

Optimization of site investigation program for reliability assessment of undrained slope using Spearman rank correlation coefficient

Liang Zhang¹, Lei Wang^{2*}

Abstract: Site investigation programs (e.g., boreholes) are crucial in characterizing soil properties and stratigraphic configurations. However, the traditional borehole patterns are generally of equally spaced distribution for the slope design, and the locations and total number of boreholes are considerably determined depending on engineers' experience, which may lead to cost-inefficient geotechnical design, especially considering the soil spatial variability. To address this dilemma, this paper presents a Spearman rank correlation coefficient-based scheme to optimize site investigation in slope design, where both locations and total number of boreholes are optimized. Conditional random field simulations are performed to consider the effect of the borehole data on the estimation of the soil property distribution. The superiority of the proposed method to the traditional method is illustrated by a comparison study in an undrained slope example. In this example, the accuracy of the characteristics of the slope (i.e., the factor of safety, location of slip surface, and sliding volume), robustness of the estimated characteristics of the slope, and risk reduction are examined. The comparison results show the effectiveness of the proposed method in accurately estimating the characteristics of the slope without prior knowledge about the slip surface, since the slip surface is unknown for most practical cases prior to the site investigation. The most robust estimate results and risk reduction are obtained using the proposed method. This study can also provide useful references to build an adaptive unequally spaced borehole pattern in practice.

26

27 **Keywords:** Optimization; Spatial variability; Slope stability; Spearman rank correlation
28 coefficient.

29

30

31 ¹ Research Assistant, Department of Civil and Architectural Engineering and Construction
32 Management, University of Cincinnati, Cincinnati OH 45221, USA.

33
34 ² Assistant Professor, Department of Civil and Architectural Engineering and Construction
35 Management, University of Cincinnati, Cincinnati OH 45221, USA. (*Corresponding author:
36 wang4li@ucmail.uc.edu)

37

38 **1. Introduction**

39 Natural soils are very complicated and highly variable geomaterials, and they are
40 products of complex geological processes and depositional environments. To investigate the
41 soil properties at geotechnical sites, site investigations (e.g., boreholes) are typically
42 conducted in practice. However, with the restriction of time and budget for most geotechnical
43 design projects, only a limited number of boreholes at scattered locations over a construction
44 site are typically planned and executed, which results in significant uncertainties in the
45 geotechnical characterization of the site (Jiang et al. 2018b&2020; Yang et al. 2019&2022).
46 Furthermore, geotechnical properties for a given site can exhibit considerable spatial
47 variability due to the natural fluctuation of material constituents, randomness in the
48 depositional history, and variable historical loading conditions (Huang et al. 2020), which
49 causes more challenges in the optimization of the borehole patterns for geotechnical design.

50 Some previous optimization studies aimed to accurately predict the soil properties at
51 unsampled locations with measured borehole data in geotechnical profiles (e.g., Wang et al.
52 2017; Cai et al. 2019; Zhao et al. 2021), while other studies focused on uncertainty reduction
53 in the characterization of the spatial variability (i.e., the mean, standard deviation, and scale of
54 fluctuation of soil properties) at geotechnical sites (e.g., Lloret-Cabot et al. 2012; Li et al.
55 2016c; Xiao et al. 2018; Huang et al. 2020; Han et al. 2022). Although these borehole
56 schemes provide useful means to characterize a given geological profile, they may not be
57 effective in characterizing the performance of geotechnical systems (e.g., the slope,
58 foundation, and tunnel). In a geological profile, all soil elements are of equal importance to
59 provide information about the soil properties, and equally spaced borehole patterns can be
60 acceptable. However, the optimal borehole patterns are generally related to the failure

mechanism of geotechnical systems. The soil elements at the influence zones that control the failure mechanism of geotechnical systems are more influential in determining the optimal borehole patterns. For instance, [Chwała \(2021\)](#) investigated the effect of the space between two symmetrically distributed soil soundings on the bearing capacity of a rectangular footing foundation. The optimal space was found to depend on the normalized scale of fluctuation by the foundation length. It was concluded that the boreholes in the area with more dissipated energy in the foundation were more effective in reducing the uncertainty of the bearing capacity estimation. [Li et al. \(2016a\)](#) and [Deng et al. \(2017\)](#) showed that the boreholes at the place where the slip surface was extended resulted in a more accurate estimate of the mean and a smaller standard deviation of the factor of safety (FS) of the slope, since the soil elements in these areas determined how the slip surface could be formed. However, most current studies to optimize borehole patterns in geotechnical design have equally spaced borehole patterns that follow traditional site investigation programs ([Gong et al. 2014 & 2017](#); [Li et al. 2016a](#); [Li et al. 2016b](#); [Deng et al. 2017](#); [Liu et al. 2020](#)). Hence, the two optimized objectives in the borehole patterns, which are the locations and total number, can be considered a function of the borehole space, since sufficiently many boreholes will be fully distributed in the site for a given borehole space. As mentioned above, since the soil elements at the influence zone have a more considerable effect on the geotechnical system, more boreholes should be arranged at the most important influence zones in sequence, which implies that traditional equally spaced borehole patterns are more likely cost-inefficient.

This paper aims to propose an effective approach to optimize site investigation considering the spatial soil variability in slope engineering based on correlation analysis, where the influence zone can be automatically determined without prior knowledge about the

84 slip surface. The effectiveness of the proposed method is validated in three aspects: the
85 estimate accuracy, uncertainty reduction, and risk reduction, according to previous studies
86 (Cai et al. 2019; Jiang et al. 2018b&2020; Yang et al. 2019&2022). The main advantages of
87 this approach compared to the traditional method are: 1) The influence zone of the slope
88 system can be automatically determined without prior knowledge about the slip surface; 2)
89 The locations and total number of boreholes are separately optimized; 3) Most estimate
90 accuracy and uncertainty reduction (in terms of the robustness) of the characteristics of the
91 slope can be obtained; 4) Most risk reduction (i.e., expected loss cost) can be reached in the
92 proposed method; 5) The proposed method is easy to implement due to its simple concept.
93 The remainder of the paper is organized as follows. The optimization methodology is first
94 briefly introduced. Then, an undrained slope example is taken to illustrate the effectiveness of
95 the proposed method. A comparison study is conducted to evaluate the estimated accuracy of
96 the characteristics of the slope (i.e., the factor of safety, location of slip surface, and sliding
97 volume) between the proposed method and traditional methods. Afterwards, the robustness of
98 the estimated results and risk reduction of the entire slope engineering system are
99 comprehensively assessed. Finally, the concluding remarks are made based on the results.

100

101 **2 Methodologies to optimize the site investigation program**

102 Due to the restriction of time and budget for most slope engineering projects, only
103 limited measured data (e.g., from boreholes) can be obtained. The soil properties at borehole
104 locations are “known” without uncertainty, while other soil properties from unsampled
105 locations are estimated by the borehole data with uncertainty. Since the spatial correlations of
106 soil properties generally decrease with the relative distance, the constraint of the borehole data

107 decreases with the relative distance to the boreholes, which leads to more uncertainty in the
108 estimate of the soil properties far from existing boreholes. To characterize this feature and the
109 spatial variability of soil properties, the conditional random field theory is employed to
110 optimize the site investigation program (Li et al. 2016b; Liu et al. 2017). Conditional random
111 field simulations can be realized by statistical methods such as the Bayesian method, Hoffman
112 method, and kriging-based sampling method (Gong et al. 2018). As a linear unbiased
113 estimation method, the kriging-sampling method uses a weighted linear average of nearby soil
114 samples to predict soil properties at unsampled locations. The spatial autocorrelation function
115 and unconditional random field simulations are also incorporated in the generation of
116 conditional random fields. Thus, the soil property values at sampled locations always match
117 the known data in the conditional random field simulations by the kriging method. The
118 kriging method also ensures the uncertainty at unsampled locations in terms of the variance,
119 which reduces with the distance to the borehole locations, and no uncertainty of soil samples
120 at the sampled locations (i.e., the variance is zero), which is consistent with our basic
121 knowledge. In addition, the kriging-sampling method is computationally efficient and easy to
122 implement, since the high-dimensional matrix can be avoided, and the weight vector needs to
123 be calculated only once for any number of MCS in the point-by-point prediction of unsampled
124 soil samples. The kriging method has been validated to give sufficiently accurate and reliable
125 predictions by both theoretical models and realistic models (Wang et al. 2017; Li et al. 2016b;
126 Chen et al. 2018; Huang et al. 2019). Therefore, the kriging-sampling method is adopted in
127 this study. Based on the constructed conditional random fields, correlation analysis using the
128 Spearman rank correlation coefficient is performed to determine the optimal borehole patterns
129 (i.e., the locations and total number of boreholes). Although the conditional random field

130 simulations by the kriging method are not new, the conditional random field simulation
131 procedures should be briefly introduced.

132 **2.1 Conditional random field simulations of the soil properties**

133 The conditional random fields by the kriging method are generated based on
134 unconditional random field simulations, which are first reviewed as follows. The soil
135 properties are generally assumed to be lognormally distributed because the soil properties
136 have nonnegative values (Jiang et al. 2018a&2018b; Gong et al. 2018; Yang et al. 2019; Chen
137 and Zhang 2021). For a lognormal random field soil property s with prior knowledge of the
138 mean μ_s and coefficient of variation (COV) δ_s , the mean $\mu_{\ln s}$ and standard deviation $\sigma_{\ln s}$ of the
139 equivalent normal random field $\ln s$ are calculated as follows.

140
$$\sigma_{\ln s} = \sqrt{\ln(1 + \delta_s^2)} \quad (1a)$$

141
$$\mu_{\ln s} = \ln(\mu) - 0.5\sigma_{\ln s}^2 \quad (1b)$$

142 The anisotropic exponential autocorrelation structure is adopted to characterize the
143 correlation coefficient ρ_{ij} between the normalized soil property $\ln s$ at two different locations
144 of (x_i, y_i) and (x_j, y_j) , which is calculated as follows.

145
$$\rho_{ij} = \rho(|x_j - x_i|, |y_j - y_i|) = \exp\left(-\frac{2|x_j - x_i|}{\lambda_{\ln x}} - \frac{2|y_j - y_i|}{\lambda_{\ln y}}\right) \quad (2)$$

146 where $|x_j - x_i|$ and $|y_j - y_i|$ are the absolute distances between two positions (x_i, y_i) and (x_j, y_j)
147 along the X and Y directions, respectively; $\lambda_{\ln x}$ and $\lambda_{\ln y}$ are the scales of fluctuation of the
148 equivalent normal random field $\ln s$ along the X and Y directions, respectively.

149 A fixed value is assigned to the soil element domain instead of at the mesh grids. The
150 mean of the soil property $\mu_{\ln s E}$ that should be averaged over the soil element domain is equal

151 to that of the local soil property $\mu_{\ln s}$, while the standard deviation of the averaged soil property
 152 $\sigma_{\ln s E}$ is reduced. For the autocorrelation structure established in Eq. (2), the variance reduction
 153 factor of the concerned element can be estimated by the equations in [Knabe et al. \(1998\)](#) and
 154 [Huang and Griffiths \(2015\)](#) with a range of 0-1. There are various sampling methods to
 155 generate unconditional random fields, such as the local average subdivision method,
 156 turning-band method, fast Fourier transformation method, and covariance matrix
 157 decomposition method ([Fenton 1994](#); [Yang and Ching 2021](#)). In this study, the covariance
 158 matrix decomposition method is used for random field generation. For given mean, standard
 159 deviation, and autocorrelation structure, the $n_E \times n_E$ autocorrelation matrix $\mathbf{R}_{\ln s}$ of the soil
 160 property between every two soil elements can be constructed. A possible realization of the
 161 lognormal random field simulation can be generated as follows.

$$162 \quad s_{ij} = \exp\left(\mu_{\ln s E_j} + \sigma_{\ln s E_j} \cdot \ln s_{ij}\right) \quad (3)$$

163 where s_{ij} is the j^{th} numerical element of the i^{th} realization of the random field ($i = 1, 2, \dots, N_p; j$
 164 $= 1, 2, \dots, n_E$), N_p is the number of realizations of the random field, and n_E is the number of
 165 discretized numerical elements of the slope; $\mu_{\ln s E_j}$ and $\sigma_{\ln s E_j}$ are the averaged mean and
 166 standard deviation of the soil property $\ln s$ over the j^{th} numerical element, respectively; $\ln s_{ij}$ is
 167 the j^{th} element of the i^{th} realization of the random field. The matrix $\ln s_i$ of the soil property for
 168 all numerical elements is derived as follows.

$$169 \quad \ln s_i = \mathbf{L}_{\ln s} \boldsymbol{\xi}_i \quad (4a)$$

$$170 \quad \mathbf{R}_{\ln s} = \mathbf{L}_{\ln s} \times \mathbf{L}_{\ln s}^T \quad (4b)$$

171 where $\boldsymbol{\xi}_i$ is an $n_E \times 1$ standard normal sample vector ($i = 1, 2, \dots, N_p$), which may be obtained
 172 with Latin hypercube sampling; $\mathbf{L}_{\ln s}$ is a lower triangular matrix of autocorrelation matrix $\mathbf{R}_{\ln s}$

173 derived by Cholesky decomposition technique.

174 Suppose that the borehole data are located at the points $(x_1, y_1), (x_2, y_2), \dots, (x_p, y_p)$ and
175 the unsampled locations are $(x_{p+1}, y_{p+1}), (x_{p+2}, y_{p+2}), \dots, (x_{nE}, y_{nE})$. Based on the generated
176 unconditional random fields and borehole data, the conditional random fields can be
177 simulated by the kriging method as follows (Liu et al. 2017):

178 **Step 1:** Calculate the locally averaged mean μ_{lnsE} and standard deviation σ_{lnsE} of the soil
179 property s in normal space (see Eq. (1));

180 **Step 2:** Generate the unconditional random fields lns^{UC} of soil property s in normal space
181 with obtained mean μ_{lnsE} , standard deviation σ_{lnsE} , and scales of fluctuation λ_{lnx} and λ_{lny} (see
182 Eq. 2 and Eq. 4);

183 **Step 3:** Extract the values at sampled locations from the generated unconditional random
184 fields as the “known data”. The normalized soil properties lns^{KU} at unsampled locations can
185 be estimated by the “known data” as

$$\begin{bmatrix} \mathbf{K} & \mathbf{I} \\ \mathbf{I}^T & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\kappa} \\ 1 \end{bmatrix} \quad (5a)$$

$$187 \quad K_{ij} = \rho_{ij} \cdot \sigma_{si} \cdot \sigma_{sj} \quad (i \text{ and } j = 1, 2, \dots, p) \quad (5b)$$

$$188 \quad \boldsymbol{\beta} = [\beta_1, \beta_2, \dots, \beta_p]^T \quad (5c)$$

$$189 \quad \kappa_{ij} = \rho_{ij} \cdot \sigma_{si} \cdot \sigma_{sj} \quad (i = 1, 2, \dots, nE-p; j = 1, 2, \dots, p) \quad (5d)$$

190 where \mathbf{K} is the covariance matrix derived from borehole data, and each element K_{ij} of \mathbf{K} can
191 be calculated by Eq. (5b); \mathbf{I} is a $p \times 1$ vector with all values equal to 1; $\boldsymbol{\beta}$ is a $p \times 1$ weight
192 vector (see Eq. (5c)) with $\sum_{i=1}^p \beta_i = 1$; $\boldsymbol{\kappa}$ is the vector of covariance between the unsampled
193 point and borehole data, and each element κ_{ij} of $\boldsymbol{\kappa}$ is derived from Eq. (5d); $\square \rho_{ij}$ in Eq. (5b)

194 is the spatial correlation between the i^{th} and j^{th} borehole data (see Eq. (2)), while that in Eq.
 195 (5d) is the spatial correlation between the i^{th} unsampled point and j^{th} borehole data. With
 196 obtained weight vector β , for example, the soil property value of the $(p+1)^{\text{th}}$ soil element at
 197 location (x_{p+1}, y_{p+1}) is estimated from borehole data as

$$198 \quad \ln s^K(x_{p+1}, y_{p+1}) = \sum_{i=1}^p \beta_i \ln s(x_i, y_i) \quad (6)$$

199 **Step 4:** Estimate the normalized soil property values $\ln s^{\text{KK}}$ at unsampled locations with the
 200 real known data by repeating step 3.

201 **Step 5:** Obtain the normal conditional random fields as

$$202 \quad \ln s^c(x, y) = \ln s^{\text{KK}}(x, y) + [\ln s^{\text{UC}}(x, y) - \ln s^{\text{KU}}(x, y)] \quad (7)$$

203 where $\ln s^{\text{UC}}(x, y)$ is the unconditional random field; $\ln s^{\text{KK}}(x, y)$ is the random field
 204 estimated by the kriging method for the given borehole data; $\ln s^{\text{KU}}(x, y)$ is the random field
 205 estimated by the kriging method, which takes the values at the borehole locations from the
 206 unconditional random field as the borehole data. According to Eq. (7), the soil properties at
 207 unsampled locations are estimated as kriging random fields $\ln s^{\text{KK}}(x, y)$ with a stochastic
 208 error of $|\ln s^{\text{UC}}(x, y) - \ln s^{\text{KU}}(x, y)|$, which increases with the distance between unknown and
 209 known data. Therefore, the discontinuity of the soil property distribution can be avoided,
 210 although the estimated soil properties at sampled locations always match the known data.

211 **Step 6:** Transfer the normal conditional random fields into lognormal conditional random
 212 fields using Eq. (3).

213

214 **2.2 Correlation analysis using Spearman rank correlation coefficient to locate additional
 215 boreholes**

With the constructed conditional random fields, the characteristics of the slope (i.e., the factor of safety, location of the slip surface, and sliding volume) can be captured by Monte Carlo simulations (MCS). Since stability assessment is the most crucial problem for the slope, the most effective boreholes are more likely to locate at the places where the soil elements are positively related to the factor of safety of the slope. Only the soil strength properties (e.g., the undrained shear strength c_u) are modeled by the random fields, and the large values of the strength properties tend to correlate with higher values of FS . The values of the correlation coefficient between each soil element and FS , which can be either positive or negative, can be implemented to characterize the contribution of the soil element to the FS instead of the absolute values of the correlation coefficient. As shown later in the following example application, there are very low negative relations between the soil elements far from the slip surface and FS , while the soil elements near the slip surface strongly positively correlate with FS . Various correlation coefficients may be applied for the correlation analysis, such as the Pearson correlation coefficient, Kendall correlation coefficient, and Spearman rank correlation coefficient. Although the Pearson correlation coefficient is much more popular, the Pearson correlation coefficient is generally effective in characterizing linear correlations and more likely to mischaracterize the relationships and cause bias due to the nonnormality of the data (Bishara and Hittner 2015). As an alternative (Bishara and Hittner 2015; De et al. 2016; Thirumalai et al. 2017), the Spearman rank correlation coefficient is 1) applicable for both normal and nonnormal distributed data; 2) effective in characterizing linear or nonlinear correlations; 3) more robust and insensitive to outliers. Compared to Kendall's tau correlation coefficient, the Spearman rank correlation coefficient is less computationally demanded, less complicated and sufficiently accurate to characterize the correlations in this study. Therefore,

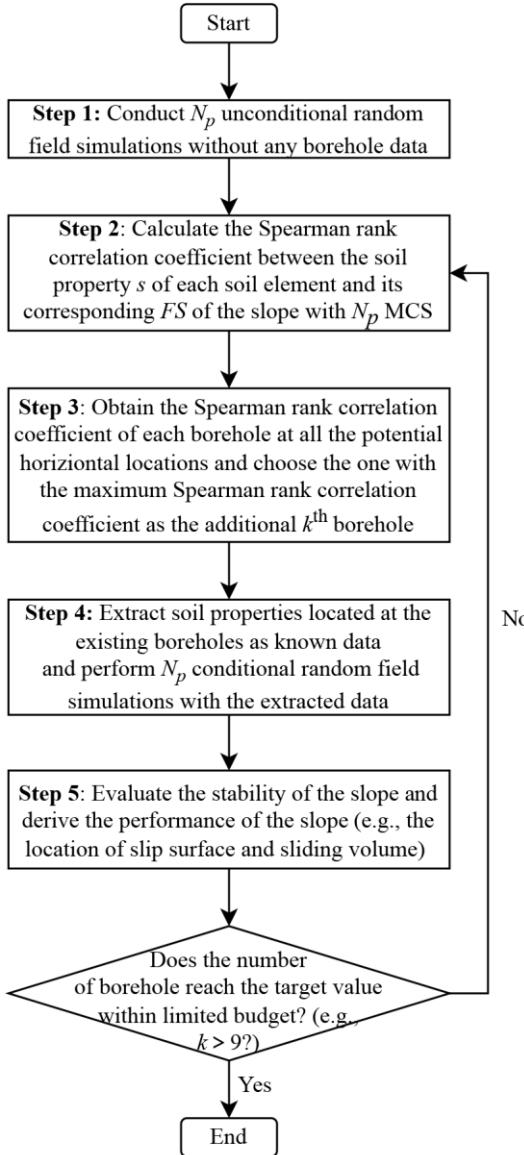
239 the Spearman rank correlation coefficient is adopted to characterize the correlation between
 240 soil elements and FS . Suppose that the soil property values of the j^{th} numerical element with
 241 N_p realizations of the random field are $\mathbf{s}_j = [s_{1j}, s_{2j}, s_{3j}, \dots, s_{Npj}]$ and the factors of safety with
 242 N_p random field simulations are $\mathbf{FS} = [FS_1, FS_2, \dots, FS_{Np}]$. The Spearman rank correlation
 243 coefficient between the j^{th} soil element and \mathbf{FS} is formulated as:

$$244 \quad \rho_{\text{Spearman}}(\mathbf{s}_j, \mathbf{FS}) = \frac{\sum_{i=1}^{N_p} (n_{1i} - \bar{n}_1)(n_{2i} - \bar{n}_2)}{\sqrt{\sum_{i=1}^{N_p} (n_{1i} - \bar{n}_1)^2} \sqrt{\sum_{i=1}^{N_p} (n_{2i} - \bar{n}_2)^2}} \quad (8)$$

245 where n_{1i} and n_{2i} are the ascending or descending sorted positions determined by the values of
 246 each element in \mathbf{s}_j and \mathbf{FS} with N_p random field simulations, respectively; \bar{n}_1 is the mean of
 247 n_{1i} ($i=1, 2, \dots, N_p$); \bar{n}_2 is the mean of n_{2i} ($i=1, 2, \dots, N_p$). The Spearman rank correlation
 248 coefficient can be directly obtained using a command (`corr(sj, FS, 'type', 'spearman')`) in
 249 MATLAB, where all calculation procedures are involved. After the sensitive soil elements
 250 with high Spearman rank correlation coefficients are revealed, the stability of the slope can be
 251 accurately evaluated. Since each soil sample is equally mapped from the random field
 252 simulations and plays an equal role in building a geotechnical profile, the amount of
 253 information provided by each soil sample should be considered the same, while the
 254 importance of information (characterized by the Spearman rank correlation coefficient in this
 255 study) brought by each soil sample depends on the characteristics (e.g., failure mechanism) of
 256 the geotechnical systems. The importance of information provided by a borehole is believed
 257 to be well characterized by its statistics, i.e., the mean or sum of the data from the borehole.
 258 However, it may be problematic in some scenarios when the sum-based method is adopted.

259 For example, the important local area (e.g., slope toe) that controls the slope stability cannot
260 be well captured by the sum-based method, since the optimal borehole location is more likely
261 determined at the place where more data can be obtained by the sum-based method, which is
262 not consistent with the fact that the boreholes at the slope domain are generally more effective,
263 although fewer data are measured in this area (Li et al. 2016b). Therefore, the mean Spearman
264 rank correlation coefficient is adopted to evaluate the effectiveness of the borehole data for
265 the stability assessment of the slope.

266 The flowchart of the proposed method is illustrated in Figure 1. In the first step, N_p
267 samples of unconditional random fields are generated with prior knowledge of the mean,
268 standard deviation, and scales of fluctuation of the soil properties. Then, the degree of the
269 influence of each soil element on the FS in terms of the Spearman rank correlation coefficient
270 is calculated in step 2. In step 3, the effectiveness of the additional borehole along all potential
271 horizontal locations is evaluated based on the mean Spearman rank correlation coefficient of
272 the soil elements from the borehole. The optimal borehole is located where the borehole has
273 the largest Spearman rank correlation coefficient. With the extracted borehole data, the
274 conditional random fields are simulated to consider the constraint of the added borehole in
275 step 4. In step 5, the FS , location of the slip surface, and sliding volume can be evaluated for
276 the updated borehole pattern. This process will be repeated until the target number of
277 boreholes (N_{BH}) is reached. Whether the target probability of failure or the accuracy of the
278 target factor of safety is reached may be the optional ended conditions for the optimization.
279 These values generally depend on the specific slope problems, and the target number of
280 boreholes with a limited budget is assumed in this study.



281

282

283

284

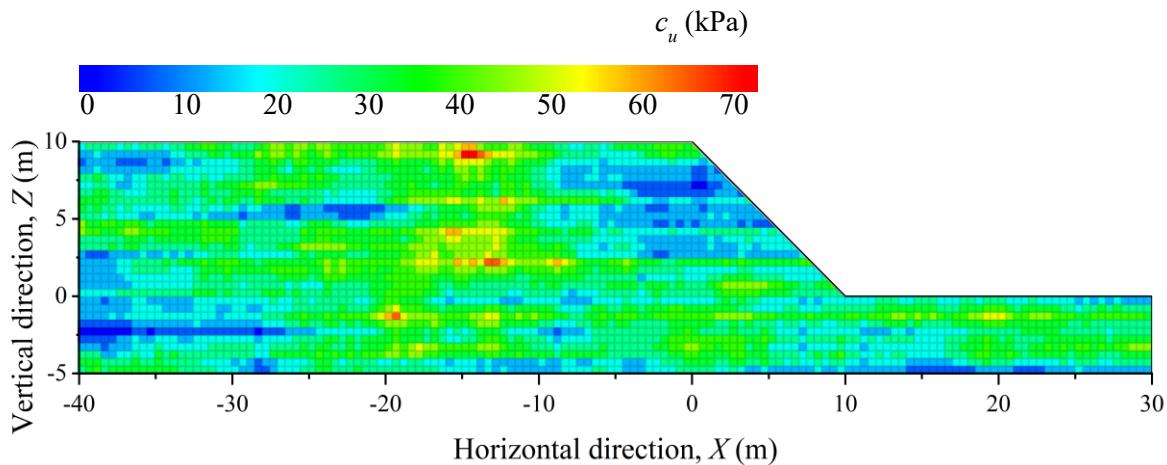
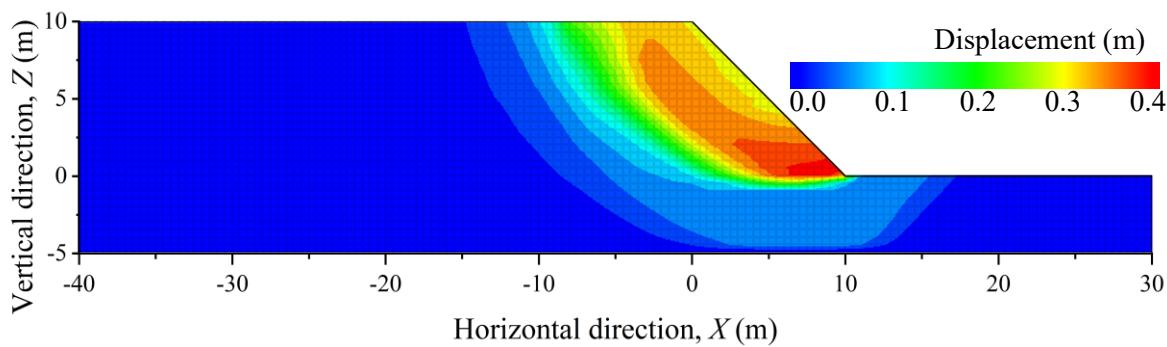
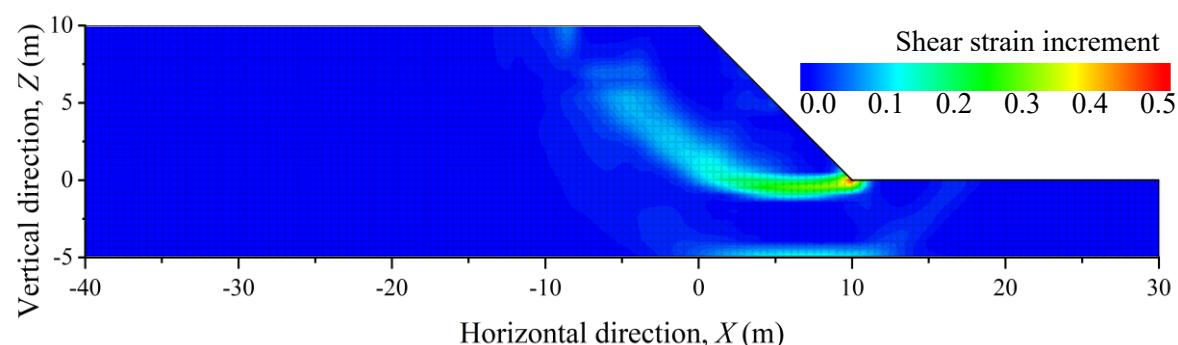
Figure 1. Flow chart of the proposed method for site investigation

285 In this section, an undrained slope with a height of 10 m and a slope angle of 45° (1:1
 286 slope) is adopted as an example to demonstrate the proposed method. The factor of safety is
 287 obtained using the strength reduction method built in the 3-D explicit finite difference
 288 program FLAC3D version 7.0 ([Itasca 2022](#)). The mesh size of the numerical model is 0.5 m

289 by 0.5 m. The elastic-perfectly plastic Mohr–Coulomb model is adopted to model the soil
 290 behaviors. A fixed boundary is applied to the slope bottom, while the roller boundary is
 291 applied to the slope back and front faces. The undrained shear strength c_u is simulated as
 292 random fields, while other soil properties are set as constant values. The soil properties are
 293 tabulated in [Table 1](#). The effectiveness of the proposed method is validated by a comparative
 294 study with traditional methods. To compare with the “true” site characterization, one of the
 295 generated unconditional random field simulations is taken as a “true” slope ([Shen et al., 2018](#)).
 296 Therefore, the characteristics of the “true” slope (i.e., the factor of safety, location of the slip
 297 surface, and sliding volume) can be derived to validate the proposed method. The spatially
 298 variable soil of the “true slope” with $FS = 1.05$ is illustrated in [Figure 2\(a\)](#), while the contours
 299 of the displacement and shear strain increment are shown in [Figure 2\(b\)](#) and [Figure 2\(c\)](#),
 300 respectively.

301 Table 1. Statistics of the soil properties for the example slope problem

Parameter	Value
Density, ρ (kg/m ³)	2000
Young’s modulus, E (MPa)	100
Poisson’s ratio, ν	0.30
Mean of undrained shear strength, c_u (kPa)	40
COV of undrained shear strength c_u	0.3
Horizontal scale of fluctuation, λ_{Inv} (m)	40
Vertical scale of fluctuation, λ_{Inv} (m)	4



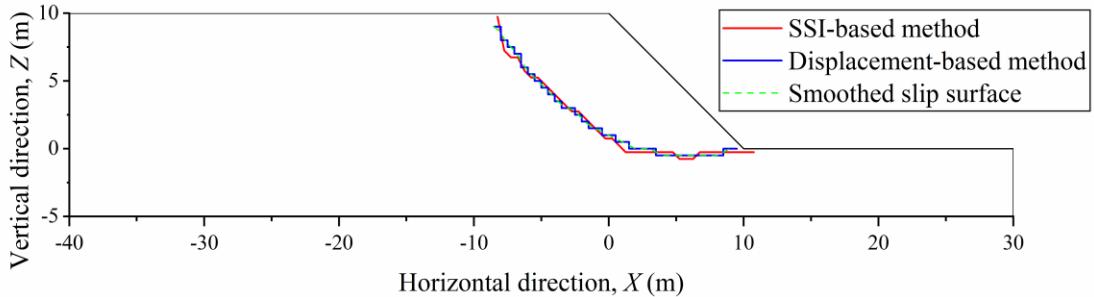
308 Figure 2. Characteristics of the “true” slope ($FS = 1.05$)

309

310 **3.1 Illustration of the borehole patterns for the comparison study**

In the traditional method, boreholes generally have an equally spaced distribution or are symmetrically distributed in an estimated influence zone (Gong et al. 2014; Yang et al. 2019&2022). However, the determination of the range of the influence zone considerably depends on the engineers' experience in practice, which leads to cost-inefficient design. For the slope in Figure 2, without loss of generality, 9 boreholes ($N_{BH} = 9$) with a limited budget are assumed for the slope problem. According to Li et al. (2016a) and Deng et al. (2017), boreholes that reveal the location of the slip surface are more effective. In the numerical analysis of slope stability by FLAC3D, two main methods are employed to automatically locate the slip surface (Wang et al., 2020). The first method is the shear strain increment-based (SSI-based) method, and the other method is the nodal displacement-based method. The latter is more extensively used for its simplicity, and it is now built in FLAC3D. This method can also be effective in identifying local failures in 3-D slopes with spatially variable soil (Zhang et al. 2022). Therefore, the nodal displacement-based method is adopted to locate the slip surface in this study. In the nodal displacement-based method, a threshold of the maximum nodal displacement of all mesh grids should be first determined. A soil element where the displacement of all nodes exceeds the threshold of the maximum nodal displacement will be considered a sliding soil element. The sliding surface is identified as the boundary between sliding soil elements and stable soil elements. To determine the threshold value of the maximum nodal displacement, the slip surface derived by the max shear strain increment can be taken as a benchmark (Hicks et al. 2014). The results in Figure 3 indicate that the contour of 35% maximum nodal displacement coincides with the contour of the maximum shear strain increment for the “true” slope. As shown in Figure 3, it is suggested that some advanced smoothing methods such as the polynomial spline technique should be

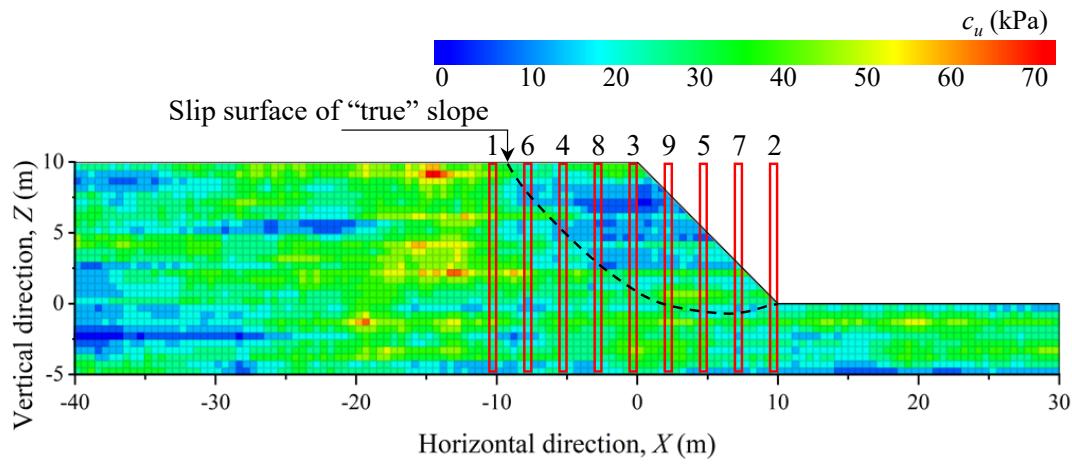
334 applied to the slip surface to satisfy the kinematic demands for the slope (Wang et al. 2020).
 335 However, the unsmoothed error is negligible in the comparison results. Therefore, the fitting
 336 technique is not implemented in this study to simplify the calculation of the sliding volume.



337
 338 Figure 3. Location of the slip surface, which is determined by 35% of the maximum nodal
 339 displacement and maximum shear strain increment

340
 341 Based on the traditional method, several boreholes may be equally spaced and applied
 342 to the area where the slip surface is accurately estimated, which is denoted as the borehole
 343 pattern with good judgement (see Figure 4(a)). Since the slip surface is bound to go through
 344 the slope domain, all boreholes can be located at the slope domain, which is denoted as the
 345 borehole pattern with moderate judgement (see Figure 4(b)). To avoid the nonconservative
 346 design, a sufficiently larger area (of the model domain) may be estimated for the borehole
 347 distributions, which is denoted as the borehole pattern with poor judgement (see Figure 4(c)).
 348 With predefined traditional borehole patterns, Monte-Carlo simulation (MCS) is employed to
 349 capture the performance of the slope. As shown in Figure 5(a), the mean and standard
 350 deviation of FS converge when 800 MCS runs are performed. From Figure 5(b), the mean
 351 Spearman rank correlation coefficient of the soil elements from the entire numerical model
 352 and one borehole at the slope crest also becomes stable within 800 runs. Therefore, 1000 runs

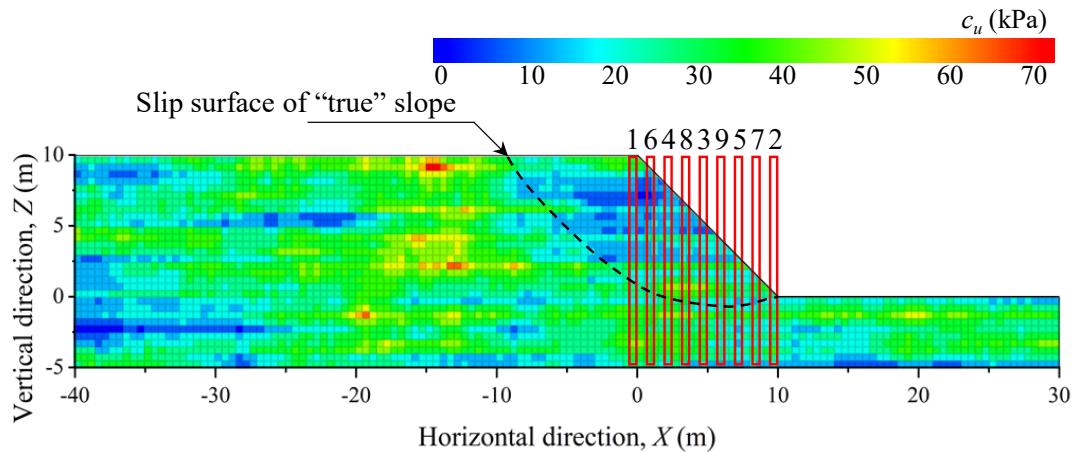
353 of MCS ($N_p = 1000$) are considered sufficient to obtain the slope system responses. With 1000
 354 runs of MCS, both unconditional and conditional random field simulations are validated by
 355 the comparison between the preset statistics (e.g., the mean and standard deviation) of soil
 356 properties and those derived from the simulations (Gong et al. 2018; Huang et al. 2019; Johari
 357 and Fooladi 2020).



358

359

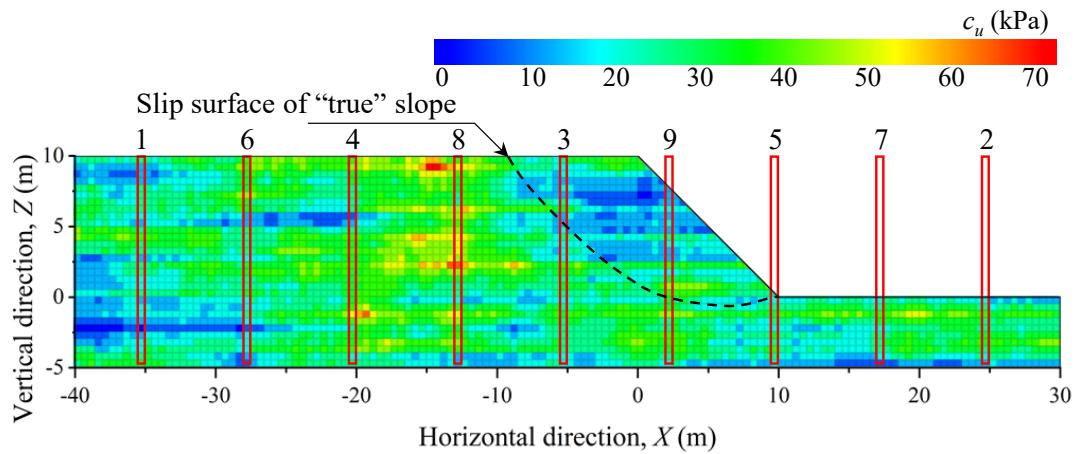
(a) Good judgement



360

361

(b) Moderate judgement



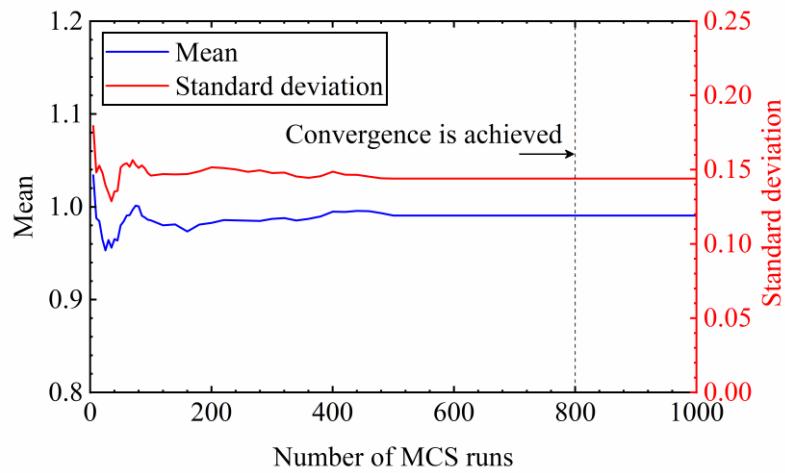
362

363

(c) Poor judgement

364

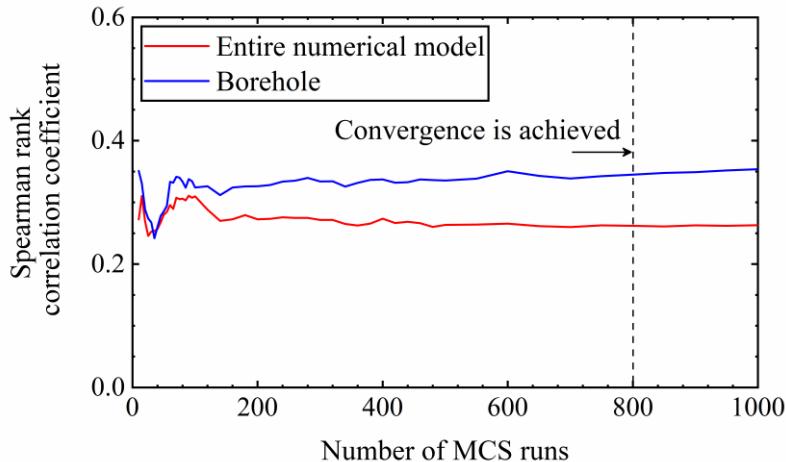
Figure 4. Borehole patterns from traditional methods



365

366

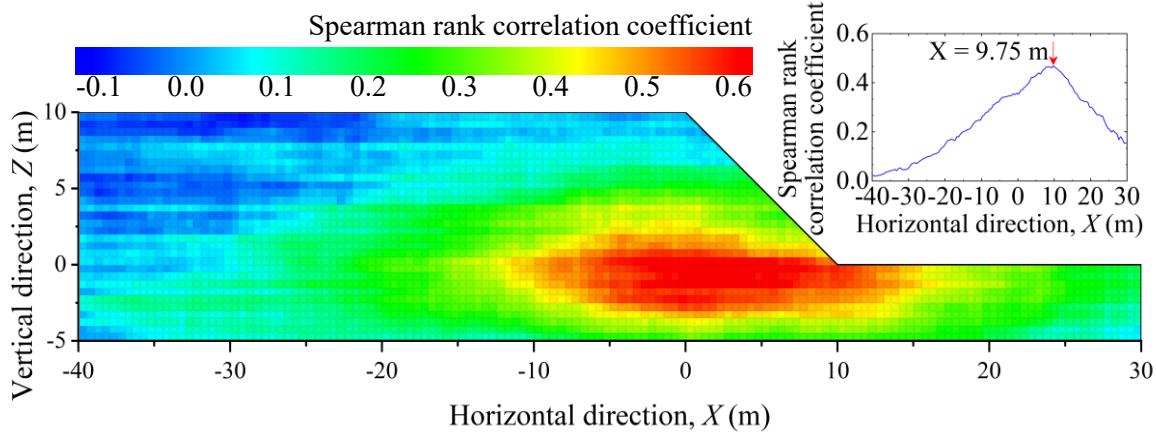
(a) Convergence of FS



367
 368 (b) Convergence of the Spearman rank correlation coefficient
 369 Figure 5. Convergence of the FS and Spearman rank correlation coefficient with the increase
 370 in number of MCS runs

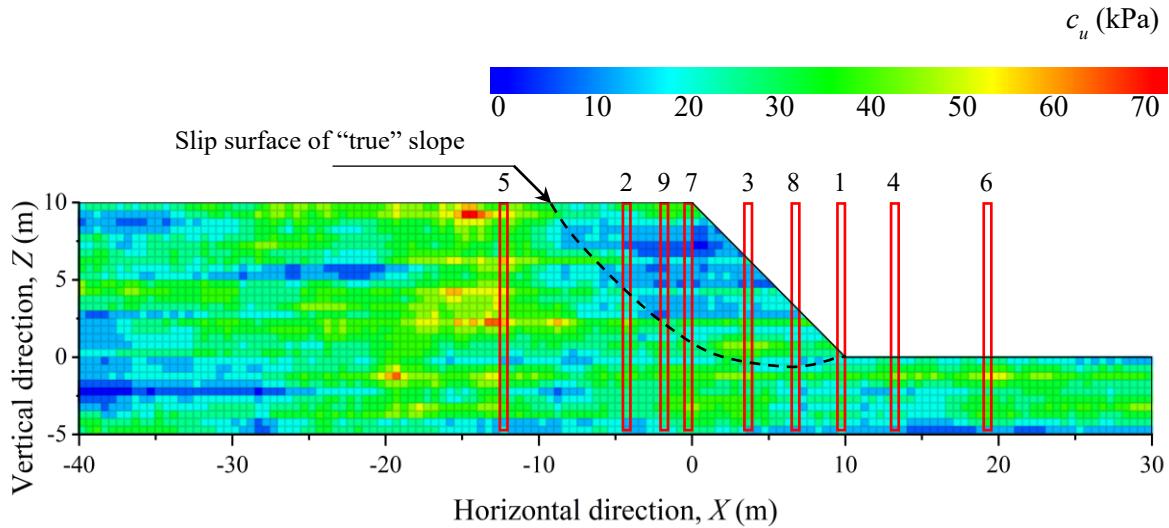
371 Following the proposed site investigation method, the boreholes are added step by step.
 372 Figure 6 shows the contour of the Spearman rank correlation coefficient without boreholes.
 373 The soil elements with a large Spearman rank correlation coefficient are distributed at the
 374 bottom of the slope domain, since these soil elements may determine whether the deep mode
 375 or shallow mode of failure will occur if no borehole is applied. The first borehole is optimized
 376 at $X = 9.75$ m (i.e., at the slope toe), which is consistent with the conclusion from [Jiang et al.](#)
 377 ([2018a](#)). Thus, the final borehole pattern from the proposed method is illustrated in [Figure 7](#).
 378 The characteristics of the slope (i.e., the factor of safety, location of the slip surface, and
 379 sliding volume) with the traditional methods and proposed method are studied in the
 380 following comparative study.

381



382
383 Figure 6. Determining the additional borehole from the Spearman rank correlation coefficient

384 $(N_{BH} = 0)$

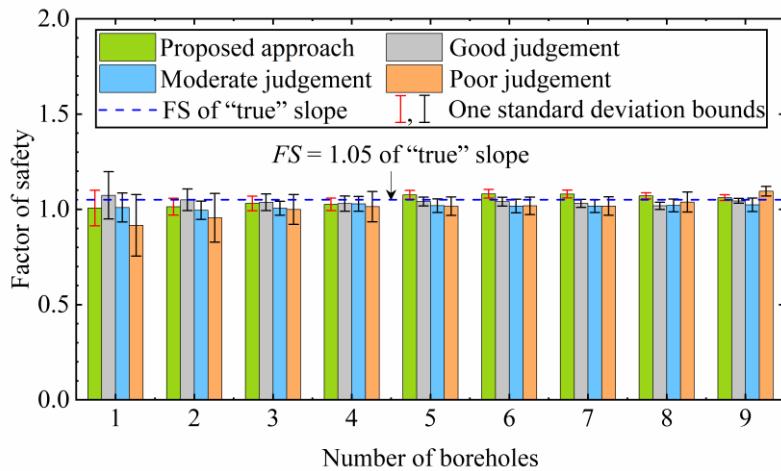


385
386 Figure 7. Borehole pattern obtained using the proposed method

387
388 **3.2 Comparison study on the estimate of the slope characteristics**

389 The mean FS with a (negative or positive) standard deviation from 1000 MCS is
390 presented in Figure 8. As shown in Figure 8, the difference between FS of the “true” slope
391 and mean estimated FS from all borehole patterns decreases with the number of boreholes.
392 When the number of boreholes is larger than 3 (i.e., $N_{BH} > 3$), the error is negligible, which

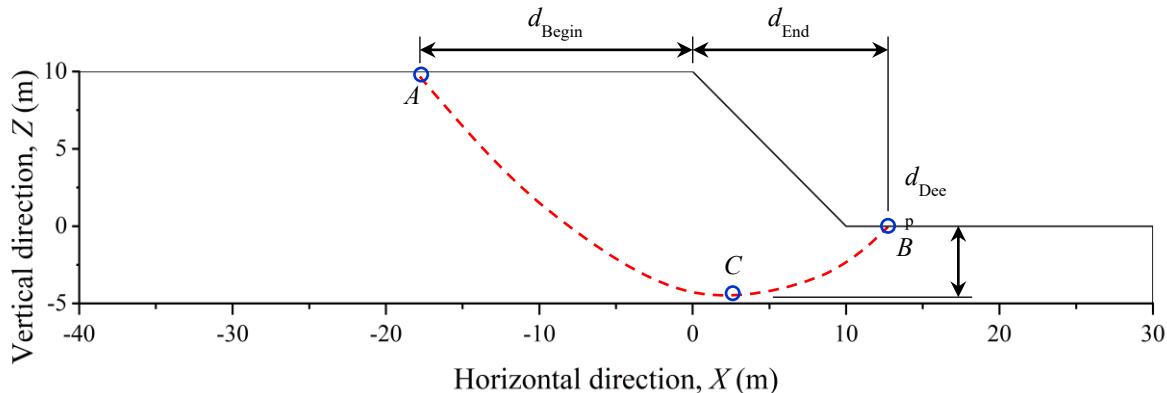
393 implies that the mean FS can be effectively estimated for all borehole patterns. The standard
 394 deviation of the FS rapidly decreases with the increase in number of boreholes by applying
 395 the borehole patterns from the proposed method and traditional method with good judgement,
 396 which indicates that these two methods are superior to the other two in reducing the
 397 uncertainty of FS .



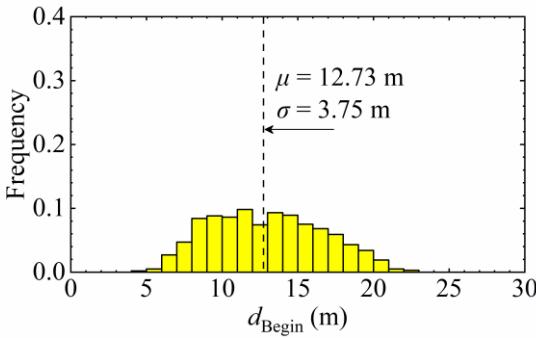
398
 399 Figure 8. A comparison study of the estimated FS among different borehole patterns
 400

401 The uncertainty of the location of the slip surface can be characterized by the area of
 402 the potential locations of the slip surface (Liu et al. 2017) or the uncertainty of the controlling
 403 points (Johari and Gholampour 2018; van den Eijnden and Hicks 2018). The latter is used in
 404 this study for its simplicity. As shown in Figure 9, there are three controlling points A , B and
 405 C at the slip surface of the slope. The leftmost and rightmost points A and B determine the
 406 range of the influence zone, which can be calculated by summing the horizontal distance from
 407 point A to slope crest d_{Begin} and that from point B to slope crest d_{End} . The deepest point C is
 408 related to the slope failure mechanism. If the vertical distance from point C to slope toe d_{Deep}
 409 is positive, a deep failure mode will occur for the slope. Otherwise, the shallow failure mode

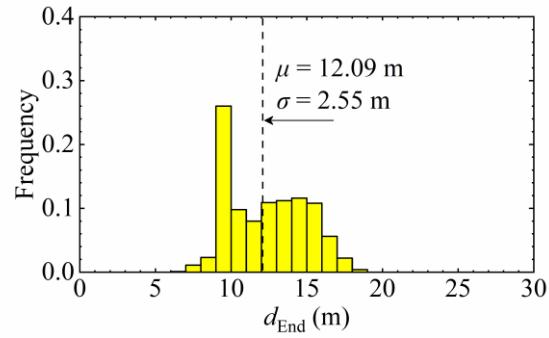
410 can be found. When the location of the slip surface is determined, the sliding volume can be
 411 easily calculated. With the adopted methods, the location of the slip surface of the “true”
 412 slope is derived as $d_{\text{Begin}} = 8.5$ m, $d_{\text{End}} = 9.5$ m, and $d_{\text{Deep}} = 0.5$ m, while the sliding volume of
 413 the “true” slope is $V = 101.75$ m²/m. The estimated results of the location of the slip surface
 414 and sliding volume without boreholes are summarized in Figure 10. As shown in Figure 10,
 415 the estimated mean μ is far from the “true” value, and the standard deviation σ is large in the
 416 estimated results of the location of the slip surface and sliding volume, which indicates
 417 considerable estimate errors and uncertainties in the location of the slip surface when there is
 418 no site investigation effort (reflected by the total number of boreholes required).



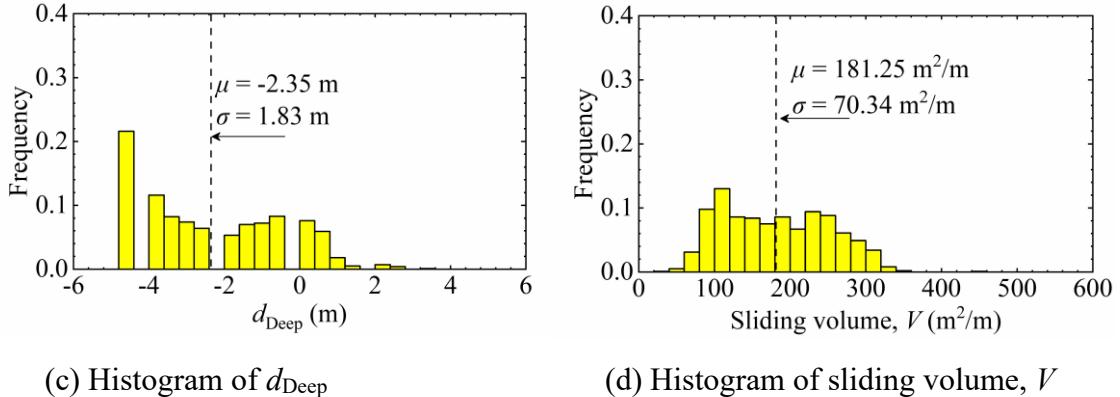
419
 420 Figure 9. Location of the slip surface characterized using three controlling points



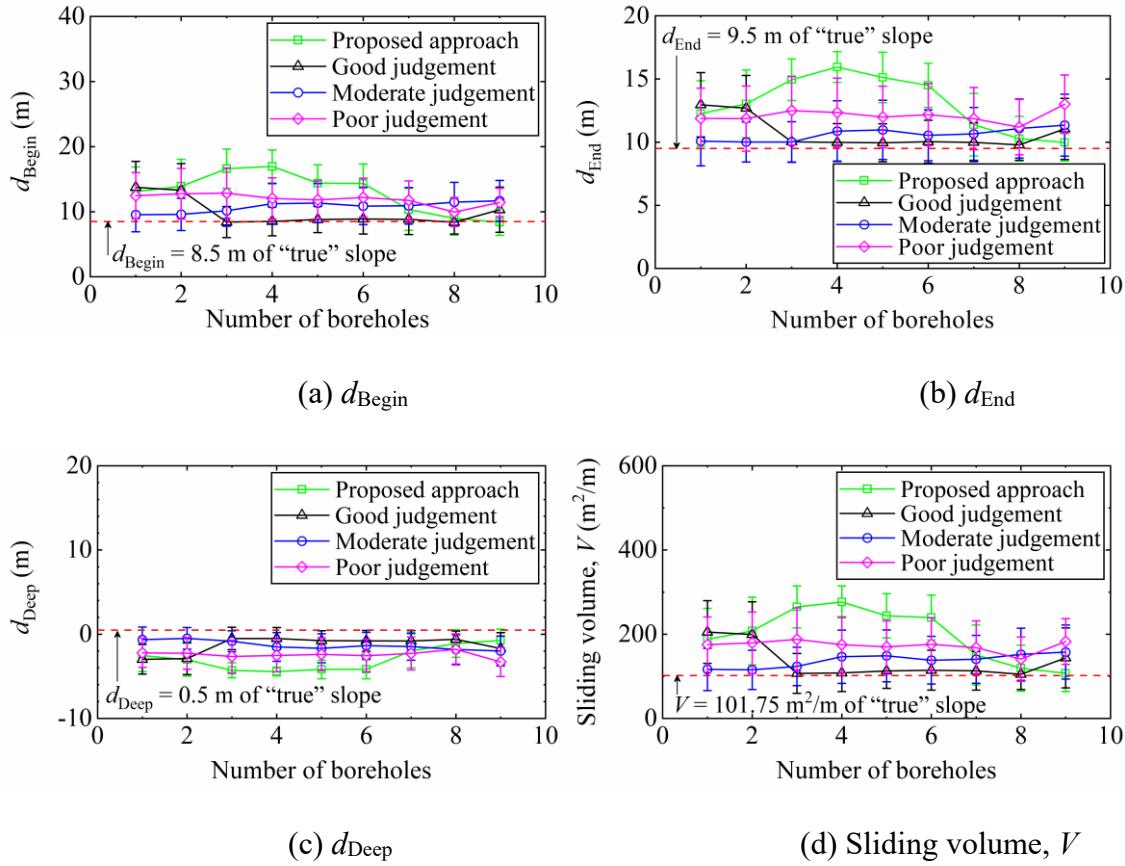
421 (a) Histogram of d_{Begin}



(b) Histogram of d_{End}



space may be problematically determined, and the increase in borehole number does not necessarily improve the accuracy in estimating the slip surface and sliding volume, which results in considerable challenges in the borehole configuration for the traditional method. For the proposed method, nine boreholes are required to accurately estimate the slip surface and sliding volume. The proposed method appears to require more effort than the results from good judgement. However, an implicit huge effort may be needed to guarantee the accurate estimation of the location of the slip surface for good judgement in practical slope problems, which is not evaluated in this comparison study. Therefore, the superiority of nonequal spacing planning of the site investigation based on the Spearman rank correlation coefficient is sufficiently demonstrated.



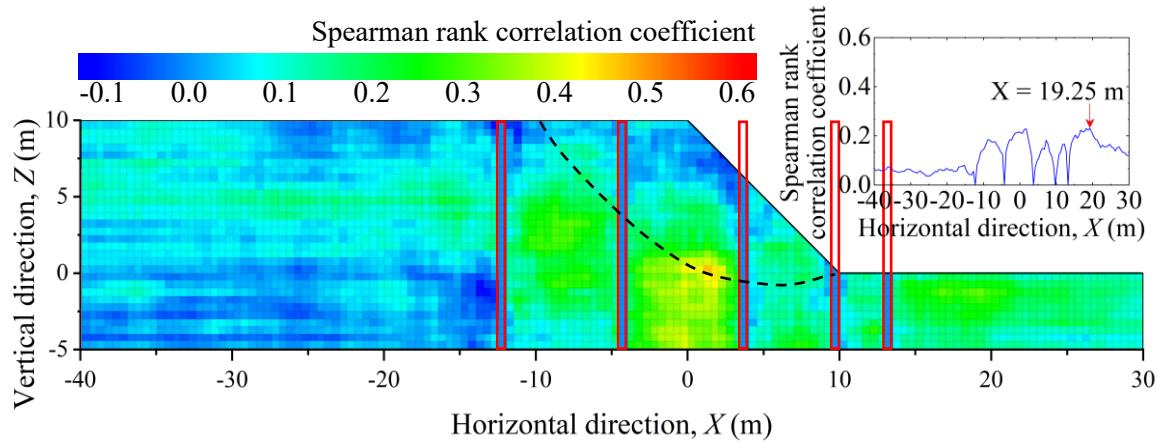
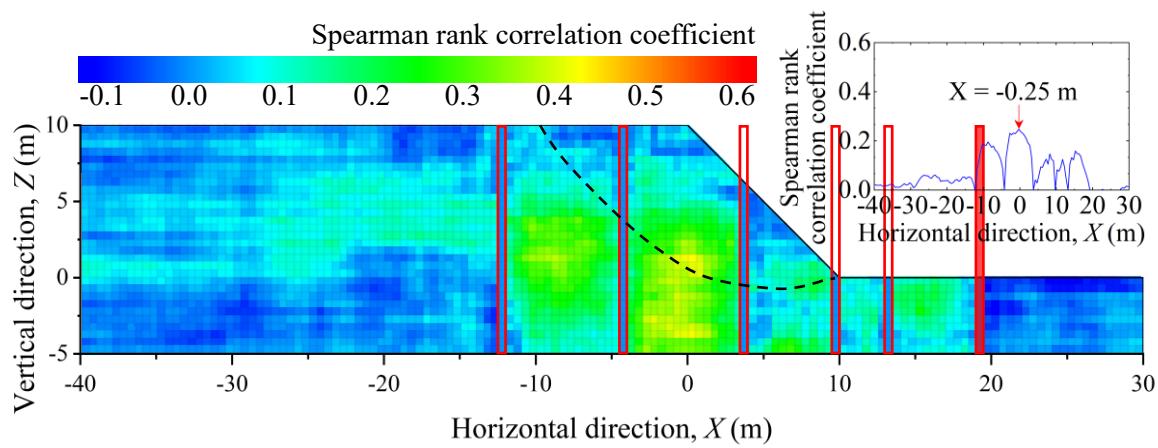
456 Figure 11. A comparison study of the characteristics of the slope with the proposed method

457 and traditional method

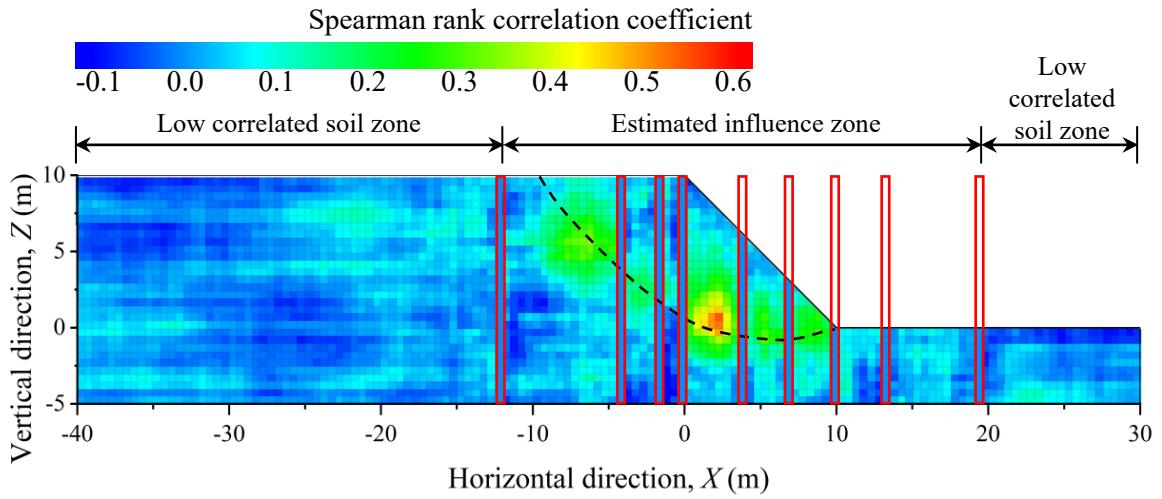
458

459 **3.3 Discussion of the borehole pattern from the proposed method**

460 As mentioned above, effective boreholes should be located to reveal the location of
461 the slip surface, and the challenge for this objective is how to accurately estimate the range of
462 the “true” sliding area. [Figure 7](#) shows the final borehole pattern from the proposed method. It
463 seems the fourth, the fifth and the sixth boreholes are ineffective in this borehole pattern,
464 since the three boreholes are outside the “true” influence zone. However, the sliding area is
465 well bracketed by the fourth and fifth boreholes. The two boreholes can be useful to estimate
466 the influence zone, since a small error will be obtained. The effect of the sixth borehole can be
467 illustrated by the change in contour of the Spearman rank correlation coefficient with different
468 numbers of boreholes. The contour of the Spearman rank correlation coefficient with the fifth
469 and sixth boreholes is plotted in [Figure 12](#). As shown in [Figure 12](#), with five boreholes
470 applied to the slope, it is still difficult to examine if the area on the right of the fifth borehole
471 is a low or high correlated soil zone because the large initial investigation area is adopted
472 (from $X = -40$ m to $X = 30$ m). After applying the sixth borehole, this area is updated as a
473 low-correlated soil zone. Therefore, the sixth borehole can be considered a part of the effort to
474 automatically identify the influence zone. [Figure 13](#) shows the contour of the Spearman rank
475 correlation coefficient with nine boreholes from the proposed method. The final influence
476 zone is derived as the area between the fifth and sixth boreholes, while the remaining area is a
477 low-correlated soil zone. Therefore, it is effective to automatically estimate the influence zone
478 for the slope with the proposed method, even if the initial investigation area is considerably
479 conservatively selected.



484 Figure 12. Illustration of the effect of the sixth borehole from the proposed method



486

487

Figure 13. Estimated influence zone by the proposed method ($N_{BH} = 9$)

488

489 4. Robustness analysis and risk assessment

490 In addition to the characteristics of the slope, uncertainty reduction and risk reduction
 491 are aspects of slope design. In this section, robustness analysis and risk assessment are
 492 performed to validate the effectiveness of the proposed method in the comparison study.

493 4.1 Robustness analysis

494 The robustness is defined as the sensitivity of the system response to the variation in
 495 input parameters. The higher robustness of the geotechnical system implies that the system
 496 can better resist the uncertainty of input parameters. Various robustness measurements are
 497 formulated in geotechnical engineering, and the signal-to-noise ratio (SNR) is a commonly
 498 used robustness measurement for slope problems (Gong et al. 2015&2017&2020). In this
 499 paper, SNR is adopted to assess the robustness of the slope system, and a higher SNR value
 500 indicates a higher system robustness. The *FS*, location of the slip surface, and sliding volume
 501 are treated as the response of concern for the slope problem. The robustness of the *FS*,
 502 location of the slip surface, and sliding volume can be calculated using Eqs. (9-11),

503 respectively. The robustness of the location of the slip surface is evaluated using the average
 504 SNR of the three controlling points of the slip surface. With the obtained SNR values for the
 505 FS, location of the slip surface and sliding volume, the robustness of the entire slope system
 506 can be calculated using Eq. (12) based on a weighted average of three SNR values from Eqs.
 507 (9-11) (Gong et al. 2017).

$$508 \quad SNR_{FS} = 10 \log_{10} \left(\frac{\mu_{FS}^2}{\sigma_{FS}^2} \right) \quad (9)$$

$$509 \quad SNR_L = \frac{1}{3} (SNR_A + SNR_B + SNR_C) \quad (10a)$$

$$510 \quad SNR_A = 10 \log_{10} \left(\frac{\mu_{d_{\text{Begin}}}^2}{\sigma_{d_{\text{Begin}}}^2} \right) \quad (10b)$$

$$511 \quad SNR_B = 10 \log_{10} \left(\frac{\mu_{d_{\text{End}}}^2}{\sigma_{d_{\text{End}}}^2} \right) \quad (10c)$$

$$512 \quad SNR_C = 10 \log_{10} \left(\frac{\mu_{d_{\text{Deep}}}^2}{\sigma_{d_{\text{Deep}}}^2} \right) \quad (10d)$$

$$513 \quad SNR_V = 10 \log_{10} \left(\frac{\mu_V^2}{\sigma_V^2} \right) \quad (11)$$

$$514 \quad S = w_{FS} SNR_{FS} + w_L SNR_L + w_V SNR_V \quad (12)$$

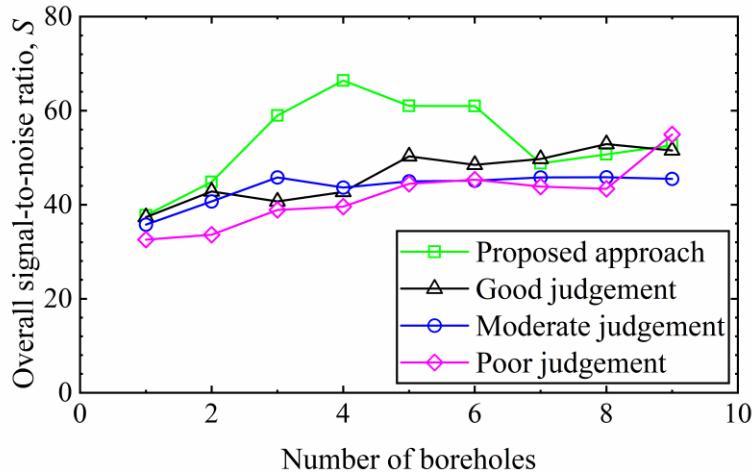
515 where SNR_{FS} , SNR_L , and SNR_V are the robustness for the estimation of the FS, location of slip
 516 surface (L) and sliding volume (V), respectively; SNR_A , SNR_B , and SNR_C are the robustness for
 517 the estimation of the horizontal distance of point A to the slope crest (d_{Begin}), horizontal
 518 distance of point B to the slope crest (d_{End}) and vertical distance of point C to the slope toe
 519 (d_{Deep}), respectively. The robustness estimation of the location of the slip surface can be
 520 characterized by the averaged SNR_A , SNR_B and SNR_C . The overall robustness S for the slope is

521 a weighted summation of the three terms in Eqs. (9-11). The weighted factors w_{FS} , w_L and w_V
522 may be determined by their corresponding contributions to the given geotechnical problems.
523 Here, $w_{FS} = w_L = w_V = 1$ is assumed for simplicity (Gong et al. 2017).

524 The robustness analysis results for different borehole patterns are plotted in Figure 14.
525 The highest overall SNR value S can be obtained from the proposed method, which indicates
526 that this method finds the most robust estimated characteristics of the slope. The overall SNR
527 values S from traditional methods with good judgement and poor judgement increase with the
528 number of boreholes, while those from the traditional method with moderate judgement
529 converge at $N_{BH} = 3$. It seems that the borehole pattern with good judgement is the most
530 effective in the robustness analysis, followed by the borehole pattern with moderate
531 judgement, since all boreholes with good judgement are located at the influence zone and
532 considerably reduce the uncertainty of the location of the slip surface and sliding volume.
533 However, although the effect of the boreholes from moderate judgement is overlapped due to
534 small borehole space and more additional boreholes cannot improve the robustness of the
535 estimated results of the characteristics of the slope after $N_{BH} = 3$, more investigation effort is
536 required to reach the higher level of robustness for the slope system, which is consistent with
537 the fact that most boreholes based on poor judgement are outside the “true” influence zone.
538 Therefore, the superiority of the robustness performance with the proposed method is
539 sufficiently demonstrated.

540

541



542

543

Figure 14. Overall robustness with the increase in number of boreholes

544

545

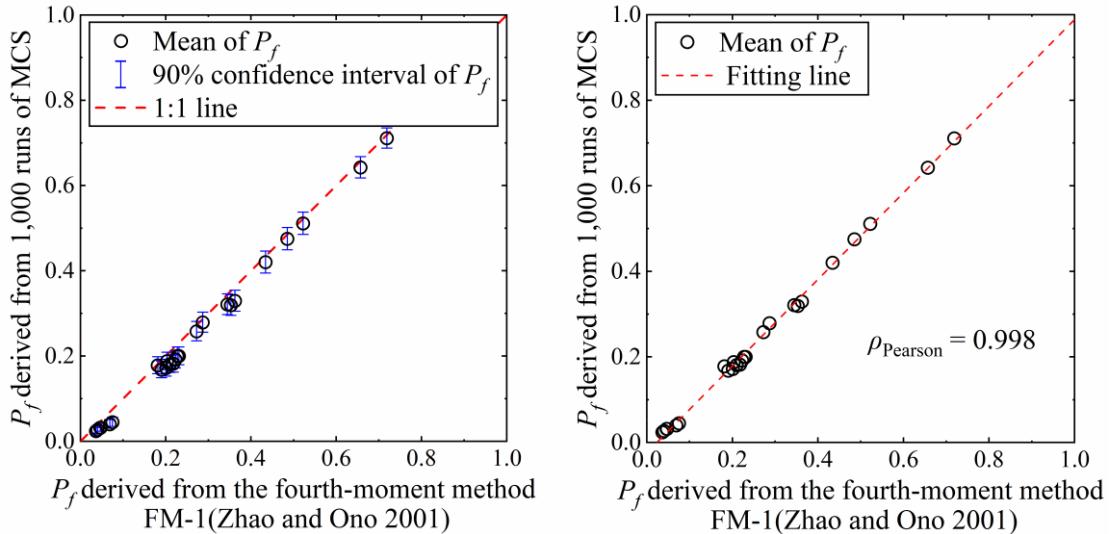
4.2 Risk assessment

546 Risk assessment can provide information for risk-informed decision-making. Herein,
 547 the risk assessment for site investigation of slope problems is conducted following [Yang et al.](#)
 548 ([2019](#)). According to [Yang et al. \(2019\)](#), the total loss cost C_{total} with different numbers of
 549 boreholes can be described as

550
$$C_{\text{total}} = N_{\text{BH}} \cdot C_{\text{BH}} + P_f \cdot C_{\text{false}} \quad (13)$$

551 where N_{BH} is the number of boreholes; C_{BH} is the average cost of one borehole; P_f is the
 552 probability of failure of the slope; the C_{false} is the of making a false decision. To improve the
 553 computational efficiency of the calculation of P_f , the MCS-based moment method FM-1 is
 554 adopted to estimate the probability of failure ([Zhao and Ono 2001](#); [Zhang et al. 2022](#)). The
 555 MCS is first performed to derive the dimensionless moments of the limit state function that
 556 define the slope failure based on FS . Then, the formulas related to dimensionless moments are
 557 utilized to estimate the probability of failure. Detailed descriptions and formulas can be found
 558 in [Zhao and Ono \(2001\)](#) and [Zhang et al. \(2022\)](#). Figure 15 shows the validations of the

559 moment method FM-1 to estimate the probability of failure in this slope example, where the
 560 analyses are performed for 25 slope scenarios with different numbers of boreholes. As shown
 561 in [Figure 15\(a\)](#), the probabilities of failure from the FM-1 moment method are well bracketed
 562 by the 90% confidence intervals of the probabilities of failure from the MCS. The Pearson
 563 correlation coefficient between P_f obtained from the MCS and that from the FM-1 moment
 564 method is 0.998 in [Figure 15\(b\)](#), which implies a strong linear correlation between them and
 565 validates the accuracy of the FM-1 moment method. The cost of each borehole is assumed to
 566 be $C_{BH} = \$AUD\ 5,000$, and the loss of making the false unsafe assessment of the slope
 567 stability is assumed to be $C_{false} = \$AUD\ 150,000$ following [Yang et al. \(2019\)](#), although the
 568 measured data may be suggested to be more acceptable for the risk assessment if there are
 569 available data.



570
 571 (a) P_f from MCS versus that from FM-1 (b) Pearson correlation coefficient analysis
 572
 573 Figure 15. Validation of the moment method FM-1 (Zhao and Ono 2001) in estimating the
 574 probability of slope failure in this study

575 Figure 16 shows that the expected total loss cost first decreases and subsequently
576 increases with the number of boreholes for the proposed method. A minimum expected loss
577 cost of approximately \$AUD 25,000 with five boreholes ($N_{BH} = 5$) is obtained in the proposed
578 method. From Eq. (13), the expected total loss cost consists of two parts: the cost of the
579 boreholes and the expected loss cost of making a false decision. With the increase in number
580 of boreholes applied to the slope, the mean FS will approach the “true” FS , and the standard
581 deviation of FS will decrease. Since the “true” FS is 1.05, which is larger than 1, P_f will be
582 close to 0 when sufficient boreholes are located at the slope, so the loss cost of making a false
583 decision approaches 0. The total cost of the loss cost will be dominated by the cost of the
584 boreholes. A minimum loss cost of approximately \$AUD 31,000 with the same site
585 investigation effort ($N_{BH} = 5$) is reached in the borehole pattern with good judgement.
586 Compared to the risk assessment results from good judgement, an approximate 19% loss cost
587 can be avoided from the proposed method. A similar trend of the loss cost to the proposed
588 method can be obtained in the traditional method with moderate judgement, and the minimum
589 loss cost is reached with four boreholes ($N_{BH} = 4$). However, the loss cost from moderate
590 judgement is higher than these two methods, since a small borehole space results in the
591 overlapped effect of the applied boreholes. For poor judgement, the total cost decreases with
592 the increase in number of boreholes, but it generally yields the highest amount of total cost,
593 which can be explained by the fact that the uncertainty of FS cannot be effectively reduced
594 based on the method from poor judgement (see Figure 8). Therefore, the advantage of the
595 proposed method in risk reduction is sufficiently validated.

596 The estimated accuracy of the characteristics of the slope, robustness of the estimated
597 results and risk reduction of the proposed method are evaluated in an undrained slope

example. It is suggested to adopt five boreholes ($N_{BH} = 5$) for the slope problem when applying the proposed method, since the overall performance of the slope system can be well evaluated from many perspectives. For instance, when five boreholes are configured in this slope, the “true” influence zone can be estimated with tolerable error, and the risk reduction is maximal. For the robustness analysis, the borehole pattern with $N_{BH} = 5$ is the second highest cost-effective borehole pattern in Figure 14. Thus, $N_{BH} = 5$ is considered the optimal number for the proposed method based on the gain-sacrifice relationship between cost and investigation effort.

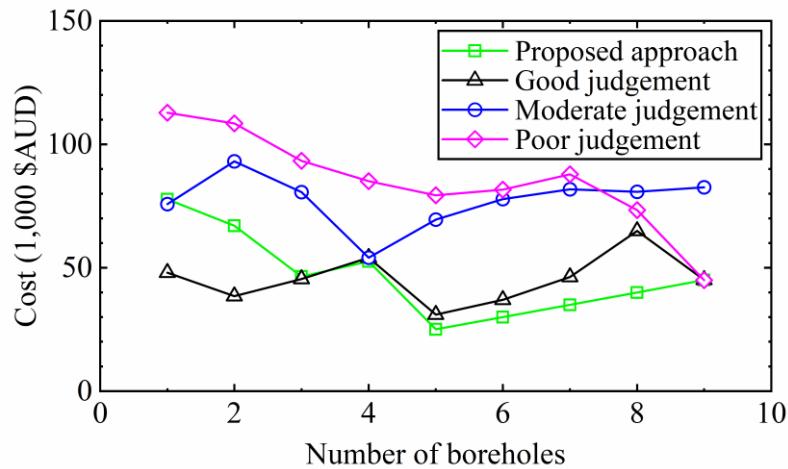


Figure 16. A comparison study of risk assessment of different borehole patterns

5. Summary and conclusions

This paper proposed an optimization method for geotechnical site investigation to minimize the risk and associated site investigation effort and maximize the robustness of the slope system. The proposed method can optimize the location and number of boreholes without prior knowledge about the slip surface, which results in adaptive patterns of borehole planning based on the Spearman rank correlation coefficient with unequal space for a given

615 slope site. Compared to the traditional method, the advantages of the proposed method are:

616 1) The location and number of boreholes can be optimized considering the synthesized
617 system responses (e.g., *FS*, location of slip surface and sliding volume, robustness, and risk)
618 in the proposed method. The proposed method accurately estimates *FS*, the location of the slip
619 surface, and the sliding volume if sufficient boreholes are applied.

620 2) The proposed method can similarly reduce the uncertainty of *FS* compared with the
621 traditional method with good judgement and tends to obtain a more robust site investigation
622 program than traditional borehole patterns.

623 3) The proposed method minimizes the risk with the optimized number of boreholes.
624 The effectiveness of this optimized borehole pattern on the estimate of the range of influence
625 zone and robustness of the slope system can also be reached in this scenario.

626 4) The proposed method is straightforward and easy to implement to automatically
627 identify the range of the sliding area with unequally spaced borehole patterns, which provides
628 a reference to build an adaptive unequally spaced borehole pattern without prior knowledge
629 about the slip surface in practice.

630

631 **CRediT authorship contribution statement**

632 **Liang Zhang:** Conceptualization, Methodology, Software, Visualization, Writing –
633 original draft. **Lei Wang:** Conceptualization, Methodology, Writing – review & editing,
634 Supervision.

635

636 **Declaration of Competing Interest**

637 The authors declare that they have no known competing financial interests or personal

638 relationships that could have appeared to influence the work reported in this paper.

639

640 **Acknowledgments**

641 The study on which this paper is based was partially supported by the National
642 Science Foundation through Grants 1818649 and 1900445. The results and opinions
643 expressed in this paper do not necessarily reflect the views and policies of the National
644 Science Foundation.

645

646 **References**

647 Bishara, A.J., & Hittner, J.B. (2015). Reducing bias and error in the correlation coefficient
648 due to nonnormality. *Educational and Psychological Measurement*, 75(5), 785-804.

649 Cai, Y., Li, J., Li, X., Li, D., & Zhang, L. (2019). Estimating soil resistance at unsampled
650 locations based on limited CPT data. *Bulletin of Engineering Geology and the
651 Environment*, 78(5), 3637-3648.

652 Chen, F., & Zhang, W. (2021). Influence of spatial variability on the uniaxial compressive
653 responses of rock pillar based on 3D random field. *ASCE-ASME Journal of Risk and
654 Uncertainty in Engineering Systems, Part A: Civil Engineering*, 7(3), 04021035.

655 Chen, G., Zhu, J., Qiang, M., & Gong, W. (2018). Three-dimensional site characterization
656 with borehole data—a case study of Suzhou area. *Engineering Geology*, 234, 65-82.

657 Chwała, M. (2021). Optimal placement of two soil soundings for rectangular footings.
658 *Journal of Rock Mechanics and Geotechnical Engineering*, 13(3), 603-611.

659 De Winter, J.C., Gosling, S.D., & Potter, J. (2016). Comparing the Pearson and Spearman
660 correlation coefficients across distributions and sample sizes: A tutorial using

661 simulations and empirical data. *Psychological methods*, 21(3), 273.

662 Deng, Z.P., Li, D.Q., Qi, X.H., Cao, Z.J., & Phoon, K.K. (2017). Reliability evaluation of
663 slope considering geological uncertainty and inherent variability of soil parameters.
664 *Computers and Geotechnics*, 92, 121-131.

665 Fenton, G.A. (1994). Error evaluation of three random-field generators. *Journal of*
666 *Engineering Mechanics*, 120(12), 2478-2497.

667 Gong, W., Luo, Z., Juang, C.H., Huang, H., Zhang, J., & Wang, L. (2014). Optimization of
668 site exploration program for improved prediction of tunneling-induced ground
669 settlement in clays. *Computers and Geotechnics*, 56, 69-79.

670 Gong, W., Wang, L., Khoshnevisan, S., Juang, C.H., Huang, H., & Zhang, J. (2015). Robust
671 geotechnical design of earth slopes using fuzzy sets. *Journal of Geotechnical and*
672 *Geoenvironmental Engineering*, 141(1), 04014084.

673 Gong, W., Tien, Y.M., Juang, C.H., Martin, J.R., & Luo, Z. (2017). Optimization of site
674 investigation program for improved statistical characterization of geotechnical
675 property based on random field theory. *Bulletin of Engineering Geology and the*
676 *Environment*, 76(3), 1021-1035.

677 Gong, W., Juang, C.H., Martin II, J.R., Tang, H., Wang, Q., & Huang, H. (2018).
678 Probabilistic analysis of tunnel longitudinal performance based upon conditional
679 random field simulation of soil properties. *Tunnelling and Underground Space*
680 *Technology*, 73, 1-14.

681 Gong, W., Tang, H., Juang, C.H., & Wang, L. (2020). Optimization design of stabilizing piles
682 in slopes considering spatial variability. *Acta Geotechnica*, 15(11), 3243-3259.

683 Han, L., Wang, L., Zhang, W., Geng, B., & Li, S. (2022). Rockhead profile simulation using

684 an improved generation method of conditional random field. *Journal of Rock*
685 *Mechanics and Geotechnical Engineering*, 14(3), 896-908.

686 Hicks, M.A., Nuttall, J.D., & Chen, J. (2014). Influence of heterogeneity on 3D slope
687 reliability and failure consequence. *Computers and Geotechnics*, 61, 198-208.

688 Huang, J., and Griffiths, D.V. (2015). Determining an appropriate finite element size for
689 modeling the strength of undrained random soils. *Computers and Geotechnics*, 69,
690 506-513.

691 Huang, L., Cheng, Y.M., Leung, Y.F., & Li, L. (2019). Influence of rotated anisotropy on
692 slope reliability evaluation using conditional random field. *Computers and*
693 *Geotechnics*, 115, 103133.

694 Huang, L., Huang, S., & Lai, Z. (2020). On the optimization of site investigation programs
695 using centroidal Voronoi tessellation and random field theory. *Computers and*
696 *Geotechnics*, 118, 103331.

697 Itasca Consulting Group, Inc. (2022). FLAC3D - Fast Lagrangian Analysis of Continua in 3
698 Dimensions, Version 7.0. Minneapolis: Itasca.

699 Jiang, S.H., Huang, J., Huang, F., Yang, J., Yao, C., & Zhou, C.B. (2018a). Modelling of
700 spatial variability of soil undrained shear strength by conditional random fields for
701 slope reliability analysis. *Applied Mathematical Modelling*, 63, 374-389.

702 Jiang, S.H., Papaioannou, I., & Straub, D. (2018b). Bayesian updating of slope reliability in
703 spatially variable soils with in-situ measurements. *Engineering Geology*, 239,
704 310-320.

705 Jiang, S.H., Papaioannou, I., & Straub, D. (2020). Optimization of site-exploration programs
706 for slope-reliability assessment. *ASCE-ASME Journal of Risk and Uncertainty in*

730 103321.

731 Lloret-Cabot, M.H.M.A., Hicks, M.A., & van den Eijnden, A.P. (2012). Investigation of the
732 reduction in uncertainty due to soil variability when conditioning a random field using
733 Kriging. *Géotechnique letters*, 2(3), 123-127.

734 Shen, M., Chen, Q., Juang, C.H., Gong, W., & Tan, X. (2018). Bi-objective optimization of
735 site investigation program for liquefaction hazard mapping. In *GeoShanghai*
736 *International Conference* (pp. 86-93). Springer, Singapore.

737 Thirumalai, C., Chandhini, S.A., & Vaishnavi, M. (2017). Analysing the concrete
738 compressive strength using Pearson and Spearman. In *2017 international conference*
739 *of Electronics, Communication and Aerospace Technology (iCECA)* (Vol. 2, pp.
740 215-218). IEEE.

741 van den Eijnden, A.P., & Hicks, M.A. (2018). Probability-dependent failure modes of slopes
742 and cuts in heterogeneous cohesive soils. *Géotechnique Letters*, 8(3), 214-218.

743 Xiao, T., Li, D.Q., Cao, Z.J., & Zhang, L.M. (2018). CPT-based probabilistic characterization
744 of three-dimensional spatial variability using MLE. *Journal of Geotechnical and*
745 *Geoenvironmental Engineering*, 144(5), 04018023.

746 Yang, Z., & Ching, J. (2021). Simulation of three-dimensional random field conditioning on
747 incomplete site data. *Engineering Geology*, 281, 105987.

748 Yang, R., Huang, J., Griffiths, D.V., Meng, J., & Fenton, G.A. (2019). Optimal geotechnical
749 site investigations for slope design. *Computers and Geotechnics*, 114, 103111.

750 Yang, R., Huang, J., & Griffiths, D.V. (2022). Optimal geotechnical site investigations for
751 slope reliability assessment considering measurement errors. *Engineering Geology*,
752 297, 106497.

753 Wang, J., Yang, R., & Feng, Y. (2017). Spatial variability of reconstructed soil properties and
754 the optimization of sampling number for reclaimed land monitoring in an opencast
755 coal mine. *Arabian Journal of Geosciences*, 10(2), 1-13.

756 Wang, Y., Huang, J., and Tang, H. (2020). Automatic identification of the critical slip surface
757 of slopes. *Engineering Geology*, 273, 105672.

758 Zhang, L., Gong, W.P., Li, X.X., Tan, X.H., Zhao, C., & Wang, L. (2022). A comparison
759 study between 2D and 3D slope stability analyses considering spatial soil variability.
760 *Journal of Zhejiang University-SCIENCE A*, 23(3), 208-224.

761 Zhao, T., Wang, Y., & Xu, L. (2021). Efficient CPT locations for characterizing spatial
762 variability of soil properties within a multilayer vertical cross-section using
763 information entropy and Bayesian compressive sensing. *Computers and Geotechnics*,
764 137, 104260.

765 Zhao, Y.G., and Ono, T. (2001). Moment methods for structural reliability. *Structural Safety*,
766 23(1), 47-75.

Lists of Tables

Table 1. Statistics of the soil properties for the example slope problem

Lists of Figures

Figure 1. Flow chart of the proposed method for site investigation

Figure 2. Characteristics of the “true” slope ($FS = 1.05$)

Figure 3. Location of the slip surface, which is determined by 35% of the maximum nodal displacement and maximum shear strain increment

Figure 4. Borehole patterns from traditional methods

Figure 5. Convergence of the FS and Spearman rank correlation coefficient with the increase in number of MCS runs

Figure 6. Determining the additional borehole from the Spearman rank correlation coefficient ($N_{BH} = 0$)

Figure 7. Borehole pattern obtained using the proposed method

Figure 8. A comparison study of the estimated FS among different borehole patterns

Figure 9. Location of the slip surface characterized using three controlling points

Figure 10. Location of the slip surface and sliding volume estimated from unconditional random field simulations

Figure 11. A comparison study of the characteristics of the slope with the proposed method and traditional method

Figure 12. Illustration of the effect of the sixth borehole from the proposed method

Figure 13. Estimated influence zone by the proposed method ($N_{BH} = 9$)

Figure 14. Overall robustness with the increase of number of boreholes

Figure 15. Validation of the moment method FM-1 (Zhao and Ono 2001) in estimating the probability of slope failure in this study

Figure 16. A comparison study of risk assessment of different borehole patterns