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Abstract: Site investigation programs (e.g., boreholes) are crucial in characterizing soil 7 

properties and stratigraphic configurations. However, the traditional borehole patterns are 8 

generally of equally spaced distribution for the slope design, and the locations and total 9 

number of boreholes are considerably determined depending on engineers’ experience, which 10 

may lead to cost-inefficient geotechnical design, especially considering the soil spatial 11 

variability. To address this dilemma, this paper presents a Spearman rank correlation 12 

coefficient-based scheme to optimize site investigation in slope design, where both locations 13 

and total number of boreholes are optimized. Conditional random field simulations are 14 

performed to consider the effect of the borehole data on the estimation of the soil property 15 

distribution. The superiority of the proposed method to the traditional method is illustrated by 16 

a comparison study in an undrained slope example. In this example, the accuracy of the 17 

characteristics of the slope (i.e., the factor of safety, location of slip surface, and sliding 18 

volume), robustness of the estimated characteristics of the slope, and risk reduction are 19 

examined. The comparison results show the effectiveness of the proposed method in 20 

accurately estimating the characteristics of the slope without prior knowledge about the slip 21 

surface, since the slip surface is unknown for most practical cases prior to the site 22 

investigation. The most robust estimate results and risk reduction are obtained using the 23 

proposed method. This study can also provide useful references to build an adaptive 24 

unequally spaced borehole pattern in practice. 25 
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1. Introduction 38 

Natural soils are very complicated and highly variable geomaterials, and they are 39 

products of complex geological processes and depositional environments. To investigate the 40 

soil properties at geotechnical sites, site investigations (e.g., boreholes) are typically 41 

conducted in practice. However, with the restriction of time and budget for most geotechnical 42 

design projects, only a limited number of boreholes at scattered locations over a construction 43 

site are typically planned and executed, which results in significant uncertainties in the 44 

geotechnical characterization of the site (Jiang et al. 2018b&2020; Yang et al. 2019&2022). 45 

Furthermore, geotechnical properties for a given site can exhibit considerable spatial 46 

variability due to the natural fluctuation of material constituents, randomness in the 47 

depositional history, and variable historical loading conditions (Huang et al. 2020), which 48 

causes more challenges in the optimization of the borehole patterns for geotechnical design. 49 

Some previous optimization studies aimed to accurately predict the soil properties at 50 

unsampled locations with measured borehole data in geotechnical profiles (e.g., Wang et al. 51 

2017; Cai et al. 2019; Zhao et al. 2021), while other studies focused on uncertainty reduction 52 

in the characterization of the spatial variability (i.e., the mean, standard deviation, and scale of 53 

fluctuation of soil properties) at geotechnical sites (e.g., Lloret-Cabot et al. 2012; Li et al. 54 

2016c; Xiao et al. 2018; Huang et al. 2020; Han et al. 2022). Although these borehole 55 

schemes provide useful means to characterize a given geological profile, they may not be 56 

effective in characterizing the performance of geotechnical systems (e.g., the slope, 57 

foundation, and tunnel). In a geological profile, all soil elements are of equal importance to 58 

provide information about the soil properties, and equally spaced borehole patterns can be 59 

acceptable. However, the optimal borehole patterns are generally related to the failure 60 



 4 

mechanism of geotechnical systems. The soil elements at the influence zones that control the 61 

failure mechanism of geotechnical systems are more influential in determining the optimal 62 

borehole patterns. For instance, Chwała (2021) investigated the effect of the space between 63 

two symmetrically distributed soil soundings on the bearing capacity of a rectangular footing 64 

foundation. The optimal space was found to depend on the normalized scale of fluctuation by 65 

the foundation length. It was concluded that the boreholes in the area with more dissipated 66 

energy in the foundation were more effective in reducing the uncertainty of the bearing 67 

capacity estimation. Li et al. (2016a) and Deng et al. (2017) showed that the boreholes at the 68 

place where the slip surface was extended resulted in a more accurate estimate of the mean 69 

and a smaller standard deviation of the factor of safety (FS) of the slope, since the soil 70 

elements in these areas determined how the slip surface could be formed. However, most 71 

current studies to optimize borehole patterns in geotechnical design have equally spaced 72 

borehole patterns that follow traditional site investigation programs (Gong et al. 2014 & 2017; 73 

Li et al. 2016a; Li et al. 2016b; Deng et al. 2017; Liu et al. 2020). Hence, the two optimized 74 

objectives in the borehole patterns, which are the locations and total number, can be 75 

considered a function of the borehole space, since sufficiently many boreholes will be fully 76 

distributed in the site for a given borehole space. As mentioned above, since the soil elements 77 

at the influence zone have a more considerable effect on the geotechnical system, more 78 

boreholes should be arranged at the most important influence zones in sequence, which 79 

implies that traditional equally spaced borehole patterns are more likely cost-inefficient. 80 

This paper aims to propose an effective approach to optimize site investigation 81 

considering the spatial soil variability in slope engineering based on correlation analysis, 82 

where the influence zone can be automatically determined without prior knowledge about the 83 
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slip surface. The effectiveness of the proposed method is validated in three aspects: the 84 

estimate accuracy, uncertainty reduction, and risk reduction, according to previous studies 85 

(Cai et al. 2019; Jiang et al. 2018b&2020; Yang et al. 2019&2022). The main advantages of 86 

this approach compared to the traditional method are: 1) The influence zone of the slope 87 

system can be automatically determined without prior knowledge about the slip surface; 2) 88 

The locations and total number of boreholes are separately optimized; 3) Most estimate 89 

accuracy and uncertainty reduction (in terms of the robustness) of the characteristics of the 90 

slope can be obtained; 4) Most risk reduction (i.e., expected loss cost) can be reached in the 91 

proposed method; 5) The proposed method is easy to implement due to its simple concept. 92 

The remainder of the paper is organized as follows. The optimization methodology is first 93 

briefly introduced. Then, an undrained slope example is taken to illustrate the effectiveness of 94 

the proposed method. A comparison study is conducted to evaluate the estimated accuracy of 95 

the characteristics of the slope (i.e., the factor of safety, location of slip surface, and sliding 96 

volume) between the proposed method and traditional methods. Afterwards, the robustness of 97 

the estimated results and risk reduction of the entire slope engineering system are 98 

comprehensively assessed. Finally, the concluding remarks are made based on the results. 99 

 100 

2 Methodologies to optimize the site investigation program 101 

Due to the restriction of time and budget for most slope engineering projects, only 102 

limited measured data (e.g., from boreholes) can be obtained. The soil properties at borehole 103 

locations are “known” without uncertainty, while other soil properties from unsampled 104 

locations are estimated by the borehole data with uncertainty. Since the spatial correlations of 105 

soil properties generally decrease with the relative distance, the constraint of the borehole data 106 
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decreases with the relative distance to the boreholes, which leads to more uncertainty in the 107 

estimate of the soil properties far from existing boreholes. To characterize this feature and the 108 

spatial variability of soil properties, the conditional random field theory is employed to 109 

optimize the site investigation program (Li et al. 2016b; Liu et al. 2017). Conditional random 110 

field simulations can be realized by statistical methods such as the Bayesian method, Hoffman 111 

method, and kriging-based sampling method (Gong et al. 2018). As a linear unbiased 112 

estimation method, the kriging-sampling method uses a weighted linear average of nearby soil 113 

samples to predict soil properties at unsampled locations. The spatial autocorrelation function 114 

and unconditional random field simulations are also incorporated in the generation of 115 

conditional random fields. Thus, the soil property values at sampled locations always match 116 

the known data in the conditional random field simulations by the kriging method. The 117 

kriging method also ensures the uncertainty at unsampled locations in terms of the variance, 118 

which reduces with the distance to the borehole locations, and no uncertainty of soil samples 119 

at the sampled locations (i.e., the variance is zero), which is consistent with our basic 120 

knowledge. In addition, the kriging-sampling method is computationally efficient and easy to 121 

implement, since the high-dimensional matrix can be avoided, and the weight vector needs to 122 

be calculated only once for any number of MCS in the point-by-point prediction of unsampled 123 

soil samples. The kriging method has been validated to give sufficiently accurate and reliable 124 

predictions by both theoretical models and realistic models (Wang et al. 2017; Li et al. 2016b; 125 

Chen et al. 2018; Huang et al. 2019). Therefore, the kriging-sampling method is adopted in 126 

this study. Based on the constructed conditional random fields, correlation analysis using the 127 

Spearman rank correlation coefficient is performed to determine the optimal borehole patterns 128 

(i.e., the locations and total number of boreholes). Although the conditional random field 129 
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simulations by the kriging method are not new, the conditional random field simulation 130 

procedures should be briefly introduced. 131 

2.1 Conditional random field simulations of the soil properties 132 

The conditional random fields by the kriging method are generated based on 133 

unconditional random field simulations, which are first reviewed as follows. The soil 134 

properties are generally assumed to be lognormally distributed because the soil properties 135 

have nonnegative values (Jiang et al. 2018a&2018b; Gong et al. 2018; Yang et al. 2019; Chen 136 

and Zhang 2021). For a lognormal random field soil property s with prior knowledge of the 137 

mean s and coefficient of variation (COV) s, the mean lns and standard deviation lns of the 138 

equivalent normal random field lns are calculated as follows. 139 

      2

ln ln(1 )s s = +             (1a) 140 

2

ln lnln( ) 0.5s s  = −             (1b) 141 

The anisotropic exponential autocorrelation structure is adopted to characterize the 142 

correlation coefficient ij between the normalized soil property lns at two different locations 143 

of (xi, yi) and (xj, yj), which is calculated as follows. 144 

ln ln

2 2
( , ) exp( )

j i j i

i j j i j i

x y

x x y y
x x y y 

 

− −
= − − = − −     (2) 145 

where |xj – xi| and |yj – yi| are the absolute distances between two positions (xi, yi) and (xj, yj) 146 

along the X and Y directions, respectively; lnx and lny are the scales of fluctuation of the 147 

equivalent normal random field lns along the X and Y directions, respectively. 148 

A fixed value is assigned to the soil element domain instead of at the mesh grids. The 149 

mean of the soil property lnsE that should be averaged over the soil element domain is equal 150 
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to that of the local soil property lns, while the standard deviation of the averaged soil property 151 

lnsE is reduced. For the autocorrelation structure established in Eq. (2), the variance reduction 152 

factor of the concerned element can be estimated by the equations in Knabe et al. (1998) and 153 

Huang and Griffiths (2015) with a range of 0-1. There are various sampling methods to 154 

generate unconditional random fields, such as the local average subdivision method, 155 

turning-band method, fast Fourier transformation method, and covariance matrix 156 

decomposition method (Fenton 1994; Yang and Ching 2021). In this study, the covariance 157 

matrix decomposition method is used for random field generation. For given mean, standard 158 

deviation, and autocorrelation structure, the nE × nE autocorrelation matrix Rlns of the soil 159 

property between every two soil elements can be constructed. A possible realization of the 160 

lognormal random field simulation can be generated as follows. 161 

( )ln E ln Eexp l  nij s j s j ijs s = +            (3) 162 

where sij is the jth numerical element of the ith realization of the random field (i = 1, 2, , Np; j 163 

= 1, 2, , nE), Np is the number of realizations of the random field, and nE is the number of 164 

discretized numerical elements of the slope; lnsEj and lnsEj are the averaged mean and 165 

standard deviation of the soil property lns over the jth numerical element, respectively; lnsij is 166 

the jth element of the ith realization of the random field. The matrix lnsi of the soil property for 167 

all numerical elements is derived as follows. 168 

lnln i s i=s L                (4a) 169 

ln ln ln

T

s s s= R L L              (4b) 170 

where i is an nE × 1 standard normal sample vector (i = 1, 2, , Np), which may be obtained 171 

with Latin hypercube sampling; Llns is a lower triangular matrix of autocorrelation matrix Rlns 172 
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derived by Cholesky decomposition technique. 173 

Suppose that the borehole data are located at the points (x1, y1), (x2, y2)..., (xp, yp) and 174 

the unsampled locations are (xp+1, yp+1), (xp+2, yp+2)..., (xnE, ynE). Based on the generated 175 

unconditional random fields and borehole data, the conditional random fields can be 176 

simulated by the kriging method as follows (Liu et al. 2017): 177 

Step 1: Calculate the locally averaged mean lnsE and standard deviation lnsE of the soil 178 

property s in normal space (see Eq. (1)); 179 

Step 2: Generate the unconditional random fields lnsUC of soil property s in normal space 180 

with obtained mean lnsE, standard deviation lnsE, and scales of fluctuation lnx and lny (see 181 

Eq. 2 and Eq. 4); 182 

Step 3: Extract the values at sampled locations from the generated unconditional random 183 

fields as the “known data”. The normalized soil properties lnsKU at unsampled locations can 184 

be estimated by the “known data” as 185 

0 1
=

T

     
     
     

K I

I

 


            (5a) 186 

ij ij si sjK   =    (i and j = 1,2, …, p)        (5b) 187 

1 2, ,...,=
T

p                 (5c) 188 

ij ij si sj   =   (i = 1, 2, …, nE-p; j = 1, 2, …, p)     (5d) 189 

where K is the covariance matrix derived from borehole data, and each element Kij of K can 190 

be calculated by Eq. (5b); I is a p × 1 vector with all values equal to 1; β is a p × 1 weight 191 

vector (see Eq. (5c)) with 
1

1
p

i

i


=

= ;  is the vector of covariance between the unsampled 192 

point and borehole data, and each element ij of   is derived from Eq. (5d); ij in Eq. (5b) 193 



 10 

is the spatial correlation between the ith and jth borehole data (see Eq. (2)), while that in Eq. 194 

(5d) is the spatial correlation between the ith unsampled point and jth borehole data. With 195 

obtained weight vector β, for example, the soil property value of the (p+1)th soil element at 196 

location 1 1( , )p px y+ +  is estimated from borehole data as 197 

1 1

1

ln ( , ) ln ( , )
p

K

p p i i i

i

s x y s x y+ +

=

=           (6) 198 

Step 4: Estimate the normalized soil property values lnsKK at unsampled locations with the 199 

real known data by repeating step 3. 200 

Step 5: Obtain the normal conditional random fields as 201 

ln ( , ) ln ( , ) [ln ( , ) ln ( , )]c KK UC KUs x y s x y s x y s x y= + −       (7) 202 

where ln ( , )UCs x y  is the unconditional random field; ln ( , )KKs x y  is the random field 203 

estimated by the kriging method for the given borehole data; ln ( , )KUs x y  is the random field 204 

estimated by the kriging method, which takes the values at the borehole locations from the 205 

unconditional random field as the borehole data. According to Eq. (7), the soil properties at 206 

unsampled locations are estimated as kriging random fields ln ( , )KKs x y  with a stochastic 207 

error of || ln ( , ) ln ( , )UC KUs x y s x y− , which increases with the distance between unknown and 208 

known data. Therefore, the discontinuity of the soil property distribution can be avoided, 209 

although the estimated soil properties at sampled locations always match the known data. 210 

Step 6: Transfer the normal conditional random fields into lognormal conditional random 211 

fields using Eq. (3). 212 

 213 

2.2 Correlation analysis using Spearman rank correlation coefficient to locate additional 214 

boreholes 215 
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With the constructed conditional random fields, the characteristics of the slope (i.e., 216 

the factor of safety, location of the slip surface, and sliding volume) can be captured by Monte 217 

Carlo simulations (MCS). Since stability assessment is the most crucial problem for the slope, 218 

the most effective boreholes are more likely to locate at the places where the soil elements are 219 

positively related to the factor of safety of the slope. Only the soil strength properties (e.g., the 220 

undrained shear strength cu) are modeled by the random fields, and the large values of the 221 

strength properties tend to correlate with higher values of FS. The values of the correlation 222 

coefficient between each soil element and FS, which can be either positive or negative, can be 223 

implemented to characterize the contribution of the soil element to the FS instead of the 224 

absolute values of the correlation coefficient. As shown later in the following example 225 

application, there are very low negative relations between the soil elements far from the slip 226 

surface and FS, while the soil elements near the slip surface strongly positively correlate with 227 

FS. Various correlation coefficients may be applied for the correlation analysis, such as the 228 

Pearson correlation coefficient, Kendall correlation coefficient, and Spearman rank 229 

correlation coefficient. Although the Pearson correlation coefficient is much more popular, 230 

the Pearson correlation coefficient is generally effective in characterizing linear correlations 231 

and more likely to mischaracterize the relationships and cause bias due to the nonnormality of 232 

the data (Bishara and Hittner 2015). As an alternative (Bishara and Hittner 2015; De et al. 233 

2016; Thirumalai et al. 2017), the Spearman rank correlation coefficient is 1) applicable for 234 

both normal and nonnormal distributed data; 2) effective in characterizing linear or nonlinear 235 

correlations; 3) more robust and insensitive to outliers. Compared to Kendall’s tau correlation 236 

coefficient, the Spearman rank correlation coefficient is less computationally demanded, less 237 

complicated and sufficiently accurate to characterize the correlations in this study. Therefore, 238 
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the Spearman rank correlation coefficient is adopted to characterize the correlation between 239 

soil elements and FS. Suppose that the soil property values of the jth numerical element with 240 

Np
 realizations of the random field are sj = [s1j, s2j, s3j, …, sNpj] and the factors of safety with 241 

Np random field simulations are FS = [FS1, FS2, …, FSNp]. The Spearman rank correlation 242 

coefficient between the jth soil element and FS is formulated as: 243 

1 21 2

1

2 2
1 21 2

1 1

( )( )

( , )

( ) ( )

p

p p

N

i i

i
Spearman j

N N

i i

i i

n n n n

n n n n

 =

= =

− −

=

− −



 

s FS       (8) 244 

where n1i and n2i are the ascending or descending sorted positions determined by the values of 245 

each element in sj and FS with Np random field simulations, respectively; is the mean of 246 

n1i (i=1, 2, …, Np); is the mean of n2i (i=1, 2, …, Np). The Spearman rank correlation 247 

coefficient can be directly obtained using a command (corr(sj, FS, ‘type’, ‘spearman’)) in 248 

MATLAB, where all calculation procedures are involved. After the sensitive soil elements 249 

with high Spearman rank correlation coefficients are revealed, the stability of the slope can be 250 

accurately evaluated. Since each soil sample is equally mapped from the random field 251 

simulations and plays an equal role in building a geotechnical profile, the amount of 252 

information provided by each soil sample should be considered the same, while the 253 

importance of information (characterized by the Spearman rank correlation coefficient in this 254 

study) brought by each soil sample depends on the characteristics (e.g., failure mechanism) of 255 

the geotechnical systems. The importance of information provided by a borehole is believed 256 

to be well characterized by its statistics, i.e., the mean or sum of the data from the borehole. 257 

However, it may be problematic in some scenarios when the sum-based method is adopted. 258 
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For example, the important local area (e.g., slope toe) that controls the slope stability cannot 259 

be well captured by the sum-based method, since the optimal borehole location is more likely 260 

determined at the place where more data can be obtained by the sum-based method, which is 261 

not consistent with the fact that the boreholes at the slope domain are generally more effective, 262 

although fewer data are measured in this area (Li et al. 2016b). Therefore, the mean Spearman 263 

rank correlation coefficient is adopted to evaluate the effectiveness of the borehole data for 264 

the stability assessment of the slope. 265 

The flowchart of the proposed method is illustrated in Figure 1. In the first step, Np 266 

samples of unconditional random fields are generated with prior knowledge of the mean, 267 

standard deviation, and scales of fluctuation of the soil properties. Then, the degree of the 268 

influence of each soil element on the FS in terms of the Spearman rank correlation coefficient 269 

is calculated in step 2. In step 3, the effectiveness of the additional borehole along all potential 270 

horizontal locations is evaluated based on the mean Spearman rank correlation coefficient of 271 

the soil elements from the borehole. The optimal borehole is located where the borehole has 272 

the largest Spearman rank correlation coefficient. With the extracted borehole data, the 273 

conditional random fields are simulated to consider the constraint of the added borehole in 274 

step 4. In step 5, the FS, location of the slip surface, and sliding volume can be evaluated for 275 

the updated borehole pattern. This process will be repeated until the target number of 276 

boreholes (NBH) is reached. Whether the target probability of failure or the accuracy of the 277 

target factor of safety is reached may be the optional ended conditions for the optimization. 278 

These values generally depend on the specific slope problems, and the target number of 279 

boreholes with a limited budget is assumed in this study. 280 



 14 

 281 

Figure 1. Flow chart of the proposed method for site investigation 282 

 283 

3. Example application for the slope problem 284 

In this section, an undrained slope with a height of 10 m and a slope angle of 45° (1:1 285 

slope) is adopted as an example to demonstrate the proposed method. The factor of safety is 286 

obtained using the strength reduction method built in the 3-D explicit finite difference 287 

program FLAC3D version 7.0 (Itasca 2022). The mesh size of the numerical model is 0.5 m 288 
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by 0.5 m. The elastic-perfectly plastic Mohr‒Coulomb model is adopted to model the soil 289 

behaviors. A fixed boundary is applied to the slope bottom, while the roller boundary is 290 

applied to the slope back and front faces. The undrained shear strength cu is simulated as 291 

random fields, while other soil properties are set as constant values. The soil properties are 292 

tabulated in Table 1. The effectiveness of the proposed method is validated by a comparative 293 

study with traditional methods. To compare with the “true” site characterization, one of the 294 

generated unconditional random field simulations is taken as a “true” slope (Shen et al., 2018). 295 

Therefore, the characteristics of the “true” slope (i.e., the factor of safety, location of the slip 296 

surface, and sliding volume) can be derived to validate the proposed method. The spatially 297 

variable soil of the “true slope” with FS = 1.05 is illustrated in Figure 2(a), while the contours 298 

of the displacement and shear strain increment are shown in Figure 2(b) and Figure 2(c), 299 

respectively. 300 

Table 1. Statistics of the soil properties for the example slope problem 301 

Parameter Value 

Density, ρ (kg/m3) 2000 

Young’s modulus, E (MPa) 100 

Poisson’s ratio, v 0.30 

Mean of undrained shear strength, cu (kPa) 40 

COV of undrained shear strength cu 0.3 

Horizontal scale of fluctuation, λlnx (m) 40 

Vertical scale of fluctuation, λlnv (m) 4 
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 302 

(a) Spatially variable soil 303 

 304 

(b) Contour of the displacement 305 

 306 

(c) Contour of the shear strain increment 307 

Figure 2. Characteristics of the “true” slope (FS = 1.05) 308 

 309 

3.1 Illustration of the borehole patterns for the comparison study 310 

Shear strain increment 

0.0 0.5 0.4 0.3 0.2 0.1 

Displacement (m) 

0.0 0.4 0.3 0.2 0.1 

c
u
 (kPa) 

0 70 50 40 30 20 10 60 
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In the traditional method, boreholes generally have an equally spaced distribution or 311 

are symmetrically distributed in an estimated influence zone (Gong et al. 2014; Yang et al. 312 

2019&2022). However, the determination of the range of the influence zone considerably 313 

depends on the engineers’ experience in practice, which leads to cost-inefficient design. For 314 

the slope in Figure 2, without loss of generality, 9 boreholes (NBH = 9) with a limited budget 315 

are assumed for the slope problem. According to Li et al. (2016a) and Deng et al. (2017), 316 

boreholes that reveal the location of the slip surface are more effective. In the numerical 317 

analysis of slope stability by FLAC3D, two main methods are employed to automatically 318 

locate the slip surface (Wang et al., 2020). The first method is the shear strain 319 

increment-based (SSI-based) method, and the other method is the nodal displacement-based 320 

method. The latter is more extensively used for its simplicity, and it is now built in FLAC3D. 321 

This method can also be effective in identifying local failures in 3-D slopes with spatially 322 

variable soil (Zhang et al. 2022). Therefore, the nodal displacement-based method is adopted 323 

to locate the slip surface in this study. In the nodal displacement-based method, a threshold of 324 

the maximum nodal displacement of all mesh grids should be first determined. A soil element 325 

where the displacement of all nodes exceeds the threshold of the maximum nodal 326 

displacement will be considered a sliding soil element. The sliding surface is identified as the 327 

boundary between sliding soil elements and stable soil elements. To determine the threshold 328 

value of the maximum nodal displacement, the slip surface derived by the max shear strain 329 

increment can be taken as a benchmark (Hicks et al. 2014). The results in Figure 3 indicate 330 

that the contour of 35% maximum nodal displacement coincides with the contour of the 331 

maximum shear strain increment for the “true” slope. As shown in Figure 3, it is suggested 332 

that some advanced smoothing methods such as the polynomial spline technique should be 333 
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applied to the slip surface to satisfy the kinematic demands for the slope (Wang et al. 2020). 334 

However, the unsmoothed error is negligible in the comparison results. Therefore, the fitting 335 

technique is not implemented in this study to simplify the calculation of the sliding volume. 336 

 337 

Figure 3. Location of the slip surface, which is determined by 35% of the maximum nodal 338 

displacement and maximum shear strain increment 339 

 340 

Based on the traditional method, several boreholes may be equally spaced and applied 341 

to the area where the slip surface is accurately estimated, which is denoted as the borehole 342 

pattern with good judgement (see Figure 4(a)). Since the slip surface is bound to go through 343 

the slope domain, all boreholes can be located at the slope domain, which is denoted as the 344 

borehole pattern with moderate judgement (see Figure 4(b)). To avoid the nonconservative 345 

design, a sufficiently larger area (of the model domain) may be estimated for the borehole 346 

distributions, which is denoted as the borehole pattern with poor judgement (see Figure 4(c)). 347 

With predefined traditional borehole patterns, Monte-Carlo simulation (MCS) is employed to 348 

capture the performance of the slope. As shown in Figure 5(a), the mean and standard 349 

deviation of FS converge when 800 MCS runs are performed. From Figure 5(b), the mean 350 

Spearman rank correlation coefficient of the soil elements from the entire numerical model 351 

and one borehole at the slope crest also becomes stable within 800 runs. Therefore, 1000 runs 352 
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of MCS (Np = 1000) are considered sufficient to obtain the slope system responses. With 1000 353 

runs of MCS, both unconditional and conditional random field simulations are validated by 354 

the comparison between the preset statistics (e.g., the mean and standard deviation) of soil 355 

properties and those derived from the simulations (Gong et al. 2018; Huang et al. 2019; Johari 356 

and Fooladi 2020). 357 

1 234 56 78 9

Slip surface of “true” slope

cu (kPa)

0 705040302010 60

 358 

(a) Good judgement 359 

1 234 56 78 9

Slip surface of “true” slope

cu (kPa)

0 705040302010 60

 360 

(b) Moderate judgement 361 
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1 234 56 78 9

Slip surface of “true” slope

cu (kPa)

0 705040302010 60

 362 

(c) Poor judgement 363 

Figure 4. Borehole patterns from traditional methods 364 

 365 

(a) Convergence of FS 366 
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 367 

(b) Convergence of the Spearman rank correlation coefficient 368 

Figure 5. Convergence of the FS and Spearman rank correlation coefficient with the increase 369 

in number of MCS runs 370 

Following the proposed site investigation method, the boreholes are added step by step. 371 

Figure 6 shows the contour of the Spearman rank correlation coefficient without boreholes. 372 

The soil elements with a large Spearman rank correlation coefficient are distributed at the 373 

bottom of the slope domain, since these soil elements may determine whether the deep mode 374 

or shallow mode of failure will occur if no borehole is applied. The first borehole is optimized 375 

at X = 9.75 m (i.e., at the slope toe), which is consistent with the conclusion from Jiang et al. 376 

(2018a). Thus, the final borehole pattern from the proposed method is illustrated in Figure 7. 377 

The characteristics of the slope (i.e., the factor of safety, location of the slip surface, and 378 

sliding volume) with the traditional methods and proposed method are studied in the 379 

following comparative study. 380 

 381 
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 382 
Figure 6. Determining the additional borehole from the Spearman rank correlation coefficient 383 

(NBH = 0) 384 

 385 

Figure 7. Borehole pattern obtained using the proposed method 386 

 387 

3.2 Comparison study on the estimate of the slope characteristics 388 

The mean FS with a (negative or positive) standard deviation from 1000 MCS is 389 

presented in Figure 8. As shown in Figure 8, the difference between FS of the “true” slope 390 

and mean estimated FS from all borehole patterns decreases with the number of boreholes. 391 

When the number of boreholes is larger than 3 (i.e., NBH＞3), the error is negligible, which 392 
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implies that the mean FS can be effectively estimated for all borehole patterns. The standard 393 

deviation of the FS rapidly decreases with the increase in number of boreholes by applying 394 

the borehole patterns from the proposed method and traditional method with good judgement, 395 

which indicates that these two methods are superior to the other two in reducing the 396 

uncertainty of FS. 397 

 398 

Figure 8. A comparison study of the estimated FS among different borehole patterns 399 

 400 

The uncertainty of the location of the slip surface can be characterized by the area of 401 

the potential locations of the slip surface (Liu et al. 2017) or the uncertainty of the controlling 402 

points (Johari and Gholampour 2018; van den Eijnden and Hicks 2018). The latter is used in 403 

this study for its simplicity. As shown in Figure 9, there are three controlling points A, B and 404 

C at the slip surface of the slope. The leftmost and rightmost points A and B determine the 405 

range of the influence zone, which can be calculated by summing the horizontal distance from 406 

point A to slope crest dBegin and that from point B to slope crest dEnd. The deepest point C is 407 

related to the slope failure mechanism. If the vertical distance from point C to slope toe dDeep 408 

is positive, a deep failure mode will occur for the slope. Otherwise, the shallow failure mode 409 
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can be found. When the location of the slip surface is determined, the sliding volume can be 410 

easily calculated. With the adopted methods, the location of the slip surface of the “true” 411 

slope is derived as dBegin = 8.5 m, dEnd = 9.5 m, and dDeep = 0.5 m, while the sliding volume of 412 

the “true” slope is V = 101.75 m2/m. The estimated results of the location of the slip surface 413 

and sliding volume without boreholes are summarized in Figure 10. As shown in Figure 10, 414 

the estimated mean μ is far from the “true” value, and the standard deviation σ is large in the 415 

estimated results of the location of the slip surface and sliding volume, which indicates 416 

considerable estimate errors and uncertainties in the location of the slip surface when there is 417 

no site investigation effort (reflected by the total number of boreholes required). 418 

 419 

Figure 9. Location of the slip surface characterized using three controlling points 420 

 421 

(a) Histogram of dBegin      (b) Histogram of dEnd 422 
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 423 

(c) Histogram of dDeep     (d) Histogram of sliding volume, V 424 

Figure 10. Location of the slip surface and sliding volume estimated from unconditional random 425 

field simulations 426 

 427 

The comparison results of the estimate on the location of the slip surface and sliding 428 

volume are plotted in Figure 11. The borehole pattern with the traditional method from poor 429 

judgement causes significant deviation on the estimated slip surface (represented by three 430 

controlling points) and sliding volume. The deviation from the “true” value appears 431 

insensitive to the number of boreholes with poor judgement, since the location of the slip 432 

surface is not revealed by most boreholes from this method. The borehole pattern with 433 

moderate judgement provides a similar trend when there are 4 boreholes but with relatively 434 

less deviation. This result can be explained by the small space between every two boreholes, 435 

which makes the effect of the boreholes considerably overlapped. For borehole patterns with 436 

good judgement, very moderate effort (i.e., NBH = 3) is sufficient to accurately characterize 437 

the location of the slip surface and sliding volume. Comparing the three borehole patterns 438 

from traditional methods, the borehole pattern from good judgement is the most cost-efficient. 439 

The difference among the three borehole patterns is the confidence in the estimated influence 440 

zone. Therefore, if the range of the influence zone is over- or underestimated, the borehole 441 
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space may be problematically determined, and the increase in borehole number does not 442 

necessarily improve the accuracy in estimating the slip surface and sliding volume, which 443 

results in considerable challenges in the borehole configuration for the traditional method. For 444 

the proposed method, nine boreholes are required to accurately estimate the slip surface and 445 

sliding volume. The proposed method appears to require more effort than the results from 446 

good judgement. However, an implicit huge effort may be needed to guarantee the accurate 447 

estimation of the location of the slip surface for good judgement in practical slope problems, 448 

which is not evaluated in this comparison study. Therefore, the superiority of nonequal 449 

spacing planning of the site investigation based on the Spearman rank correlation coefficient 450 

is sufficiently demonstrated. 451 

 452 

(a) dBegin          (b) dEnd 453 

 454 

(c) dDeep        (d) Sliding volume, V 455 

Figure 11. A comparison study of the characteristics of the slope with the proposed method 456 
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and traditional method 457 

 458 

3.3 Discussion of the borehole pattern from the proposed method 459 

As mentioned above, effective boreholes should be located to reveal the location of 460 

the slip surface, and the challenge for this objective is how to accurately estimate the range of 461 

the “true” sliding area. Figure 7 shows the final borehole pattern from the proposed method. It 462 

seems the fourth, the fifth and the sixth boreholes are ineffective in this borehole pattern, 463 

since the three boreholes are outside the “true” influence zone. However, the sliding area is 464 

well bracketed by the fourth and fifth boreholes. The two boreholes can be useful to estimate 465 

the influence zone, since a small error will be obtained. The effect of the sixth borehole can be 466 

illustrated by the change in contour of the Spearman rank correlation coefficient with different 467 

numbers of boreholes. The contour of the Spearman rank correlation coefficient with the fifth 468 

and sixth boreholes is plotted in Figure 12. As shown in Figure 12, with five boreholes 469 

applied to the slope, it is still difficult to examine if the area on the right of the fifth borehole 470 

is a low or high correlated soil zone because the large initial investigation area is adopted 471 

(from X = -40 m to X = 30 m). After applying the sixth borehole, this area is updated as a 472 

low-correlated soil zone. Therefore, the sixth borehole can be considered a part of the effort to 473 

automatically identify the influence zone. Figure 13 shows the contour of the Spearman rank 474 

correlation coefficient with nine boreholes from the proposed method. The final influence 475 

zone is derived as the area between the fifth and sixth boreholes, while the remaining area is a 476 

low-correlated soil zone. Therefore, it is effective to automatically estimate the influence zone 477 

for the slope with the proposed method, even if the initial investigation area is considerably 478 

conservatively selected. 479 
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 480 

(a) NBH = 5 481 

 482 

(b) NBH = 6 483 

Figure 12. Illustration of the effect of the sixth borehole from the proposed method 484 

 485 
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 486 

Figure 13. Estimated influence zone by the proposed method (NBH = 9) 487 

 488 

4. Robustness analysis and risk assessment 489 

In addition to the characteristics of the slope, uncertainty reduction and risk reduction 490 

are aspects of slope design. In this section, robustness analysis and risk assessment are 491 

performed to validate the effectiveness of the proposed method in the comparison study. 492 

4.1 Robustness analysis 493 

The robustness is defined as the sensitivity of the system response to the variation in 494 

input parameters. The higher robustness of the geotechnical system implies that the system 495 

can better resist the uncertainty of input parameters. Various robustness measurements are 496 

formulated in geotechnical engineering, and the signal-to-noise ratio (SNR) is a commonly 497 

used robustness measurement for slope problems (Gong et al. 2015&2017&2020). In this 498 

paper, SNR is adopted to assess the robustness of the slope system, and a higher SNR value 499 

indicates a higher system robustness. The FS, location of the slip surface, and sliding volume 500 

are treated as the response of concern for the slope problem. The robustness of the FS, 501 

location of the slip surface, and sliding volume can be calculated using Eqs. (9-11), 502 
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respectively. The robustness of the location of the slip surface is evaluated using the average 503 

SNR of the three controlling points of the slip surface. With the obtained SNR values for the 504 

FS, location of the slip surface and sliding volume, the robustness of the entire slope system 505 

can be calculated using Eq. (12) based on a weighted average of three SNR values from Eqs. 506 

(9-11) (Gong et al. 2017). 507 
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where SNRFS, SNRL, and SNRV are the robustness for the estimation of the FS, location of slip 515 

surface (L) and sliding volume (V), respectively; SNRA, SNRB, and SNRC are the robustness for 516 

the estimation of the horizontal distance of point A to the slope crest (dBegin), horizontal 517 

distance of point B to the slope crest (dEnd) and vertical distance of point C to the slope toe 518 

(dDeep), respectively. The robustness estimation of the location of the slip surface can be 519 

characterized by the averaged SNRA, SNRB and SNRC. The overall robustness S for the slope is 520 
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a weighted summation of the three terms in Eqs. (9-11). The weighted factors wFS, wL and wV 521 

may be determined by their corresponding contributions to the given geotechnical problems. 522 

Here, wFS = wL = wV = 1 is assumed for simplicity (Gong et al. 2017). 523 

The robustness analysis results for different borehole patterns are plotted in Figure 14. 524 

The highest overall SNR value S can be obtained from the proposed method, which indicates 525 

that this method finds the most robust estimated characteristics of the slope. The overall SNR 526 

values S from traditional methods with good judgement and poor judgement increase with the 527 

number of boreholes, while those from the traditional method with moderate judgement 528 

converge at NBH = 3. It seems that the borehole pattern with good judgement is the most 529 

effective in the robustness analysis, followed by the borehole pattern with moderate 530 

judgement, since all boreholes with good judgement are located at the influence zone and 531 

considerably reduce the uncertainty of the location of the slip surface and sliding volume. 532 

However, although the effect of the boreholes from moderate judgement is overlapped due to 533 

small borehole space and more additional boreholes cannot improve the robustness of the 534 

estimated results of the characteristics of the slope after NBH = 3, more investigation effort is 535 

required to reach the higher level of robustness for the slope system, which is consistent with 536 

the fact that most boreholes based on poor judgement are outside the “true” influence zone. 537 

Therefore, the superiority of the robustness performance with the proposed method is 538 

sufficiently demonstrated. 539 

 540 

 541 
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 542 

Figure 14. Overall robustness with the increase in number of boreholes 543 

 544 

4.2 Risk assessment 545 

Risk assessment can provide information for risk-informed decision-making. Herein, 546 

the risk assessment for site investigation of slope problems is conducted following Yang et al. 547 

(2019). According to Yang et al. (2019), the total loss cost Ctotal with different numbers of 548 

boreholes can be described as 549 

Ctotal = NBH·CBH + Pf·Cfalse           (13) 550 

where NBH is the number of boreholes; CBH is the average cost of one borehole; Pf is the 551 

probability of failure of the slope; the Cfalse is the of making a false decision. To improve the 552 

computational efficiency of the calculation of Pf, the MCS-based moment method FM-1 is 553 

adopted to estimate the probability of failure (Zhao and Ono 2001; Zhang et al. 2022). The 554 

MCS is first performed to derive the dimensionless moments of the limit state function that 555 

define the slope failure based on FS. Then, the formulas related to dimensionless moments are 556 

utilized to estimate the probability of failure. Detailed descriptions and formulas can be found 557 

in Zhao and Ono (2001) and Zhang et al. (2022). Figure 15 shows the validations of the 558 
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moment method FM-1 to estimate the probability of failure in this slope example, where the 559 

analyses are performed for 25 slope scenarios with different numbers of boreholes. As shown 560 

in Figure 15(a), the probabilities of failure from the FM-1 moment method are well bracketed 561 

by the 90% confidence intervals of the probabilities of failure from the MCS. The Pearson 562 

correlation coefficient between Pf obtained from the MCS and that from the FM-1 moment 563 

method is 0.998 in Figure 15(b), which implies a strong linear correlation between them and 564 

validates the accuracy of the FM-1 moment method. The cost of each borehole is assumed to 565 

be CBH = $AUD 5,000, and the loss of making the false unsafe assessment of the slope 566 

stability is assumed to be Cfalse = $AUD 150,000 following Yang et al. (2019), although the 567 

measured data may be suggested to be more acceptable for the risk assessment if there are 568 

available data. 569 

 570 

(a) Pf from MCS versus that from FM-1 (b) Pearson correlation coefficient analysis 571 

Figure 15. Validation of the moment method FM-1 (Zhao and Ono 2001) in estimating the 572 

probability of slope failure in this study 573 

 574 
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Figure 16 shows that the expected total loss cost first decreases and subsequently 575 

increases with the number of boreholes for the proposed method. A minimum expected loss 576 

cost of approximately $AUD 25,000 with five boreholes (NBH = 5) is obtained in the proposed 577 

method. From Eq. (13), the expected total loss cost consists of two parts: the cost of the 578 

boreholes and the expected loss cost of making a false decision. With the increase in number 579 

of boreholes applied to the slope, the mean FS will approach the “true” FS, and the standard 580 

deviation of FS will decrease. Since the “true” FS is 1.05, which is larger than 1, Pf will be 581 

close to 0 when sufficient boreholes are located at the slope, so the loss cost of making a false 582 

decision approaches 0. The total cost of the loss cost will be dominated by the cost of the 583 

boreholes. A minimum loss cost of approximately $AUD 31,000 with the same site 584 

investigation effort (NBH = 5) is reached in the borehole pattern with good judgement. 585 

Compared to the risk assessment results from good judgement, an approximate 19% loss cost 586 

can be avoided from the proposed method. A similar trend of the loss cost to the proposed 587 

method can be obtained in the traditional method with moderate judgement, and the minimum 588 

loss cost is reached with four boreholes (NBH = 4). However, the loss cost from moderate 589 

judgement is higher than these two methods, since a small borehole space results in the 590 

overlapped effect of the applied boreholes. For poor judgement, the total cost decreases with 591 

the increase in number of boreholes, but it generally yields the highest amount of total cost, 592 

which can be explained by the fact that the uncertainty of FS cannot be effectively reduced 593 

based on the method from poor judgement (see Figure 8). Therefore, the advantage of the 594 

proposed method in risk reduction is sufficiently validated. 595 

The estimated accuracy of the characteristics of the slope, robustness of the estimated 596 

results and risk reduction of the proposed method are evaluated in an undrained slope 597 
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example. It is suggested to adopt five boreholes (NBH = 5) for the slope problem when 598 

applying the proposed method, since the overall performance of the slope system can be well 599 

evaluated from many perspectives. For instance, when five boreholes are configured in this 600 

slope, the “true” influence zone can be estimated with tolerable error, and the risk reduction is 601 

maximal. For the robustness analysis, the borehole pattern with NBH = 5 is the second highest 602 

cost-effective borehole pattern in Figure 14. Thus, NBH = 5 is considered the optimal number 603 

for the proposed method based on the gain-sacrifice relationship between cost and 604 

investigation effort. 605 

 606 

Figure 16. A comparison study of risk assessment of different borehole patterns 607 

 608 

5. Summary and conclusions 609 

This paper proposed an optimization method for geotechnical site investigation to 610 

minimize the risk and associated site investigation effort and maximize the robustness of the 611 

slope system. The proposed method can optimize the location and number of boreholes 612 

without prior knowledge about the slip surface, which results in adaptive patterns of borehole 613 

planning based on the Spearman rank correlation coefficient with unequal space for a given 614 
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slope site. Compared to the traditional method, the advantages of the proposed method are: 615 

1) The location and number of boreholes can be optimized considering the synthesized 616 

system responses (e.g., FS, location of slip surface and sliding volume, robustness, and risk) 617 

in the proposed method. The proposed method accurately estimates FS, the location of the slip 618 

surface, and the sliding volume if sufficient boreholes are applied. 619 

2) The proposed method can similarly reduce the uncertainty of FS compared with the 620 

traditional method with good judgement and tends to obtain a more robust site investigation 621 

program than traditional borehole patterns. 622 

3) The proposed method minimizes the risk with the optimized number of boreholes. 623 

The effectiveness of this optimized borehole pattern on the estimate of the range of influence 624 

zone and robustness of the slope system can also be reached in this scenario. 625 

4) The proposed method is straightforward and easy to implement to automatically 626 

identify the range of the sliding area with unequally spaced borehole patterns, which provides 627 

a reference to build an adaptive unequally spaced borehole pattern without prior knowledge 628 

about the slip surface in practice. 629 
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