ctx-lh-precentral

ctx-lh- isthmuscingulate

ctx-rh- isthmuscingulate
ctx-lh- caudalanteriorcingulate

ctx-lh- lateraloccipital

ctx-rh-bankssts
ctx-lh-precentral

ctx-lh- parahippocampal

ctx-lh-entorhinal

Right-Pallidum

ctx-lh- superiortemporal

ctx-rh-parsorbitalis

ctx-lh-superiorfrontal
ctx-rh- caudalmiddlefrontal

ctx-lh- isthmuscingulate
ctx-rh-pericalcarine
ctx-rh-frontalpole

ctx-lh-fusiform
ctx-lh-entorhinal
ctx-lh- superiorfrontal
ctx-lh- temporalpole

ctx-lh- superiorparietal

Left-Pallidum
ctx-rh-parsorbitalis

ctx-lh-postcentral

ctx-rh- transversetemporal
ctx-rh- transversetemporal

Paracingulate Gyrus

Right Paracingulate

ctx-lh-
caudalanteriorcingulate
ctx-rh-parsorbitalis
Right-Putamen

ctx-rh-precentral

ctx-rh-
caudalmiddlefrontal
ctx-lh-precuneus
ctx-lh-temporalpole

(b)

Flanker

Card-Sort

Aggressive

Intrusive

Rule-Break

Left-Accumbens-area
ctx-lh-inferiortemporal
ctx-rh-insula
ctx-lh- middletemporal
ctx-lh-postcentral
ctx-lh-temporalpole
ctx-rh- superiortemporal
ctx-lh-frontalpole
ctx-rh-precentral
ctx-rh-fusiform

Left-Accumbens-area
ctx-lh- caudalmiddlefrontal
ctx-rh-frontalpole
ctx-lh- rostralanteriorcingulate
ctx-rh- middletemporal
ctx-lh-frontalpole
ctx-rh-precentral
ctx-rh- caudalmiddlefrontal
ctx-rh-precuneus
Left-Putamen

ctx-lh-bankssts
ctx-lh- inferiortemporal
ctx-lh- lateraloccipital
ctx-lh-precentral
ctx-rh-frontalpole
ctx-rh-parsorbitalis
ctx-rh- parstriangularis
ctx-lh- middletemporal
ctx-rh-entorhinal
ctx-rh-temporalpole

ctx-lh-bankssts
ctx-lh- inferiortemporal
ctx-lh- parahippocampal
ctx-rh- supramarginal
ctx-rh-paracentral
ctx-rh- parstriangularis
ctx-lh- caudalanteriorcingulate
ctx-lh-precentral
ctx-rh- caudalmiddlefrontal
ctx-lh-parsorbitalis

ctx-lh-precuneus
ctx-lh- inferiortemporal
Right-Caudate
ctx-rh- lateraloccipital
ctx-lh- supramarginal
ctx-rh-insula
ctx-rh- parstriangularis
ctx-lh-lingual
ctx-rh- temporalpole
Right-Amygdala

the brain network saliency map, which indicates the top
brain regions associated with each prediction task. Figs. 5
and 6 illustrate brain saliency maps for the classification and
regression tasks, respectively. For example, in the classifi-
cation task [AD versus normal control (NC)], the saliency
map for AD highlights multiple regions (such as planum
polare, frontal operculum cortex, supracalcarine cortex) which
are conventionally conceived as the biomarkers of AD in
medical imaging analysis [103], [104], [105], [106]. In the
meantime, the saliency map for NC highlights many regions
in cerebellum and frontal lobe. These regions control cognitive
thinking, motor control, and social mentalizing as well as emo-
tional self-experiences [107], [108], [109], in which patients
with AD typically show problems. Another example is the
classification of male versus female on HCP data. Females
are more ‘“emotional” or “sensitive,” suggested by regions
such as isthmuscingulate and caudalanteriorcingulate, while
males tend to be more competitive and dominant, manifested
in regions such as lateralorbitofrontal and precuneus. These
results are consistent with previous findings in the literature

[110], [111], [112], [113]. The details of all the highlighted
brain regions in each task are summarized in Table III for
the OASIS dataset, and in Table IV(a) and (b) for the HCP
dataset. These highlighted regions can help us locating the
brain regions associated with any phenotype, which provide
clues for future clinical investigations.

VI. CONCLUSION

We propose a novel contrastive learning framework with an
interpretable HSGRL model for brain functional network min-
ing. In addition, a new data augmentation strategy is designed
to generate the contrastive samples for the brain functional
network data. Our new framework is capable of generating
more accurate representations for the brain functional net-
works compared with other state-of-the-art methods, and these
network representations can be used in various prediction tasks
(e.g., classification and regression). Moreover, Brain saliency
maps may assist with phenotypic biomarker identification and
provide interpretable explanation on framework outcomes.
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