2207.03693v1 [cs.RO] 8 Jul 2022

arxiv

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2022 1

Approximate Task Tree Retrieval in a Knowledge
Network for Robotic Cooking
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Abstract—Flexible task planning continues to pose a diffic
challenge for robots, where a robot is unable to creatively ad:
their task plans to new or unseen problems, which is maii
due to the limited knowledge it has about its actions and wor
Motivated by a human’s ability to adapt, we explore how tz
plans from a knowledge graph, known as the Functional Obje
Oriented Network (FOON), can be generated for novel problel
requiring concepts that are not readily available to the rol
in its knowledge base. Knowledge from 140 cooking reci}
are structured in a FOON knowledge graph, which is used |
acquiring task plan sequences known as task trees. Task tr
can be modified to replicate recipes in a FOON knowledge gra
format, which can be useful for enriching FOON with new reciy
containing unknown object and state combinations, by relying
upon semantic similarity. We demonstrate the power of task tree
generation to create task trees with never-before-seen ingredient
and state combinations as seen in recipes from the RecipelM+
dataset, with which we evaluate the quality of the trees based
on how accurately they depict newly added ingredients. Qur
experimental results show that our system is able to provide
task sequences with 76% correctness.

Index Terms—Service Robotics, Task Planning, Planning under
Uncertainty

I. INTRODUCTION

AJOR efforts in robotics research have been devoted to

the development of intelligent agents with the ability
to understand human intentions and to perform actions for
problems in human-centered domains. Such domains include,
but are not limited to, the application of robots for assisting
the elderly and disabled, food delivery, and cooking activities.
However, the main difficulty in designing robots for human-
centered domains lies in the variety of tasks and the dynamic
nature of environments in which these robots will operate.

In terms of robotic cooking, ingredients or objects may
come in different forms, shapes or sizes, and there are many
states to account for when executing recipes [1]. Additionally,
there may be times where a robot is unable to execute an entire
recipe due to the unavailability of certain ingredients or objects
in its surroundings; this may happen when a robot is required
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Fig. 1. Overview of our task tree generation procedure for novel problems
using FOON. As input to our task tree generation system, a set of ingredients
and their states are given, from which a novel task tree can be generated.

to prepare meal variations. In the latter case, a robot would
need to adapt its knowledge to include or disregard ingredients,
which may or may not be known by the robot, in its task plan,
which is not often considered in modern robot applications.
Motivated by a human’s ability to creatively adapt to novel
scenarios, we explore the problem of generating task plans
for novel scenarios that would be presented to a robot, given
the limited knowledge available to it as a knowledge graph.

In this work, we use a knowledge representation known as
the Functional Object-Oriented Network (FOON) [2], which
builds upon previous work on joint object-action representa-
tion [3]-[5]. In prior work, we introduced how a FOON can be
created from video annotations and used for task planning [2].
However, as with other works, task planning is limited to the
knowledge found in a FOON, as it only contains knowledge
for a limited number of recipe and ingredient variations. For
example, if a robot were to prepare a salad with a certain
combination of ingredients that have never been encountered
together before in FOON, then this would pose a problem
since there is no concept of that type of salad. Previously, we
investigated how the knowledge in FOON can be extended so
as to generalize concepts across object types [6]. Based on
this intuition, we propose that existing knowledge of similar
recipes can be used to derive alternative solutions (as graphs)
that did not exist before. Therefore, in this work, we introduce
a procedure known as task tree generation (described in
Figure 1), where a reference task tree is extracted from FOON
and then modified to match a required set of ingredients for a
given recipe. This may require the addition of possibly never-
before-seen ingredients and the removal of ingredients in the
reference task tree that are not valid for the new recipe. To
show the effectiveness of our approach, we apply task tree
generation on recipes from the RecipelM+ dataset [7]. This
is particularly useful for creating new FOONs and task plans
for never-before-seen recipes without manual effort.
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Our contributions and outcomes in this paper are as follows:
(i) We develop a recipe generation pipeline that takes a set of
ingredients as input and outputs a task plan in the form of a
task tree; (ii)) We design a heuristic-based search algorithm to
find a recipe from the knowledge graph, which closely matches
with the required ingredients, without exploring all possible
paths and thus minimizing time and space cost; (iii) We present
a task tree visualization method that highlights how each
ingredient’s state changes in a recipe known as the progress
line; and (iv) We perform an evaluation on the generalizability
of FOON for Recipel M+ recipes.

II. BACKGROUND
A. Functional Object-Oriented Network

A FOON is a bipartite network with two types of nodes:
object nodes and motion nodes. Affordances [8] are depicted
via edges that connect objects to actions and enforce action
sequencing. A fundamental structure known as a functional
unit represents actions in FOON by describing the state
change of objects before and after execution, and it has input
object nodes, output object nodes, and a motion node. It is
akin to a planning operator in PDDL (short for Planning
Domain Definition Language) [9], where input and output
nodes describe preconditions and effects respectively. Figure 2
depicts examples of functional units for the action sequence
of: 1) picking and placing a whole tomato on a cutting board,
2) slicing the tomato with a knife, and 3) pouring the sliced
tomato from the cutting board into a bowl.

Typically, we create FOONs by annotating video demonstra-
tions. A FOON representing a single activity is referred to as a
subgraph; a subgraph contains functional units in sequence to
describe objects’ states before and after each action occurs, and
what objects are being manipulated. Presently, this annotation
process is done manually, but previous work has investigated
how graphs can be annotated in a semi-automatic manner [10].
Two or more subgraphs can be merged together to form what
we call a universal FOON. A universal FOON can contain
variations of recipes once it has been merged with several
sources of knowledge. This merging procedure is simply a
union operation applied to all functional units from each
subgraph we wish to combine; as a result, duplicate functional
units are eliminated in the merged network [2]. Presently,
FOON comprises of 140 subgraph annotations of videos
from YouTube, Activity-Net [11], and EPIC-KITCHENS [12],
which are all available on our website [13].

1) Task Planning with FOON: Task planning involves
retrieving a task tree [2] (a high-level task plan) that sat-
isfies a goal defined as an object node. Finding a task tree
requires knowledge about the state of a robot’s environment,
specifically what objects are available and the state(s) in which
they are in. Starting from the goal, the algorithm searches for
candidate functional units in a depth-wise manner, and then,
for each candidate unit, it searches its input nodes in a breadth-
wise manner to see if they are available to the robot. More
recently, we introduced a modified version of the algorithm to
find the optimal path to reach a goal node, which is reflected
by weights given to each functional unit corresponding to its
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Fig. 2. Tllustration of a universal FOON made of 140 recipe subgraphs, and
three (3) connected functional units, where object nodes are denoted by green
circles and motion nodes are denoted by red squares.

success rate of execution by a robot [14]. However, these
algorithms are not suited to generate task trees for recipes not
found in FOON; for this task, we use semantic similarity [6]
while searching to modify task trees as required for a given
problem and ingredient set.

B. Related Works

Developing a robotic agent that understands human instruc-
tions like “cut the onion in half” and executing them precisely
in a real world setting is a very difficult task. The most
noteworthy work to address this challenge is the knowledge
processing framework KNOWROB [15]. They created this
knowledge base by collecting information through observa-
tions in a sensor-equipped environment. Although the robots
in [16] were successful in retrieving a pancake recipe and
executing it using the KNOWROB reasoning framework, the
authors did not show whether the robots are able to modify
the recipe to meet users’ preference. On the contrary, our work
focuses on this degree of flexibility so that one can obtain a
task plan for any combination of ingredients.

Furniture assembly and cooking are similar in a sense that
both of these task domains begin with raw materials and end
with a finished product in the form of an assembled furniture
piece or a dish. Given geometric details of parts, IkeaBot [17]
deduces a task plan to assemble furniture by using geometric
reasoning and checking possible sub-assemblies, which is
computationally expensive. On the other hand, we explore the
FOON knowledge base by using an efficient heuristic-based
graph search. [18] relied on deep learning whereas [19] created
an ontology based on the product description found on IKEA
website to retrieve information about an object. Manipulation
action tree banks [20] were proposed to organize manipulation
actions in multiple levels of abstraction, which a robot can
use for understanding and executing a task. Unlike our work,
they did not handle different object states and are unable to
produce a plan for complex manipulation tasks. More recently,
the authors in [21] presented a method for robot assembly
planning by recognizing graphical instruction manuals. They
identify objects from a series of images, find the relationship
between the previous and current image, and create a task
sequence graph for robot execution.
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Efforts have been made to dynamically modify a recipe
to meet certain constraints. [22] gathered various datasets
to understand existing recipes, which flavors people like,
and chemical structure of ingredients to invent novel recipes
based on big data approaches. [23] proposed a new approach
to generate novel recipes based on ingredients, preparation
time, and cooking steps, where a user can specify those
parameters. They used a taxonomy to define the semantics
of ingredients and cooking steps where the inner nodes refer
to generalized items (e.g., meat) and the items close to the leaf
nodes are more specific (e.g., beef, pork). EvoChef [24] and
AutoChef [25], created novel recipes using natural language
processing and evolutionary algorithms but without consid-
ering user preference. [26] optimize a recipe according to
consumers’ taste by tuning parameters such as cooking time,
amount of salt. However, they maintain the same ingredients
in their plans, whereas our work shows more flexibility by
making the same dish using different ingredient combinations
based on the consumers’ dietary preferences.

Some works focused on finding a reasonable substitution
for an ingredient. [27] collected contextual information from
the MyFitnessPal mobile app and used it to search for an
equivalent ingredient. For example, chicken and beef can
substitute each other if they are often consumed with rice and
salad. [28] addressed the issue of specific dietary requirements.
Similar to our work, they combined the semantic information
from a knowledge graph of food and a word embedding model
to substitute ingredients to improve a dish’s nutritional value.
Similar works were done by [29] using adaptation rules and
by [30] using the transformer-based model BERT. However,
these works solely explored ingredient substitution, whereas
we incorporate this idea for robotic execution of a recipe.
Conceptually, our work is similar to [31], [32] that use on-
tology and domain knowledge to derive missing information.
In addition to the knowledge required to manipulate unknown
objects, a task tree shows how they can be integrated with other
known or unknown items in a complex task like cooking.

III. PROPOSED METHOD

Our objective in this work is to generate FOON task
plans for never-before-seen recipes through a method that
uses FOON as a knowledge base. This method requires a
recipe’s ingredient set I and associated dish type D as input
and produces a task tree outlining how to prepare the dish.
Due to the limited recipe variety in FOON, the likelihood
of encountering recipes with different ingredient combinations
is very high. Specifically, FOON may not contain references
to the desired recipe, or, more likely, many ingredients will
be absent from FOON. Despite this shortcoming, our idea
is to use the limited knowledge of a FOON to produce task
trees for novel recipes, so as to take advantage of existing
recipe knowledge bases like RecipelM+ [7]. The main idea
is to retrieve a reference task tree from FOON, which closely
resembles the desired recipe, and then modify it to produce a
final task tree as shown in Figure 1. The three main steps of
our method are discussed in the following subsections.

A. Identifying a Reference Goal Node

From a universal FOON, we extract a recipe’s task tree by
retrieving all functional units related to the final state of a
dish, which we refer to as a goal node. 1t is likely that a goal
node for a dish does not exist in FOON; in this case, we try
to find a suitable node that closely matches the required dish,
which we refer to as a reference goal node (denoted as G).
Such a node is used to extract a reference task tree T, which
is simply a task tree that creates the reference goal object. To
facilitate the selection of the ideal reference goal node G, we
created a recipe classification with 30 dish classes (e.g., salad,
pizza), with which we can categorize recipes in the form of
FOON subgraphs. The purpose of this classification is to find
similar recipes known to us given a dish type.

Algorithm 1 Find a reference goal node
Input: given ingredients I, dish type D
1: candidates < Retrieve recipes of type D
2: for each subgraph in candidates do
3 S ¢ Ingredients of subgraph
4: score <— Find similarity between I and S
5
6

: end for
: G + End product of subgraph with maximum score
Output: G

Algorithm 1 uses this classification to find candidate goal
nodes. For example, if D = soup, candidates can be {corn
soup, potato soup, ...} depending on the soup recipes that
exist in FOON. We store the list of ingredients required to
prepare a dish in its goal node so that we can easily identify
the required ingredients to make a dish. Next, the algorithm
checks each candidate goal node to select the one that has
maximum Word2Vec similarity with the ingredient set L.

We use a word embedding model provided by spaCy [33],
an open-source library for natural language processing, to
get a vectorized representation of each word. Similar words
are grouped together in the embedding space. For instance,
cucumber and zucchini will be close to each other but far
away from salt. Similarity is given as a score ranging from 0
to 1, where 1 indicates that two items are semantically similar.
In this work, we deem two items similar if the score exceeds
a predefined threshold value of 0.90.

B. Extracting a Reference Task Tree

A dish can be prepared in many ways depending on its
ingredients and recipe instructions. Similarly, in FOON, there
are different paths to reach a goal node. We aim to find the
path that closely resembles the desired recipe to use it as a
base of reference for our final task tree. We assume that all
utensils and ingredients needed for a recipe are available in
the kitchen, although it is possible that the ingredients are
not available in the desired state. For example, a recipe may
require sliced carrot, but the kitchen contains whole carrot.

In a typically large FOON, exploring all paths can be time-
consuming and memory intensive. Hence, unlike the previous
search algorithm that aims to find the most optimal task tree
for making a certain object [14], we use Best First Search.



Fig. 3. Overview of our reference task tree retrieval method. Each node’s
value indicate a score returned by the heuristic function; empty nodes are not
reached. Red arrows denote the chosen path based on maximum score.

At each level, this method evaluates all candidate nodes based
on the heuristic function g(n) = |A, N 1|, where A, and I
denote the set of ingredients stored in node n and ingredients
to be added to the dish respectively, and g(n) computes a
similarity score checking the overlap between the two sets
of ingredients. We use Word2Vec similarity instead of word
matching so that equivalent ingredients are considered as an
overlap. The similarity score indicates how close we are to
the end product (i.e., final dish). The node with the maximum
score is considered as the closest to the goal and thus will be
favored over the other candidates as shown in Figure 3.

Algorithm 2 Retrieve the task tree of the reference goal node

Input: reference goal node G and given ingredients I
1: T <+ A list of functional units in the task tree
2: K < A list of items available in the kitchen
3: @ < A queue of items to search
4: Q.push(G)
5. while @ is not empty do

6: L <+ @Q.dequeue()

7: if L does not exist in K then

8: C < Find all functional units that create L
9: C" + Select one from C' using heuristic function
10: T .append(C’)

11 for each input n in C’ do

12: if n is not visited then

13: Q.enqueue(n)

14: Mark n as visited

15: end if

16: end for

17: end if

18: end while
19: T .reverse()
Output: 7

The retrieval algorithm (presented as Algorithm 2) works
as follows. Let the initial task tree 7 be an empty list. 7 will
be populated with the functional units required to prepare the
dish defined by the goal node G. Let K be the list of items in
the kitchen and ) be a queue for keeping track of items that
need to be explored. At each iteration, we remove the first item
L from @ and check if it is found in K in its desired state.
If it does not contain £, we search for the functional units C
that create it (i.e., functional units that contain £ as an output
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node). For instance, while searching for cake batter, we may
find that it is not available in the kitchen, but there are a few
functional units in FOON that show how to make different
types of cake batter made up of varying sets of ingredients.
These units are added to C as potential candidates. We choose
the best candidate C’ from C based on our heuristic function
and add it to the task tree. To execute C’, we have to make
sure that we know how to prepare all of its input ingredients.
This is why all of its input ingredients are added to @) to be
searched next. The search continues until ) is empty, meaning
that all of the required items are discovered. At the end, 7T is
reversed to provide the functional units in the correct sequence
that a robot can follow to prepare the dish at G.

C. Task Tree Modification

The reference tree 7 gives a blueprint about how the
tasks should be executed, but it may not contain all the
ingredients required for a new recipe. Therefore, we need to
modify 7 to include missing ingredients. The modification
procedure first integrates all required ingredients and then
removes those that were not given as input. If an ingredient
does not exist in FOON, or if it exists in a different state,
we find a semantically similar ingredient in the knowledge
base using a multi-level search. First, we try to find a suitable
match for similar ingredients in 7 because we already know
how the ingredients in 7 are integrated together to produce
the final dish. This gives us high confidence to incorporate
missing ingredients. Otherwise, we search in the universal
FOON for an equivalent ingredient. As in Section III-A, we
use spaCy’s word embedding model to find the closest object
in the embedding space. Each ingredient contains an object
name and its state. When checking if an ingredient exists in
T, there are four possible cases depending on the match with
the object and state (also presented in Table I):

Case 1: If the given ingredient exactly matches a leaf node
(i.e., a starting node in the state required by the recipe) in T
in terms of object and state name, no adjustment is required.

Case 2: The exact object is not found in 7, but there is
an equivalent ingredient with the exact same state. In that
case, we can simply substitute the equivalent object name
with that of the required object. For instance, if chopped
chili pepper is required in the recipe but its equivalent in
T is chopped jalaperio, we can replace jalaperio with chili
pepper. If jalaperio is also required, a copy of the functional
units required for processing jalaperio is created, after which
substitution is performed to preserve jalaperio in T.

Case 3: If the object is found in 7 but not in the desired
state, we search FOON for functional units needed to get the
object in the required state. We do this with another retrieval
query using Algorithm 2, where the goal node will be an object
node in the leaf of 7. We then add the retrieved functional
units to that leaf. For example, if whole tomato is given as
the starting state but there is diced tomato in the leaf of the
tree, we will search using the goal node diced tomato as the
criteria and the added functional units will reflect how diced
tomato can be made from its whole state.

Case 4: The object and state of the equivalent ingredient
do not match with the given ingredient. We can handle this
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TABLE I
RULES TO MODIFY THE REFERENCE TASK TREE BASED ON THE DIFFERENCE BETWEEN A GIVEN INGREDIENT AND ITS EQUIVALENT IN THE TREE AS
DISCUSSED IN SECTION III-C. THE TERM FU DENOTES FUNCTIONAL UNIT.

Case | End leaf in refer- | Given ingredient Object State Substitution Add branch
ence task tree matched matched
1 sliced carrot sliced carrot — —
chopped jalapefio chopped chili pepper X substitute jalapefio with | —
chili pepper
3 diced tomato whole tomato X — add FUs to make diced
tomato from whole tomato
4 minced shallot peeled onion X X substitute shallot with | add FUs to make minced
onion onion from peeled onion

case by combining the solution from the previous two cases.
First, we substitute the object name and then add the necessary
functional units to achieve its desired state.
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sliced(cutting board) ---> pick-and-place ---> sliced(mixing bowl) ---> mix
End product: greek salad

cucumber
diced(bowl) ---> pick-and-place ---> diced(mixing bowl) ---> mix
End product: greek salad

oregano
dried(bowl) ---> pour ---> dried(mixing bowl) ---> mix
End product: greek salad

prunes (substituted from raisin, confidence: 62.9%)
dried(bowl) ---> pour ---> dried(mixing bowl) ---> mix

End product: greek salad

feta cheese
cubed(container) ---> scoop ---> cubed(spoon) ---> pour
End product: greek salad

(b) Progress line for greek salad

Fig. 4. Illustration of: a) a task tree generated with our approach, and b) its
corresponding progress line visualization.

If the equivalent ingredient does not exist in the retrieved
task tree but is featured in other recipes in FOON, it poses
some extra challenges. Let us assume that the recipe requires
roasted turkey but the closest object to turkey available in
FOON is chicken. Normally, chicken can have states such as
raw, fried, baked, and marinated across recipes. This makes it
difficult-to-choese-the:state best suited for the task tree. To aid

in selecting an appropriate state, we used a state taxonomy [1]
with 12 different categories, such as raw, finely separated, and
liquid. Similar states, such as sliced and diced, are grouped
together such that existing states can be used as a blueprint
for other states of the same category. If there are multiple
candidates to choose from, we break the tie by favoring the
most frequently used state in the recipes of the given dish type.

When substituting a state, we also have to select an appro-
priate manipulation for which the state is valid. For instance,
with the states diced and sliced, we treat the appropriate action
with different motion verbs dice and slice. For this, we find the
most frequently used verb associated with the required state
and use it as the motion node label. Once we retrieve the func-
tional units to prepare an ingredient, the challenge is to connect
them to the reference tree. To do this, we find functional units
in T that can easily be modified, which are those that new
ingredients can be added as input nodes. For example, any
unit that involve mixing or adding ingredients to a container
can accept any number of inputs, whereas a robot cannot cut
or chop multiple items at the same time. Therefore, for each
missing ingredient, we connect the subtrees to these types of
functional units, resulting in a connected acyclic graph. We do
not need to create this connection if the equivalent ingredient
already exists in 7. Finally, the modified task tree will have
a list of functional units containing the input ingredients that,
if executed sequentially, will produce the desired dish.

IV. EXPERIMENTS

It is difficult to quantitatively compare a knowledge graph-
based method with others, as the benefit we get from it lies in
its flexibility and adaptability to answer a query. Therefore, in
our experiments, we used Recipel M+ to create a diverse set of
queries for ingredient combinations from several dish classes
as shown in Table II. Our focus is on generating a correct task
tree for recipes in RecipelM+. To make our evaluation more
robust, we excluded dish classes for which we had less than 4
recipes in FOON, as it is difficult to gain a general picture of a
dish class with too few recipes. Among the selected dish types,
we randomly selected 5 classes for our evaluation: salad, cake,
soup, omelette and drinks. Next, 100 recipes of each category
were randomly selected from RecipelM+ for a total of 500
recipes. We ran these experiments on a MacBook Pro equipped
with 2.6 GHz 6-Core Intel Core i7 processor and 16GB RAM.

A. Evaluation Strategy

Our objective is to evaluate the quality of a task tree for
unseen ingredient combinations from the Recipel M+ dataset.
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TABLE II
OVERVIEW OF THE TEST DATASET CREATED FROM RECIPE1M+

Dish Type No. of Recipes in | Average No. of Ingre-
RecipelM+ dients per Recipe

salad 58,869 9

cake 29,887 10

soup 35,357 10

omelette 686 7

drinks 2,732 5

It is impossible to judge a recipe by solely relying on au-
tomated testing such as Intersection over Union (IoU) due to
there being many ways to prepare a meal. Furthermore, despite
having the same ingredients, one recipe can differ from another
recipe in terms of cooking steps while both are valid or correct.
Hence, we chose to evaluate the FOON-generated task trees by
manually checking each task plan. Although it requires a lot of
manual effort, we believe that human judgement is necessary
to evaluate recipes. To make the process easier, instead of
checking the functional units in the task tree, we check each
ingredient by reviewing its progress line.

Progress Line: In cooking, ingredients undergo several
changes in their physical state (e.g., from whole to sliced)
and/or location. We refer to this sequence of changes as an
ingredient’s progress line, which is another visualization of
a task tree. We developed a tool to view the progress line
of each ingredient to manually evaluate generated task trees.
Figures 4a and 4b shows an example of a generated task tree
and its progress line respectively, where objects, states and
motions are colored in black, green and red respectively.

B. Results

Task trees generated for the 500 recipes were thoroughly
evaluated using the progress line visualizer. When checking a
recipe, we review each of its ingredients and indicate whether
a given ingredient is incorrect, partially incorrect or correct
by assigning it a score from {0,1,2}, where ‘0’ means that
an ingredient’s progress line is incorrect, ‘1’ means partially
incorrect, and ‘2’ means correct. A label of partially incorrect
means that a state label assigned to the ingredient is not
contextually or physically relevant to it. Without modifying
the reference task tree, we would only see higher scores for
ingredients that already exist within the unmodified tree, while
missing ingredients (i.e., items that need to be added to the
tree) or extra ingredients (i.e., items that need to be pruned
from the tree) will be assigned an incorrect score. However,
our proposed algorithm will be able to generate task plans for
unseen ingredients in addition to already existing items while
removing extra ingredients. In Figure 5, we present a compar-
ison of these two approaches by reporting the percentage of
correctly generated recipes with varying degrees of thresholds.
The result shows that the proposed algorithm can generate
76% of the recipes correctly on average if the threshold of
correctness for each recipe is set to 100%. When the threshold
is 100%, a task tree must have correct progress lines for
each ingredient. It is evident from the experiments that using
similarity-based ingredient substitution greatly improves the
performance and correctness thresholds across all dish types.

—Salad Omelette —Drinks —Cake —Soup
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Fig. 5. Graph showing the relationship between the threshold of correctness
(X-axis) of each recipe and the number of recipes (Y-axis) we can generate
with that threshold. The result of recipe generation with and without using
task tree modification are presented as solid and dashed lines respectively;
the same colored lines indicate the same dish type.

C. User Study

To verify correctness and completeness, we conducted a
user study to see whether there is any significant difference
between the FOON generated and Recipel M+ recipes, follow-
ing the same approach and questionnaires (see Figure 6) from
a previous study [34]. Since a task tree in its original format
is not easy to read and verify for individuals not familiar with
FOON, we translated each tree into recipe-like sentences. In
this study, there were 9 participants, where each was given 10
recipes randomly selected from Recipe M+ and its equivalent
generated recipe from our method to assign ratings. This
survey can be accessed by the provided link.! Our hypothesis
H, is that there is no significant difference between FOON-
generated and Recipel M+ recipes. With the ratings collected
from users for questions 4-7, we performed a null hypothesis
test with significance level = 0.05 and obtained the p-
values 0.12, 0.34, 0.20, 0.64, 0.68, 0.73 and 0.35 respectively.
Since all the p-values are fairly greater than «, we cannot
reject H,; hence, we can conclude that the generated recipes
are equivalent to RecipelM+ recipes in terms of correctness,
completeness and clarity.

V. DISCUSSION

RecipelM+ has a significantly higher quantity of recipes
and ingredients than FOON, making it very challenging to
produce a task plan that perfectly matches the original textual
recipe. Nevertheless, even with the limited concepts available
in FOON, the flexibility of the task tree generation process
allows us to achieve correct results in 76% of the cases.
This mainly depends on the selection of equivalent objects for
unseen ingredients, as an incorrect substitution may introduce
errors in an ingredient’s progress line. For example, the
equivalent of apricot in FOON is lemon according to the word
embedding model we used. However, we cannot squeeze an
apricot to extract its juice as we can with a lemon. Therefore,
the progress line of apricot does not correctly reflect how it
should change its state after each manipulation action.

ILink to survey — https://bit.ly/3wAK909
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Please describe your proficiency level in cooking.

O I have no experience in cooking
0 Beginner home cook
O Intermediate home cook
O Advanced home cook
O T have received culinary training
2) If or when you cook, what type of recipes do you use?
O T mostly use recipes that family or friends shared
O I look for recipes online
O T follow recipes from cookbooks
O T only use ingredients I have available
3) Have you made a dish similar to this recipe?
O T have made this exact dish
O Yes, but I left out some of the ingredients listed
0 Yes, but I added some ingredients not listed
O No
4) Does this recipe seem correct to you?
5) Do the steps appear to be in the right order?
6) Are all steps in the recipe correct?

7

-

Does each recipe step give enough information in order to complete
it?

8) Does the recipe skip steps that are obvious to you?

9

g

If attempting to follow the given steps, how confident are you that

10

=

you could make this dish?
Do the steps in this recipe appear to be clear and easy to follow?

bouillon

*  broth

*  soup broth

*  chicken broth

« paprika

*  worcestershire
sauce

cardamom

*  nutmeg
coriander
+  cinnamon
* clove

«  ginger

stevia

+  sweetener

*  powdered sugar
+  sugar syrup

*  sugar

+  vanilla extract

bok choy

*  broccoli

* cabbage

* radish

+  brussels sprout
* scallion

cod

+ salmon

+ tuna

« fish sauce
*  tuna patty
*+  tuna paste

poblano chile
« jalapeno

cool whip
«  whipped coffee

pistachio
*  strawberry

sage
+  thyme

peach
*  strawberry

« arugula
* celery

« oat
coconut milk

«  flour
* mayonnaise

+ thyme
. dill

«  chipotle «  whipped cream «  peanut butter *  rosemary «  cherry tomato
« chipotle sauce *  heavy cream *  raisin *  basil ¢ Dblueberry

«  chili pepper «  spring roll mix *  peanut *  green pepper *  watermelon

« enchilada sauce «  cake mix *  mango * tarragon «  orange juice
kale tapioca margarine chervil turnip

*  broccoli « corn starch «  butter * tarragon « radish

* cabbage *  cornmeal *  peanut butter *  marjoram * cabbage

«  zucchini « flour « garlic butter * parsley « carrot

= broccoli
*  celery

Fig. 7. Top 5 equivalent ingredients in FOON for some randomly chosen
unseen ingredients from Recipel M+.

An ingredient may be used differently across recipes; for
example, pineapple is mixed with other fruits while preparing
a fruit salad, but added as a topping in a pizza. For this reason,
when we add a branch to the task tree, we follow different
rules to decide where the missing ingredient should be added.
For instance, in drink recipes, branches can be added when
objects are being poured into a container whereas for salad,
ingredients are typically mixed in a bowl. These concepts are
usually not captured in the word embedding model, and rule-
based actions are not often sufficient to accurately infer the
task plan. Hence, we will focus on improving our methodology
through generalization in the future. We also noted that it is not
always possible to include the user-provided state of an ingre-
dient if the kitchen contains it in a non-reversible state, such as
melted cheese when diced cheese is required. We do not mark
those as errors since a new batch of ingredients is required to
follow user input. Overall, we noted the following errors in
our experiments as incorrect substitution: 39%, incorrect state:
27%, incorrect motion: 14% and incorrect integration: 20%.

Such errors can be minimized with correction from users,
where instead of selecting the top suggestion from the embed-
ding model for each unseen ingredient, users can decide on
the ideal substitute among the top 5 candidates. In the case of

Figure 7, corrections can be made for the ingredients cool whip
and pistachio using the second (whipped cream) and fourth
(peanut) ranked candidates respectively. Furthermore, we can
enrich the knowledge base by adding recipes with diverse set
of ingredients so that we can make substitutions with higher
confidence and with minimal user correction.

Finally, up to this point, recipes are added to FOON by
manually labelling cooking videos, which is a very time-
consuming and error-prone process. If we can automate the
process of creating subgraphs from video or text, we could
easily expand FOON by adding recipes from various sources.
Using a method such as the task tree generation process can
help to reduce the amount of effort required by constructing
graphs in a semi-automatic manner, in addition to computer
vision approaches for extracting graphs from video [10].

A task tree can be used for bootstrapping robot task execu-
tion, as it provides a high-level description of a sequence of
actions needed to be executed by a robot free from domain-
specific robot details or properties (e.g. the number of end-
effectors, which end-effector to use for certain actions, motion
primitives, etc.). For instance, a task tree extracted from a
knowledge graph containing instructions of furniture assembly
can represent how the raw materials should be connected to
build the furnished product. Although a task tree cannot be
executed in its original state, it can however be connected to
existing frameworks for manipulation planning, such as PDDL
where functional units can be treated as planning operators
and can then be used to retrieve plans corresponding to robot
low-level motion primitives [35].

A. Complexity Analysis of the Algorithm

A FOON is represented as an adjacency list, which allows
us to retrieve functional unit candidates in O(1) time. In the
worst case, the number of candidates is equal to the total
number of FOON recipes. However, this number is very small
on average and thus is negligible. Therefore, for n functional
units in the task tree, the required time is O(n). At the tree
modification stage, if an equivalent ingredient exists in the
reference tree, substitution can be done in O(1) time. However,
if no suitable equivalent is present, we have to search other
recipes for equivalents, which takes O(k) time, where k is
the number of unique ingredients in FOON. We accelerate
this process by computing a mapping of equivalent ingredient
in the pre-processing phase to find an equivalent ingredient in
O(1) time. Hence, the overall time complexity of the search
algorithm is O(n), where n is the length of the retrieved path.
The space complexity is also O(n) since we store only one
path. With the addition of new recipes, FOON increases in
size, which in turn can potentially create alternative paths to
a goal node. Exploring all paths will incur a larger time and
space complexity. To avoid that, we chose the heuristic-based
search algorithm where the heuristic was designed using the
given ingredients. Overall, we found the average computation
time required to solve a problem instance was 80 milliseconds.

VI. CONCLUSION AND FUTURE WORK

In this work, our goal was to create a system that will
enable a robot to derive task plans in novel scenarios not
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found in its knowledge base. It is almost impossible to equip a
robot with knowledge of every possible recipe with countless
combinations of ingredients. To address this, we explored
recipe generation using FOON as a knowledge base. Similar
to how humans can modify a recipe dynamically by using
their previous cooking knowledge to determine how items
available in the kitchen can be used, we demonstrate how
an unseen ingredient can be integrated to an existing recipe
by learning from an equivalent ingredient based on semantic
similarity metrics. In our experiments, we generated task plans
for different ingredient combinations using our approach and
showed that plans were accurate in most cases.

The evaluation method used in this work is subjective.
In the future, we will explore how generated task trees can
be executed with a robot to concretely evaluate our method.
Furthermore, we aim to enrich our FOON knowledge base
with a more diverse array of recipes by semi-automatically
creating subgraphs from instructional videos or text-based
sources such as cookbooks. Furthermore, additional work is
required to learn a new embedding model that would not
only measure the similarity between two words but also
the similarity of two functional units or two task plans that
considers the context of the ingredients.
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