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Abstract

Mycobacterium canettii is a causative agent of tuberculosis in humans, along with the members of the Mycobacterium tuberculosis
complex. Frequently used as an outgroup to the M. tuberculosis complex in phylogenetic analyses, M. canettii is thought to offer the best
proxy for the progenitor species that gave rise to the complex. Here, we leverage whole-genome sequencing data and biologically
relevant population genomic models to compare the evolutionary dynamics driving variation in the recombining M. canettii with that
in the nonrecombining M. tuberculosis complex, and discuss differences in observed genomic diversity in the light of expected levels of
Hill-Robertson interference. In doing so, we highlight the methodological challenges of estimating recombination rates through traditional
population genetic approaches using sequences called from populations of microorganisms and evaluate the likely mis-inference that
arises owing to a neglect of common model violations including purifying selection, background selection, progeny skew, and population
size change. In addition, we compare performance when full within-host polymorphism data are utilized, versus the more common
approach of basing analyses on within-host consensus sequences.
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Introduction

The causative agents of tuberculosis are immensely successful
bacterial pathogens, maintaining a reservoir in ~1.7 billion
humans through latent infection (Houben and Dodd 2016). Such
infections also resulted in the deaths of approximately 1.3 million
HIV-negative and over 200,000 HIV-positive individuals in 2020,
thus representing a critical public health concern (WHO 2021).
Most of these organisms are members of the Mycobacterium tuber-
culosis complex (MTBC), which is composed of 9 human-associ-
ated lineages (lineages 1-4, 7, and 8: M. tuberculosis sensu stricto;
lineages 5, 6, and 9: Mycobacterium africanum) and 1 group of
animal-associated strains, including amongst others Mycobacterium
bovis and Mycobacterium microti (Gagneux 2018; Ngabonziza et al
2020; Coscolla et al. 2021). Despite the MTBC being a thoroughly
studied family of pathogens relevant to human health, relatively
little is understood about the evolutionary history and dynamics of
these organisms.

A closely related organism, Mycobacterium canettii, generally
considered an analog for the common ancestor of the MTBC
(Gutierrez et al. 2005), is frequently used as an outgroup in phylo-
genetic analyses. Although it also causes tuberculosis in humans,
M. canettii differs from the complex in several ways. The most
notable differences for our purposes here include (1) the

dramatically decreased genetic diversity in the MTBC relative to
M. canettii, and (2) the occurrence of recombination in M. canettii,
which is not thought to widely occur in the MTBC (Pepperell et al.
2013; Boritsch et al. 2016; Godfroid et al. 2018). Other peculiarities
of M. canettii include its larger and more variable genome length
(Gagneux 2018), its geographical isolation to the Horn of Africa
(Gagneux 2018), the lack of apparent transmission between
humans (Fabre et al. 2010; Koeck et al. 2011; Supply et al. 2013;
Blouin et al. 2014), and the likelihood that it is maintained in an
as-of-yet unidentified environmental reservoir (Aboubaker
Osman et al. 2016). Mycobacterium canettii’s phylogenetic relation-
ship to the MTBC, and its many intriguing differences from the
complex, make it of clear interest for comparative studies.

In pairwise comparisons, 2 strains from the MTBC may differ
by as many as ~2,500 single nucleotide polymorphisms (SNPs),
while 2 M. canettii strains may differ by up to 65,000 SNPs
(Gagneux 2018). There is genetic (Supply et al. 2013; Mortimer and
Pepperell 2014) and experimental (Boritsch et al. 2016) evidence
that M. canettii undergoes a form of horizontal gene transfer—dis-
tributive conjugal transfer (DCT)—in which tracts of unlinked
donor DNA of variable size and location are transplanted
into a recipient bacterial genome (Gray and Derbyshire 2018).
Though some work has identified evidence of highly limited
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recombination in parts of the genome difficult to resolve with
short-read sequencing technologies (Liu et al. 2006; Namouchi
et al. 2012), the majority of the literature agrees that the MTBC is
functionally clonal (Pepperell et al. 2013; Chiner-Oms et al. 2019).
Furthermore, organisms in the MTBC are missing the “mating
identity” (mid) genes that appear essential for DCT in M. canettii
(Gray and Derbyshire 2018). In addition, there is no evidence for
recombination between contemporary MTBC and M. canettii
strains, though evidence has been presented that the common
ancestor of the MTBC may have shared an ecological niche and
recombined with ancestral M. canettii strains (Chiner-Oms et al.
2019), and recent in vitro experiments found that it is possible for
MTBC bacilli to act as DNA donors to M. canettii recipients
(Madacki et al. 2021).

Previous studies have investigated aspects of the evolutionary
genomics of MTBC compared to other Mycobacteria. This has in-
cluded the calculation of the ratio of nucleotide substitution rates
at nonsynonymous and synonymous sites (d,/ds) as well as a
quantification of the site frequency spectra (SFS) from MTBC pa-
tient data, revealing an excess of low-frequency variants relative
to standard neutral Wright-Fisher expectations, which has been
attributed to purifying selection effects (Pepperell et al. 2010,
2013; Brown et al. 2016; Lieberman et al. 2016). More recently,
Morales-Arce et al. (2020) fit a more comprehensive evolutionary
null model to within-host MTBC data (generated by Trauner et al.
2017), demonstrating that, in addition to purifying and back-
ground selection (Charlesworth et al. 1993, 1995), progeny-skew
(i.e. a large variance and skew in progeny number) and infection
bottlenecks also act to shape genomic variation in important
ways (see Irwin et al. 2016; Matuszewski et al. 2018; Sackman et al.
2019; Jensen 2021; Morales-Arce et al. 2021). Thus, a variety of
non-neutral and nonequilibrium processes appear to contribute
to the observed level and distribution of genomic variation.

With these null processes now better quantified, it is of inter-
est to evaluate whether the presence/absence of recombination
in M. canettii/MTBC may itself (at least in part) explain the striking
differences in observed levels of genomic heterogeneity between
the two. The evolutionary advantage of recombination in break-
ing linkage between sites, thereby allowing natural selection to
more efficiently maintain beneficial variants and purge deleteri-
ous ones by uncoupling them from one another, has been long-
appreciated (Fisher 1930; Muller 1932; Hill and Robertson 1966).
This so-called Hill-Robertson interference amongst sites has im-
portant implications, not only for the probabilities of fixation and
loss (Hill and Robertson 1966; Maynard Smith and Haigh 1974;
Haigh 1978; Charlesworth et al. 1993; Charlesworth 1994; Gordo
and Charlesworth 2000; see review of Charlesworth and Jensen
2021) but when combined with genetic drift and mutational pres-
sure may also lead to the “clicking” of Muller’s Ratchet (i.e. the
periodic and irreversible loss of the fittest class of individuals;
Muller 1964; Felsenstein 1974). This mechanism—the speed of
which is modulated by mutation rate, effective population size,
and the strength of selection acting upon deleterious mutations—
may lead to extinction in nonrecombining populations (Lynch et al.
1993; Bank et al. 2016; Matuszewski et al. 2017; Jensen 2021).

Background selection is one important realization of this inter-
ference, in describing the effects of linkage to deleterious variants
(Charlesworth et al. 1993), as is another type of genetic hitchhik-
ing, selective sweeps, in describing the effects of linkage to bene-
ficial variants (Maynard Smith and Haigh 1974) (Fig. 1). The
magnitude of the effects of these processes, both in their result-
ing reductions in genomic variation and local effective population
size, will naturally be greater as the rate of recombination is

reduced (i.e. reduced recombination leads to greater genomic
linkage). In the absence of recombination, as in MTBC, the elimi-
nation of a deleterious variant, as well as the fixation of a benefi-
cial one, is thus expected to have long-range genomic effects.
Importantly, while background selection effects will always be
more pervasive than selective sweeps owing to the much larger
mutational input of deleterious relative to beneficial variants (see
reviews of Eyre-Walker and Keightley 2007; Bank et al. 2014 ), this
disparity is only expected to be amplified in the absence of re-
combination owing to the reduced probability of fixation of bene-
ficial variants. If a beneficial mutation does sweep to fixation in
this context, it will often carry with it linked deleterious variants,
thus increasing the fixation load. In sufficiently small popula-
tions that do not recombine, the accumulation of deleterious var-
lants alone can lead to population extinction (Lynch and Gabriel
1990; Lynch et al. 1993; Jensen and Lynch 2020). In addition, it has
been demonstrated that with high enough mutation rates, bene-
ficial fixation probabilities can approach zero owing to this dele-
terious linkage (Pénisson et al. 2017). In these ways, a lack of
recombination may limit adaptive potential, and can do so in a
compounding way.

This reduced adaptive potential has been well-studied within
the context of viruses, Drosophila, and plants. Experimental
in vitro studies on the effect of the broad-spectrum, mutagenic
drug favipiravir on influenza A virus have empirically demon-
strated the potential disastrous effects of accelerated mutation
in nonrecombining asexual populations, including a reduction in
effective population size, the accumulation of mutational load,
population decline, and ultimately extinction (Bank et al. 2016;
Ormond et al. 2017). Drosophila populations have also been found
to experience a reduced efficacy of selection and capacity for ad-
aptation in genomic regions with low recombination rates
(Betancourt and Presgraves 2002; Haddrill et al. 2007), and the ge-
netic degeneration and extinction seen in Y chromosomes have
been largely attributed to Hill-Robertson effects following the
shut-down of recombination (Bachtrog 2013). Comparisons of
selfing vs out-crossing species have observed similar effects
(Bustamante et al. 2002; Arunkumar et al. 2015). Furthermore, em-
pirical evidence has provided support for the notion that Hill-
Robertson effects cannot be entirely avoided, even in genomic
regions with high recombination rates (Charlesworth 2009).

For these many reasons, the ability to accurately characterize
recombination rates in natural populations—particularly for hu-
man pathogens—is crucial. In the case of the MTBC, with com-
plete functional clonality, these described effects would be
expected to be particularly severe, but may be largely mitigated
in M. canettii. Given these expectations from population genetic
theory, we here examine the role of recombination in shaping ge-
nomic diversity in M. canettii and the MTBC. In order to do so, we
provide some of the first estimates to date of within-host diver-
sity from M. canettii sequencing data, and generate the first statis-
tical estimates of the rate of recombination. Through comparing
within-host (i.e. full polymorphism data) and between host (i.e.
consensus sequence) diversity in empirical and simulated M. can-
ettii data, we also demonstrate inherent limitations to the widely
used consensus sequence approach for microbial populations. In
addition, we illustrate the confounding effects of non-Wright-
Fisher population dynamics on the estimation of population-
level statistics. Specifically, we quantify the roles of population
size change, progeny skew, and purifying and background selec-
tion in biasing recombination rate estimation. While contextual-
ized within the Mycobacterium as an example, these concerns
are broadly applicable across many human pathogens.
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Fig. 1. Graphical example of Hill-Robertson effects. Hitchhiking effects associated with linkage to a deleterious mutation, known as background
selection, may act to reduce variation, as purifying selection acting on the deleterious mutation (shown in red) may result in the elimination of linked
variants. Similarly, hitchhiking effects associated with linkage to a beneficial mutation, known as a selective sweep, may also act to reduce variation, as
positive selection acting on the beneficial mutation (shown in blue) may result in the fixation of linked variants.

Materials and methods
Data collection

Whole-genome sequencing data from patient isolates of M. canet-
tii was downloaded from the NCBI sequencing read archive (SRA).
The samples were limited to those attached to publications, such
that we were able to readily access contextual information about
the collection and sequencing methods. This search, conducted
in January 2020, yielded a total of 18 M. canettii isolates from 18
patients from Djibouti, France, and the United States (Fabre et al.
2010; Blouin et al. 2012, 2014; Shea et al. 2017). To compare
within-host variation between M. canettii and the M. tuberculosis
complex (MTBC), a dataset of comparable size was assembled
from MTBC sequencing data (Comas et al. 2013, 2015; Orgeur et al.
2021) spanning the known diversity of the complex
(Supplementary Table 1), barring the recently identified lineages
8 and 9 (Ngabonziza et al. 2020; Coscolla et al. 2021).

Alignment and within-host variant calling

Mycobacterium canettii and MTBC sequencing data was quality-
checked using FastQC v. 0.11.7 (Andrews 2010) and processed
according to a previously reported pipeline for within-host vari-
ant calling, based on the methods of Trauner et al. (2017). In
short, raw sequencing data was preprocessed using scythe
v. 0.994 (Buffalo 2020) and sickle v. 1.33 (Joshi and Fass 2011) for
Bayesian and quality-based adapter trimming. Alignments were
performed using BWA aln v. 0.7.17 (Li and Durbin 2009) using
CIPT 140010059 (GCA_000253375.1) and H37Rv
(GCF_000195955.2) as reference for the M. canettii and MTBC sam-
ples, respectively. Next, alignments were sorted, merged, and
indexed with SAM tools v. 1.9 (Li et al. 2009; Danecek et al. 2021)
and duplicate reads removed using Picard v. 2.9.2 (Broad Institute
2017). In addition, indel realignment and base quality recalibra-
tion were performed using the Genome Analysis Toolkit (GATK)

v. 3.7.0 (Van der Auwera et al. 2013; Van der Auwera and
O’Connor 2020). For within-host variant calling, variants were
called with both LoFreq* v. 2.1.3.1 (using the “holm” strand bias
filter and requiring a coverage between 50 and 3,000 reads at vari-
ant sites; Wilm et al. 2012) and VarScan?2 v. 2.3.9 (using the mpi-
leup2snp tool and requiring a minimum coverage of 50, a
minimum of 4 supporting reads in each direction, a minimum
variant frequency of 0.005, and a “—strand-filter” of 1; Koboldt
et al. 2012), retaining only sites that were congruent between the
2 tools. The base calls were summarized using SAM tools mpileup,
with a minimum mapping quality of 30 and a minimum sequenc-
ing quality of 20. As the quality of the read data often deteriorates
with increasing read length, SNPs near read ends were excluded
using a Kolmogorov—Smirnov test, implemented as in Trauner
et al. (2017). Moreover, repetitive regions can pose challenges for
read alignment and can lead to spurious variant calls (Pfeifer
2017), thus these regions were removed from consideration. To
this end, a list of problematic regions was acquired for MTBC (e.g.
Bos et al. 2014; Lieberman et al. 2016). An equivalent list for M. can-
ettii was assembled for the purpose of this study, containing
regions analogous to the M. canettii genome (Supplementary
Table 2). Specifically, a .bed file was generated based on annota-
tions from the CIPT 140010059 (GCA_000253375.1) annotation .gff
file containing regions of the PE-PGRS family protein, PE family
protein, and PPE family proteins, as well as integrases, transpo-
sases, and prophages (Supplementary Table 3), which have been
systematically excluded in MTBC studies (e.g. Comas et al. 2010).

Alignment and between-host (consensus
sequence) variant calling

To replicate variant calling from consensus sequences—as per-
formed in the original studies which published the empirical
patient data (Fabre et al. 2010; Blouin et al. 2014; Shea et al. 2017)—
M. canettii data from patient isolates were aligned to the RefSeq
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representative  sequence M. canettii  CIPT 140010059
(GCA_000253375.1) using BWA mem v. 0.7.17 (Li and Durbin 2009)
and sorted using SAM tools v. 1.9 (Li et al. 2009; Danecek et al.
2021). Qualimap v. 2.13 (Okonechnikov et al. 2016) was used to
calculate mapping statistics for each sample and MultiQC v. 1.7
(Ewels et al 2016) was used to visualize the results
(Supplementary Table 4). To create congruence between the em-
pirical and simulated data (for additional details, see
“simulations”), it was necessary to down-sample the empirical
data to a standardized depth of coverage across samples (i.e. a
standardized number of individual genomes). To avoid a loss of
data during the variant calling while retaining as many samples
as possible, 25-fold was chosen as the standardized coverage, ex-
cluding ERR266117 (18-fold mean coverage) from further analy-
sis. Specifically, the mean coverage of each sample’s alignment
was down-sampled to 25-fold with SAM tools view v. 1.9 (Li et al.
2009; Danecek et al. 2021). Next, FreeBayes v. 1.1.0 (Garrison and
Marth 2012) was used for variant calling, using a ploidy (-p) of 2
to allow multiple variants per site. A minimum of 2 supporting
observations was required for each variant call to protect against
the incorporation of sequencing errors. A minimum mapping
quality of 60 was used, and the “—pooled-continuous” setting of
FreeBayes was applied to treat samples as representative of bac-
terial populations rather than monoisolates. Following variant
calling, VCFtools “—exclude-bed” v. 0.1.12 (Danecek et al. 2011)
was used to remove indels as well as variants in repetitive ele-
ments from the resulting variant calling files (.vcf) using our list
of problematic regions (for details, see “Alignment and within-
host variant calling”). BWA and Freebayes parameters were speci-
fied to reflect those implemented in the Snippy pipeline (https://
github.com/tseemann/snippy), which was found to be a well-
performing SNP calling pipeline for bacterial genomes (Bush et al.
2020). Consensus calling was performed using the BCFtools v. 1.9
(Danecek et al. 2021) “consensus” command, calling the first allele
in the FORMAT/GT field (bcftools consensus -H 1), and grafting
variant sites onto the M. canettii representative sequence (see
above).

Recombination rate estimation

A global per-site recombination rate for M. canettii was estimated
using the 17 patient-derived samples described above. Consensus
sequences for the M. canettii patient data were concatenated into
a single multi-fasta file to which a header was added (“17
4482059 1”) designating 17 sequences of length 4,482,059 bp with
a ploidy of 1. This multi-fasta was converted using the LDhat v.
2.2 (McVean et al. 2002) “convert” tool to LDhat-compatible input
(.sites and .locs) files which were used in LDhat “pairwise” to calcu-
late the most likely value for the population-scaled recombina-
tion rate (p =2 N,r, where N, is the effective population size and r
the recombination rate per site per generation). To speed up com-
putations, the per-site Watterson’s 0 calculated by LDhat was
used to generate a likelihood lookup table, with a maximum p of
100 and a grid size of 201.

Simulations

Violations of the population genetic model assumptions underly-
ing LDhat can impact recombination rate estimates (Dapper and
Payseur 2018). To test whether M. canettii’s specific population dy-
namics impact our estimates of recombination, 8 models with
varying selection intensities and population parameters were
simulated using SLiM v. 3 (Haller and Messer 2019). Models were
based on the M. tuberculosis null model developed by Morales-
Arce et al. (2020), assuming that M. tuberculosis and M. canettii

experience a similar course of infection. The models varied by 3
parameters: the distribution of fitness effects (DFEs), occurrence
of a population bottleneck, and presence of progeny skew. The
Wright-Fisher (Base) compatible model had only 1 class of neu-
tral mutation, in which the selection coefficient (s) was 0, no bot-
tleneck occurred, and progeny skew was absent. The remaining 7
models had at least 1 of the 3 parameters implemented (Table 1).
Models with a non-neutral DFE had 1 class of nearly neutral dele-
terious mutation (s = -0.001) and 1 class of weakly deleterious
mutation (s = -0.01), as implemented by Morales-Arce et al.
(2020). In models with progeny skew, the degree of skew, , was
modeled at 0.067, based on a strategy presented by Sackman et al.
(2019), and subsequently implemented by Morales-Arce et al.
(2020). This y value was previously found to have the strongest
posterior density for M. tuberculosis (Morales-Arce et al. 2020).
Last, models with a bottleneck (Bn) experienced a reduction in
census size to 50 at generation 100,001, followed by a period of
exponential population recovery spanning 90 generations, repre-
senting an infection bottleneck and subsequent growth.

Simulations were implemented as “nucleotide” models in
SLIM using a per-site per-generation mutation rate (x) of
6.0 x1078 [i.e. the mutation rate inferred by Morales-Arce et al.
(2020) for the MTBC], corresponding to a rate of 2.0 x10~8 per pos-
sible nucleotide transition per site in a Jukes-Cantor mutation
model, and a per-site per-generation recombination rate of
7.2 x107'! (in accordance with our estimate; see “Results and
Discussion”). Each model had a starting census size (N) of 10,000
individuals and, to reduce computational burden, a genome
length of 413, 587bp (i.e. 10% of the full length of the M. canettii
representative genome, minus the repetitive regions we chose to
exclude). One hundred replicates were run for each model, using
a burn-in of 100,000 generations (i.e. 10N) and a total of 101,000
generations. SLIM v. 3 assumes diploidy in its simulations and
models mutations as occurring on a “genomel” and “genome2”
for each individual. To enforce haploidy, all mutations occurring
on the “genome?2” for each individual were excluded, and muta-
tions with frequency 0.5 or greater were treated as fixed muta-
tions rather than variant sites. From each replicate simulation, a
subset of 500 individuals was selected from the last simulated
generation, and the “genomel” sequence from each individual
was included in a multi-fasta file.

To test the performance of LDhat v. 2.2 under different model
violations, “pairwise” was run on the simulated data (following
the method outlined in “Recombination rate estimation”) to esti-
mate the population-scaled recombination rate. Specifically, to
replicate both (i) within-host diversity and (ii) between-host (con-
sensus) calling from the bacterial population, datasets of (i) 100
sequences and (ii) 17 sets of 25 sequences from the 500 sequences
simulated per model replicate (corresponding to 17 empirical
bacterial populations with 25-fold genomic coverage) were ran-
domly selected, respectively (Supplementary Fig. 1), and rudi-
mentary consensus sequences were called based on the most
common allele at each site from each set of 25 sequences for the
latter. The custom python scripts used in these analyses are
available on GitHub (see “Data Archiving”).

Results and discussion

Within-host variation in M. canettii and the

M. tuberculosis complex

We utilized whole-genome sequencing data of M. canettii from
clinical and public health projects in Djibouti, France, and the
United States, containing 18 documented M. canettii isolates with
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Table 1. Summary of simulation models.

Evaluated parameters

Model Bottleneck (Bn) Progeny Skew (y) Distribution of fitness effects (DFE)
Base X X X
Base + Bn 4 X X
Base + Bn + DFE v X v
Base + Bn + v v X
Base + Bn + + DFE v v v
Base + DFE X X 4
Base + X v X
Base + + DFE X v v

“Base” represents the standard Wright-Fisher (WF) model, “Bn” a bottleneck, “DFE” the presence of non-neutral mutations, and “¥” a non-Wright-Fisher progeny

skew (for simulation details, see Materials and Methods).
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Fig. 2. Comparison of within-host variation between M. canettii and
MTBC. Mycobacterium canettii has both a greatly elevated mean and
variance in genome-wide segregating sites relative to the MTBC.

isolation dates spanning from 1983 up to 2016 (Fabre et al. 2010;
Blouin et al. 2014; Shea et al. 2017). In addition, we assembled a
comparable dataset for the M. tuberculosis complex from pub-
lished MTBC sequencing data (Comas et al. 2013, 2015; Orgeur
et al. 2021), with isolates representing the majority of the known
lineages. Segregating sites within each isolate were identified
through a pipeline modified after Trauner et al. (2017), which
applies 2 low-frequency variant callers to the sequencing data,
followed by stringent variant filtering (see “Materials and Methods”
for details). Compared to the MTBC dataset, the M. canettii dataset
contains many more segregating sites within isolates (MTBC me-
dian: 810, mean: 845; M. canettii median: 5,799, mean: 6,724) as
well as a much wider variance across isolates (MTBC range: 19-
1,607; M. canettii range: 0-23,030) (Fig. 2).

This result provides an additional dimension to the distinc-
tions between M. canettii and the MTBC, in that the difference in
diversity between the two extends beyond pairwise differences
between consensus sequences from different isolates as previ-
ously reported, and into the within-host populations themselves.
Thus, while there are contextual differences between the two
types of bacteria, and while there may be differences in virulence
and/or infection behavior, there is also a fundamental biological
difference in the evolutionary dynamics governing these two
organisms. Given our current understanding of their biology, it is
likely that recombination is a dominant mechanism enhancing
the within-host variation, and therefore overall population diver-
sity, of M. canettii in comparison to the MTBC. The consequence
of this for the MTBC—reduced efficacy of selection, reduced ef-
fective population size, and genomic degeneration—can be stud-
ied through the lens of Hill-Robertson interference.

The benefit to the MTBC as a group of obligate pathogens is
the consistent retention of fundamental virulence traits (e.g. phoR
gene as proposed by Chiner-Oms et al. 2019). This itself was likely
at the cost of becoming an obligate pathogen therefore unable to
survive independent of a host cell. Limited recombination poten-
tial, specifically the potential to accept donor DNA, likely
enforced a program of genomic reduction (as seen in, for exam-
ple, nonrecombining sex chromosome evolution; Bachtrog 2013).
This is illustrated by the reduced and less variable pan-genome
size in the MTBC as compared to M. canettii, and the obligate
pathogenicity of the MTBC is in contrast to the seeming environ-
mentally opportunistic pathogenicity of M. canettii (Aboubaker
Osman et al. 2016).

Recombination rate estimation in M. canettii

As the presence of recombination in M. canettii populations and
lack thereof in MTBC populations may be a crucial factor in un-
derstanding the observed differences in within- and between-
host diversity between the 2 bacterial groups, we used LDhat
(McVean et al. 2002) to estimate the population-scaled recombi-
nation rate (p=2N,r, where N, is the effective population size
and r the recombination rate per-site per-generation) in M. canet-
tii. As LDhat requires an input of discrete genetic sequences, a
consensus sequence was called for each M. canettii isolate. To fa-
cilitate standardized variant sampling across the empirical and
simulated data, we subsampled patient sequences to a uniform
mean coverage of 25-fold, representing approximately 25 individ-
ual genomes within an M. canettii population (Supplementary
Fig. 1). This level of coverage was intended to strike a balance be-
tween including as much of the empirical dataset as possible,
while maintaining sufficient coverage to confidently call variants.
There were a total of 43,332 sites segregating amongst the con-
sensus sequences, which were used to estimate a most likely
value of p at 15 (Fig. 3). Assuming M. canettii and the MTBC have
identical per-site per- generation mutation rates (u), where,

0 = 2NouL,

we can calculate r based on the equivalency of p/6 and r/p. Using
i = 6.0 x107% as estimated by Morales-Arce et al. (2020), this cal-
culation yielded an estimate of r=7.2 x10~** for M. canettii.

Fitness effects and population dynamics
influence recombination rate inference

Morales-Arce et al. (2020) recently presented an evolutionary null
model for MTBC which included a population bottleneck associ-
ated with infection as well as reproductive progeny skew. As a
causative agent of tuberculosis along with the MTBC, it is likely
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that M. canettii violates Wright-Fisher life history assumptions in
a similar manner. To test the impact of potential model viola-
tions on our recombination rate estimates, we designed 8 differ-
ent models in SLIM (Haller and Messer 2019) with varying levels
of fitness effects, occurrence of population bottlenecks, and pres-
ence of progeny skew (Table 1). For all models, the true simulated
recombination and mutation parameters were r=7.2 x10~** and
p=6 0.0 x107® per-site per-generation. The Wright-Fisher “Base”
model represents a model with 1 class of neutral mutation and
no bottleneck or progeny skew. Successive models consisted of
the “Base” model with the addition of mildly deleterious muta-
tions, a bottleneck, and progeny skew, individually or in combi-
nation. From the resulting simulated populations, we modeled
the population variant sampling that took place during the gener-
ation of the M. canettii consensus sequences for the initial recom-
bination rate estimate by taking 17 subsamples of 25 individual
genomes from each simulated population (Supplementary Fig. 1).
From these subpopulations, we performed rudimentary consen-
sus calling, and performed LDhat analyses in parallel with the
full populations. The p estimates for the “Base” model and “Base
+ bottleneck” (Bn) model (Table 1), led to the closest estimates of
1, but the inference for most models deviated strongly from the
true r (7.2 x107'* per-site per-generation) (Fig. 4a). These devia-
tions were greatly exacerbated when the simulated populations
were represented by consensus sequences (Fig. 4a). Upon consid-
ering the expected relationship between p and 0, it appears that
the reduction of diversity in non-Wright-Fisher models is com-
pensated for by a higher p estimate, rather than a reduced N,
which in turn serves to inflate inferred values for r (Fig. 4b).
LDhat was chosen to illustrate the effects of these various
model violations, as it is one of the most widely used recombina-
tion rate estimators in the field. While other approaches have re-
cently been proposed within the context of studying bacterial
populations, they importantly rely on the same underlying
assumptions, and thus the results and biases discussed here will
likely be commonly observed across approaches. For example,
Garud et al. (2019) based their recombination rate estimation on
the observed decay of LD in their study of bacteria sampled from
the gut microbiome. However, progeny skew is similarly
neglected in their model (despite likely being of great relevance in

their studied organisms). Because skewed progeny distributions
are known to greatly impact observed LD (Eldon and Wakeley
2008)—in some cases generating very strong LD despite frequent
recombination, while in other cases weak LD despite infrequent
recombination—this parameter will be a critical consideration
and component for any LD-based recombination rate estimator.
Relatedly, the approach of Sakoparnig et al. 2021 similarly
neglects such skews via their use of the Kingman coalescent—
which assumes a small mean and variance of progeny number.
Furthermore, their approach assumes that all mutations are se-
lectively neutral (and unlinked to selected sites)—an assumption
that will be strongly violated in coding-dense genomes such as
those of many bacteria. For these reasons, as with LDhat, the
simulation analyses presented here studying the effects of these
model violations will be of importance across methodologies.

Consensus calling from microbial populations
obfuscates true diversity and biases inference of
recombination rate

For many microbial isolates in clinical and environmental con-
texts, it is common practice to call a consensus sequence from
an isolate, and many analytical tools assume a monoclonal iso-
late. To better understand the degree to which consensus
sequences may represent their source populations, we explored
the segregating sites found within the datasets that contribute to
each level of consensus sequence building. We used a model with
a population bottleneck, progeny skew, and presence of non-neu-
tral mutations (Base + Bn +  + DFE) as a representative simula-
tion model, as it is the most realistic model for M. canettii, and
extracted 10 replicates. The diversity represented by the full pop-
ulation sampled from each replicate (n=500) was dramatically
reduced when subsampled to a set of 17 subpopulations of 25
individuals each, corresponding to a collection of 17 isolates with
genomic data with 25X coverage (Fig. 5; Supplementary Fig. 1).
Moreover, the calling of consensus sequences from isolates
greatly reduces observed diversity (Fig. 5)—an ascertainment that
can greatly bias subsequent population genomics analyses as
shown in Fig. 4 with regards to recombination rate estimation,
and as previously demonstrated with regards to the inference of
selection as well (Renzette et al. 2017).

zz0z Rey 20 uo 1senb Aq GL9e$G9/5G008M(/S/Z L/eloe/leuinofg6/woo dno-olwepese//:sdiy woly pepeojumoq


academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac055#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac055#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac055#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac055#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac055#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac055#supplementary-data

S.Sabinetal. | 7

(a) Consensus Full

% Pairwise r / Model r

© n

© < <

E 1e-08 ' —— O T H 403.43

s ¢ 54,60

g 1e-09

o 7.39

E 1e-10

é 1.00

& = = o = =
Q;;’&Z, xq, ()((Q’ (\x OQQ/ ()QQ, 2 " OQQ/ Q,'bae ‘% (3/ R 3 0<<<</ ()(5/ ¥ i ()QQ/
@ x x x x ) x x x
Q"b‘ﬂ ,,‘b(\ ;'@ 5 2 ®®"® & = B N %'b" PES q‘x‘b ] 2 %'Dﬁ,e ®®¢9 . Q x
& 425‘"%6 f’o q;@ee & %,g) ;b“ Q;’b%%
CP "Z
& L
Model
Consensus Full
(b)
25 Model
§ ® Base
20
B 2 - e Base+Bn
§E 15 oo ® - ® Base +Bn +DFE
g % = o ® Base+Bn+W
£5 10 ’ o Base+Bn+WY+DFE
s E *
a o e . e Base + DFE
o 5 e @
& § &. e ! e & ee o Base + W
0 &‘——’—a Base + ¥ + DFE
0 500 1000 1500 0 500 1000 1500
Watterson’s 8 Watterson’s 8

Fig. 4. Performance of LDhat under a variety of model violations. a) the per-site recombination rate (r) inferred from p estimated by LDhat deviates
strongly from the true value of r = 7.2 x 10~ ** (see solid black horizontal line) in most models. Indeed, the correct estimate is obtained only

when using full population data (rather than consensus data) under either the standard Wright-Fisher (Base) model or a neutral bottleneck model
(Base + Bn). Each point corresponds to a simulated replicate, with replicates binned according to their model along the x-axis. The point color
corresponds to the ratio between the LDhat-inferred r and the true r (log-scaled to improve visualization). b) Similar to panel a, the relationship
between p and 0 deviates from the slope of r/u (solid black line) for many of the simulated model violations (colors represent different models). Both
the standard Wright-Fisher (Base) and the neutral bottleneck (Base + Bn) models largely conform to expectation when the full population data are
used. However, the use of consensus sequences as well as the presence of either natural selection and/or progeny skew, can cause extreme
deviations from the true value.

300 o © ®
° I 3
® ® o
o
m .
£ 200 Sampling Level
w
o @ consensus
£
T .
% @ full populations
% 100 sub-populations
w
°
° ° e o °
0 . [ ] @ Y

0 1 2 3 4 5 6 7 8 9
replicate

Fig. 5. Segregating sites in consensus sequences and source populations, from simulated replicates. The number of segregating sites observed within
each consensus, full population, and subpopulation dataset—for 10 simulation replicates of the ‘Base’ model with the addition of a bottleneck, progeny
skew, and presence of non-neutral mutations (Base + Bn + ¥ + DFE). The full populations are represented by 500 genomes, the subpopulations are
represented by 17 subpopulations consisting of 25 individual genomes each, and the consensus sequences are called for each subpopulation from the
25 constituent individual genomes. The points are binned by simulation replicates.

220z Ae|y £0 uo 1senb Aq G19¢$59/5500x(/G/Z L/aoie/leulnolgb/woo dno-oiwepese/:sdiy wody peapeojumod



8 | G3,2022,Vol 12,No.5

Conclusions

As the closest relative to the MTBC and a tuberculosis-causing
bacterium, M. canettii is an intriguing outgroup for better under-
standing the evolutionary history of the MTBC and the emer-
gence of tuberculosis as a global human disease. However, many
of the ecological and biological characteristics underlying M. can-
ettii remain poorly explored. Here, we examined the difference in
diversity between M. canettii and MTBC species through the lens
of recombination, linkage, and Hill-Robertson effects, and we ex-
plored methodological barriers that currently prevent a deeper
understanding of these relationships.

Though we inferred a relatively low per-site per-generation re-
combination rate of 7.2 x 10~ for M. canettii, our simulation-
based power analyses considering possible violations to a
Wright-Fisher model, as well as the nature of the empirical
consensus-sequence-based data, suggest that this is likely an
overestimate. The inference biases described here highlight the
general importance of directly modeling consensus sequence
construction prior to inference and power analyses. Specifically,
by modeling the reduction in variation and change in frequency
spectrum expectations as presented here (Figs. 4 and 5), one may
quantify the extent to which subsequent analyses may be im-
pacted when based upon consensus sequences, and hence how
to better interpret results. Moreover, our analyses demonstrate
that the consensus calling approach frequently applied in studies
of complex microbial populations is far from ideal for estimating
population genetic statistics and thus for inferring evolutionary
parameters, and can greatly reduce the true diversity of a popula-
tion by more than an order of magnitude. Although reconstruct-
ing individual genomes or haplotypes is challenging with most
short-read sequencing technologies, highly accurate single-
molecule long-read sequencing techniques (such as PacBio’s
SMRT sequencing) offer a powerful alternative to characterize
the diversity of microbial populations.

It is important to note that the empirical data analyzed was
sparse in the case of M. canettii, and that the available data was
not generated with population genomic analysis in mind for ei-
ther the M. canettii or MTBC datasets. As such, the clinical isolates
may not be representative of the full distribution of diversity to
be found in M. canettii, especially given that we have no environ-
mental or “source” isolates. In addition, the represented isolates
were cultured prior to whole-genome sequencing, thus imposing
an additional bottleneck and limiting the discoverable diversity
within the populations studied. It follows that, while the recom-
bination rate estimated here for M. canettii is likely overestimated
given the data, it is also seemingly the case that the full diversity
of M. canettii populations is currently underestimated in the liter-
ature. Also, the simulations performed here accept a proposed
MTBC null model (Morales-Arce et al. 2020) as an analog for M.
canettii. If the MTBC model is indeed comparable to that of M. can-
ettii, M. canettii’s ability to accept donated chromosomal DNA
(Madacki et al. 2021) is the most likely cause of its increased inter-
and intra-isolated diversity compared to the MTBC. However, if
the course and mode of infection differs in M. canettii, there may
be other factors to consider. With these limitations in mind, to
gain a more realistic sense of full M. canettii diversity, it is essen-
tial to identify the source of new infections and conduct in vitro
experiments and additional genomic investigations of M. canettii
infections to further interrogate the life history, infection course,
and recombination frequency. Furthermore, it will be important
to follow recommended population genomic practices that
have been suggested for MTBC populations, in order to study

within-host M. canettii diversity. These would include time-
sampling of M. canettii populations from patients with active
infections, deep whole-genome sequencing with the goal of iden-
tifying low-frequency variants, and the construction of a realistic
evolutionary null model specifically for M. canettii (Morales-Arce
etal 2021).

Finally, in addition to other recent work studying the signifi-
cant biases in recombination rate estimation that may arise from
neglected nonequilibrium demographic histories (Dapper and
Payseur 2018), our results emphasize the important and fre-
quently neglected contributions of progeny skew as well as puri-
fying and background selection. Future method development
incorporating these various evolutionary processes would thus
be of great use to the field, particularly for the study of human
pathogens which are often characterized by extreme infection
dynamics, a large progeny variance, and genomes that are
strongly functionally constrained. Given the large number of
parameters concerned, approximate Bayesian approaches are
appearing the most promising for such future method develop-
ment (e.g. Johri et al. 2020, 2022).

Data availability

Custom scripts are available at https://github.com/sjsabin/

mcan_popgen. The raw sequencing data are available via NCBI's

Sequencing Read Archive (see Supplementary Table 1).
Supplemental material is available at G3 online.
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