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MULTIPLE IMPROVEMENTS OF MULTIPLE
IMPUTATION LIKELIHOOD RATIO TESTS

By Kin Wai Chan and Xiao-Li Meng

The Chinese University of Hong Kong and Harvard University

Multiple imputation (MI) inference handles missing data by first
properly imputing the missing values m times, and then combining
the results from the m complete-data analyses. However, the existing
method for combining likelihood ratio tests has multiple defects: (i)
the combined test statistic can be negative in practice but its null
distribution is approximated by a standard F distribution; (ii) it is
not invariant to re-parametrization; (iii) it fails to ensure monotonic
power due to its use of an inconsistent estimator of the fraction of
missing information (FMI) under the alternative hypothesis; and (iv)
it requires non-trivial access to the likelihood ratio test statistic as
a function of estimated parameters instead of datasets. This paper
shows, via both theoretical derivations and empirical investigations,
that essentially all of these problems can be straightforwardly ad-
dressed if we are willing to perform an additional likelihood ratio test
by stacking the m completed datasets as one big completed dataset.
A particularly intriguing finding is that the FMI itself can be esti-
mated consistently by a likelihood ratio statistic for testing whether
the m completed datasets produced by MI can be regarded effec-
tively as samples coming from a common model. Practical guidelines
are provided based on an extensive comparison of existing MI tests.
Intrigued issues regarding nuisance parameters are also discussed.

1. Historical Successes and Failures. Missing-data problems are
ubiquitous in practice, to the extent that the absence of any missingness
often is a strong indication that the data have been pre-processed or ma-
nipulated in some way (e.g., Blocker and Meng, 2013). Multiple imputation
(MI) (Rubin, 1978, 2004) has been a preferred method by many practition-
ers, especially those who are ill-equipped to handle missingness on their
own, due to lack of information or skills or resources. MI relies on the data
collector (e.g., a census bureau) to build a reliable imputation model to fill
in the missing data mpě 2q times, so the users of the data can apply their
favorite software or procedures that are designed to handle complete data,
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and do so m times. MI inference, e.g., hypothesis testing, is then performed
by appropriately combining these m complete-data results.

Although MI was designed initially for public-use datasets, over the past
30 years or so, it has become a method of choice for handling missing data in
general, because it separates the handling missingness from conducting anal-
ysis (e.g., Tu et al., 1993; Rubin, 1996, 2004; Schafer, 1999; King et al., 2001;
Peugh and Enders, 2004; Kenward and Carpenter, 2007; Rose and Fraser,
2008; Holan et al., 2010; Kim and Yang, 2017). Software routines for per-
forming MI are now available in R (van Buuren and Groothuis-Oudshoorn,
2011; Su et al., 2011), Stata (Royston and White, 2011), SAS (Berglund and
Heeringa, 2014) and SPSS; also see Harel and Zhou (2007) and Horton and
Kleinman (2007) for summaries on software that utilize MI.

This convenient separation, however, creates the thorny issue of uncon-
geniality, i.e., the incompatibility between the imputation model and the
subsequent analysis procedures (Meng, 1994a). This issue is examined in
detail by Xie and Meng (2017), which shows that uncongeniality is easiest
to deal with when the imputer’s model is more saturated than the user’s
model/procedure, and when the user is conducting efficient analysis, such
as likelihood inference. The current paper, therefore, focuses on conducting
MI likelihood ratio tests (LRTs), assuming the imputation model is suffi-
ciently saturated to render the validity of the common assumptions, which
we shall review, made in the literature about conducting LRTs with MI.

Like many hypothesis testing procedures in common practice, the exact
null distributions of various MI test statistics, LRTs or not, are intractable.
This intractability is not computational, but rather statistical due to the
well-known issue of nuisance parameter, that is, the lack of pivotal quantity,
as highlighted, historically, by the Behrens-Fisher problem (Wallace, 1980).
Indeed, the nuisance parameter in the MI context is the so-called “the frac-
tion of missing information” (FMI), which is determined by the ratio of the
between-imputation variance to within-imputation variance (and its multi-
variate counterparts), and hence the challenge we face is almost identical to
the one faced by the Behrens-Fisher problem, as shown in Meng (1994b).

An added challenge in the MI context is that the user’s complete-data
procedures can be very restrictive. What is available to the user could vary
from the entire likelihood function, to point estimators such as MLE and
Fisher information, to a single p-value. Therefore, there have been a variety
of procedures proposed in the literature, depending on what quantities we
assume the user has access to, as we shall review shortly.

Among them, a promising idea was to directly combine LRT statistics.
However, the execution of this idea as presented in Meng and Rubin (1992)
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relied too heavily on the usual asymptotic equivalence (in terms of the data
size, not the number of imputations, m) between the LRT and Wald test
under the null. Its asymptotic validity, unfortunately, does not protect it
from quick deterioration for small data sizes, such as delivering negative
“F test statistic” or FMI. Worst of all, the test can have essentially zero
power because the estimator of FMI can be badly inconsistent under some
alternative hypotheses. In addition, the combining rule of Meng and Rubin
(1992) requires the user to have access to the LRT as a function of parameter
values, not just as a function of the data. The former one is often unavailable
from standard software packages. This defective MI LRT, however, has been
adopted by textbooks (e.g., van Buuren S, 2012; Kim and Shao, 2013) and
popular software, e.g., the function pool.compare in the R package mice

(van Buuren and Groothuis-Oudshoorn, 2011), the function testModels in
the R package mitml (Grund et al., 2017), the function milrtest (Medeiros,
2008) in the Stata module mim (Carlin et al., 2008).

To minimize the negative impact of this defective LRT test, this paper
derives MI LRTs that are free of the defects as outlined in the abstract and
detailed in § 1.3 below. We achieve this mainly by switching the order of two
main operators in the combining rule of Meng and Rubin (1992): Maximizing
the average of the m log-likelihoods instead of averaging the maximizers
of them. This switching, guided by the likelihood principle, automatically
renders positivity, invariance and monotonic power. Other judicious uses of
the likelihood functions permit us to overcome the remaining defects.

The remainder of Section 1 provides background and notation. Section 2
then discusses the defects of the existing MI LRT and our remedies. Sec-
tion 3 investigates computational requirements for our proposals, including
theoretical considerations and comparisons. In particular, Algorithm 1 of
Section 3.1 computes our most recommended test. Section 4 provides em-
pirical evidence with simulated and real data. Section 5 calls for future work.
Appendices A–C supplement with proofs, and additional investigations.

1.1. Notation and Complete-data Tests. Let Xobs and Xmis be, respec-
tively, the observed and missing parts of an intended complete dataset
X “ Xcom “ tXobs, Xmisu, which consists of n observations. Denote the
sampling model — probability or density, depending on the data type —
of X by fp¨ | ψq, where ψ P Ψ Ă Rh is a vector of parameters. The goal is
to test H0 : θ “ θ0 when only Xobs is available, where θ “ θpψq P Θ Ă Rk
is a function of ψ, and θ0 is a specified vector. For simplicity, we will focus
on the standard two-sided alternative, but our approach adapts to general
complete-data LRTs. Denote the true values of ψ and θ by ψ‹ and θ‹. Here
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we assume Xobs is rich enough that the missing data mechanism is ignor-
able (Rubin, 1976), or it has been properly incorporated into the imputation
model by the imputer, who may have access to additional confidential data.

Let pθ “ pθpXq and U “ Uθ “ UθpXq be respectively the complete-data
MLE of θ and an efficient estimator of Varppθq (e.g., the inverse of the observed
Fisher information). Also, let pψ0 “ pψ0pXq and pψ “ pψpXq be respectively
the H0-constrained and unconstrained complete-data MLEs of ψ, and Uψ “

UψpXq be an efficient estimator of Varp pψq. For testing H0 against H1, the

common choices include the Wald statistic DW “ dWp
pθ, Uq{k and the LRT

statistic DL “ dLp
pψ0, pψ | Xq{k, where

dWp
pθ, Uq “ ppθ ´ θ0q

ᵀU´1ppθ ´ θ0q, dLp
pψ0, pψ | Xq “ 2 log

fpX | pψq

fpX | pψ0q
.

Under regularity conditions (RCs), such as those in § 4.2.2 and § 4.4.2 of Ser-
fling (2001) when the rows of X are independent and identically distributed,
we have the following classical results.

Property 1.1. Under H0, (i) DW ñ χ2
k{k and DL ñ χ2

k{k; and (ii)

npDW ´ DLq
pr
Ñ 0 as n Ñ 8 where “ñ” and “

pr
Ñ” denote convergence in

distribution and in probability, respectively.

Testing θ “ θ0 based onXobs is more involved. For MI, let X` “ tXobs, X
`
misu,

` “ 1, . . . ,m, be the m completed datasets, where X`
mis are drawn condition-

ally independently from a proper imputation model given Xobs; see Rubin
(2004). We then carry out a complete-data estimation or testing procedure
on X`, ` “ 1, . . . ,m, resulting in a set of m quantities. The so-called MI
inference is to appropriately combine them to obtain a single answer.

1.2. MI Wald Test and Fraction of Missing Information. Let d`W “

dWp
pθ`, U `q, pθ` “ pθpX`q and U ` “ UpX`q be the imputed counterparts of

dWp
pθ, Uq, pθ and U , respectively, for each `. Also, write their averages as

(1.1) dW “
1

m

m
ÿ

`“1

d`W, θ “
1

m

m
ÿ

`“1

pθ`, U “
1

m

m
ÿ

`“1

U `.

Under congeniality (Meng, 1994a), one can show that asymptotically (Rubin
and Schenker, 1986) Varpθq can be consistently estimated by

(1.2) T “ U ` p1` 1{mqB, where B “
1

m´ 1

m
ÿ

`“1

ppθ` ´ θqppθ` ´ θqᵀ
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is known as the between-imputation variance, in contrast to Ū in (1.1), which
measures within-imputation variance. Intriguingly, 2T serves as a universal
(estimated) upper bound of Varpθq under uncongeniality (Xie and Meng,
2017). Under RCs, we have that, as m,nÑ8,

npU ´Uθq
pr
Ñ 0, npT ´Tθq

pr
Ñ 0, npB ´Bθq

pr
Ñ 0

for some deterministic matrices Uθ, Tθ and Bθ “ Tθ ´Uθ, where 0 denotes
a matrix of zeros, and the subscript θ highlights that these matrices are
for estimating θ, because there are also corresponding Tψ,Bψ,Uψ for the
entire parameter ψ. Similar to U , T and B, we define Uψ, Tψ and Bψ for the

component ψ. Note that if pθcom and pθobs are the MLEs of θ based on Xcom

and Xobs (under congeniality), respectively, then Uθ l Varppθcomq and Tθ l
Varppθobsq as nÑ8, where An l Bn means that An ´Bn “ oppAn `Bnq.

The straightforward MI Wald test DWpT q “ dWpθ, T q{k is not practical
because T is singular when m ă k (usually 3 ď m ď 10). Even when it
is not singular, it is usually not a very stable estimator of Tθ because m
is small. To circumvent this problem, Rubin (1978) adopted the following
assumption of equal fraction of missing information (EFMI).

Assumption 1 (EFMI of θ). There is r ě 0 such that Tθ “ p1` rqUθ.

EFMI clearly is a very strong assumption, implying that the missing data
have caused an equal amount of loss of information for estimating every
component of θ. However, as we shall see shortly, the adoption of this as-
sumption, for the purpose of hypothesis testing, is essentially the same as to
summarize the impact of (at least) k nuisance parameters due to FMI by a
single nuisance parameter, i.e., the average FMI across different components.
How well this reduction strategy works therefore will affect more the power
of the test than its validity, as long as we can construct an approximate
null distribution that is more robust to the EFMI assumption. The issue of
power turns out to be a rather tricky one, because without the reduction
strategy we would also lose power when m{k is small or even modest. It is
because we simply do not have enough degrees of freedom to estimate all
the nuisance parameters well or at all. We will illustrate this point in § 4.2.
(To clarify some confusions in literature, r in Assumption 1 is the odds of
the missing information, not the FMI, which is f “ r{p1` rq.)

Under EFMI, Rubin (2004) replaced T by p1` rr1WqU , where

(1.3) rr1W “
pm` 1q

kpm´ 1q
pd
1

W ´ rd1Wq; d
1

W “
1

m

m
ÿ

`“1

dWp
pθ`, Uq,
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rd1W “ dWpθ, Uq, and the prime “1” indicates that U is used instead of individ-
ual tU `um`“1. Then, Rubin (2004) proposed a simple MI Wald test statistic:

(1.4) rD1W “
rd1W

kp1` rr1Wq
.

The intuition behind (1.3)–(1.4) is important because the forms here are the
building blocks for virtually all the subsequent developments. The “obvious”
Wald test statistic rd1W{k is too large (compared to the usual χ2

k{k) because
it fails to take into account of missing information. The p1 ` rr1Wq factor
attempts to correct this, with the amount of correction determined by the
(average) amount of between-imputation variance relative to the within-
imputation variance. Expression (1.3) shows that this relative amount can
be estimated by contrasting the average of individual Wald statistics and
the Wald statistic based on an average of individual estimates. Using the
difference between “average of functions” and “function of average”, namely,

(1.5) AvetGpxqu ´GpAvetxuq

is a common practice, e.g., Gpxq “ x2 for variance; see Meng (2002).
Since the exact null distribution of rD1W is intractable, Li et al. (1991b)

proposed to approximate it by F
k, rdfprr1W,kq

, the F distribution with degrees

of freedom k and rdfprr1W, kq, where, denoting Km “ kpm´ 1q,

(1.6) rdfprm, kq “

"

4` pKm ´ 4qt1` p1´ 2{Kmq{rmu
2, if Km ą 4;

pm´ 1qp1` 1{rmq
2pk ` 1q{2, otherwise.

This approximation assumes n is sufficiently large so that the standard
asymptotic χ2 distribution in Property 1.1 can be used. If n is small, the
small sample degree of freedom in Barnard and Rubin (1999) should be used.

1.3. The Current MI Likelihood Ratio Test and Its Defect. Let d`L “

dLp
pψ`0,

pψ` | X`q, pψ`0 “
pψ0pX

`q and pψ` “ pψpX`q be the imputed counterparts

of dLp
pψ0, pψ | Xq, pψ0 and pψ, respectively, for each `. Let their averages be

dL “
1

m

m
ÿ

`“1

d`L, ψ0 “
1

m

m
ÿ

`“1

pψ`0, ψ “
1

m

m
ÿ

`“1

pψ`.(1.7)

Similar to rr1W, Meng and Rubin (1992) proposed to estimate rm by

rrL “
m` 1

kpm´ 1q
pdL ´

rdLq, where rdL “
1

m

m
ÿ

`“1

dLpψ0, ψ | X
`q,(1.8)
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and hence it is again in the form of (1.5). Computation of rrL requires users
to have access to (i) a subroutine for pX,ψ0, ψq ÞÑ dLpψ0, ψ | Xq, and (ii) the
estimates pψ`0 and pψ`, rather than the matrices U and B. Therefore computing
rrL is easier than computing rr1W. The resulting MI LRT is

(1.9) rDL “
rdL

kp1` rrLq
,

whose null distribution can be approximated by F
k, rdfprrL,kq

.

The main theoretical justification (and motivation) was the asymptotic
equivalence between the complete-data Wald test statistic and LRT statis-
tic under the null, as stated in Property 1.1. This equivalence permitted
the replacement of d

1

W and rd1W in (1.3) respectively by dL and rdL in (1.8).
However, this is also where the problems lie.

First, with finite samples, 0 ď rdL ď dL is not guaranteed, consequently
nor is rDL ě 0 or rrL ě 0. Since rDL is referred to an F distribution and rrL

estimates rm ě 0, clearly negative values of rDL or rrL will cause trouble.
Second, rDL is not invariant to re-parameterization of ψ. For each individ-

ual LRT statistic d`L and bijective map g such that ϕ “ gpψq, we have

d`L “ dLp
pψ`0,

pψ` | X`q “ dLpg
´1ppϕ`0q, g

´1ppϕ`q | X`q,(1.10)

where pϕ`0 and pϕ` are the constrained and unconstrained MLEs of ϕ based on

X`. However, the MI LRT statistic rdL no longer has this property because

rdL “
1

m

m
ÿ

`“1

dLpψ0, ψ | X
`q ­“

1

m

m
ÿ

`“1

dLpg
´1pϕ0q, g

´1pϕq | X`q

for most bijective maps g, where ϕ0 “ m´1
řm
`“1 pϕ`0 and ϕ “ m´1

řm
`“1 pϕ`.

See § 4 how rDL vary dramatically with parametrizations in finite samples.
Third, the estimator rrL involves the estimators of ψ under H0, i.e., pψ`0

and ψ0. When H0 fails, they may not be consistent for ψ. As a result, rrL is
no longer consistent for rm. A serious consequence is that the power of the
test statistic rDL is not guaranteed to monotonically increase as H1 moves
away from H0. Indeed our simulations (see § 3.2) show that under certain
parametrizations, the power may nearly vanish for obviously false H0.

Fourth, in order to compute rdL in (1.8), users need to have access to the
LRT function rDL, but, in most software, the function is built as DL, where
(1.11)

rDL : pX,ψ0, ψq ÞÑ dLpψ0, ψ | Xq, DL : X ÞÑ dLp
pψ0pXq, pψpXq | Xq.

Hence users would need to write themselves a subroutine for evaluating rDL.
This may not be feasible for users because of lack of information or skills.
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In short, four problems need to be resolved: (i) lack of non-negativity,
(ii) lack of invariance, (iii) lack of consistency and power, and (iv) lack of
a computationally feasible algorithm. Problems (i)–(iii) are resolved in § 2
below, where § 2.1 presents an invariant combining rule, which fully resolves
(ii). Next, we propose two estimators of rm (or equivalently r) in § 2.2 and
§ 2.4. We start with a quick ad hoc fix that requires slightly less assumption
but only addresses (i), and then construct a test that fully resolves (i) and
(iii). Finally, in § 3, we derive a very handy algorithm, which resolves (iv).

2. Improved MI Likelihood Ratio Tests.

2.1. An Invariant Combining Rule. To derive a MI LRT that is invariant
to re-parametrization, we replace rdL by an asymptotically equivalent version
that behaves like a standard LRT statistic. Specifically, let

(2.1) Lpψq “
1

m

m
ÿ

`“1

L`pψq, where L`pψq “ log fpX` | ψq.

We emphasize that Lpψq is not a real log-likelihood (even if we drop the
divider m), because it does not properly model the completed datasets:
X “ tX1, . . . , Xmu (e.g., addressing the issue that all X`s share the same
Xobs). Nevertheless, Lpψq can be treated as a log-likelihood for computa-
tional purposes. In particular, we can maximize it to obtain

(2.2) pψ˚0 “
pψ˚0 pXq “ arg max

ψPΨ : θpψq“θ0

Lpψq, pψ˚ “ pψ˚pXq “ arg max
ψPΨ

Lpψq.

The corresponding log-likelihood ratio test statistic is given by

pdL “ 2
!

Lp pψ˚q ´ Lp pψ˚0 q
)

“
1

m

m
ÿ

`“1

dLp
pψ˚0 ,

pψ˚ | X`q.(2.3)

Thus, in contrast to rdL of (1.8), pdL aggregates MI datasets through averaging
MI LRT functions as in (2.1), rather than averaging MI test statistics and

moments, as in (1.7). Although
?
np pψ˚0 ´ ψ0q

pr
Ñ 0 and

?
np pψ˚ ´ ψq

pr
Ñ 0 as

n Ñ 8 for each m, only pdL, not rdL, is guaranteed to be non-negative and
invariant to parametrization of ψ for all m,n. Indeed, the likelihood principle
guides us to consider averaging individual log-likelihoods than individual
MLEs, since the former has a much better chance to capture functional
features of the real log-likelihood than any of their (local) maximizers can.

To derive properties of pdL, we need the usual RCs on MLE and MI.
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Assumption 2. The sampling model fpX | ψq satisfies the following:

(a) ψ ÞÑ Lpψq “ n´1 log fpX | ψq is twice continuously differentiable;
(b) the complete-data MLE pψpXq is the unique solution of BLpψq{Bψ “ 0;
(c) if Ipψq “ ´B2Lpψq{BψBψᵀ, then for each ψ, there exists a positive

definite matrix Ipψq “ U´1
ψ such that Ipψq

pr
Ñ Ipψq as nÑ8; and

(d) the observed-data MLE pψobs of ψ obeys

(2.4)
”

T
´1{2
ψ

´

pψobs ´ ψ
‹
¯

| ψ‹
ı

ñNhp0, Ihq

as nÑ8, where Ih is the hˆ h identity matrix.

Assumption 3. The imputation model is proper (Rubin, 2004):

”

B
´1{2
ψ

´

pψ` ´ pψobs

¯

| Xobs

ı

ñNhp0, Ihq,(2.5)
”

T´1
ψ

´

U `ψ ´Uψ

¯

| Xobs

ı

pr
Ñ 0,

”

T´1
ψ pBψ ´Bψq | Xobs

ı

pr
Ñ 0(2.6)

independently for ` “ 1, . . . ,m, as nÑ8, provided that B´1
ψ is well-defined.

Assumption 2 holds under the usual RCs that guarantee normality and
consistency of MLEs. When the imputations X1

mis, . . . , X
m
mis are drawn inde-

pendently from (correctly specified) posterior predictive distribution fpXmis |

Xobsq, Assumption 3 is typically satisfied. Clearly, we can replace ψ by its
sub-vector θ in Assumptions 2 and 3. These θ-version assumptions are suf-
ficient to guarantee the validity of the following Theorem 2.4 and Corol-
lary 2.3. For simplicity, Assumption 1, the θ-version of Assumptions 2 and
3, and conditions that are strong enough to guarantee Property 1.1 are col-
lectively written as RCθ, which are commonly assumed for MI inference.

Theorem 2.1. Assume RCθ. Under H0, we have (i) pdL ě 0 for all m,n;
(ii) pdL is invariant to parametrization of ψ for all m,n; and (iii) pdL l rdL

as nÑ8 for each m.

Consequently, an improved combining rule is defined as

(2.7) pDLprmq “
pdL

kp1` rmq
,

for a given value of rm. It follows the forms of (1.4) and of (1.9). The issue
is then how to estimate rm that avoids the defects of rrL of (1.8).
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2.2. An Improved Estimator of rm. Using pdL in (2.3), we can modify rrL

in (1.8) to a potentially better estimator:

(2.8) prL “
m` 1

kpm´ 1q
pdL ´

pdLq.

Although pdL ě 0 is guaranteed by our construction, prL ě 0 does not hold in
general for a finite m. However, it is guaranteed in the following situation.

Proposition 2.2. Write ψ “ pθᵀ, ηᵀqᵀ, where η represents a nuisance
parameter that is distinct from θ. If there exist functions L: and L; such
that, for all X, the log-likelihood function Lpψ | Xq “ log fpX | ψq is of the
form Lpψ | Xq “ L:pθ | Xq ` L;pη | Xq, then prL ě 0 for all m,n.

The condition in Proposition 2.2 means that the likelihood function of ψ
is separable. Then, the profile likelihood estimator of η given θ, i.e., pηθ “
arg maxη Lpθ, η | Xq, does not depend on θ. Trivially, if there is no nuisance
parameter η, the separation condition is satisfied. More generally, we have

Corollary 2.3. Assume RCθ. We have (i) under H0, prL
pr
Ñ r as

m,n Ñ 8; and (ii) under H1, prL
pr
Ñ r0 as m,n Ñ 8, where r0 ě 0 is

some finite value depending on θ0 and θ‹.

Corollary 2.3 ensures that, under H0, prL is non-negative asymptotically
and converges in probability to the true r. But it also reveals another funda-
mental defect of prL: under H1, the limit r0 may not equal to r, a problem we
will address in § 2.2. Fortunately, since pdL

pr
Ñ8 under H1, the LRT statistic

pDLpprLq is still powerful, albeit the power may be somewhat reduced. Sim-
ilarly, rrL of (1.8) has the same asymptotic properties and defects, but prL

behaves more nicely than rrL for finite m. This hinges closely on the high
sensitivity of rrL to the parametrization of ψ for small m, e.g., in some cases,
rrL becomes more negative as H1 moves away from H1; see § 4.1.

Whereas we can fix the occasional negativeness of prL by using pr`L “

maxp0, prLq, such an ad hoc fix misses the opportunity to improve upon prL,
and indeed it cannot fix the inconsistency of prL under H1.

2.3. A Complication Caused by Nuisance Parameter. To better under-
stand the source of the negativity of prL, we extend Lpψq in (2.1) to allow it
take m different arguments:

(2.9) Lpψ1, . . . , ψmq “
1

m

m
ÿ

`“1

L`pψ`q.
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Table 1
The definitions of hypotheses H0

0 , H1
0 , H0

1 , H1
1 .

C0 : ψ1
“ ¨ ¨ ¨ “ ψm

P Ψ
(i.e., r “ 0)

C1 : ψ1, . . . , ψm
P Ψ

(i.e., r ě 0)

C0 : θ1 “ ¨ ¨ ¨ “ θm “ θ0 P Θ
(i.e., H0-constrained)

H0
0 “ C0 XC0 H1

0 “ C0 XC1

C1 : θ1, . . . , θm P Θ
(i.e., not H0-constrained)

H0
1 “ C1 XC0 H1

1 “ C1 XC1

H0
0 H1

0

H0
1 H1

1

Fig 1. The relationships between the four hypotheses H0
0 , H1

0 , H0
1 , H1

1 . Each arrow denotes
an implication, e.g., H0

0 ñ H1
0 means that H0

0 implies H1
0 .

Using the “log-likelihood” Lpψ1, . . . , ψmq, we can construct, at least concep-
tually, four hypotheses H0

0 , H1
0 , H0

1 , H1
1 defined in Table 1. Each of them

consists of zero, one or two of the constraints

C0 : θ1 “ ¨ ¨ ¨ “ θm “ θ0 and C0 : ψ1 “ ¨ ¨ ¨ “ ψm.

The constraint C0 is equivalent to H0, and the constraint C0 means that all
ψ`s are equal, and hence it is effectively equivalent to r “ 0, i.e., no missing
information. The relationships among H0

0 , H1
0 , H0

1 , H1
1 can be visualized

in Figure 1. Define the maximized value of Lpψ1, . . . , ψmq under hypothesis
H P tH0

0 , H
1
0 , H

0
1 , H

1
1u by LpHq. Then we can re-express pdL ´

pdLq{2 as

(2.10) pdL ´
pdLq{2 “

 

LpH1
1 q ´ LpH0

1 q
(

´
 

LpH1
0 q ´ LpH0

0 q
(

.

Whereas the two bracketed terms in (2.10) are non-negative because they
correspond to two LRT statistics, the difference between these two terms is
not guaranteed to be non-negative. A simple example illustrates this well.
For the regression model rY | X1, X2s „ Npβ0 ` β1X1 ` β2X2, σ

2q, the
LRT statistic for testing H0

1 : β1 “ 0, β2 P R against H1
1 : β1, β2 P R is not

necessarily larger (or smaller) than that for testing H0
0 : β1 “ β2 “ 0 against

H1
0 : β1 P R, β2 “ 0. A schematic illustration is provided in Figure 2.
The decomposition (2.10) provides another interpretation of prL. The test

statistic LpH1
1 q ´ LpH0

1 q seeks evidence for detecting the falsity of r “ 0 in
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Constraint    0
Constraint    0

L (H1
1)I

L (H1
0)IL (H0

1)I

L (H0
0)I

Fig 2. A schematic illustration of the sign of (2.10). The contour lines of Lpψ1, . . . , ψm
q

are plotted. The two straight lines refer to constraints C0 and C0. Since LpH1
1 q “

0.082, LpH1
0 q “ LpH0

1 q “ 0.08, and LpH0
0 q “ 0.01, we have

 

LpH1
1 q ´ LpH0

1 q
(

´
 

LpH1
0 q ´ LpH0

0 q
(

“ 0.002 ´ 0.007 ă 0. Note that the function Lpψ1, . . . , ψm
q in (2.9)

is at least 4-dimensional (i.e., θ1, θ2, η1, η2) generally, so the above illustration in a 2-
dimension space is just conceptual.

both θ and η, whereas LpH1
0 q ´ LpH0

0 q seeks evidence only in η. For cases
where θ and η are orthogonal (at least locally), the left-hand side of (2.10)
can be viewed as a measure of evidence against r “ 0 solely from θ; Propo-
sition 2.2 already hinted this possibility. However, the “test statistic” (2.10)
has a very serious problem apart from being possibly negative. Because C0

requires all θ`s to coincide with a specific θ0, C0 is not nested within C0, i.e.,
C0 œ C0. Hence prL is guaranteed to consistently estimate rm only under
H0. This explains Corollary 2.3, and leads to an improvement below.

2.4. A Consistent and Non-negative Estimator of rm. Our new estima-
tor simply drops the second term in (2.10), that is, we estimate rm by

pr♦L “
m` 1

hpm´ 1q
pδL ´

pδLq, where(2.11)

δL “ 2Lp pψ1, . . . , pψmq, pδL “ 2Lp pψ˚, . . . , pψ˚q,(2.12)

where h is the dimension of ψ, and the rhombus “♦” symbolizes a robust
estimator. It is robust, because it is consistent under either H0 or H1, as long
as we are willing to impose the EFMI assumption on the entire parameter
ψ, a stronger requirement than Assumption 1. This expansion from θ to ψ
is inevitable because the LRT must handle the entire ψ, not just θ. The
collection of Assumptions 2–4 will be referred to as RCψ.

Assumption 4 (EFMI of ψ). There is r ě 0 such that Tψ “ p1`rqUψ.
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Theorem 2.4. Assume RCψ. Then for any value of ψ, we have (i) pr♦L ě

0 for all m,n; (ii) pr♦L is invariant to parametrization of ψ for all m,n; and

(iii) pr♦L
pr
Ñ r as m,nÑ8, where r is given in Assumption 4.

With the improved combining rule pDLprmq of (2.7) and improved estima-
tors for rm, we are ready to propose two MI LRT statistics:

(2.13) pD`L “
pDLppr

`
L q and pD♦L “

pDLppr
♦
Lq.

For comparison, we also study the test statistic pDL “ pDLpprLq.

2.5. Reference Null Distributions. The estimators pr`L and rrL have the
same functional form asymptotically (n Ñ 8) and rely on the same set of
assumptions, hence they have the same asymptotic distribution.

Lemma 2.5. Suppose RCθ and m ą 1. Under H0, we have, jointly,

(2.14)
pr`L
rm

ñM2 and pD`L ñ
p1` rmqM1

1` rmM2

as nÑ8, where M1 „ χ2
k{k and M2 „ χ2

kpm´1q{tkpm´1qu are independent.

Consequently, the null distribution of pD`L “ pDLppr
`
L q can be approximated

by F
k, rdfppr`L ,kq

, but a better approximation will be provided shortly.

For the other proposal, although pr`L ´ pr♦L
pr
Ñ 0 as nÑ 8 under H0, their

non-degenerated distributions (after proper scaling) are different because pr♦L
relies on an average FMI in ψ, but pr`L only on an average FMI in θ.

Theorem 2.6. Suppose RCψ and m ą 1. Then for any value of ψ,

(2.15)
pr♦L
rm

ñM3 „
χ2
hpm´1q

hpm´ 1q

as nÑ8, where M3 is independent of the M1 defined in (2.14).

Theorem 2.6 implies that, if n can be regarded as infinity and pr♦L is uni-
formly integrable in L2, then

Biasppr♦Lq “ Eppr♦Lq ´ rm “ 0 and Varppr♦Lq “
2r2

m

hpm´ 1q
“ Opm´1q
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as mÑ8. Therefore pr♦L is a
?
m-consistent estimator of r in L2. Moreover,

for each m ą 1 and as nÑ8, we have

Biasppr`L q

Biasppr♦Lq
Ñ 1 and

Varppr`L q

Varppr♦Lq
Ñ

h

k
ě 1,

which implies that pr♦L is no less efficient than pr`L when RCψ holds. This is of

no surprise because of the extra information in pr♦L brought in by the stronger
Assumption 4. Result (2.15) also gives us the exact (i.e., for any m ą 1, but
assuming nÑ8) reference null distribution of pD♦L, as given below.

Theorem 2.7. Assume RCψ and m ą 1. Under H0, we have

(2.16) pD♦L ñ
p1` rmqM1

1` rmM3
” D

as nÑ8, where M1 „ χ2
k{k and M3 „ χ2

hpm´1q{thpm´1qu are independent.

The impact of the nuisance parameter rm on the null distribution dimin-
ishes with m, because pD♦L and pD`L converge in distribution to M1 “ χ2

k{k as

m,n Ñ 8. Since M3
pr
Ñ 1 faster than M2

pr
Ñ 1, pD♦L is expected to be more

robust to rm. Nevertheless, because m typically is small in practice (e.g.,
m ď 10), we cannot ignore the impact of rm. This issue has been largely
dealt with in the literature by seeking an Fk,df distribution as an approx-
imate null distribution, as in Li et al. (1991b). However, directly adopting
their rdf of (1.6) leads to poorer approximation for our purposes; see below. A
better approximation is to match the first two moments of the denominator
of (2.16), 1`rmM3, with that of a scaled χ2: aχ2

b{b. This yields a “ 1`rm
and b “ p1` r´1

m q
2hpm´ 1q, and the approximated F

k, pdfprm,hq
, where

(2.17) pdfprm, hq “

"

1` rm

rm

*2

hpm´ 1q “
hpm´ 1q

f2
m

.

This degrees of freedom is appealing because it simply inflates the denomi-
nator degrees of freedom M3 by dividing it by f2

m, where fm “ rm{p1`rmq

the finite imputation corrected FMI. Intuitively, the less missing informa-
tion, the closer F

k, pdfprm,hq
should be to χ2

k{k, the usual large-n asymptotic

χ2 test; as mentioned earlier, for small n, see Barnard and Rubin (1999).
To compare F

k, pdfprm,hq
with F

k, rdfprm,hq
as approximations to the distribu-

tion of D given in (2.16), we compute via simulations

rα “ P
!

D ą F´1

k, rdfprm,hq
p1´ αq

)

and pα “ P
!

D ą F´1

k, pdfprm,hq
p1´ αq

)

,
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where F´1
k,dfpqq denotes the q-quantile of Fk,df . We draw N “ 218 indepen-

dent copies D for each of the following possible combinations: m P t3, 5, 7u,
k P t1, 2, 4, 8u, τ “ h{k P t1, 2, 3u, fm P t0, 0.1, . . . , 0.9u, and following Ben-
jamin et al. (2018)’s recommendation, we use both α P t0.5%, 5%u. The
results for α “ 0.5% and for α “ 5% are shown respectively in Figure 3
and in the Appendix. In general, pα approximates α much better than rα,
especially when m, k, h are small. When m,h are larger, their performances
are similar because both F

k, rdfprm,hq
and F

k, pdfprm,hq
get close to χ2

k{k. But the

performances of rα and pα are not monotonic in fm. Generally speaking, the
performance of F

k, pdfprm,hq
is particularly good for 0% À fm À 30%. Conse-

quently, we recommend using F
k, pdfppr♦L ,hq

as an approximate null distribution

for pD♦L, and F
k, pdfppr`L ,kq

for pD`L , as employed in the rest of this paper. However,

these approximations obviously suffer from the usual “plug-in problem” by
ignoring the uncertainties in estimating rm. Since the Fk,df is not too sen-
sitive to the value of df once it is reasonably large (df ě 20), the “plug-in
problem” is less an issue here than in many other context, leading to accept-
able approximations as empirically demonstrated in Section 4. Nevertheless,
further improvements are likely and should be sought.

3. Computational Considerations and Comparisons. The statis-
tic dL of (1.7) is easy to compute because only the standard complete-data
procedure DL : X ÞÑ dLp

pψ0pXq, pψpXq | Xq is needed. However, pdL of (2.3)
and pr♦L of (2.8) in general cannot be computed solely by DL, e.g., pdL requires

DL : X ÞÑ
1

m

m
ÿ

`“1

dLp
pψ˚0 pXq, pψ˚pXq | X`q.

Creating a subroutine for this computation requires additional effort and in-
formation that may beyond a user’s capacity. Here we show how to compute
or approximate pdL and pr♦L solely by DL or a trivial modification of DL.

3.1. Computationally Feasible Combining Rule. We begin with precise
notation for our complete data X and its sampling model fpX|ψq. For the
vast majority of real-world datasets, X is of the form of an nˆp matrix, with
rows indicating subjects and columns variables/attributes. We then write
X “ pX1, . . . , Xnq

ᵀ, and its sampling model by fnpX | ψq. Correspondingly,
the `th completed-dataset by MI is X` “ pX`

1, . . . , X
`
nq
ᵀ. Define the stacked

dataset by XS “ rpX1qᵀ, . . . , pXmqᵀsᵀ, a matrix having mn rows, which is
conceptually different from the collection of datasets X “ tX1, . . . , Xmu.
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Fig 3. The performances of two different approximated null distributions when the nom-
inal size is α “ 0.5%. The vertical axis denotes pα or rα, and the horizontal axis denotes
the value of fm. The number attached to each line denotes the value of τ “ h{k. The
proposed approximation pα is denoted by thick solid lines with triangles, and the existing
approximation rα is denoted by thin dashed lines with circles.

Treating XS as a dataset with size mn, we can define

(3.1) L
S
pψq “

1

m
log fmnpX

S | ψq,

which, other than the scaling factor 1{m, is just the ordinary log-likelihood
function of ψ based on the dataset XS (for computation purposes). Conse-
quently, as long as the user’s complete-data procedure can handle size mn
instead of just n, the user can apply it to XS to obtain

(3.2) pψS
0 “ arg max

ψPΨ : θpψq“θ0

L
S
pψq and pψS “ arg max

ψPΨ
L

S
pψq.

Consequently, the quantities

(3.3) pδ0,S “ 2L
S
p pψS

0 q and pδS “ 2L
S
p pψSq

are readily available from the user’s complete-data procedure. It is then

desirable if we can replace Lpψq by L
S
pψq in the proposed test statistics.
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Precisely, in parallel to (2.7), (2.8) and (2.11), we define

pDSprmq “
pdS

kp1` rmq
, with pdS “

pδS ´
pδ0,S of (3.3);(3.4)

prS “
m` 1

kpm´ 1q
pdS ´

pdSq, with dS “ dL of (1.7);(3.5)

pr♦S “
m` 1

hpm´ 1q
pδS ´

pδSq, with δS “ δL of (2.12);(3.6)

and pr`S “ maxp0, prSq. The “stacked” counterparts of pD♦L and its existing

counterparts pDL and pD`L (see (2.13)) then are given by

(3.7) pD♦S “
pDSppr

♦
S q,

pDS “ pDSpprSq, pD`S “
pDSppr

`
S q.

Proposition 3.1. If X “ pX1, . . . , Xnq
ᵀ is row-independent for arbi-

trary n, i.e., fpX | ψq “
śn
i“1 fpXi | ψq, then (2.1) and (3.1) are the same:

Lpψq ” L
S
pψq. Consequently, pDS ” pDL and pD♦S ”

pD♦L.

Since for many applications, the rows correspond to individual subjects,
the row-independence assumption typically holds for arbitrary n. Hence we
can extend from n to mn, assuming the user’s complete-data procedure is
not size-limited. Even if it does not hold, we can still have pdL l pdS under

some RCs that guarantee Lpψq and L
S
pψq are close; see Appendix A, where

we also reveal a subtle but important difference between pr♦L and pr♦S .
Similar to DL in (1.11), we define complete-data functions (with data X

being the only input)

DL,0pXq “ 2 log fpX | pψ0pXqq, DL,1pXq “ 2 log fpX | pψpXqq.(3.8)

The subroutine for evaluating the complete-data LRT function X ÞÑ DLpXq
is usually available, as is the subroutine for X ÞÑ DL,1pXq; for example, the
function logLik in R extracts the maximum of complete data log-likelihood
for objects belonging to classes "glm", "lm", "nls" and "Arima".

The Algorithms 1 and 2 listed below compute tests given pD♦S and pD`S ,
respectively. Whenever possible, we recommend the use of the robust MI
LRT given by Algorithm 1, since it has the best theoretical guarantee. The
second test can be useful when DL but not DL,1 is available.

3.2. Computational Comparison with Existing Tests. First, we list some
existing estimators of rm and their computation. Let s2

W,1 and s2
W,1{2 be the

sample variances of td`Wu
m
`“1 and t

‘

d`Wu
m
`“1, respectively. By the method of
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Algorithm 1: (Robust) MI LRT statistic pD♦S
Input: Datasets X1, . . . , Xm; dimensions h, k; functions DL,1, DL in (3.8), (1.11).
begin

Compute δS “ m´1
tDL,1pX

1
q ` ¨ ¨ ¨ `DL,1pX

m
qu .

(i) Stack the datasets to form XS
“ rpX1

q
ᵀ, . . . , pXm

q
ᵀ
s
ᵀ.

(ii) Compute pdS “ m´1DLpX
S
q and pδS “ m´1DL,1pX

S
q.

Calculate pr♦S according to (3.6), and pD♦S according to (3.4) and (3.7).

Calculate pdfppr♦S , hq according to (2.17).

Compute the p-value as 1´ F
k,xdfppr♦S ,hq

p pD♦S q.

Algorithm 2: MI LRT statistic pD`S
Input: Datasets X1, . . . , Xm; dimension k; function DL in (1.11).
begin

Compute dL “ m´1
tDLpX

1
q ` ¨ ¨ ¨ `DLpX

m
qu .

(i) Stack the datasets to form XS
“ rpX1

q
ᵀ, . . . , pXm

q
ᵀ
s
ᵀ.

(ii) Compute pdS “ m´1DLpX
S
q.

Calculate pr`S according to (3.5), and pD`S according to (3.4) and (3.7).

Calculate pdfppr`S , kq according to (2.17).
Compute the p-value as 1´ F

k,xdfppr`S ,kqpxD`S q
.

moments concerning s2
W,1 and s2

W,1{2, Rubin (2004) and Li et al. (1991a)
respectively proposed estimating rm by

(3.9) rrW,1 “
p1` 1{mqs2

W,1

2dW `

c

!

4d
2
W ´ 2ks2

W,1

)`
, rrW,1{2 “ p1` 1{mqs2

W,1{2,

where tau` “ maxp0, aq. Note that when k is large and m is small, using
(3.9) may lead to power loss, although the users have no choice when they
are given only td`Wu

m
`“1. A trivial modification of rrL of (1.8), i.e., rr`L “

maxp0, rrLq, is a better alternative if the user is able to compute rrL.
Second, we list some alternative MI combining rules. Having the above

estimators of rm, we can insert them into the following combining rules:

rD1Wprmq “
rd1W

kp1` rmq
, rDLprmq “

rdL

kp1` rmq
, rD`L prmq “

!

rDLprmq
)`

.

Using (1.3) and (1.8), we can also define the following combining rules:

(3.10) D
1

Wprmq “
d
1

W ´
kpm´1q
m`1 rm

kp1` rmq
, DLprmq “

dL ´
kpm´1q
m`1 rm

kp1` rmq
.
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The combining rule D
1

Wprmq is useful when computing rd1W is difficult but

computing d
1

W and estimating rm are simple. However, the resulting power
may deteriorate if the estimator of rm is inefficient or inaccurate. This type
of test statistics is also mentioned in Li et al. (1991a). Indeed, there are
infinitely many asymptotically equivalent test statistics, e.g., any convex
combination of rDWprmq and DWprmq, i.e., φ rDWprmq`p1´φqDWprmq, for
φ P r0, 1s. When rrW,1 or rrW,1{2 is used for estimating rm, the null distribu-
tions of the resulting MI test statistics can be approximated by F

k, rdf
1
prm,kq

,

where rdf
1
prm, kq “ pm´ 1qp1` r´1

m q
2k´3{m; see Li et al. (1991a).

Next, we introduce and recall some notation to facilitate the comparison:
(a) standard complete-data moments estimation (MW and ML) and testing
(DW and DL) procedures, and (b) non-standard complete-data procedures
( rDL, DL, DL,1 and DL,1), where

MWpXq “
!

pθpXq, UpXq
)

, MLpXq “
!

pψpXq, pψ0pXq
)

,

DWpXq “ dWp
pθpXq, UpXqq, DL,1pXq “

2

m

m
ÿ

`“1

log fpX` | pψ˚pXqq.

Clearly, MW produces DW, and tML, rDLu produces DL. If users can perform
optimization, rDL produces tML,DL,DL,1u. Note that an un-normalized den-
sity can be used in DL,1 and DL,1.

Table 2 summarizes whether a particular pair of Dp¨q and r, resulting the
statistic Dprq, has the following statistical or computational properties.

• (Inv) Dprq and r are invariant to re-parametrization of ψ;
• (Rob) r is robust against θ0, i.e., consistent under both H0 and H1;
• (ě 0) Dprq and r are non-negative for all m and n;
• (Pow) the test has high power to reject H0 under H1;
• (Def)Dprq and r are always well-defined and numerically well-conditioned;
• (Sca) the MI procedure requires users only to deal with scalars;
• (Dep) X1, . . . , Xn can be dependent; and
• (EFMI) whether EFMI is assumed for θ or for ψ.

In summary, pDSppr
`
S q is the most computationally attractive test statistic.

If the user is willing to make stronger assumptions, pDSppr
♦
S q has better statis-

tical properties, and is still computationally feasible. Nevertheless, pDLppr
♦
Lq

is the most general test statistic and has the best statistical properties.
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Table 2
Computational requirements and statistical properties of MI test statistics, their associated combining rules and estimators of FMI rm.

The symbols “`” and “´” mean that the test statistic (or estimator) is equipped and not equipped with the indicated property,
respectively; see the end of § 3.2 for heading descriptions. The reference papers/book are abbreviated as follows: Rubin (2004) (R04), Li

et al. (1991a) (LMRR91) and Meng and Rubin (1992) (MR92).

Combining Rule Estimator of rm Approx. null distributiona Properties

Test No. Formula Routine Formula Routine Original Proposed Reference Inv Rob ě 0 Pow Def Sca Dep EFMI

WT W-1 rD1Wprmq MW rr1W MW Fk,Ădfprm,kq
b Fk,xdfprm,kq R04 ´ `

c
` ´ ´ ´ ` θ

W-2 rD1Wprmq
d MW rr1W,1 DW F

k,Ădf
1
prm,kq

NA R04 ´ ´ ` ´ ´ ´ ` θ

W-3 rD1Wprmq MW rr1W,1{2 DW F
k,Ădf

1
prm,kq

NA LMRR91 ´ ´ ` ´ ´ ´ ` θ

W-4 DWpT q
e MW rr1W DW Fk,Ădfprm,kq Fk,xdfprm,kq R04 ´ ` ` ´ ´ ´ ` θf

W-5 D
1

Wprmq DW rr1W,1 DW F
k,Ădf

1
prm,kq

NA R04 ´ ´ ´ ´ ´ ` ` θ

W-6 D
1

Wprmq DW rr1W,1{2 DW F
k,Ădf

1
prm,kq

NA LMRR91 ´ ´ ´ ´ ´ ` ` θ

LRT L-1 rDLprmq ML, rDL rrL ML, rDL Fk,Ădfprm,kq Fk,xdfprm,kq MR92 ´ ´ ´ ´ ` ´
g

` θ

L-2 rD`L prmq ML, rDL rr`L ML, rDL Fk,Ădfprm,kq Fk,xdfprm,kq MR92h
´ ´ ` ´ ` ´ ` θ

L-3 pDSprmq DL prS DL Fk,Ădfprm,kq Fk,xdfprm,kq Proposal ` ´ ´ ´ ` ` ´ θ

L-4 pDSprmq DL pr`S DL Fk,Ădfprm,kq Fk,xdfprm,kq Proposal ` ´ ` ´ ` ` ´ θ

L-5 pDSprmq DL pr♦S DL,1 Fk,Ădfprm,hq Fk,xdfprm,hq Proposal ` ` ` ` ` ` ´ ψ

L-6i
pDLprmq DL pr`L DL Fk,Ădfprm,kq Fk,xdfprm,kq Proposal ` ´ ` ´ ` ` ` θ

L-7j
pDLprmq DL pr♦L DL,1 Fk,Ădfprm,hq Fk,xdfprm,hq Proposal ` ` ` ` ` ` ` ψ

aIn actual computation, the rm in the denominator degree of freedom of F is replaced by its corresponding estimator given in the
previous column.

bThe original approximate null distribution documented in Rubin (2004) was modified by Li et al. (1991a). This footnote also applies
to W-2,4,5.

cThe estimator rr1W does not depend on θ0, but its MSE may be inflated under H1 if a bad parametrization of θ is used.
dThe originally proposed combining rule is D

1

Wprmq; see (3.10). Although D
1

Wprmq is more computational feasible, the power loss

is more significant than rD1Wprmq after inserting an inefficient estimator rr1W,1 for rm. This footnote also applies to W-3.
eComputing the test statistic DWpT q “ dWpθ, T q{k does not require estimating rm.
fEFMI is not required for the test statistic DWpT q, but it is required for its approximate null distribution.
gAveraging and processing vector estimators of ψ, but not their covariance matrixes, is needed. This footnote also applies to L-2.
hIt is a trivial modification of the original proposal in MR92 by replacing rrL with rr`L “ maxt0, rrLu.
iL-6 is equivalent to L-4 when the rows of X are independent.
jL-7 is equivalent to L-5 when the rows of X are independent.
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Table 3
The values of parameters used in the simulation experiment in § 4.1.

Parameters

Experiment Fixed Variable

No. Varying ρ p f Case 1 Case 2 Case 3 Case 4 Case 5

I Correlation ρ – 2 0.5 ´0.8 ´0.4 0 0.4 0.8
II Dimension p 0.4 – 0.5 2 3 4 5 6
III FMI f 0.4 2 – 0.1 0.3 0.5 0.7 0.9

4. Empirical Investigation and Findings.

4.1. Simulation Studies. Suppose that X1, . . . , Xn „ Nppµ,Σq indepen-
dently, where Σ “ σ2tp1 ´ ρqIp ` ρ1p1

ᵀ
pu, and 1p is the p-vector of ones.

The values of p, σ2, ρ and µ are specified below. Further assume that only
nobs “ tp1´fqnu data points are observed, where f P p0, 1q is the FMI. Let
Xobs “ tXi : i “ 1, . . . , nobsu and Xmis “ tXi : i “ nobs` 1, . . . , nu. Suppose
that we want to test whether the means of all components are equal, i.e.,
H0 : µ “ µ01p, where µ0 P R is an unknown constant.

Obviously, one may directly use the observed dataset to construct the
LRT statistic DL without MI. The test DL (denoted by L-0) is regarded as
a benchmark for comparison. Throughout this subsection, W-1,2,3,4 and L-
1,2,3,4,5 listed in Table 2 are compared. In the imputation step, a Bayesian
model is employed for imputation. Assume a multivariate Jeffreys prior on
pµ,Σq, i.e., fpµ,Σq9|Σ|´pp`1q{2. Let Xobs and Sobs be the sample mean and
sample covariance matrix based on Xobs. Then, the `th imputed missing
dataset can be produced by the following procedure, for ` “ 1, . . . ,m.

1. Draw a posterior sample Σ` from the inverse-Wishart distribution with
pnobs ´ 1q degrees of freedom and scale matrix S´1

obs.
2. Draw one posterior sample µ` from NppXobs,Σ

`{nobsq.
3. Draw pn´nobsq imputed missing values tX`

i : i “ nobs`1, . . . , nu from
Nppµ

`,Σ`q independently. Also, denote X`
i “ Xi for i “ 1, . . . , nobs.

With the `th completed dataset, the unconstrained MLEs for µ and Σ are

pµ` “
1

n

n
ÿ

i“1

X`
i ,

pΣ` “
1

n

n
ÿ

i“1

´

X`
i ´ pµ`

¯´

X`
i ´ pµ`

¯ᵀ
.

Whereas we generate data using a covariance matrix with common variance
and correlation, our model does not assume any structure for Σ. The only
restriction we can impose is the common-mean assumption under the null,
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for which the constrained MLEs are

pµ`0 “

#

1ᵀpppΣ`q´1
pµ`

1ᵀpppΣ`q´11p

+

1p, pΣ`
0 “

pΣ` `

´

pµ` ´ pµ`0

¯´

pµ` ´ pµ`0

¯ᵀ
.

In the experiment, we study the impact of parametrization on different
test statistics. For the Wald tests, three parametrizations of θ are examined:

(i) θ “ pµ2 ´ µ1, . . . , µp ´ µp´1q
ᵀ — differences of means,

(ii) θ “ pµ2{µ1, . . . , µp{µp´1q
ᵀ
´1p´1 — relative differences of means, and

(iii) θ “
`

µ3
2 ´ µ

3
1, . . . , µ

3
p ´ µ

3
p´1

˘ᵀ
— differences of cubic means.

For any case above, H0 can be re-expressed as θ0 “ 0p´1, an pp´ 1q-vector
of zeros. For LRTs, the following parametrizations of ψ are used:

(i) ψ “ tµ; Σu — means and covariances,
(ii) ψ “ t

?
σii{µi, 1 ď i ď p; Σu — noise-to-signal and covariances, and

(iii) ψ “
 

µᵀΣ´1{2; Σ´1
(

— standardized means and precisions,

where Σ “ pσijq and Σ1{2 is the symmetric square root of Σ. The dimension
of ψ is h “ pp2 ` 3pq{2.

In the first part of the experiment, we study the distribution of p-values
derived from each test under H0. In particular, we use n “ 100, m “ 3,
σ2 “ 5 and µ “ 1p, with various values of ρ, p and f specified in Table 3. All
simulations are repeated 212 times. The comparison under parametrization
(ii) is shown in Figure 4; whereas those under parametrizations (i) and (iii)
are deferred to Appendix C. Note that, for Wald tests under parametrization
(ii), the matrix U ` is singular in less than 0.25% of the replications, and those
cases are removed from the analysis (which should favor the Wald tests).

The empirical sizes (i.e., type-I errors) of the MI Wald tests generally
deviate from the nominal size α under parametrization (ii). In contrast, the
sizes of all LRTs are closer to α. However, the original L-1 and its trivial
modification L-2 do not have accurate sizes when |ρ| or f is large. They can
be over-sized or under-sized depending on which parametrization is used.
Moreover, the trivial modification L-2 does not help to correct the size,
and it may even worsen the test. For our test statistics L-3 and L-4, they
are invariant to parametrizations and have quite accurate sizes, although
they are under-sized in challenging cases where both p and f are large.
Moreover, they are identical throughout our simulation experiments, i.e.,
we never observed prL ă 0. For our recommended statistic L-5, it gives the
most satisfactory overall results. It generally has very accurate size, except
that it is slightly over-sized for large p, a problem that should diminish when
we use m beyond the smallest recommended m “ 3.
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Case 5   ( Large ρ , p , f )
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Fig 4. The comparison between empirical size and nominal size α under parametrization
(ii) for α P p0, 5%s. The Wald tests (W-1,2,3,4) and LRTs (L-0,1,2,3,4,5) are represented

by grey dashed and black solid lines, respectively. The LRT statistic rDL (L-1: MR92)

and its modification rD`L (L-2: MR92(+)) are the tests that greatly improved upon by our

proposals pDS (L-3: Proposal), pD`S (L-4: Proposal(+)) and pD♦S (L-5: Proposal(R)).

Interestingly, as seen clearly in Figure 4, the benchmark L-0 performs very
badly for large p and f. The sample size per parameter, n{h, is small; for
p ě 4, n{h ď 100{14 ă 8. The asymptotic null distribution χ2

k{k then can
fail badly under arbitrary or even all parametrizations; (ii) apparently falls
into this category. An F approximation would be more appropriate. But this
is exactly what is being used for MI tests, albeit with different choices of the
denominator degrees of freedom. Table 4 documents how often rrL, rDL and
prS are negative. In some cases, nearly half of the simulated values of rrL and
rDL are negative. In contrast, prS is always non-negative in our simulation,
despite the fact that it can be negative in theory.

To study the power of each test, we set f “ 0.5, p “ 2, ρ “ 0.8,
σ2 “ 5 and µ “ p´2 ` δ,´2 ` 2δqᵀ for different values of m P t3, 10, 30u,
n P t100, 400, 1600u and δ “ µ2 ´ µ1 P r0, 4s. The empirical power functions
for size 0.5% tests under parametrizations (i), (ii) and (iii) are plotted in Fig-
ure 5. The results for size 5% tests are deferred to Table 12 of the Appendix.
Generally, none of the Wald tests exhibits monotonically increasing power as
δ increases, and their performance is affected significantly by parametriza-
tion. In particular, the powers can be as low as zero when 1 À δ À 2 under
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Table 4
The empirical proportions of negative rrL and rDL. The results under parametrizations (ii)

and (iii) are shown. For parametrization (i), rrL ě 0 and rDL ě 0 in the experiments.

Case

1 2 3 4 5 1 2 3 4 5

Experiment Parametrization % of rrL ă 0 % of rDL ă 0

I (ii) 1 2 3 4 5 26 16 13 12 12

(iii) 6 6 7 7 7 1 1 1 1 2

II (ii) 4 1 0 0 0 12 5 3 4 3

(iii) 7 3 1 1 1 1 0 0 0 0

III (ii) 13 6 4 4 3 55 25 12 5 2

(iii) 18 9 7 5 4 20 5 1 1 0
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m
=

3 
,  

 n
=

16
00

m
=

3 
,  

 n
=

40
0

m
=

3 
,  

 n
=

10
0

m
=

10
 , 

  n
=

10
0

m
=

30
 , 

  n
=

10
0

P
ow

er

Parametrization (i)
δ = µ2 − µ1

m

m

m
m m m m m m m m m m m m m m m m m m

M

M

M
M M M M M M M M M M M M M M M M M M

0%
20%
40%
60%
80%

100%

0 1 2 3 4

m
m

m
m m m m m m m m m m m m m m m m m m

M
M

M
M M M M M M M M M M M M M M M M M M

0%
20%
40%
60%
80%

100%

m m
m

m
m m m m m m m m m m m m m m m m m

M M
M

M
M M M M M M M M M M M M M M M M M

0%
20%
40%
60%
80%

100%

m m
m

m

m

m
m m m m m m m m m m m m m m m

M M
M

M

M

M
M M M M M M M M M M M M M M M

0%
20%
40%
60%
80%

100%

m m
m

m

m

m m m m m m m m m m m m m m m m

M M
M

M

M

M M M M M M M M M M M M M M M M

0%
20%
40%
60%
80%

100%

Parametrization (ii)

m

m

m m m
m m m m m m m m m m m m m m m m

M

M

M
M M

M

M M M M
M

M M M M M M M M M M

0 1 2 3 4

m
m

m
m m

m m m m m m m m m m m m m m m m

M
M

M
M M

M

M M M M M M
M M M M M M M M M

m m
m m m m m m m m m m m m m m m m m m m

M M
M

M M M M M M M M M M M M M M M M M M

m m
m

m m m m
m m m m m m m m m m m m m m

M M
M

M
M M M

M M M M M M M M M M M M M M

m m
m

m
m m m

m m m m m m m m m m m m m m

M M
M

M
M M M

M M M M M M M M M M M M M M

Parametrization (iii)

m

m

m m m m m m m m m m m m m m m m m m m

M

M

M
M M M M M M M M M M M M M M M M M M

0 1 2 3 4

m
m

m
m m m m m m m m m m m m m m m m m m

M
M

M
M

M M M M M M M M M M M M M M M M M

m m
m

m
m m m m m m m m m m m m m m m m m

M M
M

M
M

M M M M M M M M M M M M M M M M

m m
m

m

m
m m m m m m m m m m m m m m m m

M M
M

M

M

M
M M M M M M M M M M M M M M M

m m
m

m

m
m m m m m m m m m m m m m m m m

M M
M

M

M
M M M M M M M M M M M M M M M M

m

M

Test statistics
W-1
W-2
W-3
W-4
L-1: MR92
L-2: MR92(+)
L-3: Proposal
L-4: Proposal(+)
L-5: Proposal(R)
L-0: Benchmark

Fig 5. The power curves under different parametrizations. The nominal size is α “ 0.5%.
In each plot, the vertical axis denotes the power, whereas the horizontal axis denotes the
value of δ “ µ2 ´ µ1. The legend in Figure 4 also applies here.

parametrizations (ii) and (iii). Under parametrization (ii), L-1 is not pow-
erful even for large δ. Moreover, its trivial modifications L-2 cannot retrieve
all the power it should have. On the other hand, our first proposed test
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Table 5
The range of empirical size rmin pα,max pαs in percentage, where max and min are taken

over the three parametrizations. Only one value is recorded for those tests that are
invariant to parametrization. The nominal size is α “ 0.5%.

Range of empirical size: rmin pα,max pαs{%

pn,mq p1600, 3q p400, 3q p100, 3q p100, 10q p100, 30q

W-1 r0.90, 1.05s r0.76, 1.05s r0.20, 1.22s r0.07, 0.56s r0.02, 0.49s

W-2 r0.90, 1.05s r0.98, 1.22s r0.93, 1.25s r0.32, 0.73s r0.20, 0.85s

W-3 r0.98, 1.05s r0.98, 1.25s r0.90, 1.29s r0.34, 0.71s r0.22, 0.73s

W-4 r0.90, 1.05s r0.76, 1.05s r0.20, 1.22s r0.07, 0.56s r0.02, 0.49s

L-1 r0.90, 1.03s r1.10, 1.64s r1.15, 1.49s r0.37, 1.05s r0.10, 0.46s

L-2 r0.90, 1.05s r1.10, 1.76s r1.15, 2.37s r0.37, 0.98s r0.10, 0.49s

L-3 0.90 1.10 0.83 0.24 0.07

L-4 0.90 1.10 0.83 0.24 0.07

L-5 0.46 0.44 0.68 0.46 0.42

L-0 0.39 0.66 0.66 0.66 0.66

statistics L-3 and L-4 perform better than L-1 and L-2 at least for large m,
however, they also lose a significant amount of power when m is small.

Compared with all these, our recommended test statistic L-5 performs
extremely well for all m and n, with power very close to the benchmark
L-0 even for small m. To ensure the comparisons of power are fair, we also
investigate the empirical (actual) size, pα, in comparison to the nominal type-
I error α. Table 5 shows the minimum and maximum of the empirical sizes
over the three parametrizations considered in each test — and only one value
is needed for those tests that are invariant to parametrization — when the
nominal size α “ 0.5%. We see the deviations from the nominal α can be
noticeable, especially when m “ 3. To take that into account, we report
the empirical size adjusted power, that is, O “ power{pα, which also has the
interpretation as (an approximated) posterior odds of H1 to H0 (Bayarri
et al., 2016). Figure 6 plots the result for size 0.5% tests. Compared with
the benchmark L-0, the odds O of the proposed robust MI test (L-5) is
closer to the nominal value 1{α as δ Ñ 8. Nevertheless, the finite sample
performances of all size 0.5% tests are less satisfactory than those for size
5% tests (given in Appendix) because a very large sample size n is required
in order to approximate the tail behavior of test statistics satisfactorily.

We also compare the performance of estimators of rm for different δ and
parametrizations. In our experiment, we have rm “ 1`1{m because we have
set r “ 1. The MSEs of estimators pf “ pr{p1` prq of fm “ rm{p1` rmq are
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Fig 6. The ratios of empirical power to empirical size under different parametrizations.
The nominal size is α “ 0.5%. In each plot, the vertical axis denotes the ratio, whereas
the horizontal axis denotes δ “ µ2 ´ µ1. The legend in Figure 4 also applies here.

shown in Figure 7, in log scale. Clearly, the only estimator that is consistent,
invariant to parametrization and robust against δ is our proposal pf♦L “

pr♦L{p1`pr♦Lq. It concentrates at the true value fm quite closely even for small

m and n. Since pf♦L is the only reliable estimator of fm, it verifies why L-5

has the greatest power. On the other hand, the estimator rfL “ rrL{p1` rrLq

has very large MSE when δ ­“ 0. It also explains why L-1 is not powerful.

4.2. Monte Carlo Experiments Without EFMI. To check how robust var-

ious tests are to the assumption of EFMI, we simulate Xi “ pXi1, . . . , Xipq
ᵀ iid
„

Nppµ,Σq for i “ 1, . . . , n. Let Rij be defined by Rij “ 1 if Xij is observed,
otherwise Rij “ 0. Suppose that the first variable X¨1 is always observed,
and the rest form a monotone missing pattern as defined by a logistic model
on the missing propensity:

P pRij “ 0 | Ri,j´1 “ aq “

"

r1` exppα0 ` α1Xi,j´1qs
´1 if a “ 1;

1 if a “ 0,
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Fig 7. The MSEs of estimators of fm used in the test statistics. In each plot, the vertical
axis denotes the log of MSE, whereas the horizontal axis denotes the value of δ “ µ2´µ1.
The legend in Figure 4 also applies here.

for j “ 2, . . . , p, where α0, α1 P R. If α1 “ 0, then the data are missing com-
pletely at random (MCAR); otherwise they are missing at random (MAR),
as defined in Rubin (1976). Let nj “

řn
i“1Rij be the number of observed

jth component. Without loss of generality, assume Xobs is arranged in such
a way that Rij ě Ri1j for all i ă i1 and j.

To impute the missing data, it is useful to represent Xi by

“

Xi1 | β1, τ
2
1

‰

„ Npβ1, τ
2
1 q,

“

Xij | Xi,1:pj´1q, βj , τ
2
j

‰

„ NpβᵀjZij , τ
2
j q, j “ 2, . . . , p,

where τ2
1 , . . . , τ

2
p P R`, βj P Rj , Xi,1:pj´1q “ pXi1, . . . , Xi,j´1q

ᵀ and Zij “
p1, Xᵀi,1:pj´1qq

ᵀ for j ě 2. Denote the (complete-case) least squares estimators

of βj and τ2
j by pβj “ pZ

ᵀ
j Zjq

´1ZᵀjWj and pτ2
j “

1
nj´j

pWj´Zj pβjq
ᵀpWj´Zj pβjq,

where Zj “ pZ1j , . . . , Znjjq
ᵀ and Wj “ pX1j , . . . , Xnjjq

ᵀ.
To perform MI, we assume a Bayesian model with the non-informative

prior fpβ1, . . . , βp, τ
2
1 , . . . , τ

2
p q 9 1{pτ2

1 ¨ ¨ ¨ τ
2
p q. For each ` “ 1, . . . ,m, the `th

imputed dataset X`, whose pi, jqth element is X`
ij , is produced as follows.
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1. Let X`
ij “ Xij for all 1 ď j ď p and i ď nj .

2. For each j “ 2, . . . , p, repeat Step 3 to Step 5.
3. Draw a sample pτ `j q

2 from pτ2
j pnj ´ jq{χ

2
nj´j

.

4. Draw a sample β`j from Njppβj , pτ
`
j q

2pZᵀj Zjq
´1q.

5. Draw a sample X`
ij from Nppβ`jq

ᵀZ`ij , pτ
`
j q

2q for i “ nj`1, . . . , n, where

Z`ij “ p1, pX
`
i,1:pj´1qq

ᵀqᵀ.

We test H0 : µ “ 0p against H1 : µ ­“ 0p. In the experiments, we set
µ “ δ1p, where δ P r0, 0.6s; the pi, jqth element of Σ to be Σij “ 0.5|i´j| for
i, j “ 1, . . . , p; n “ 500; m P t3, 5u; p “ 5; pα0, α1q P tp2,´1q, p1, 0qu. Our
model treats Σ unknown, and hence k “ p and h “ p3p`p2q{2. With the `th
imputed dataset, the H0-constrained MLEs of µ and Σ are pµ`0 “ 0p and pΣ`

0 “

pX`qᵀpX`q{n; whereas the unconstrained counterparts are pµ` “ 1ᵀnX`{n and
pΣ` “ pX` ´ pµ`qᵀpX` ´ pµ`q{n. Under H0 and MAR, the fractions of missing
observations of the five variables are p0, 16%, 28%, 38%, 47%q, whereas the
average fractions of missing information, i.e, the eigenvalues of BθT

´1
θ , are

p0, 19%, 34%, 45%, 55%q. So, the assumption of EFMI does not hold.
We compare (L4) pD`L « F

k, pdfppr`L ,kq
, (L5) pD♦L « F

k, pdfppr♦L ,hq
, (C1) complete-

data (asymptotic) LRT using tXi : i “ 1, . . . , nu, and (C2) complete-case
(asymptotic) LRT using tXi : i “ 1, . . . , npu. The results are shown in Figure

8. The size of pD♦L is quite accurate when the nominal size is small. If the data
are MCAR, complete-case test C2 is valid, however, with slightly less power.
(Test C2 is typically invalid without MCAR.) In terms of power-to-size ratio,
the performance of pD♦L is the best among the three implementable tests L4,
L5 and C2. Its performance is comparable to the (unavailable) complete-
data test C1. Note also that the power-to-size ratio of pD`L and pD♦L become
closer to the nominal value 1{0.5% when m increases. All these indicate that
the performance of our proposed tests are acceptable despite of the serious
violation of the EFMI assumption.

4.3. Applications to a Care-Survival Data. Meng and Rubin (1992) ap-
plied their test to the data given in Table 6, where i, j and k index, respec-
tively, clinic (A or B), amount of parental care (more or less) and survival
status (died or survived). However, the clinic label k is missing for some of
the observations (and the missing-data mechanism was assumed to be ignor-
able). Two hypotheses were tested in Meng and Rubin (1992). The first is
whether the clinic and parental care are conditionally independent given the
survival status, and the second is whether all three variables are mutually
independent. The MI datasets are generated from a Bayesian model in § 4.2
of Meng and Rubin (1992). Our aim here is to investigate the impact on the
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Fig 8. The empirical size, empirical power, and their ratio. The first row of plots show the
empirical sizes. The size of the complete-case test (C2) under MAR is off the chat (always
equals to one) in the experiment because it is invalid. The second and third rows of plots
show the powers and the power-to-size ratios, respectively, where the nominal size is 0.5%.

test statistics rDS, pD`S and pD♦S by different parametrizations of tπijku; and

the impact on the estimators rrL, pr`S and pr♦S under different null hypotheses.

Table 6
Data from Meng and Rubin (1992). The notation “?” indicates missing label.

Survival Status (j)

Clinic (k) Parental care (i) Died Survived

A Less 3 176
More 4 293

B Less 17 197
More 2 23

? Less 10 150
More 5 90

Specifically, the `th imputed log-likelihood function is log fpX` | πq “
ř

c n
`
c log πc, where X` are the cell counts n`c in the `th imputed dataset.
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Hence the unconstrained MLE of πc is pπ`c “ n`c{n
`
`, where n`` “

ř

c n
`
c.

Consequently, the joint log-likelihood based on the stacked data is

(4.1) log fpXS | πq “
m
ÿ

`“1

ÿ

c

n`c log πc “
ÿ

c

n`c log πc,

where n`c “
řm
`“1 n

`
c. Thus the unconstrained MLE with respect to (4.1)

is pπS
c “ n`c {n

`
`, where n`` “

ř

c n
`
c . Similarly, we can find the constrained

MLEs under a given null. We consider the following parametrizations:

(i) ψijk “ πijk — the identity map,
(ii) ψijk “ logtπijk{p1´ πijkqu — the logit transformation, and

(iii) ψij1 “ πij1 and ψij2 “ πij2{πij1 — ratios of probabilities.

The p-values rpL, pp`S and pp♦S of the tests rDL, pD`S and pD♦S and the associated

estimates of rm, i.e., rrL, pr`S and pr♦S , are shown in Table 7. A more detailed
comparison is deferred to Table 9 of the Appendix.

Table 7
The LRTs using rDL, pD`S and pD♦S under different parametrizations in § 4.3.

Parametrization (i)

H0: Conditional independence H0: Full independence

m rrL, pr
`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S rrL, pr

`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S

3 0.54, 0.54, 0.38 0.08, 0.08, 0.09 0.93, 0.93, 0.92 0.31, 0.31, 0.38 54.2, 54.2, 51.4 0, 0, 0

10 0.50, 0.50, 0.70 0.14, 0.14, 0.12 0.87, 0.87, 0.88 0.56, 0.56, 0.70 45.4, 45.4, 41.7 0, 0, 0

50 0.31, 0.31, 0.45 0.11, 0.11, 0.10 0.90, 0.90, 0.91 0.33, 0.33, 0.45 51.5, 51.5, 47.3 0, 0, 0

Parametrization (ii)

H0: Conditional independence H0: Full independence

m rrL, pr
`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S rrL, pr

`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S

3 1.08, 0.54, 0.38 ´0.07, 0.08, 0.09 1.00, 0.93, 0.92 0.61, 0.31, 0.38 43.9, 54.2, 51.4 0, 0, 0

10 0.99, 0.50, 0.70 ´0.10, 0.14, 0.12 1.00, 0.87, 0.88 1.09, 0.56, 0.70 33.7, 45.4, 41.7 0, 0, 0

50 0.63, 0.31, 0.45 ´0.10, 0.11, 0.10 1.00, 0.90, 0.91 0.65, 0.33, 0.45 41.3, 51.5, 47.3 0, 0, 0

Parametrization (iii)

H0: Conditional independence H0: Full independence

m rrL, pr
`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S rrL, pr

`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S

3 ´2.35, 0.54, 0.38 ´1.16, 0.08, 0.09 1.00, 0.93, 0.92 ´1.22, 0.31, 0.38 ´321, 54.2, 51.4 1, 0, 0

10 ´2.04, 0.50, 0.70 ´2.20, 0.14, 0.12 1.00, 0.87, 0.88 ´1.85, 0.56, 0.70 ´86, 45.4, 41.7 1, 0, 0

50 ´1.22, 0.31, 0.45 ´7.39, 0.11, 0.10 1.00, 0.90, 0.91 ´1.06, 0.33, 0.45 ´1136, 51.5, 47.3 1, 0, 0

The simulation outputs demonstrate that pD`S and pD♦S are invariant to

parametrizations, whereas rDL is not. Moreover, the impact on rDL is large
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under the parametrization (iii). In particular, the value of rrL is inflated; and
some of the values of rrL and rDL are negative, leading to the meaningless
rpL “ 1, especially under parametrization (iii). In contrast, prS ě 0 for all cases
in this example (and hence pr`S “ prS). In addition, pD`S «

pD♦S for testing the
conditional independence, a hypothesis that is not rejected by either test.
In contrast, for testing the full independence, pD`S and pD♦S are not very close
to each other, but they both lead to essentially zero p-value, and hence both
reject the null hypothesis. These results reconfirm the conclusions in Meng
and Rubin (1992). Last but not least, the estimator pr♦S does not change
under different null hypotheses, however it is not true for rrL and pr`S .

5. Conclusions, Limitations and Future Work. In addition to con-
ducting a general comparative study of MI tests, we proposed two particu-
larly promising MI LRT based on pD♦S “

pDSppr
♦
S q and pD`S “

pDSppr
`
S q. Both test

statistics are non-negative, invariant to re-parametrizations, and powerful to
reject a false null hypothesis (at least for large enough m). Test pD♦S is most
principled, and the resulting test has the desirable monotonically increasing
power as H1 departs from H0. However, it is derived under the stronger
assumption of EFMI for ψ, not just for θ; and row independence of Xcom is
needed for the ease of computation. (The computationally more demanding
test based on pDLppr

♦
Lq relaxes the independence assumption.) The main ad-

vantage of pD`S is that it is easier to compute, as it requires only standard
complete-data computer subroutines for likelihood ratio tests. One drawback
is that the ad hoc fix pr`S “ maxp0, prSq is inconsistent in general. However, the
inconsistency does not appear to significantly affect the asymptotic power,
at least in our experiments. Whereas pD`S and pD♦S significantly improve over
existing counterparts, more studies are needed, for reasons listed below.

• When the missing data mechanism is not ignorable but the imputers
fail to fully take that into account, the issue of uncongeniality becomes
critical (Meng, 1994a). Xie and Meng (2017) provides theoretical tools
for addressing such an issue in the context of estimation, and research
is needed to extend their findings to the setting of hypothesis testing.
• Although the violation of the EFMI assumption may not (seriously)

invalidate a test, it will affect its power. It is therefore desirable to
explore MI tests without this assumption.
• The robust pD♦S relies on a stronger assumption of EFMI on ψ. We can

modify it so only EFMI on θ is required, but the modification may
be very difficult to compute and may require users to have access to
non-trivial complete-data procedures. Hence a computational feasible
robust test that only assumes EFMI on θ needs to be developed.
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• Because the FMI is a fundamental nuisance parameter here and there
is no (known) pivotal quantity, all MI tests are approximate in nature.
In particular, they all have the potential of doing poorly when FMI is
large and/or m is small. It is therefore of both theoretical and practical
interest to seek powerful MI tests that are least affected by FMI.
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APPENDIX A: SUPPLEMENTARY RESULTS

A.1. Another Motivation for pr♦L. The definition of pr♦L can also be
motivated by the following observation. First, observe that one simple method
to construct an always non-negative estimator of rm is to perturb pψ˚0 and pψ`0
by a suitable amount, say ∆, so that the perturbed version of prL is always
non-negative, and is still asymptotically equivalent to the original prL. We
show, in Theorem A.1 below, that the right amount of ∆ is ∆ “ pψ˚ ´ pψ˚0 .
Using the perturbed version of prL, we obtain

pr4L “
m` 1

kpm´ 1q
pδ4L ,

where

pδ4L “
2

m

m
ÿ

`“1

log

#

fpX` | pψ`q

fpX` | pψ˚q

fpX` | pψ˚0 `∆q

fpX` | pψ`0 `∆q

+

“
1

m

m
ÿ

`“1

dLp
pψ`0`∆, pψ` | X`q.

Then we have the following result.

Theorem A.1. Suppose RCθ. Under H0, we have (i) pr4L ě 0 for all

m,n; and (ii) pr4L l prL as nÑ8 for each m.

Although pr4L ě 0, it is only invariant to affine transformations, and not
robust against θ0, and less computational feasible than prL; see § 3. However,
it gives us some insights on how to construct a potentially better estimator.
Note that, in (A.1), the constrained MLE is not used in dLp¨, ¨ | X

`q, but it is

still always non-negative. We call this a “pseudo” LRT statistics. Then, pδ4L
is just a multiple of an average of many “pseudo” LRT statistics. In order
to find a good estimator of rm, we may seek for an estimator which admits
this form. Indeed, our proposed estimator pr♦L also takes the same form:

pr♦L “
m` 1

hpm´ 1q

1

m

m
ÿ

`“1

dLp
pψ˚, pψ` | X`q.

A.2. Results for Dependent Data. This is a supplement for § 3.1.
If the data are not independent, pdL l pdS is still true under the following
conditions.

Assumption 5. (a) Define Rpψq “ L
S
pψq ´ Lpψq, where Lpψq “

pmnq´1
řm
`“1 log fpX` | ψq and L

S
pψq “ pmnq´1 log fpXS | ψq. For

each m, as nÑ8,

sup
ψPΨ

|Rpψq| “ Opp1{nq, sup
ψPΨ

ˇ

ˇ

ˇ

ˇ

B

Bψ
Rpψq

ˇ

ˇ

ˇ

ˇ

“ Opp1{nq.
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(b) For each m, there exists a continuous function ψ ÞÑ Lpψq, which is
free of n but may depend on m, such that, as nÑ8,

sup
ψPΨ

ˇ

ˇLpψq ´Lpψq
ˇ

ˇ “ opp1q.

(c) Let ψ˚0 “ arg maxψPΨ : ψpθq“θ0 Lpψq and ψ˚ “ arg maxψPΨ Lpψq. For
any fixed m, and for all ε ą 0, there exists δ ą 0 such that

sup
ψPΨ : |ψ˚0´ψ|ąε

θpψq“θ0

 

Lpψ˚0 q ´Lpψq
(

ě δ, sup
ψPΨ : |ψ˚´ψ|ąε

 

Lpψ˚q ´Lpψq
(

ě δ.

Conditions (b) and (c) in Assumption 5 are standard RCs that are usu-
ally assumed for M-estimators (see § 5 of van der Vaart (2000)); whereas
condition (a) is satisfied by many models (see Example A.1 below).

Theorem A.2. Suppose RCθ and Assumption 5. Under both H0 and
H1, we have (i) pdS, prS ě 0 for all m,n; (ii) pdS, prS are invariant to the
parametrization of ψ for all m,n; and (iii) pdL l pdS and prL l prS as nÑ 8

for each m.

Theorem A.2 implies that the handy test statistics pDS and pD`S approxi-

mate pDL and pD`L for dependent data, provided that Assumption 5 holds.

Example A.1. Consider a stationary autoregressive model of order one.
Suppose the complete data X “ pX1, . . . , Xnq

ᵀ is generated as following:
X1 „ Np0, v2q and rXi|Xi´1s „ NpφXi´1, σ

2q for i ě 2, where v2 “

σ2p1` φq{p1´ φq. Then ψ “ pφ, σ2qᵀ, and

Lpψq “ ´
1

2
logp2πq ´

1

2n
log v2 ´

1

mn

m
ÿ

`“1

X`
1

2v2
´
n´ 1

2n
log σ2

´
1

mn

m
ÿ

`“1

n
ÿ

i“2

pX`
i ´ φX

`
i´1q

2

2σ2
,

L
S
pψq “ ´

1

2
logp2πq ´

1

2mn
log v2 ´

pX1
1 q

2

2mnv2
´
mn´ 1

2mn
log σ2

´
1

mn

m
ÿ

`“1

n
ÿ

i“2

pX`
i ´ φX

`
i´1q

2

2σ2
´

1

mn

m
ÿ

`“2

pX`
1 ´ φX

`´1
n q2

2σ2
.

Then, it is easy to see that condition (a) of Assumption 5 is satisfied.
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APPENDIX B: PROOFS

Proof of Theorem 2.1. (i, ii) From (2.3), we know pdL ě 0 is invariant
to parametrization ψ. (iii) Since pdL is invariant to transformation of ψ, we
assume, without loss of generality, that ψ admits a parameterization such
that Covppθ`, pη`q l 0 by taking suitable linear transformation of ψ. Also write
U `η as an efficient estimator of Varppηq based on X`; and recall that U `θ “ U `

is an efficient estimator of Varppθq based on X`.
Using Taylor’s expansion on ψ ÞÑ Lpψq “ m´1

řm
`“1 log fpX` | ψq around

pψ˚ “ pppθ˚qᵀ, ppη˚qᵀqᵀ, we know that for ψ l pψ˚,

(B.1) Lpψq l Lp pψ˚q ´
1

2

´

ψ ´ pψ˚
¯ᵀ
Ip pψ˚q

´

ψ ´ pψ˚
¯

,

where Ipψq “ ´B2Lpψq{BψBψᵀ, which satisfies

(B.2) Ip pψ˚q l

˜

U
´1
θ 0

0 U
´1
η

¸

with Uη “ m´1
řm
i“1 U

`
η. Under the null, pψ˚ l pψ˚0 . So, using (B.1), we have

pdL l
´

pψ˚0 ´
pψ˚
¯ᵀ
Ip pψ˚q

´

pψ˚0 ´
pψ˚
¯

,

l

˜

θ0 ´ pθ˚

pηpθ0q ´ pηppθ˚q

¸ᵀ˜

U
´1
θ 0

0 U
´1
η

¸˜

θ0 ´ pθ˚

pηpθ0q ´ pηppθ˚q

¸

l pθ
ᵀ
´ θ0qU

´1
θ pθ

ᵀ
´ θ0q “ rd1W,(B.3)

where we have used (a) pθ˚ l θ; see, e.g., Lemma 1 of Wang and Robins
(1998), and (b) pηpθ0q´ pηppθ˚q “ Opp1{nq if θ0´ pθ˚ “ Opp1{

?
nq; see Cox and

Reid (1987). Since rd1W l
rdL (Meng and Rubin, 1992), we have pdL l rdL.

Proof of Proposition 2.2. The given condition implies that

pψ` “ pppθ`qᵀ, ppη`qᵀqᵀ, pψ`0 “ pθ
ᵀ
0 , ppη

`qᵀqᵀ,

pψ˚ “ pppθ˚qᵀ, ppη˚qᵀqᵀ, pψ˚0 “ pθ
ᵀ
0 , ppη

˚qᵀqᵀ.

Clearly, we also have the decomposition: L`pψq “ L`:pθq ` L`;pηq for all `,

where L`:pθq “ L:pθ | X
`q and L`;pηq “ L;pη | X

`q. Then,

dL ´
pdL “

2

m

m
ÿ

`“1

!

L`p pψ`q ´ L`p pψ`0q ´ L
`p pψ˚q ` L`p pψ˚0 q

)

“
2

m

m
ÿ

`“1

!

L`:p
pθ`q ´ L`:p

pθ˚q
)

ě 0
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since L`:p
pθ`q ě L`:p

pθ˚q for all `.

Proof of Corollary 2.3. Applying Taylor’s expansion on ψ ÞÑ L`pψq,

we can find

p

ψ` lying on the line segment joining pψ` and pψ`0 such that

L`p pψ`0q “ L`p pψ`q ´
1

2

´

pψ`0 ´
pψ`
¯ᵀ
I`p

p

ψ`q
´

pψ`0 ´
pψ`
¯

,

where I`pψq “ ´B2L`pψq{BψBψᵀ. By the lower order variability of I`p

p

ψ`q,

we can find

p

ψ˚ such that I`p

p

ψ`q l I`p

p

ψ˚q for all `. Then, using similar
techniques as in (B.2) and (B.3), we have

L`p pψ`q ´ L`p pψ`0q l
1

2

´

pψ`0 ´
pψ`
¯ᵀ
I`p

p

ψ˚q
´

pψ`0 ´
pψ`
¯

l
1

2

´

θ0 ´ pθ`
¯ᵀ

p

U
´1 ´

θ0 ´ pθ`
¯

(B.4)

for some matrix

p

U . Similarly, we have

(B.5) L`p pψ˚q ´ L`p pψ˚0 q l
1

2

´

θ0 ´ pθ˚
¯ᵀ

p

U
´1 ´

θ0 ´ pθ˚
¯

.

Write Ab2 “ AAᵀ for any appropriate matrix A. Using (B.4), (B.5) and the
cyclic property of trace, we have

dL ´
pdL l

1

m

m
ÿ

`“1

"

´

θ0 ´ pθ`
¯ᵀ

p

U
´1 ´

θ0 ´ pθ`
¯

´

´

θ0 ´ pθ˚
¯ᵀ

p

U
´1 ´

θ0 ´ pθ˚
¯

*

“ tr

«

p

U
´1

#

1

m

m
ÿ

`“1

´

θ0 ´ pθ`
¯b2

´

´

θ0 ´ pθ˚
¯b2

+ff

l tr

«

p

U
´1 1

m

m
ÿ

`“1

!

ppθ`qb2 ´ θ
b2
)

ff

l tr

ˆ

p

U
´1
B

˙

l tr
´

U´1
θ,0Bθ

¯

as m,nÑ8, where Uθ,0 is a deterministic matrix that depends on both θ0

and θ‹, and satisfies np

p

U´Uθ,0q
pr
Ñ 0. Note that trpU´1

θ,0Bθq “ kr0, for some

finite r0 by Assumption 2. Then prL
pr
Ñ r0 “ trpU´1

θ,0Bθq{k, proving (ii). (But
Uθ,0 may not equal to Uθ, and hence prL may not be consistent for rm.)

If H0 is true, then θ
pr
Ñ θ0 “ θ‹ and

p

U l U l Uθ “ Uθ,0. Then, prL
pr
Ñ r

as m,nÑ8. So, (i) follows.

Proof of Theorem 2.4. (i, ii) It is trivial by the definition of pr♦L. (iii)

Applying Taylor’s expansion to ψ ÞÑ L`pψq again, we know there is

p

ψ` lying
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on the line segment joining pψ` and pψ˚ such that

(B.6) L`p pψ˚q “ L`p pψ`q ´
1

2

´

pψ˚ ´ pψ`
¯ᵀ
I`p

p

ψ`q
´

pψ˚ ´ pψ`
¯

.

By the lower order variability of I`p

p

ψ`q, we know that I`p

p

ψ`q l Ip pψ˚q for
all `, where Ipψq “ m´1

řm
`“1 I

`pψq. We also know that pψ˚ l ψ. Thus

δL ´
pδL l

1

m

m
ÿ

`“1

´

pψ˚ ´ pψ`
¯ᵀ
Ip pψ˚q

´

pψ˚ ´ pψ`
¯

“ tr

#

Ip pψ˚q
1

m

m
ÿ

`“1

´

pψ˚ ´ pψ`
¯b2

+

l tr

#

Ip pψ˚q
1

m

m
ÿ

`“1

´

pψ` ´ ψ
¯b2

+

l tr
´

U´1
ψ Bψ

¯

(B.7)

as m,nÑ8. By the assumption of EFMI of ψ, we have pr♦L
pr
Ñ r.

Proof of Lemma 2.5. First, recall that, as n Ñ 8, the observed data

MLE pθobs of θ satisfies (2.4), which can be written as rpθobs | θ
‹s

D
«Nkpθ

‹,Tθq,

where A1,n
D
« A2,n means that A1,n and A2,n have the same asymptotic

distribution, i.e., there exist deterministic sequences µn and Σn such that

pA1,n ´ µnqΣ
´1{2
n ñ A and pA2,n ´ µnqΣ

´1{2
n ñ A for some non-degenerate

random variable A. From Assumption 3, a proper imputation model is used.
So, we have (2.5), which is equivalent to say that, as nÑ8,

(B.8)
”

pθ` | Xobs

ı

D
«Nkp

pθobs,Bθq,

independently for for ` “ 1, . . . ,m. Therefore we can represent

pθobs
D
« θ‹ `T

1{2
θ W,(B.9)

pθ`
D
« pθobs `B

1{2
θ Z`, ` “ 1, . . . ,m(B.10)

where Z1, . . . , Zm,W
iid
„ Nkp0, Ikq. Also write Z` “ pZ1`, . . . , Zk`q

ᵀ, for ` “

1, 2, . . . ,m, and W “ pW1, . . . ,Wkq
ᵀ. Averaging (B.10) over `, we have θ

D
«

pθobs `B
1{2
θ Z‚, where Z‚ “ m´1

řm
`“1 Z`. Since Bθ “ rUθ, we have

U
´1{2
θ ppθ` ´ θ‹q

D
« p1` rq1{2W ` r1{2Z`,

U
´1{2
θ pθ ´ θ‹q

D
« p1` rq1{2W ` r1{2Z‚.
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Note that (2.6) implies Uθ l U . Under H0, we have θ‹ “ θ0 and

dL l d
1

W
D
«

k
ÿ

i“1

!

p1` rq1{2Wi ` r1{2Zi`

)2
,

pdL l rdL l rd1W
D
«

k
ÿ

i“1

!

p1` rq1{2Wi ` r1{2Zi

)2
.

After some simple algebra, we obtain

pr`L
D
«
pm` 1qr

mk

k
ÿ

i“1

s2
Zi

and pD`L
D
«
m
řk
i“1

 

p1` rq1{2Wi ` r1{2Zi‚
(2

mk ` pm` 1qr
řk
i“1 s

2
Zi

,

where s2
Zi
“ pm´ 1q´1

řm
`“1pZi` ´ Zi‚q

2 is the sample variance of tZi`u
m
`“1.

Since Wi, Zi‚ and s2
Zi

are mutually independent for each fixed i, we can

simplify the representation of pD`L to

pr`L
D
«

pm` 1qr

mpm´ 1qk

k
ÿ

i“1

H2
i and pD`L

D
«
pm´ 1qtm` pm` 1qru

řk
i“1G

2
i

mpm´ 1qk ` pm` 1qr
řk
i“1H

2
i

,

where G2
i

iid
„ χ2

1 and H2
i

iid
„ χ2

m´1, for i “ 1, . . . , k, are all mutually indepen-
dent. Clearly, they can be further simplified to (2.14).

Proof of Theorem 2.6. Similar to (B.9) and (B.10), we can have a
more general representation:

pψobs
D
« ψ‹ `T

1{2
ψ W ; pψ`

D
« pψobs `B

1{2
ψ Z`, ` “ 1, . . . ,m,

where Z1, . . . , Zh,W
iid
„ Nhp0, Ihq. Also write Z` “ pZ1`, . . . , Zh`q

ᵀ, for ` “
1, 2, . . . ,m, and W “ pW1, . . . ,Whq

ᵀ. Using (B.7), we have

δL ´
pδL l tr

#

Ip pψ˚q
1

m

m
ÿ

`“1

´

pψ` ´ ψ
¯´

pψ` ´ ψ
¯ᵀ
+

D
« tr

«

U´1
ψ

1

m

m
ÿ

`“1

!

pTψ ´Uψq
1{2 `Z` ´ Z‚

˘

)b2
ff

“
1

m

m
ÿ

`“1

tr
!

rIh
`

Z` ´ Z‚
˘b2

)

“
r

m

m
ÿ

`“1

h
ÿ

i“1

pZi` ´ Zi‚q
2.
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Equivalently, we can say δL ´
pδL ñ rχ2

hpm´1q{m as nÑ8. Hence

pr♦L ñ r ¨
m` 1

hmpm´ 1q
¨ χ2

hpm´1q,

which is equivalent to (2.15). Note that it is true under both H0 and H1.

Proof of Theorem 2.7. From the representations of pd♦L and pr♦L in Lemma
2.5 and Theorem 2.6, we know that they are asymptotically (nÑ8) inde-
pendent. The proof then follows the derivation for Lemma 2.5.

Proof of Proposition 3.1. It is trivial.

Proof of Theorem A.1. (i) Using the representation (A.1), we can

easily see that pr4L ě 0. (ii) It suffices to show

m´1
m
ÿ

`“1

dLp
pψ`0 `∆m, pψ

` | X`q l dL ´
rdL,

where ∆m “ pψ˚ ´ pψ˚0 . Under H0, ∆m l 0 and pψ`0 l pψ`, so pψ`0 `∆m l pψ`.

Using Taylor’s expansion on ψ ÞÑ L`pψq around its maximizer pψ`, we have
for ψ l pψ` that

L`pψq l L`p pψ`q ´
1

2

´

ψ ´ pψ`
¯ᵀ
I`p pψ`q

´

ψ ´ pψ`
¯

.

Under the parametrization of ψ in the proof of Theorem 2.1, we know that

the upper k ˆ k sub-matrix of I`p pψ`q is
`

U `
˘´1

. Using the lower order vari-

ability of U `, we have
`

U `
˘´1
l U

´1
and

1

m

m
ÿ

`“1

dLp
pψ`0 `∆m, pψ

` | X`q

l
1

m

m
ÿ

`“1

´

pψ`0 `∆m ´ pψ`
¯ᵀ
I`p pψ`q

´

pψ`0 `∆m ´ pψ`
¯

l
1

m

m
ÿ

`“1

ppθ` ´ θqᵀU
´1
ppθ` ´ θq “ d

1

W ´ rd1W l dL ´
pdL.

Therefore, the desired result follows.

Proof of Theorem A.2. Throughout this proof, conditions (a), (b)
and (c) refer to the list given in Assumption 5. (i, ii) It trivially follows
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from the definitions of pdS and prS. (iii) First, by the definition of maximizer
and condition (a), we have

Lp pψ˚q ´ Lp pψSq “ Lp pψ˚q ´ L
S
p pψSq ` L

S
p pψSq ´ Lp pψSq

ď Lp pψ˚q ´ L
S
p pψ˚q ` L

S
p pψSq ´ Lp pψSq

ď 2 sup
ψPΨ

ˇ

ˇ

ˇ
Lpψq ´ L

S
pψq

ˇ

ˇ

ˇ
“ Opp1{nq,

which, together with condition (b), imply that

Lpψ˚q ´Lp pψSq

“
 

Lpψ˚q ´ Lpψ˚q
(

`

!

Lpψ˚q ´ Lp pψSq

)

`

!

Lp pψSq ´Lp pψSq

)

ď 2 sup
ψPΨ

ˇ

ˇLpψq ´Lpψq
ˇ

ˇ`

!

Lp pψ˚q ´ Lp pψSq

)

“ opp1q.(B.11)

Using (B.11) and (c), we have pψS pr
Ñ ψ˚. By (b) and (c), we also have

pψ˚
pr
Ñ ψ˚. So,

ˇ

ˇ

ˇ

pψS ´ pψ˚
ˇ

ˇ

ˇ

pr
Ñ 0 as nÑ8. By the definition of maximizer,

(B.12) 0 “ ∇LS
p pψSq “ ∇Lp pψSq `∇Rp pψSq,

where ∇gpψq “ Bgpψq{Bψ is the gradient of ψ ÞÑ gpψq. By condition (a), we
know ∇Rp pψSq “ Opp1{nq. Thus, together with (B.12), we have ∇Lp pψSq “

Opp1{nq. Also, by the definition of MLE, we have ∇Lp pψ˚q “ 0.

By Taylor’s expansion, there exists

p

ψ such that

Lp pψ˚q ´ Lp pψSq “

!

∇Lp
p

ψq
)ᵀ ´

pψ˚ ´ pψS
¯

“ opp1{nq,(B.13)

where we have used the continuity of ψ ÞÑ ∇Lpψq to yield∇Lp
p

ψq “ Opp1{nq.
Rewriting (B.13), we have

(B.14) Lp pψ˚q ´ L
S
p pψSq “ Rp pψSq ` opp1{nq.

Similar to (B.14), we have

(B.15) Lp pψ˚0 q ´ L
S
p pψS

0 q “ Rp pψS
0 q ` opp1{nq.

Then, using (B.14) and (B.15), we have
ˇ

ˇ

ˇ

pdL ´
pdS

ˇ

ˇ

ˇ
“ 2n

ˇ

ˇ

ˇ

!

Lp pψ˚q ´ L
S
p pψSq

)

´

!

Lp pψ˚0 q ´ L
S
p pψS

0 q

)
ˇ

ˇ

ˇ

“ 2n
ˇ

ˇ

ˇ
Rp pψSq ´Rp pψS

0 q ` opp1{nq
ˇ

ˇ

ˇ
.

Now consider two cases.
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(i) Under H0, we have pdL “ Opp1q and pψS
0 l pψS. Thus condition (a)

implies Rp pψSq ´Rp pψS
0 q “ opp1{nq. Then, we have

ˇ

ˇ

ˇ

pdL ´
pdS

ˇ

ˇ

ˇ
“ opppdLq.

(ii) Under H1, we have pdL
pr
Ñ 8. Condition (a) and (B.11) imply that

Lp pψ˚q ´L
S
p pψSq “ Opp1{nq. Similarly, we also have Lp pψ˚0 q ´L

S
p pψS

0 q “

Opp1{nq. Hence
ˇ

ˇ

ˇ

pdL ´
pdS

ˇ

ˇ

ˇ
“ Opp1q. Thus we have

ˇ

ˇ

ˇ

pdL ´
pdS

ˇ

ˇ

ˇ
“ opppdLq.

Therefore, under either H0 or H1, we also have
ˇ

ˇ

ˇ

pdL ´
pdS

ˇ

ˇ

ˇ
“ opppdLq. Since

pdL l pdS and dL “ dS, we know prL l prS.

Note that, even under the assumption of this theorem, prS and pr♦S are not

equivalent. From (3.5) and (3.6), prS and pr♦S are a “difference of difference”
estimator and a “difference” estimator, respectively. So, the “bias” of using

L
S
pψq cannot be canceled out in pr♦S .

APPENDIX C: ADDITIONAL FIGURES AND TABLES

This section presents additional figures and tables in § 2.5 and § 4

• Figure 9: the performance of different approximations to the reference
null distribution when α “ 5%; see § 2.5.

• Figures 10 and 11: the empirical distributions of the p-values under
H0 and parametrizations (i) and (iii), respectively; see § 4.1.

• Figures 12 and 13: the empirical power functions and the empirical
ratio of power-to-size for size 5% tests, respectively; see § 4.1.

• Table 8: the ranges of empirical sizes over different parametrizations
for size 5% tests; see § 4.1.

• Table 9: detailed results of the care-survival example in § 4.3.
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Fig 9. The performances of two different approximate null distributions when the nom-
inal size is α “ 5%. The vertical axis denotes pα or rα, and the horizontal axis denotes
the value of fm. The number attached to each line denotes the value of τ “ h{k. The
proposed approximation pα is denoted by thick solid lines with triangles, and the existing
approximation rα is denoted by thin dashed lines with circles.
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Fig 10. The comparison between empirical size and nominal size α under parametrization
(i) for α P p0, 5%s. The Wald tests (W-1,2,3,4) and LRTs (L-0,1,2,3,4,5) are represented

by grey dashed and black solid lines, respectively. The LRT statistic rDL (L-1: MR92) (Meng

and Rubin, 1992) and its modification rD`L (L-2: MR92(+)) are the existing counterparts

of our proposals pDS (L-3: Proposal), pD`S (L-4: Proposal(+)) and pD♦S (L-5: Proposal(R)).
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Fig 11. The comparison between empirical size and nominal size α under parametrization
(iii) for α P p0, 5%s. The legend in Figure 10 also applies here.
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Fig 12. The power curves under different parametrizations. The nominal size is α “ 5%.
In each plot, the vertical axis denotes the power, whereas the horizontal axis denotes the
value of δ “ µ2 ´ µ1. The legend in Figure 10 also applies here.

Table 8
The range of empirical size rmin pα,max pαs in percentage, where max and min are taken

over the three parametrizations. Only one value is recorded for those tests that are
invariant to parametrization. The nominal size is α “ 5%.

Range of empirical size: rmin pα,max pαs{%

pn,mq p1600, 3q p400, 3q p100, 3q p100, 10q p100, 30q

W-1 r5.62, 5.71s r5.30, 6.03s r3.22, 6.20s r1.64, 4.81s r1.37, 5.00s

W-2 r5.93, 6.05s r6.08, 7.18s r5.52, 8.69s r4.42, 8.47s r4.20, 8.50s

W-3 r5.81, 6.03s r6.01, 6.98s r5.37, 8.28s r4.20, 7.67s r4.10, 7.50s

W-4 r5.62, 5.71s r5.30, 6.03s r3.22, 6.20s r1.64, 4.81s r1.37, 5.00s

L-1 r5.57, 6.15s r6.37, 6.57s r5.88, 6.47s r4.39, 5.66s r4.22, 5.32s

L-2 r5.52, 6.10s r6.37, 6.52s r5.88, 7.47s r4.39, 5.66s r4.22, 5.32s

L-3 5.76 6.37 5.42 3.78 3.71

L-4 5.76 6.37 5.42 3.78 3.71

L-5 4.96 5.32 4.93 4.79 4.54

L-0 5.03 5.03 5.57 5.57 5.57
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Fig 13. The ratios of empirical power to empirical size under different parametrizations.
The nominal size is α “ 5%. In each plot, the vertical axis denotes the ratio, whereas the
horizontal axis denotes δ “ µ2 ´ µ1. The legend in Figure 10 also applies here.
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Table 9
The LRTs using rDL, pD`S and pD♦S under different parametrizations in § 4.3.

Parametrization (i)

H0: Conditional independence H0: Full independence

m rrL, pr
`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S rrL, pr

`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S

2 0.63, 0.64, 0.83 0.14, 0.14, 0.12 0.87, 0.87, 0.89 0.53, 0.53, 0.83 44.4, 44.4, 37.1 0, 0, 0

3 0.54, 0.54, 0.38 0.08, 0.08, 0.09 0.93, 0.93, 0.92 0.31, 0.31, 0.38 54.2, 54.2, 51.4 0, 0, 0

5 0.49, 0.48, 0.89 0.12, 0.12, 0.10 0.89, 0.89, 0.91 0.72, 0.72, 0.89 40.8, 40.8, 37.1 0, 0, 0

7 0.23, 0.23, 0.47 0.06, 0.06, 0.05 0.94, 0.94, 0.95 0.31, 0.31, 0.47 53.2, 53.2, 47.6 0, 0, 0

10 0.50, 0.50, 0.70 0.14, 0.14, 0.12 0.87, 0.87, 0.88 0.56, 0.56, 0.70 45.4, 45.4, 41.7 0, 0, 0

25 0.35, 0.35, 0.47 0.06, 0.06, 0.06 0.94, 0.94, 0.95 0.35, 0.35, 0.47 51.4, 51.4, 47.0 0, 0, 0

50 0.31, 0.31, 0.45 0.11, 0.11, 0.10 0.90, 0.90, 0.91 0.33, 0.33, 0.45 51.5, 51.5, 47.3 0, 0, 0

Parametrization (ii)

H0: Conditional independence H0: Full independence

m rrL, pr
`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S rrL, pr

`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S

2 1.23, 0.64, 0.83 0.01, 0.14, 0.12 0.99, 0.87, 0.89 0.98, 0.53, 0.83 34.2, 44.4, 37.1 0, 0, 0

3 1.08, 0.54, 0.38 ´0.07, 0.08, 0.09 1.00, 0.93, 0.92 0.61, 0.31, 0.38 43.9, 54.2, 51.4 0, 0, 0

5 1.02, 0.48, 0.89 ´0.09, 0.12, 0.10 1.00, 0.89, 0.91 1.40, 0.72, 0.89 29.0, 40.8, 37.1 0, 0, 0

7 0.45, 0.23, 0.47 ´0.07, 0.06, 0.05 1.00, 0.94, 0.95 0.58, 0.31, 0.47 43.9, 53.2, 47.6 0, 0, 0

10 0.99, 0.50, 0.70 ´0.10, 0.14, 0.12 1.00, 0.87, 0.88 1.09, 0.56, 0.70 33.7, 45.4, 41.7 0, 0, 0

25 0.71, 0.35, 0.47 ´0.14, 0.06, 0.06 1.00, 0.94, 0.95 0.68, 0.35, 0.47 41.0, 51.4, 47.0 0, 0, 0

50 0.63, 0.31, 0.45 ´0.10, 0.11, 0.10 1.00, 0.90, 0.91 0.65, 0.33, 0.45 41.3, 51.5, 47.3 0, 0, 0

Parametrization (iii)

H0: Conditional independence H0: Full independence

m rrL, pr
`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S rrL, pr

`
S , pr

♦
S

rDL, pD
`
S ,

pD♦S rpL, pp
`
S , pp

♦
S

2 1.06, 0.64, 0.83 0.04, 0.14, 0.12 0.96, 0.87, 0.88 ´0.38, 0.53, 0.83 109, 44.4, 37.1 0, 0, 0

3 ´2.35, 0.54, 0.38 ´1.16, 0.08, 0.09 1.00, 0.93, 0.92 ´1.22, 0.31, 0.38 ´321, 54.2, 51.4 1, 0, 0

5 ´2.64, 0.48, 0.89 ´1.38, 0.12, 0.10 1.00, 0.89, 0.91 ´2.24, 0.72, 0.89 ´58, 40.8, 37.1 1, 0, 0

7 ´0.01, 0.23, 0.47 0.25, 0.06, 0.05 0.78, 0.94, 0.95 ´0.34, 0.31, 0.47 107, 53.2, 47.6 0, 0, 0

10 ´2.04, 0.50, 0.70 ´2.20, 0.14, 0.12 1.00, 0.87, 0.88 ´1.85, 0.56, 0.70 ´86, 45.4, 41.7 1, 0, 0

25 ´1.39, 0.35, 0.47 ´4.30, 0.06, 0.06 1.00, 0.94, 0.95 ´1.12, 0.35, 0.47 ´603, 51.4, 47.0 1, 0, 0

50 ´1.22, 0.31, 0.45 ´7.39, 0.11, 0.10 1.00, 0.90, 0.91 ´1.06, 0.33, 0.45 ´1136, 51.5, 47.3 1, 0, 0
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