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Optimization of site investigation program for reliability assessment of
undrained slope using Spearman rank correlation coefficient

Liang Zhang', Lei Wang®*

Abstract: Site investigation programs (e.g., boreholes) are crucial in characterizing soil
properties and stratigraphic configurations. However, the traditional borehole patterns are
generally of equally spaced distribution for the slope design, and the locations and total
number of boreholes are considerably determined depending on engineers’ experience, which
may lead to cost-inefficient geotechnical design, especially considering the soil spatial
variability. To address this dilemma, this paper presents a Spearman rank correlation
coefficient-based scheme to optimize site investigation in slope design, where both locations
and total number of boreholes are optimized. Conditional random field simulations are
performed to consider the effect of the borehole data on the estimation of the soil property
distribution. The superiority of the proposed method to the traditional method is illustrated by
a comparison study in an undrained slope example. In this example, the accuracy of the
characteristics of the slope (i.e., the factor of safety, location of slip surface, and sliding
volume), robustness of the estimated characteristics of the slope, and risk reduction are
examined. The comparison results show the effectiveness of the proposed method in
accurately estimating the characteristics of the slope without prior knowledge about the slip
surface, since the slip surface is unknown for most practical cases prior to the site
investigation. The most robust estimate results and risk reduction are obtained using the
proposed method. This study can also provide useful references to build an adaptive

unequally spaced borehole pattern in practice.
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1. Introduction

Natural soils are very complicated and highly variable geomaterials, and they are
products of complex geological processes and depositional environments. To investigate the
soil properties at geotechnical sites, site investigations (e.g., boreholes) are typically
conducted in practice. However, with the restriction of time and budget for most geotechnical
design projects, only a limited number of boreholes at scattered locations over a construction
site are typically planned and executed, which results in significant uncertainties in the
geotechnical characterization of the site (Jiang et al. 2018b&2020; Yang et al. 2019&2022).
Furthermore, geotechnical properties for a given site can exhibit considerable spatial
variability due to the natural fluctuation of material constituents, randomness in the
depositional history, and variable historical loading conditions (Huang et al. 2020), which
causes more challenges in the optimization of the borehole patterns for geotechnical design.

Some previous optimization studies aimed to accurately predict the soil properties at
unsampled locations with measured borehole data in geotechnical profiles (e.g., Wang et al.
2017; Cai et al. 2019; Zhao et al. 2021), while other studies focused on uncertainty reduction
in the characterization of the spatial variability (i.e., the mean, standard deviation, and scale of
fluctuation of soil properties) at geotechnical sites (e.g., Lloret-Cabot et al. 2012; Li et al.
2016¢; Xiao et al. 2018; Huang et al. 2020; Han et al. 2022). Although these borehole
schemes provide useful means to characterize a given geological profile, they may not be
effective in characterizing the performance of geotechnical systems (e.g., the slope,
foundation, and tunnel). In a geological profile, all soil elements are of equal importance to
provide information about the soil properties, and equally spaced borehole patterns can be

acceptable. However, the optimal borehole patterns are generally related to the failure
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mechanism of geotechnical systems. The soil elements at the influence zones that control the
failure mechanism of geotechnical systems are more influential in determining the optimal
borehole patterns. For instance, Chwata (2021) investigated the effect of the space between
two symmetrically distributed soil soundings on the bearing capacity of a rectangular footing
foundation. The optimal space was found to depend on the normalized scale of fluctuation by
the foundation length. It was concluded that the boreholes in the area with more dissipated
energy in the foundation were more effective in reducing the uncertainty of the bearing
capacity estimation. Li et al. (2016a) and Deng et al. (2017) showed that the boreholes at the
place where the slip surface was extended resulted in a more accurate estimate of the mean
and a smaller standard deviation of the factor of safety (FS) of the slope, since the soil
elements in these areas determined how the slip surface could be formed. However, most
current studies to optimize borehole patterns in geotechnical design have equally spaced
borehole patterns that follow traditional site investigation programs (Gong et al. 2014 & 2017,
Li et al. 2016a; Li et al. 2016b; Deng et al. 2017; Liu et al. 2020). Hence, the two optimized
objectives in the borehole patterns, which are the locations and total number, can be
considered a function of the borehole space, since sufficiently many boreholes will be fully
distributed in the site for a given borehole space. As mentioned above, since the soil elements
at the influence zone have a more considerable effect on the geotechnical system, more
boreholes should be arranged at the most important influence zones in sequence, which
implies that traditional equally spaced borehole patterns are more likely cost-inefficient.

This paper aims to propose an effective approach to optimize site investigation
considering the spatial soil variability in slope engineering based on correlation analysis,

where the influence zone can be automatically determined without prior knowledge about the
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slip surface. The effectiveness of the proposed method is validated in three aspects: the
estimate accuracy, uncertainty reduction, and risk reduction, according to previous studies
(Cai et al. 2019; Jiang et al. 2018b&2020; Yang et al. 2019&2022). The main advantages of
this approach compared to the traditional method are: 1) The influence zone of the slope
system can be automatically determined without prior knowledge about the slip surface; 2)
The locations and total number of boreholes are separately optimized; 3) Most estimate
accuracy and uncertainty reduction (in terms of the robustness) of the characteristics of the
slope can be obtained; 4) Most risk reduction (i.e., expected loss cost) can be reached in the
proposed method; 5) The proposed method is easy to implement due to its simple concept.
The remainder of the paper is organized as follows. The optimization methodology is first
briefly introduced. Then, an undrained slope example is taken to illustrate the effectiveness of
the proposed method. A comparison study is conducted to evaluate the estimated accuracy of
the characteristics of the slope (i.e., the factor of safety, location of slip surface, and sliding
volume) between the proposed method and traditional methods. Afterwards, the robustness of
the estimated results and risk reduction of the entire slope engineering system are

comprehensively assessed. Finally, the concluding remarks are made based on the results.

2 Methodologies to optimize the site investigation program

Due to the restriction of time and budget for most slope engineering projects, only
limited measured data (e.g., from boreholes) can be obtained. The soil properties at borehole
locations are “known” without uncertainty, while other soil properties from unsampled
locations are estimated by the borehole data with uncertainty. Since the spatial correlations of

soil properties generally decrease with the relative distance, the constraint of the borehole data
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decreases with the relative distance to the boreholes, which leads to more uncertainty in the
estimate of the soil properties far from existing boreholes. To characterize this feature and the
spatial variability of soil properties, the conditional random field theory is employed to
optimize the site investigation program (Li et al. 2016b; Liu et al. 2017). Conditional random
field simulations can be realized by statistical methods such as the Bayesian method, Hoffman
method, and kriging-based sampling method (Gong et al. 2018). As a linear unbiased
estimation method, the kriging-sampling method uses a weighted linear average of nearby soil
samples to predict soil properties at unsampled locations. The spatial autocorrelation function
and unconditional random field simulations are also incorporated in the generation of
conditional random fields. Thus, the soil property values at sampled locations always match
the known data in the conditional random field simulations by the kriging method. The
kriging method also ensures the uncertainty at unsampled locations in terms of the variance,
which reduces with the distance to the borehole locations, and no uncertainty of soil samples
at the sampled locations (i.e., the variance is zero), which is consistent with our basic
knowledge. In addition, the kriging-sampling method is computationally efficient and easy to
implement, since the high-dimensional matrix can be avoided, and the weight vector needs to
be calculated only once for any number of MCS in the point-by-point prediction of unsampled
soil samples. The kriging method has been validated to give sufficiently accurate and reliable
predictions by both theoretical models and realistic models (Wang et al. 2017; Li et al. 2016b;
Chen et al. 2018; Huang et al. 2019). Therefore, the kriging-sampling method is adopted in
this study. Based on the constructed conditional random fields, correlation analysis using the
Spearman rank correlation coefficient is performed to determine the optimal borehole patterns

(i.e., the locations and total number of boreholes). Although the conditional random field
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simulations by the kriging method are not new, the conditional random field simulation
procedures should be briefly introduced.
2.1 Conditional random field simulations of the soil properties

The conditional random fields by the kriging method are generated based on
unconditional random field simulations, which are first reviewed as follows. The soil
properties are generally assumed to be lognormally distributed because the soil properties
have nonnegative values (Jiang et al. 2018a&2018b; Gong et al. 2018; Yang et al. 2019; Chen
and Zhang 2021). For a lognormal random field soil property s with prior knowledge of the
mean s and coefficient of variation (COV) &, the mean guns and standard deviation o of the

equivalent normal random field Ins are calculated as follows.

O, = In(1+5.%) (1a)
lulns = ln(lu) - 0‘50131‘9 (lb)

The anisotropic exponential autocorrelation structure is adopted to characterize the
correlation coefficient pj; between the normalized soil property Ins at two different locations

of (x;, yi) and (x;, y;), which is calculated as follows.

2"‘/"‘1“_2‘%_3’!“
A Ay

) 2)

5

Pij :p(‘xj —Xi 5|V _yi‘):exp(_

where |x; — x;| and |y; — yi| are the absolute distances between two positions (x;, y;) and (x;, ;)
along the X and Y directions, respectively; Ainx and Amy are the scales of fluctuation of the
equivalent normal random field Ins along the X and Y directions, respectively.

A fixed value is assigned to the soil element domain instead of at the mesh grids. The

mean of the soil property zinse that should be averaged over the soil element domain is equal
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to that of the local soil property tans, while the standard deviation of the averaged soil property
omnsk 1s reduced. For the autocorrelation structure established in Eq. (2), the variance reduction
factor of the concerned element can be estimated by the equations in Knabe et al. (1998) and
Huang and Griffiths (2015) with a range of 0-1. There are various sampling methods to
generate unconditional random fields, such as the local average subdivision method,
turning-band method, fast Fourier transformation method, and covariance matrix
decomposition method (Fenton 1994; Yang and Ching 2021). In this study, the covariance
matrix decomposition method is used for random field generation. For given mean, standard
deviation, and autocorrelation structure, the ng x ng autocorrelation matrix Rins of the soil
property between every two soil elements can be constructed. A possible realization of the

lognormal random field simulation can be generated as follows.

S, = €xXp ( Mgy T Oy In S, ) 3)
where s;; 1s the jth numerical element of the i realization of the random field i=1,2,...,Np;j
=1, 2, ..., ng), N, is the number of realizations of the random field, and zg is the number of
discretized numerical elements of the slope; pnse; and omsg; are the averaged mean and
standard deviation of the soil property Ins over the j numerical element, respectively; Ins;; is

the /™ element of the i realization of the random field. The matrix Ins; of the soil property for

all numerical elements is derived as follows.
Ins, =L, & (4)
R, =L, xL, (4b)
where & is an ng X 1 standard normal sample vector (i = 1, 2, ..., N,), which may be obtained

with Latin hypercube sampling; Lins is a lower triangular matrix of autocorrelation matrix Rins
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derived by Cholesky decomposition technique.

Suppose that the borehole data are located at the points (x1, y1), (x2, 12)..., (Xp, ¥p) and
the unsampled locations are (xp+1, Vp+1), (Xp+2, Vp+2)..., (XxE, yug). Based on the generated
unconditional random fields and borehole data, the conditional random fields can be
simulated by the kriging method as follows (Liu et al. 2017):

Step 1: Calculate the locally averaged mean uane and standard deviation o of the soil
property s in normal space (see Eq. (1));

Step 2: Generate the unconditional random fields InsUC of soil property s in normal space
with obtained mean s, standard deviation o, and scales of fluctuation A and Amy (see
Eq. 2 and Eq. 4);

Step 3: Extract the values at sampled locations from the generated unconditional random
fields as the “known data”. The normalized soil properties Ins®Y at unsampled locations can

be estimated by the “known data” as

7 olaH &

K,=p, 0,0, (iandj=12,...,p) (5b)
T

B= BB P, (5¢)

Ki/' zpij 'O 'st (l: 15 23 (EES) nE'p;j: 1’ 2’ ’p) (Sd)

where K is the covariance matrix derived from borehole data, and each element Kj; of K can

be calculated by Eq. (5b); I'is a p X 1 vector with all values equal to 1; fis a p x 1 weight

P
vector (see Eq. (5¢)) with Z p.=1; kis the vector of covariance between the unsampled
i=1

point and borehole data, and each element x, of x is derived from Eq. (5d); [Jp; in Eq. (5b)
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is the spatial correlation between the i and /" borehole data (see Eq. (2)), while that in Eq.
(5d) is the spatial correlation between the i unsampled point and /" borehole data. With
obtained weight vector 8, for example, the soil property value of the (p+1)" soil element at

location (x,.,,,,,,) is estimated from borehole data as

p
lnSK(prrl’ypH):Zﬂi Ins(x;,y,) (6)
i=1

Step 4: Estimate the normalized soil property values Ins®¥ at unsampled locations with the
real known data by repeating step 3.
Step 5: Obtain the normal conditional random fields as

Ins‘(x,y) =Ins"* (x,7) +[Ins" (x, ) = Ins*Y (x, y)] (7)
where Ins““(x,y) is the unconditional random field; Ins*(x,y) is the random field
estimated by the kriging method for the given borehole data; Ins*Y(x,y) is the random field
estimated by the kriging method, which takes the values at the borehole locations from the
unconditional random field as the borehole data. According to Eq. (7), the soil properties at

unsampled locations are estimated as kriging random fields Ins**(x,y) with a stochastic
error of |Ins"(x,y)—Ins*Y(x,y)|, which increases with the distance between unknown and

known data. Therefore, the discontinuity of the soil property distribution can be avoided,
although the estimated soil properties at sampled locations always match the known data.
Step 6: Transfer the normal conditional random fields into lognormal conditional random

fields using Eq. (3).

2.2 Correlation analysis using Spearman rank correlation coefficient to locate additional

boreholes

10
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With the constructed conditional random fields, the characteristics of the slope (i.e.,
the factor of safety, location of the slip surface, and sliding volume) can be captured by Monte
Carlo simulations (MCS). Since stability assessment is the most crucial problem for the slope,
the most effective boreholes are more likely to locate at the places where the soil elements are
positively related to the factor of safety of the slope. Only the soil strength properties (e.g., the
undrained shear strength c,) are modeled by the random fields, and the large values of the
strength properties tend to correlate with higher values of FS. The values of the correlation
coefficient between each soil element and F'S, which can be either positive or negative, can be
implemented to characterize the contribution of the soil element to the FS instead of the
absolute values of the correlation coefficient. As shown later in the following example
application, there are very low negative relations between the soil elements far from the slip
surface and FS, while the soil elements near the slip surface strongly positively correlate with
F'S. Various correlation coefficients may be applied for the correlation analysis, such as the
Pearson correlation coefficient, Kendall correlation coefficient, and Spearman rank
correlation coefficient. Although the Pearson correlation coefficient is much more popular,
the Pearson correlation coefficient is generally effective in characterizing linear correlations
and more likely to mischaracterize the relationships and cause bias due to the nonnormality of
the data (Bishara and Hittner 2015). As an alternative (Bishara and Hittner 2015; De et al.
2016; Thirumalai et al. 2017), the Spearman rank correlation coefficient is 1) applicable for
both normal and nonnormal distributed data; 2) effective in characterizing linear or nonlinear
correlations; 3) more robust and insensitive to outliers. Compared to Kendall’s tau correlation
coefficient, the Spearman rank correlation coefficient is less computationally demanded, less

complicated and sufficiently accurate to characterize the correlations in this study. Therefore,
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the Spearman rank correlation coefficient is adopted to characterize the correlation between
soil elements and FS. Suppose that the soil property values of the /™ numerical element with
N realizations of the random field are s; = [s1), s2;, 53/, ..., Snp;] and the factors of safety with
N, random field simulations are FS = [FSi, FS2, ..., FSnxp]. The Spearman rank correlation

coefficient between the /™ soil element and FS is formulated as:

Ny

(n,; = 7_11 )y — ’_12)

i=

= = (8)
Z(nli - n1)2 \/Z(nZi - n2)2

pSpearman (sj’ FS) = \/

where n;; and n2; are the ascending or descending sorted positions determined by the values of
each element in s; and FS with N, random field simulations, respectively; 'is the mean of

n; (=1, 2, ..., Np); n: is the mean of ny; (i=1, 2, ..., N,). The Spearman rank correlation
coefficient can be directly obtained using a command (corr(s;, FS, ‘type’, ‘spearman’)) in
MATLAB, where all calculation procedures are involved. After the sensitive soil elements
with high Spearman rank correlation coefficients are revealed, the stability of the slope can be
accurately evaluated. Since each soil sample is equally mapped from the random field
simulations and plays an equal role in building a geotechnical profile, the amount of
information provided by each soil sample should be considered the same, while the
importance of information (characterized by the Spearman rank correlation coefficient in this
study) brought by each soil sample depends on the characteristics (e.g., failure mechanism) of
the geotechnical systems. The importance of information provided by a borehole is believed
to be well characterized by its statistics, i.e., the mean or sum of the data from the borehole.

However, it may be problematic in some scenarios when the sum-based method is adopted.
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For example, the important local area (e.g., slope toe) that controls the slope stability cannot
be well captured by the sum-based method, since the optimal borehole location is more likely
determined at the place where more data can be obtained by the sum-based method, which is
not consistent with the fact that the boreholes at the slope domain are generally more effective,
although fewer data are measured in this area (Li et al. 2016b). Therefore, the mean Spearman
rank correlation coefficient is adopted to evaluate the effectiveness of the borehole data for
the stability assessment of the slope.

The flowchart of the proposed method is illustrated in Figure 1. In the first step, N,
samples of unconditional random fields are generated with prior knowledge of the mean,
standard deviation, and scales of fluctuation of the soil properties. Then, the degree of the
influence of each soil element on the FS in terms of the Spearman rank correlation coefficient
is calculated in step 2. In step 3, the effectiveness of the additional borehole along all potential
horizontal locations is evaluated based on the mean Spearman rank correlation coefficient of
the soil elements from the borehole. The optimal borehole is located where the borehole has
the largest Spearman rank correlation coefficient. With the extracted borehole data, the
conditional random fields are simulated to consider the constraint of the added borehole in
step 4. In step 5, the FS, location of the slip surface, and sliding volume can be evaluated for
the updated borehole pattern. This process will be repeated until the target number of
boreholes (Npy) is reached. Whether the target probability of failure or the accuracy of the
target factor of safety is reached may be the optional ended conditions for the optimization.
These values generally depend on the specific slope problems, and the target number of

boreholes with a limited budget is assumed in this study.
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Step 1: Conduct N, unconditional random

field simulations without any borehole data

Y
Step 2: Calculate the Spearman rank
correlation coefficient between the soil
property s of each soil element and its
corresponding FS of the slope with Ny MCS

Y
Step 3: Obtain the Spearman rank correlation
coefficient of each borehole at all the potential
horiziontal locations and choose the one with
the maximum Spearman rank correlation

coefficient as the additional £ borehole

Y
Step 4: Extract soil properties located at the No

existing boreholes as known data
and perform N, conditional random field

simulations with the extracted data

Y
Step 5: Evaluate the stability of the slope and
derive the performance of the slope (e.g., the
location of slip surface and sliding volume)

Does the number
of borehole reach the target value
yithin limited budget? (e.g

Figure 1. Flow chart of the proposed method for site investigation

3. Example application for the slope problem

In this section, an undrained slope with a height of 10 m and a slope angle of 45° (1:1
slope) is adopted as an example to demonstrate the proposed method. The factor of safety is
obtained using the strength reduction method built in the 3-D explicit finite difference

program FLAC3D version 7.0 (Itasca 2022). The mesh size of the numerical model is 0.5 m
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by 0.5 m. The elastic-perfectly plastic Mohr—Coulomb model is adopted to model the soil
behaviors. A fixed boundary is applied to the slope bottom, while the roller boundary is
applied to the slope back and front faces. The undrained shear strength ¢, is simulated as
random fields, while other soil properties are set as constant values. The soil properties are
tabulated in Table 1. The effectiveness of the proposed method is validated by a comparative
study with traditional methods. To compare with the “true” site characterization, one of the
generated unconditional random field simulations is taken as a “true” slope (Shen et al., 2018).
Therefore, the characteristics of the “true” slope (i.e., the factor of safety, location of the slip
surface, and sliding volume) can be derived to validate the proposed method. The spatially
variable soil of the “true slope” with FS = 1.05 is illustrated in Figure 2(a), while the contours
of the displacement and shear strain increment are shown in Figure 2(b) and Figure 2(c),
respectively.

Table 1. Statistics of the soil properties for the example slope problem

Parameter Value
Density, p (kg/m?) 2000
Young’s modulus, £ (MPa) 100
Poisson’s ratio, v 0.30
Mean of undrained shear strength, ¢, (kPa) 40
COV of undrained shear strength c, 0.3
Horizontal scale of fluctuation, Ainx (m) 40
Vertical scale of fluctuation, Ainy (M) 4

15
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In the traditional method, boreholes generally have an equally spaced distribution or
are symmetrically distributed in an estimated influence zone (Gong et al. 2014; Yang et al.
2019&2022). However, the determination of the range of the influence zone considerably
depends on the engineers’ experience in practice, which leads to cost-inefficient design. For
the slope in Figure 2, without loss of generality, 9 boreholes (Ngu = 9) with a limited budget
are assumed for the slope problem. According to Li et al. (2016a) and Deng et al. (2017),
boreholes that reveal the location of the slip surface are more effective. In the numerical
analysis of slope stability by FLAC3D, two main methods are employed to automatically
locate the slip surface (Wang et al., 2020). The first method is the shear strain
increment-based (SSI-based) method, and the other method is the nodal displacement-based
method. The latter is more extensively used for its simplicity, and it is now built in FLAC3D.
This method can also be effective in identifying local failures in 3-D slopes with spatially
variable soil (Zhang et al. 2022). Therefore, the nodal displacement-based method is adopted
to locate the slip surface in this study. In the nodal displacement-based method, a threshold of
the maximum nodal displacement of all mesh grids should be first determined. A soil element
where the displacement of all nodes exceeds the threshold of the maximum nodal
displacement will be considered a sliding soil element. The sliding surface is identified as the
boundary between sliding soil elements and stable soil elements. To determine the threshold
value of the maximum nodal displacement, the slip surface derived by the max shear strain
increment can be taken as a benchmark (Hicks et al. 2014). The results in Figure 3 indicate
that the contour of 35% maximum nodal displacement coincides with the contour of the
maximum shear strain increment for the “true” slope. As shown in Figure 3, it is suggested

that some advanced smoothing methods such as the polynomial spline technique should be
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applied to the slip surface to satisfy the kinematic demands for the slope (Wang et al. 2020).
However, the unsmoothed error is negligible in the comparison results. Therefore, the fitting

technique is not implemented in this study to simplify the calculation of the sliding volume.

=

— SSI-based method
— Displacement-based method
Smoothed slip surface
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(=]
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I3}
(=]

Horizontal direction, X (m)
Figure 3. Location of the slip surface, which is determined by 35% of the maximum nodal

displacement and maximum shear strain increment

Based on the traditional method, several boreholes may be equally spaced and applied
to the area where the slip surface is accurately estimated, which is denoted as the borehole
pattern with good judgement (see Figure 4(a)). Since the slip surface is bound to go through
the slope domain, all boreholes can be located at the slope domain, which is denoted as the
borehole pattern with moderate judgement (see Figure 4(b)). To avoid the nonconservative
design, a sufficiently larger area (of the model domain) may be estimated for the borehole
distributions, which is denoted as the borehole pattern with poor judgement (see Figure 4(c)).
With predefined traditional borehole patterns, Monte-Carlo simulation (MCS) is employed to
capture the performance of the slope. As shown in Figure 5(a), the mean and standard
deviation of FS converge when 800 MCS runs are performed. From Figure 5(b), the mean
Spearman rank correlation coefficient of the soil elements from the entire numerical model

and one borehole at the slope crest also becomes stable within 800 runs. Therefore, 1000 runs
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of MCS (N, = 1000) are considered sufficient to obtain the slope system responses. With 1000
runs of MCS, both unconditional and conditional random field simulations are validated by
the comparison between the preset statistics (e.g., the mean and standard deviation) of soil
properties and those derived from the simulations (Gong et al. 2018; Huang et al. 2019; Johari

and Fooladi 2020).
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Figure 5. Convergence of the FS and Spearman rank correlation coefficient with the increase
in number of MCS runs

Following the proposed site investigation method, the boreholes are added step by step.
Figure 6 shows the contour of the Spearman rank correlation coefficient without boreholes.
The soil elements with a large Spearman rank correlation coefficient are distributed at the
bottom of the slope domain, since these soil elements may determine whether the deep mode
or shallow mode of failure will occur if no borehole is applied. The first borehole is optimized
at X =9.75 m (i.e., at the slope toe), which is consistent with the conclusion from Jiang et al.
(2018a). Thus, the final borehole pattern from the proposed method is illustrated in Figure 7.
The characteristics of the slope (i.e., the factor of safety, location of the slip surface, and
sliding volume) with the traditional methods and proposed method are studied in the

following comparative study.
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Figure 7. Borehole pattern obtained using the proposed method

3.2 Comparison study on the estimate of the slope characteristics

The mean FS with a (negative or positive) standard deviation from 1000 MCS is
presented in Figure 8. As shown in Figure 8, the difference between FS of the “true” slope
and mean estimated F'S from all borehole patterns decreases with the number of boreholes.

When the number of boreholes is larger than 3 (i.e., Nsu=>3), the error is negligible, which
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implies that the mean FS can be effectively estimated for all borehole patterns. The standard
deviation of the FS rapidly decreases with the increase in number of boreholes by applying
the borehole patterns from the proposed method and traditional method with good judgement,
which indicates that these two methods are superior to the other two in reducing the

uncertainty of F'S.
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Figure 8. A comparison study of the estimated FS among different borehole patterns

The uncertainty of the location of the slip surface can be characterized by the area of
the potential locations of the slip surface (Liu et al. 2017) or the uncertainty of the controlling
points (Johari and Gholampour 2018; van den Eijnden and Hicks 2018). The latter is used in
this study for its simplicity. As shown in Figure 9, there are three controlling points 4, B and
C at the slip surface of the slope. The leftmost and rightmost points 4 and B determine the
range of the influence zone, which can be calculated by summing the horizontal distance from
point A to slope crest dpegin and that from point B to slope crest dend. The deepest point C is
related to the slope failure mechanism. If the vertical distance from point C to slope toe dpeep

is positive, a deep failure mode will occur for the slope. Otherwise, the shallow failure mode
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can be found. When the location of the slip surface is determined, the sliding volume can be
easily calculated. With the adopted methods, the location of the slip surface of the “true”
slope is derived as degin = 8.5 m, dgnd = 9.5 m, and dpeep = 0.5 m, while the sliding volume of
the “true” slope is ¥ = 101.75 m*/m. The estimated results of the location of the slip surface
and sliding volume without boreholes are summarized in Figure 10. As shown in Figure 10,
the estimated mean u is far from the “true” value, and the standard deviation ¢ is large in the
estimated results of the location of the slip surface and sliding volume, which indicates
considerable estimate errors and uncertainties in the location of the slip surface when there is

no site investigation effort (reflected by the total number of boreholes required).
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428 The comparison results of the estimate on the location of the slip surface and sliding
429 volume are plotted in Figure 11. The borehole pattern with the traditional method from poor
430 judgement causes significant deviation on the estimated slip surface (represented by three
431 controlling points) and sliding volume. The deviation from the “true” value appears
432 insensitive to the number of boreholes with poor judgement, since the location of the slip
433 surface is not revealed by most boreholes from this method. The borehole pattern with
434 moderate judgement provides a similar trend when there are 4 boreholes but with relatively
435 less deviation. This result can be explained by the small space between every two boreholes,
436 which makes the effect of the boreholes considerably overlapped. For borehole patterns with
437 good judgement, very moderate effort (i.e., Npu = 3) is sufficient to accurately characterize
438 the location of the slip surface and sliding volume. Comparing the three borehole patterns
439 from traditional methods, the borehole pattern from good judgement is the most cost-efficient.
440 The difference among the three borehole patterns is the confidence in the estimated influence
441 zone. Therefore, if the range of the influence zone is over- or underestimated, the borehole
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442 space may be problematically determined, and the increase in borehole number does not

443 necessarily improve the accuracy in estimating the slip surface and sliding volume, which
444 results in considerable challenges in the borehole configuration for the traditional method. For
445 the proposed method, nine boreholes are required to accurately estimate the slip surface and
446 sliding volume. The proposed method appears to require more effort than the results from
447 good judgement. However, an implicit huge effort may be needed to guarantee the accurate
448 estimation of the location of the slip surface for good judgement in practical slope problems,
449 which is not evaluated in this comparison study. Therefore, the superiority of nonequal
450 spacing planning of the site investigation based on the Spearman rank correlation coefficient
451 is sufficiently demonstrated.
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and traditional method

3.3 Discussion of the borehole pattern from the proposed method

As mentioned above, effective boreholes should be located to reveal the location of
the slip surface, and the challenge for this objective is how to accurately estimate the range of
the “true” sliding area. Figure 7 shows the final borehole pattern from the proposed method. It
seems the fourth, the fifth and the sixth boreholes are ineffective in this borehole pattern,
since the three boreholes are outside the “true” influence zone. However, the sliding area is
well bracketed by the fourth and fifth boreholes. The two boreholes can be useful to estimate
the influence zone, since a small error will be obtained. The effect of the sixth borehole can be
illustrated by the change in contour of the Spearman rank correlation coefficient with different
numbers of boreholes. The contour of the Spearman rank correlation coefficient with the fifth
and sixth boreholes is plotted in Figure 12. As shown in Figure 12, with five boreholes
applied to the slope, it is still difficult to examine if the area on the right of the fifth borehole
is a low or high correlated soil zone because the large initial investigation area is adopted
(from X = -40 m to X = 30 m). After applying the sixth borehole, this area is updated as a
low-correlated soil zone. Therefore, the sixth borehole can be considered a part of the effort to
automatically identify the influence zone. Figure 13 shows the contour of the Spearman rank
correlation coefficient with nine boreholes from the proposed method. The final influence
zone is derived as the area between the fifth and sixth boreholes, while the remaining area is a
low-correlated soil zone. Therefore, it is effective to automatically estimate the influence zone
for the slope with the proposed method, even if the initial investigation area is considerably

conservatively selected.
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Figure 12. Illustration of the effect of the sixth borehole from the proposed method
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4. Robustness analysis and risk assessment

In addition to the characteristics of the slope, uncertainty reduction and risk reduction
are aspects of slope design. In this section, robustness analysis and risk assessment are
performed to validate the effectiveness of the proposed method in the comparison study.
4.1 Robustness analysis

The robustness is defined as the sensitivity of the system response to the variation in
input parameters. The higher robustness of the geotechnical system implies that the system
can better resist the uncertainty of input parameters. Various robustness measurements are
formulated in geotechnical engineering, and the signal-to-noise ratio (SNR) is a commonly
used robustness measurement for slope problems (Gong et al. 2015&2017&2020). In this
paper, SNR is adopted to assess the robustness of the slope system, and a higher SNR value
indicates a higher system robustness. The F1S, location of the slip surface, and sliding volume
are treated as the response of concern for the slope problem. The robustness of the FS,

location of the slip surface, and sliding volume can be calculated using Egs. (9-11),
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respectively. The robustness of the location of the slip surface is evaluated using the average
SNR of the three controlling points of the slip surface. With the obtained SNR values for the
FS, location of the slip surface and sliding volume, the robustness of the entire slope system
can be calculated using Eq. (12) based on a weighted average of three SNR values from Egs.

(9-11) (Gong et al. 2017).

2
SNR,; = 1010&0(/1_?) )
FS
SNR, =%(SNRA +SNR, +SNR..) (10a)
qu
SNR, =10l0g,, (=) (10b)
GdBegm
qu
SNR, =10log,,(—2=) (10c)
O-dEnd
,U2
SNR,. =10log,, (2 (10d)
Oty
qu
SNR, =10log,,(£%) (11)
O-V
S =w, SNR,c + w,SNR, +w,,SNR, (12)

where SNRrs, SNR, and SNRy are the robustness for the estimation of the FS, location of slip
surface (L) and sliding volume (¥), respectively; SNR4, SNRp, and SNRc are the robustness for
the estimation of the horizontal distance of point 4 to the slope crest (dBegin), horizontal
distance of point B to the slope crest (dend) and vertical distance of point C to the slope toe
(dpeep), respectively. The robustness estimation of the location of the slip surface can be

characterized by the averaged SNR., SNRp and SNRc. The overall robustness S for the slope is
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a weighted summation of the three terms in Egs. (9-11). The weighted factors wrs, w, and wy
may be determined by their corresponding contributions to the given geotechnical problems.
Here, wrs = wr = wy =1 is assumed for simplicity (Gong et al. 2017).

The robustness analysis results for different borehole patterns are plotted in Figure 14.
The highest overall SNR value § can be obtained from the proposed method, which indicates
that this method finds the most robust estimated characteristics of the slope. The overall SNR
values S from traditional methods with good judgement and poor judgement increase with the
number of boreholes, while those from the traditional method with moderate judgement
converge at Ngy = 3. It seems that the borehole pattern with good judgement is the most
effective in the robustness analysis, followed by the borehole pattern with moderate
judgement, since all boreholes with good judgement are located at the influence zone and
considerably reduce the uncertainty of the location of the slip surface and sliding volume.
However, although the effect of the boreholes from moderate judgement is overlapped due to
small borehole space and more additional boreholes cannot improve the robustness of the
estimated results of the characteristics of the slope after Ngu = 3, more investigation effort is
required to reach the higher level of robustness for the slope system, which is consistent with
the fact that most boreholes based on poor judgement are outside the “true” influence zone.
Therefore, the superiority of the robustness performance with the proposed method is

sufficiently demonstrated.
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Figure 14. Overall robustness with the increase in number of boreholes

4.2 Risk assessment

Risk assessment can provide information for risk-informed decision-making. Herein,
the risk assessment for site investigation of slope problems is conducted following Yang et al.
(2019). According to Yang et al. (2019), the total loss cost Cioar With different numbers of
boreholes can be described as

Ctotal = NBH * CBH + Pr* Cralse (13)

where Ngh is the number of boreholes; Cgu is the average cost of one borehole; Py is the
probability of failure of the slope; the Cruseis the of making a false decision. To improve the
computational efficiency of the calculation of P, the MCS-based moment method FM-1 is
adopted to estimate the probability of failure (Zhao and Ono 2001; Zhang et al. 2022). The
MCS is first performed to derive the dimensionless moments of the limit state function that
define the slope failure based on FS. Then, the formulas related to dimensionless moments are
utilized to estimate the probability of failure. Detailed descriptions and formulas can be found

in Zhao and Ono (2001) and Zhang et al. (2022). Figure 15 shows the validations of the
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moment method FM-1 to estimate the probability of failure in this slope example, where the
analyses are performed for 25 slope scenarios with different numbers of boreholes. As shown
in Figure 15(a), the probabilities of failure from the FM-1 moment method are well bracketed
by the 90% confidence intervals of the probabilities of failure from the MCS. The Pearson
correlation coefficient between Py obtained from the MCS and that from the FM-1 moment
method is 0.998 in Figure 15(b), which implies a strong linear correlation between them and
validates the accuracy of the FM-1 moment method. The cost of each borehole is assumed to
be Cpu = SAUD 5,000, and the loss of making the false unsafe assessment of the slope
stability is assumed to be Crise = SAUD 150,000 following Yang et al. (2019), although the
measured data may be suggested to be more acceptable for the risk assessment if there are

available data.

1.0 T ‘ T T 1.0 : y
% O Mean of P, 43 O Mean of P,
e [ 90% confidence interval of P, = - --- Fitting line
6 08f- - -1:1 line ] ‘g 0.8 ’
£ ,@ 2 o
g = o
o 0.6f L7 < 0.6} .
S 5 g g
—_ o e ’OQ
£ 04} K] £ 04} e
& , = @
E &* 3 O s = 0.998
B 3 .z | y earson :
= 0.2 /@ £ 0.2 @
2 p S L
S 5 a )

002 : : : 04 L : : :

0.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0

P,derived from the fourth-moment method

P, derived from the fourth-moment method
' FM-1(Zhao and Ono 2001)

FM-1(Zhao and Ono 2001)

(a) Prfrom MCS versus that from FM-1  (b) Pearson correlation coefficient analysis
Figure 15. Validation of the moment method FM-1 (Zhao and Ono 2001) in estimating the
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Figure 16 shows that the expected total loss cost first decreases and subsequently
increases with the number of boreholes for the proposed method. A minimum expected loss
cost of approximately SAUD 25,000 with five boreholes (Npu = 5) is obtained in the proposed
method. From Eq. (13), the expected total loss cost consists of two parts: the cost of the
boreholes and the expected loss cost of making a false decision. With the increase in number
of boreholes applied to the slope, the mean FS will approach the “true” FS, and the standard
deviation of FS will decrease. Since the “true” FS is 1.05, which is larger than 1, Py will be
close to 0 when sufficient boreholes are located at the slope, so the loss cost of making a false
decision approaches 0. The total cost of the loss cost will be dominated by the cost of the
boreholes. A minimum loss cost of approximately $AUD 31,000 with the same site
investigation effort (Mg = 5) is reached in the borehole pattern with good judgement.
Compared to the risk assessment results from good judgement, an approximate 19% loss cost
can be avoided from the proposed method. A similar trend of the loss cost to the proposed
method can be obtained in the traditional method with moderate judgement, and the minimum
loss cost is reached with four boreholes (Ngu = 4). However, the loss cost from moderate
judgement is higher than these two methods, since a small borehole space results in the
overlapped effect of the applied boreholes. For poor judgement, the total cost decreases with
the increase in number of boreholes, but it generally yields the highest amount of total cost,
which can be explained by the fact that the uncertainty of F'S cannot be effectively reduced
based on the method from poor judgement (see Figure 8). Therefore, the advantage of the
proposed method in risk reduction is sufficiently validated.

The estimated accuracy of the characteristics of the slope, robustness of the estimated

results and risk reduction of the proposed method are evaluated in an undrained slope
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example. It is suggested to adopt five boreholes (Ngu = 5) for the slope problem when
applying the proposed method, since the overall performance of the slope system can be well
evaluated from many perspectives. For instance, when five boreholes are configured in this
slope, the “true” influence zone can be estimated with tolerable error, and the risk reduction is
maximal. For the robustness analysis, the borehole pattern with Npu = 5 is the second highest
cost-effective borehole pattern in Figure 14. Thus, Ngu = 5 is considered the optimal number
for the proposed method based on the gain-sacrifice relationship between cost and

investigation effort.
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Figure 16. A comparison study of risk assessment of different borehole patterns

5. Summary and conclusions

This paper proposed an optimization method for geotechnical site investigation to
minimize the risk and associated site investigation effort and maximize the robustness of the
slope system. The proposed method can optimize the location and number of boreholes
without prior knowledge about the slip surface, which results in adaptive patterns of borehole

planning based on the Spearman rank correlation coefficient with unequal space for a given
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slope site. Compared to the traditional method, the advantages of the proposed method are:

1) The location and number of boreholes can be optimized considering the synthesized
system responses (e.g., FS, location of slip surface and sliding volume, robustness, and risk)
in the proposed method. The proposed method accurately estimates F'S, the location of the slip
surface, and the sliding volume if sufficient boreholes are applied.

2) The proposed method can similarly reduce the uncertainty of F'S compared with the
traditional method with good judgement and tends to obtain a more robust site investigation
program than traditional borehole patterns.

3) The proposed method minimizes the risk with the optimized number of boreholes.
The effectiveness of this optimized borehole pattern on the estimate of the range of influence
zone and robustness of the slope system can also be reached in this scenario.

4) The proposed method is straightforward and easy to implement to automatically
identify the range of the sliding area with unequally spaced borehole patterns, which provides
a reference to build an adaptive unequally spaced borehole pattern without prior knowledge

about the slip surface in practice.
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