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Multiple imputation (MI) inference handles missing data by first
properly imputing the missing values m times, and then combining
the results from the m complete-data analyses. However, the existing
method for combining likelihood ratio tests has multiple defects: (i)
the combined test statistic can be negative in practice but its null
distribution is approximated by a standard F distribution; (ii) it is
not invariant to re-parametrization; (iii) it fails to ensure monotonic
power due to its use of an inconsistent estimator of the fraction of
missing information (FMI) under the alternative hypothesis; and (iv)
it requires non-trivial access to the likelihood ratio test statistic as
a function of estimated parameters instead of datasets. This paper
shows, via both theoretical derivations and empirical investigations,
that essentially all of these problems can be straightforwardly ad-
dressed if we are willing to perform an additional likelihood ratio test
by stacking the m completed datasets as one big completed dataset.
A particularly intriguing finding is that the FMI itself can be esti-
mated consistently by a likelihood ratio statistic for testing whether
the m completed datasets produced by MI can be regarded effec-
tively as samples coming from a common model. Practical guidelines
are provided based on an extensive comparison of existing MI tests.
Intrigued issues regarding nuisance parameters are also discussed.

1. Historical Successes and Failures. Missing-data problems are
ubiquitous in practice, to the extent that the absence of any missingness
often is a strong indication that the data have been pre-processed or ma-
nipulated in some way (e.g., Blocker and Meng, 2013). Multiple imputation
(MI) (Rubin, 1978, 2004) has been a preferred method by many practition-
ers, especially those who are ill-equipped to handle missingness on their
own, due to lack of information or skills or resources. MI relies on the data
collector (e.g., a census bureau) to build a reliable imputation model to fill
in the missing data m(> 2) times, so the users of the data can apply their
favorite software or procedures that are designed to handle complete data,
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and do so m times. MI inference, e.g., hypothesis testing, is then performed
by appropriately combining these m complete-data results.

Although MI was designed initially for public-use datasets, over the past
30 years or so, it has become a method of choice for handling missing data in
general, because it separates the handling missingness from conducting anal-
ysis (e.g., Tu et al., 1993; Rubin, 1996, 2004; Schafer, 1999; King et al., 2001;
Peugh and Enders, 2004; Kenward and Carpenter, 2007; Rose and Fraser,
2008; Holan et al., 2010; Kim and Yang, 2017). Software routines for per-
forming MI are now available in R (van Buuren and Groothuis-Oudshoorn,
2011; Su et al., 2011), Stata (Royston and White, 2011), SAS (Berglund and
Heeringa, 2014) and SPSS; also see Harel and Zhou (2007) and Horton and
Kleinman (2007) for summaries on software that utilize MI.

This convenient separation, however, creates the thorny issue of uncon-
geniality, i.e., the incompatibility between the imputation model and the
subsequent analysis procedures (Meng, 1994a). This issue is examined in
detail by Xie and Meng (2017), which shows that uncongeniality is easiest
to deal with when the imputer’s model is more saturated than the user’s
model/procedure, and when the user is conducting efficient analysis, such
as likelihood inference. The current paper, therefore, focuses on conducting
MI likelihood ratio tests (LRTSs), assuming the imputation model is suffi-
ciently saturated to render the validity of the common assumptions, which
we shall review, made in the literature about conducting LRTs with MI.

Like many hypothesis testing procedures in common practice, the exact
null distributions of various MI test statistics, LRTs or not, are intractable.
This intractability is not computational, but rather statistical due to the
well-known issue of nuisance parameter, that is, the lack of pivotal quantity,
as highlighted, historically, by the Behrens-Fisher problem (Wallace, 1980).
Indeed, the nuisance parameter in the MI context is the so-called “the frac-
tion of missing information” (FMI), which is determined by the ratio of the
between-imputation variance to within-imputation variance (and its multi-
variate counterparts), and hence the challenge we face is almost identical to
the one faced by the Behrens-Fisher problem, as shown in Meng (1994b).

An added challenge in the MI context is that the user’s complete-data
procedures can be very restrictive. What is available to the user could vary
from the entire likelihood function, to point estimators such as MLE and
Fisher information, to a single p-value. Therefore, there have been a variety
of procedures proposed in the literature, depending on what quantities we
assume the user has access to, as we shall review shortly.

Among them, a promising idea was to directly combine LRT statistics.
However, the execution of this idea as presented in Meng and Rubin (1992)
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relied too heavily on the usual asymptotic equivalence (in terms of the data
size, not the number of imputations, m) between the LRT and Wald test
under the null. Its asymptotic validity, unfortunately, does not protect it
from quick deterioration for small data sizes, such as delivering negative
“F test statistic” or FMI. Worst of all, the test can have essentially zero
power because the estimator of FMI can be badly inconsistent under some
alternative hypotheses. In addition, the combining rule of Meng and Rubin
(1992) requires the user to have access to the LRT as a function of parameter
values, not just as a function of the data. The former one is often unavailable
from standard software packages. This defective MI LRT, however, has been
adopted by textbooks (e.g., van Buuren S, 2012; Kim and Shao, 2013) and
popular software, e.g., the function pool.compare in the R package mice
(van Buuren and Groothuis-Oudshoorn, 2011), the function testModels in
the R package mitml (Grund et al., 2017), the function milrtest (Medeiros,
2008) in the Stata module mim (Carlin et al., 2008).

To minimize the negative impact of this defective LRT test, this paper
derives MI LRTs that are free of the defects as outlined in the abstract and
detailed in § 1.3 below. We achieve this mainly by switching the order of two
main operators in the combining rule of Meng and Rubin (1992): Maximizing
the average of the m log-likelihoods instead of averaging the maximizers
of them. This switching, guided by the likelihood principle, automatically
renders positivity, invariance and monotonic power. Other judicious uses of
the likelihood functions permit us to overcome the remaining defects.

The remainder of Section 1 provides background and notation. Section 2
then discusses the defects of the existing MI LRT and our remedies. Sec-
tion 3 investigates computational requirements for our proposals, including
theoretical considerations and comparisons. In particular, Algorithm 1 of
Section 3.1 computes our most recommended test. Section 4 provides em-
pirical evidence with simulated and real data. Section 5 calls for future work.
Appendices A—C supplement with proofs, and additional investigations.

1.1. Notation and Complete-data Tests. Let Xgps and Xy be, respec-
tively, the observed and missing parts of an intended complete dataset
X = Xecom = {Xobs, Xmis}, which consists of n observations. Denote the
sampling model — probability or density, depending on the data type —
of X by f(- | %), where ¢ € ¥ = R” is a vector of parameters. The goal is
to test Hy : @ = 6y when only X, is available, where 6 = 6(z)) € © < R”
is a function of v, and 6y is a specified vector. For simplicity, we will focus
on the standard two-sided alternative, but our approach adapts to general
complete-data LRTs. Denote the true values of ¥ and 6 by ¥* and 6*. Here
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we assume X, is rich enough that the missing data mechanism is ignor-
able (Rubin, 1976), or it has been properly incorporated into the imputation
model by the imputer, who may have access to additional confidential data.

Let 0 = 0(X) and U = Uy = Up(X) be respectively the complete-data
MLE of 6 and an efficient estimator of Var(G) (e.g., the inverse of the observed
Fisher information). Also, let Do = wo( ) and w 1/1( ) be respectively
the Ho-constrained and unconstrained complete-data MLEs of v, and Uy, =
Uy(X) be an efficient estimator of Var(zZ) For testing Hy against Hjp, the
common choices include the Wald statistic Dw = dw ( 0 U)/k and the LRT
statistic Dy, = dL(@Do,q/J | X)/k, where

f(X | 9)
0g ———"—.

F(X o)
Under regularity conditions (RCs), such as those in § 4.2.2 and § 4.4.2 of Ser-

fling (2001) when the rows of X are independent and identically distributed,
we have the following classical results.

dw(0,U) = (0 — 00)TUH0 — 6p),  du(vo, ¥ | X) =

PROPERTY 1.1. Under Hy, (i) Dw = x3i/k and Dy, = x3/k; and (ii)

pr pr .
n(Dw — D1) = 0 as n — o0 where ‘=" and “>” denote convergence in

distribution and in probability, respectively.

Testing 6 = 6y based on X4 is more involved. For MI, let X b= = {Xobs, X¢

b
mis
£=1,...,m, be the m completed datasets, where Xﬁms are drawn condition-
ally independently from a proper imputation model given X p¢; see Rubin
(2004). We then carry out a complete-data estimation or testing procedure
on X% ¢ = 1,...,m, resulting in a set of m quantities. The so-called MI

inference is to appropriately combine them to obtain a single answer.

1.2. MI Wald Test and Fraction of Missing Information. Let d%v =
dw(QE,UZ)/,\ 0" = 6(X*) and U’ = U(X") be the imputed counterparts of
dw(0,U), 8 and U, respectively, for each £. Also, write their averages as

(1.1) széde, 9:,,711%54’ ;i

Under congeniality (Meng, 1994a), one can show that asymptotically (Rubin
and Schenker, 1986) Var(¢) can be consistently estimated by

Q \

(12) T=U+(1+1/m)B, where B = ﬁ @ - 9)(0° — )T
/=1
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is known as the between-imputation variance, in contrast to U in (1.1), which
measures within-imputation variance. Intriguingly, 27" serves as a universal

(estimated) upper bound of Var(f) under uncongeniality (Xie and Meng,
2017). Under RCs, we have that, as m,n — oo,

nU—-%)%0, nT-%) %0, n(B-%B) >0

for some deterministic matrices %y, Tp and By = Ty — Uy, where 0 denotes
a matrix of zeros, and the subscript 6 highlights that these matrices are
for estimating 60, because there are also corresponding Jy,, By, %, for the
entire parameter 1. Similar to U, T' and B, we define Uw, Ty, and By, for the
component 1. Note that if gcom and éobs are the MLEs of 6 based on Xcom
and Xops (under congeniality), respectively, then %y = Var(écom) and Jp =
Var(Oops) as n — o, where A,, = B,, means that A,, — B,, = o,(A, + By).

The straightforward MI Wald test Dw(T) = dw (6, T)/k is not practical
because T' is singular when m < k (usually 3 < m < 10). Even when it
is not singular, it is usually not a very stable estimator of Iy because m
is small. To circumvent this problem, Rubin (1978) adopted the following
assumption of equal fraction of missing information (EFMI).

AssuMPTION 1 (EFMI of 6).  There is » = 0 such that g = (1 + »)%p.

EFMI clearly is a very strong assumption, implying that the missing data
have caused an equal amount of loss of information for estimating every
component of 8. However, as we shall see shortly, the adoption of this as-
sumption, for the purpose of hypothesis testing, is essentially the same as to
summarize the impact of (at least) k nuisance parameters due to FMI by a
single nuisance parameter, i.e., the average FMI across different components.
How well this reduction strategy works therefore will affect more the power
of the test than its validity, as long as we can construct an approximate
null distribution that is more robust to the EFMI assumption. The issue of
power turns out to be a rather tricky one, because without the reduction
strategy we would also lose power when m/k is small or even modest. It is
because we simply do not have enough degrees of freedom to estimate all
the nuisance parameters well or at all. We will illustrate this point in § 4.2.
(To clarify some confusions in literature, » in Assumption 1 is the odds of
the missing information, not the FMI, which is £ = »/(1 + »).)

Under EFMI, Rubin (2004) replaced T by (1 + 7)U, where

v (m+1) o s R ~
(1.3) Tw_ik(m—l)(dw dyy); dW_m;dW(eaU)v
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J{N = dw(0,U), and the prime “/” indicates that U is used instead of individ-
ual {U 5}2”:1. Then, Rubin (2004) proposed a simple MI Wald test statistic:

~ d.
(1.4) Dy = — W
W k(L + )

The intuition behind (1.3)—(1.4) is important because the forms here are the
building blocks for virtually all the subsequent developments. The “obvious”
Wald test statistic J’W /k is too large (compared to the usual x3/k) because
it fails to take into account of missing information. The (1 + 7%,) factor
attempts to correct this, with the amount of correction determined by the
(average) amount of between-imputation variance relative to the within-
imputation variance. Expression (1.3) shows that this relative amount can
be estimated by contrasting the average of individual Wald statistics and
the Wald statistic based on an average of individual estimates. Using the
difference between “average of functions” and “function of average”, namely,

(1.5) Ave{G(z)} — G(Ave{z})

is a common practice, e.g., G(x) = x? for variance; see Meng (2002).
Since the exact null distribution of Dfy is intractable, Li et al. (1991b)
proposed to approximate it by F, F( k) the F' distribution with degrees
) W

of freedom k and ch(F{N, k), where, denoting K, = k(m — 1),

~ 44 (K —D{1+ (1 = 2/Kp)/7m}?, if K > 4
(1.6)  df(rm, k) = { (m— 1)1+ 1/7)%(k + 1)/2, otherwise.

This approximation assumes n is sufficiently large so that the standard
asymptotic x? distribution in Property 1.1 can be used. If n is small, the
small sample degree of freedom in Barnard and Rubin (1999) should be used.

1.3. The Current MI Likelihood Ratio Test and Its Defect. Let df =
dr, (9§, 0 | X9), b = 1o(X?) and o* = 1(X?) be the imputed counterparts
of dr,(v0,v | X), 1o and 1, respectively, for each ¢. Let their averages be

_ 1 & _ 1 & A — 1
1.7 dy=— > df = =3 - =
( ) L m£:1 L» ¢o m£:1w07 ¢ mgz

o,
1
Similar to 75y, Meng and Rubin (1992) proposed to estimate 7, by

m+1 -

~ 7 1 1 N U,
(18) ry = m(dL - dL)7 where dL = m‘;ldL(’(/}O?w ‘ X£)7
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and hence it is again in the form of (1.5). Computation of 71, requires users
to have access to (i) a subroutine for (X, v, 1) = dr(¢0,% | X), and (ii) the
estimates wo and wé rather than the matrices U and B. Therefore computing
71, is easier than computing rw. The resulting MI LRT is

~ dr,
(1.9) D = k(1+7L)
whose null distribution can be approximated by F} k)

The main theoretical justification (and motivation) was the asymptotic
equivalence between the complete-data Wald test statistic and LRT statis-
tic under the null, as stated in Property 1.1. This equivalence permitted
the replacement of dW and dW in (1.3) respectively by dy, and dj, in (1.8).
However, this is also where the problems lie.

First, with finite samples, 0 < dL dy, is not guaranteed, consequently
nor is INDL > 0 or 71, = 0. Since l~)L is referred to an F distribution and 77,
estimates 7, = 0, clearly negative values of 5L or 71, will cause trouble.

Second, ZNDL is not invariant to re-parameterization of 1. For each individ-
ual LRT statistic df and bijective map g such that ¢ = g(1), we have

(1.10)  df = dn (9§, 9" | X°) = di(97(85), g 1 (B | X9,

where @ and @ are the constrained and unconstrained MLEs of ¢ based on
X*. However, the MI LRT statistic dy, no longer has this property because

2 (o, ¥ | X) = Z AL~ (o), 97 (®) | X°)

for most bijective maps g, where gy = m~ IS @6 and =m0 &
See § 4 how Dy, vary dramatically with parametrizations in finite samples.

Third, the estimator 7, involves the estimators of 1 under Hy, i.e., 1/10
and ty. When H fails, they may not be consistent for 1. As a result, 71, is
no longer consistent for #,,. A serious consequence is that the power of the
test statistic INDL is not guaranteed to monotonically increase as H; moves
away from Hp. Indeed our simulations (see § 3.2) show that under certain
parametrizations, the power may nearly vanish for obviously false H.

Fourth, in order to compute dy, in (1.8), users need to have access to the
LRT function gZL, but, in most software, the function is built as 2r,, where
(1.11)

D+ (X, 90,0) = di(Wo, ¥ | X),  Dr: X = dr(dho(X),(X) | X).

Hence users would need to write themselves a subroutine for evaluating ..
This may not be feasible for users because of lack of information or skills.
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In short, four problems need to be resolved: (i) lack of non-negativity,
(ii) lack of invariance, (iii) lack of consistency and power, and (iv) lack of
a computationally feasible algorithm. Problems (i)—(iii) are resolved in § 2
below, where § 2.1 presents an invariant combining rule, which fully resolves
(ii). Next, we propose two estimators of 7, (or equivalently ») in § 2.2 and
§ 2.4. We start with a quick ad hoc fix that requires slightly less assumption
but only addresses (i), and then construct a test that fully resolves (i) and
(iii). Finally, in § 3, we derive a very handy algorithm, which resolves (iv).

2. Improved MI Likelihood Ratio Tests.

2.1. An Invariant Combining Rule. To derive a MI LRT that is invariant
to re-parametrization, we replace di, by an asymptotically equivalent version
that behaves like a standard LRT statistic. Specifically, let

21) T %Z where L) — log £(X" | ).

We emphasize that L(v) is not a real log-likelihood (even if we drop the
divider m), because it does not properly model the completed datasets:
X = {X',...,X™ (e.g., addressing the issue that all X*s share the same
Xobs). Nevertheless, L(z)) can be treated as a log-likelihood for computa-
tional purposes. In particular, we can maximize it to obtain

~

(22) ¥f =v§(X) = argmax L(v),  ¢* = 0*(X) = argmax L(v).

YeW : 6(1p)=0¢ Pew

The corresponding log-likelihood ratio test statistic is given by
(23)  d=2{T@) - T} - 2 (5, 0% | X°).

Thus, in contrast to cTL of (1.8), JL aggregates MI datasets through averaging
MI LRT functions as in (2.1), rather than averaging MI test statistics and
moments, as in (1.7). Although \/5(126“ — 1) 25 0 and V@ — ) B0 as
n — oo for each m, only JL, not JL, is guaranteed to be non-negative and
invariant to parametrization of 1 for all m, n. Indeed, the likelihood principle
guides us to consider averaging individual log-likelihoods than individual
MLESs, since the former has a much better chance to capture functional
features of the real log-likelihood than any of their (local) maximizers can.
To derive properties of JL, we need the usual RCs on MLE and MI.
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ASSUMPTION 2. The sampling model f(X | 1) satisfies the following:

(a) V¥ — L(v) = n"tlog f(X | ¥) is twice continuously differentiable;

(b) the complete-data MLE @L\(X) is the unique solution of 0L()/0y = 0;

(c) if I(1)) = —02L(x))/0wdyT, then for each 1, there ewists a positive
definite matriz F () = %Jl such that I(1) B F () as n — o0; and

(d) the observed-data MLE ﬂ)\obs of 1 obeys

=12 (7 * *
(2.4) (7571 (Bos = %) 1 67| = (0, 11)
as n — o0, where Iy, is the h x h identity matriz.

ASSUMPTION 3. The imputation model is proper (Rubin, 2004):

(2.5) [931;1/2 (W - Jobs) | Xobs] = M(0, I1),

(26) [7 (U5 - 2%) | Xowa| B0, |77 (B~ By) | X B0
independently for £ = 1,...,m, asn — o0, provided that %Jl is well-defined.

Assumption 2 holds under the usual RCs that guarantee normality and
consistency of MLEs. When the imputations X1. ..., X™ are drawn inde-
pendently from (correctly specified) posterior predictive distribution f(Xis |
Xobs), Assumption 3 is typically satisfied. Clearly, we can replace ¢ by its
sub-vector 0 in Assumptions 2 and 3. These 6-version assumptions are suf-
ficient to guarantee the validity of the following Theorem 2.4 and Corol-
lary 2.3. For simplicity, Assumption 1, the #-version of Assumptions 2 and
3, and conditions that are strong enough to guarantee Property 1.1 are col-

lectively written as RCy, which are commonly assumed for MI inference.

THEOREM 2.1.  Assume RCy. Under Hy, we have (i) di, =0 for allm,n;
(i1) dy, is invariant to parametrization of ¥ for all m,n; and (iii) di, = dy,
as n — oo for each m.

Consequently, an improved combining rule is defined as
2.7 Dy(#m) = ——m—,
(2.7) L(7m) k(1 + 7m)

for a given value of #y,. It follows the forms of (1.4) and of (1.9). The issue
is then how to estimate 7, that avoids the defects of 7, of (1.8).
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2.2. An Improved Estimator of 7. Using dy, in (2.3), we can modify 7,
in (1.8) to a potentially better estimator:

m+1

2.8 L= ———(dy, — dp).
(2.8) L k(m—l)(L L)
Although C/Z\L > 0 is guaranteed by our construction, 7, = 0 does not hold in

general for a finite m. However, it is guaranteed in the following situation.

PROPOSITION 2.2.  Write ¢ = (0T,nT)T, where n represents a nuisance
parameter that is distinct from 0. If there exist functions Ly and Ly such
that, for all X, the log-likelihood function L(v | X) = log f(X | ¢) is of the
form L(¢ | X) = Ly(0 | X) + Ly(n | X), then i, = 0 for all m,n.

The condition in Proposition 2.2 means that the likelihood function of 1
is separable. Then, the profile likelihood estimator of 7 given 6, i.e., Ny =
arg max, L(6,n | X), does not depend on 6. Trivially, if there is no nuisance
parameter 7, the separation condition is satisfied. More generally, we have

. A~ T
COROLLARY 2.3. Assume RCy. We have (i) under Hy, 71, &> » as
m,n — o; and (ii) under Hy, 7L, 2 %0 as myn — o0, where »o = 0 is
some finite value depending on 0y and 0*.

Corollary 2.3 ensures that, under Hy, 1, is non-negative asymptotically
and converges in probability to the true ». But it also reveals another funda-
mental defect of 71,: under Hy, the limit 70 may not equal to 7, a problem we
will address in § 2.2. Fortunately, since dr, 2 oo under Hj, the LRT statistic
lA?L(?L) is still powerful, albeit the power may be somewhat reduced. Sim-
ilarly, 71, of (1.8) has the same asymptotic properties and defects, but 7y,
behaves more nicely than 7, for finite m. This hinges closely on the high
sensitivity of 71, to the parametrization of ¢ for small m, e.g., in some cases,
71, becomes more negative as Hi; moves away from Hq; see § 4.1.

Whereas we can fix the occasional negativeness of 71, by using ?If =
max (0, 71,), such an ad hoc fix misses the opportunity to improve upon 7y,
and indeed it cannot fix the inconsistency of 71, under Hj.

2.3. A Complication Caused by Nuisance Parameter. To better under-
stand the source of the negativity of 71,, we extend L(%)) in (2.1) to allow it
take m different arguments:

(2.9) L', ™) = = Y L),
/=1

1
m
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TABLE 1
The definitions of hypotheses HS, HY, HY, Hi.

GVt = =yYme T gLt Y eT
(ie, »=0) (i.e., »=0)
%0:91=~~~=9m=9069 0 _ 0 1 _ 1
(i.e., Ho-constrained) Hy=%0n¥® Ho=%n%
%1:01,...,9m€® 0 _ 0 1 _ 1
(i-e., not Ho-constrained) Hi=¢1n% Hi=%n¥%

0 1
—_—
Hy 0

™\

HY ——— H}

1

F1G 1. The relationships between the four hypotheses H, H}, HY, Hi. Each arrow denotes
an implication, e.g., HS = HE means that HS implies HE.

Using the “log-likelihood” L(t?, ..., 1™), we can construct, at least concep-
tually, four hypotheses HS, HOI, H{), Hl1 defined in Table 1. Each of them
consists of zero, one or two of the constraints

€:0'=-=0"=0 and G :pl=...=y™

The constraint & is equivalent to Hy, and the constraint €° means that all
's are equal, and hence it is effectively equivalent to » = 0, i.e., no missing
information. The relationships among Hg , H&, H ? , H{ can be visualized
in Figure 1. Define the maximized value of L(¢!,...,%™) under hypothesis
He {H),H}, HY, Hl} by L(H). Then we can re-express (d, — dL)/2 as

(2.10) (i, —dv)/2 = {IL(H{) = L(H})} — {L.(Hg) — L(HQ)} .

Whereas the two bracketed terms in (2.10) are non-negative because they
correspond to two LRT statistics, the difference between these two terms is
not guaranteed to be non-negative. A simple example illustrates this well.
For the regression model [Y | X1, X2] ~ 4 (Bo + B1X1 + B2X2,0?), the
LRT statistic for testing HY : f1 = 0, 52 € R against H{ : 81,32 € R is not
necessarily larger (or smaller) than that for testing H{ : 81 = 2 = 0 against
H& : B1 € R, By = 0. A schematic illustration is provided in Figure 2.

The decomposition (2.10) provides another interpretation of 77,. The test
statistic L(H7) — L(HY) seeks evidence for detecting the falsity of » = 0 in
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Constraint gov’!,

v
Constraint °\

FIG 2. A schematic illustration of the sign of (2.10). The contour lines of L(*,...,¢™)
are plotted. The two straight lines refer to constraints €o and €°. Since ]L(Hll) =
0.082, L(Hy) = L(HY) = 0.08, and L(H3) = 0.01, we have {L(Hi)—L(H?)} —
{L(Hg) — L(Hg)} = 0.002 — 0.007 < 0. Note that the function L(s)*,...,4™) in (2.9)
is at least 4-dimensional (i.e., 01,92,7717772) generally, so the above illustration in a 2-
dimension space is just conceptual.

both 6 and 7, whereas L(H{}) — L(HJ) seeks evidence only in 7. For cases
where 6 and 7 are orthogonal (at least locally), the left-hand side of (2.10)
can be viewed as a measure of evidence against » = 0 solely from 6; Propo-
sition 2.2 already hinted this possibility. However, the “test statistic” (2.10)
has a very serious problem apart from being possibly negative. Because %
requires all #s to coincide with a specific 8y, € is not nested within €9, i.e.,
&Y = Go. Hence 71, is guaranteed to consistently estimate 74, only under
Hy. This explains Corollary 2.3, and leads to an improvement below.

2.4. A Consistent and Non-negative Estimator of #,,. Our new estima-
tor simply drops the second term in (2.10), that is, we estimate 7, by

+1 - 4
(2.11) P = h(% — %), where
(2.12) oL = 2L(YY, ..., 0™), o = 2L(Y*, ..., 0%,

where h is the dimension of ¢, and the rhombus “{” symbolizes a robust
estimator. It is robust, because it is consistent under either Hy or Hi, as long
as we are willing to impose the EFMI assumption on the entire parameter
¥, a stronger requirement than Assumption 1. This expansion from 6 to
is inevitable because the LRT must handle the entire v, not just 6. The
collection of Assumptions 2-4 will be referred to as RCy.

AssuMPTION 4 (EFMI of o).  There is » = 0 such that Ty = (1+#)%y.
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THEOREM 2.4. Assume RCy. Then for any value of 1, we have (i) ?ﬁ >
0 for all m,n; (ii) ?ﬁ is wnvariant to parametrization of ¥ for all m,n; and

pr . . . .
(i) ?S = 7 as m,n — o, where » is given in Assumption 4.

With the improved combining rule Dy, (#4,) of (2.7) and improved estima-
tors for »,, we are ready to propose two MI LRT statistics:

(2.13) Df = Do) and  D{ = D).
For comparison, we also study the test statistic Dy, = EL(?L).

2.5. Reference Null Distributions. The estimators ?ﬁ’ and 77, have the
same functional form asymptotically (n — o0) and rely on the same set of
assumptions, hence they have the same asymptotic distribution.

LEMMA 2.5. Suppose RCy and m > 1. Under Hy, we have, jointly,

oy ~ (1 + 7 )Ml
2.14 L = M d Df = """
( ) - = M> an L = A

asn — o0, where My ~ x2/k and My ~ Xi(m_l)/{k:(m—l)} are independent.

Consequently, the null distribution of lA)f = IA?L(?E ) can be approximated
by Fk7 dE(FE k) but a better approximation will be provided shortly.

For the other proposal, although ?IJ: — ?ﬁ 250 as n — oo under Hy, their
non-degenerated distributions (after proper scaling) are different because ?ﬁ

relies on an average FMI in v, but ?{ only on an average FMI in 6.

THEOREM 2.6. Suppose RCy, and m > 1. Then for any value of 9,

0 2
r Xh(m—1)
2.15 L M3 ~ ————
(2.15) #m - h(m —1)

as n — o0, where Ms is independent of the M defined in (2.14).

Theorem 2.6 implies that, if n can be regarded as infinity and f“ﬁ is uni-
formly integrable in &2, then

Bias(F) = E(FY) —#m =0 and  Var(fY) = —™ = O(m™)
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as m — o0. Therefore ?ﬁ is a y/m-consistent estimator of 7 in Z2. Moreover,

for each m > 1 and as n — o0, we have
Bias(7;"
.7(35) -1 and %
Bias(7)) Var(7y)
which implies that ?ﬁ is no less efficient than ?ﬁr when RCy, holds. This is of
no surprise because of the extra information in ?ﬁ brought in by the stronger
Assumption 4. Result (2.15) also gives us the exact (i.e., for any m > 1, but
assuming n — o0) reference null distribution of Dg, as given below.

THEOREM 2.7.  Assume RCy and m > 1. Under Hy, we have

(1 + 7‘m) My

2.16 DY
( ) L= 1+ #mM3

D

asn — o0, where My ~ x3/k and Mz ~ Xi(m_l)/{h(m—l)} are independent.

The impact of the nuisance parameter 7, on the null distribution dimin-
ishes with m, because DE and DE’ converge in distribution to M; = X% /k as

m,n — . Since M3 2> 1 faster than My > 1, ﬁg is expected to be more
robust to 7,. Nevertheless, because m typically is small in practice (e.g.,
m < 10), we cannot ignore the impact of #,. This issue has been largely
dealt with in the literature by seeking an F}, q¢ distribution as an approx-
imate null distribution, as in Li et al. (1991b). However, directly adopting
their df of (1.6) leads to poorer approximation for our purposes; see below. A
better approximation is to match the first two moments of the denominator
of (2.16), 1+ 7, M3, with that of a scaled x%: axi/b. This yields a = 1+ 7,

and b = (1 4 7,,')h(m — 1), and the approximated F), (i) where
~ [ h(m —1)

2.1 df (7, h) = h(im—1) = ———=.

21) () = 227 1) = 2

This degrees of freedom is appealing because it simply inflates the denomi-
nator degrees of freedom Mjz by dividing it by £2,, where £y, = #m/(1+7m)
the finite imputation corrected FMI. Intuitively, the less missing informa-
tion, the closer Fk7 &t () should be to X%/k’, the usual large-n asymptotic
x? test; as mentioned earlier, for small n, see Barnard and Rubin (1999).
To compare Fk,&f(rm,h) with Fk,&f(fm,h)
tion of D given in (2.16), we compute via simulations

as approximations to the distribu-

a="P {D > Fl;gf(#mh)(l — oz)} and a=P {D > Fk_,éf(fm,h)(l _ a)},
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where [} dlf(q) denotes the g-quantile of Fy qr. We draw N = 28 indepen-
dent Copies D for each of the following possible combinations: m € {3, 5,7},
ke{1,2,4,8}, 7 =h/ke{1,2,3}, fm €{0,0.1,...,0.9}, and following Ben-
jamin et al. (2018)’s recommendation, we use both a € {0.5%,5%}. The
results for @ = 0.5% and for a = 5% are shown respectively in Figure 3
and in the Appendix. In general, & approximates o much better than &,
especially when m, k, h are small. When m, h are larger, their performances
are similar because both F,C A (rmh) and Fy, df( ) get close to Xi/k: But the
performances of & and & are not monotonic in /m. Generally speaking, the
performance of Fy, o) is particularly good for 0% < fm < 30%. Conse-

quently, we recommend using F as an approximate null distribution

k,dE(70 k)
for D ,;and F, G k) for Dﬁ , as employed in the rest of this paper. However,

these approximations obviously suffer from the usual “plug-in problem” by
ignoring the uncertainties in estimating #4,. Since the F}, 4r is not too sen-
sitive to the value of df once it is reasonably large (df > 20), the “plug-in
problem” is less an issue here than in many other context, leading to accept-
able approximations as empirically demonstrated in Section 4. Nevertheless,
further improvements are likely and should be sought.

3. Computational Considerations and Comparisons. The statis-
tic d, of (1.7) is easy to cornpute because only the standard complete-data
procedure DL X = dL(Yo(X),¥(X) | X) is needed. However, d, of (2.3)
and 79 rp of (2.8) in general cannot be computed solely by 91, e.g., dL requires

D X'—’*ZdLQ/JO X), $*(X) | X°).

/=1

Creating a subroutine for this computation requires additional effort and in-
formation that may beyond a user’s capacity. Here we show how to compute
or approximate dL and 7 7 solely by 9y, or a trivial modification of 9y..

3.1. Computationally Feasible Combining Rule. We begin with precise
notation for our complete data X and its sampling model f(X]v). For the
vast majority of real-world datasets, X is of the form of an n x p matrix, with
rows indicating subjects and columns variables/attributes. We then write
X = (Xy,...,X,)7, and its sampling model by f,,(X | ¢). Correspondingly,
the ¢th completed-dataset by MI is X¢ = (X{,..., X%)T. Define the stacked
dataset by X5 = [(X1)T,...,(X™)T]7, a matrix having mn rows, which is
conceptually different from the collection of datasets X = {X! ..., X™}.
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Nominal size a = 0.5 %

[ k=1 [ k=2 [ k=4 I k=8 ]
FMI
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Fic 3. The performances of two different approximated null distributions when the nom-
inal size is a = 0.5%. The vertical azxis denotes & or &, and the horizontal azis denotes
the value of fm. The number attached to each line denotes the value of T = h/k. The
proposed approzimation & is denoted by thick solid lines with triangles, and the existing
approzimation & is denoted by thin dashed lines with circles.

Treating X° as a dataset with size mn, we can define

—S 1
(3.1) L7(#) = —log fun (X* | ¥),

which, other than the scaling factor 1/m, is just the ordinary log-likelihood
function of ¢ based on the dataset X° (for computation purposes). Conse-
quently, as long as the user’s complete-data procedure can handle size mn
instead of just n, the user can apply it to X3 to obtain

(3.2) 12(8) = argmax fs(w) and S = arg maxfs(zp).
YeW : 0(1p)=0¢ Yew

Consequently, the quantities

~

(3.3) bos =20°(4F)  and  0s =20 (%)

are readily available from the user’s complete-data procedure. It is then
desirable if we can replace L(v)) by fs(zp) in the proposed test statistics.
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Precisely, in parallel to (2.7), (2.8) and (2.11), we define

. a U
(34)  Dg(rm) = st) with dg = dg — do.g of (3.3);
~ m+1l - TS
1 _ ~ _ _
(3.6) 70 = fﬂinws _5s), with 8s = o1, of (2.12);

and 7§ = max(0,7s). The “stacked” counterparts of lA)ﬁ and its existing
counterparts Dy, and D; (see (2.13)) then are given by

(3.7) DY = Ds(78),  Ds=Ds(fs), D¢ = Ds(d).

ProposITION 3.1. If X = (Xy,...,X,)7 is row-independent for arbi-
trary n, i.e., f(X | ) =11y f(Xi | ), then (2.1) and (3.1) are the same:

L(y) = fs(q/)). Consequently, ﬁs = Dy, and ]_A)é> = ﬁg

Since for many applications, the rows correspond to individual subjects,
the row-independence assumption typically holds for arbitrary n. Hence we
can extend from n to mn, assuming the user’s complete-data procedure is
not size-limited. Even if it does not hold, we can still have dj, = dg under
some RCs that guarantee L(v)) and fs(w) are close; see Appendix A, where
we also reveal a subtle but important difference between ?ﬁ and ?g

Similar to 9y, in (1.11), we define complete-data functions (with data X
being the only input)

(3.8)  Dro(X) =2log f(X |¢o(X)), Pr1(X)=2log f(X | (X))

The subroutine for evaluating the complete-data LRT function X — 9r,(X)
is usually available, as is the subroutine for X — 9y, ;(X); for example, the
function logLik in R extracts the maximum of complete data log-likelihood
for objects belonging to classes "glm", "1m", "nls" and "Arima". R

The Algorithms 1 and 2 listed below compute tests given D<S> and Dg ,
respectively. Whenever possible, we recommend the use of the robust MI
LRT given by Algorithm 1, since it has the best theoretical guarantee. The
second test can be useful when 2y, but not 9y, ; is available.

3.2. Computational Comparison with Eristing Tests. First, we list some
existing estimators of 7, and their computation. Let S%VJ and S\QN 12 be the

sample variances of {d}7%, and {,/di;},, respectively. By the method of
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Algorithm 1: (Robust) MI LRT statistic ﬁg

Input: Datasets X',..., X™; dimensions h, k; functions Dr, 1, D1, in (3.8), (1.11).
begin
Compute 6s = m™ DL 1 (X)) + -+ Dp1(X™)} .
(i) Stack the datasets to form X® = [(X1)T,... (X™)T]".

(ii) Compute ds = m 1P (X®) and bs = m 11 (X5).
Calculate 7¢ according to (3.6), and ﬁg according to (3.4) and (3.7).
Calculate dAf(?g, h) according to (2.17).

Compute the p-value as 1 — F, FH0 h>(
AE(RS,

DY).

Algorithm 2: MI LRT statistic D

Input: Datasets X',..., X™; dimension k; function @, in (1.11).
begin
Compute dr, = m™H{Dr,(X) + - + Dr.(X™)} .
(i) Stack the datasets to form X® = [(X1)T,... (X™)T]T.
(ii) Compute ds =m 'y, (X5).
Calculate 74 according to (3.5), and ﬁg’ according to (3.4) and (3.7).
Calculate c’l\f(?g, k) according to (2.17).

Compute the p-value as 1 — F} T (D)
’ S’ S

moments concerning s%; , and s2 , Rubin (2004) and Li et al. (1991a
W,1 W,1/2
respectively proposed estimating 7, by

(1+ 1/m)5%v,1

2y + \/ {4dsy - 2ks%v’1}+

where {a}" = max(0,a). Note that when k is large and m is small, using
(3.9) may lead to power loss, although the users have no choice when they
are given only {di}7,. A trivial modification of 71, of (1.8), i.e., 7{ =
max (0, 71,), is a better alternative if the user is able to compute 77.,.
Second, we list some alternative MI combining rules. Having the above
estimators of #,,, we can insert them into the following combining rules:

(3.9) w1 = ) ?W,l/2 =1+ 1/m)3%v,1/2v

N d - d, N - +
Div(#m) = —Y  Di(rm) = ———— DI () ={Dr(#m) ¢ .
wlem) = fig sy D) = gy Prlm) {Dutrm)}

Using (1.3) and (1.8), we can also define the following combining rules:

E{N _ k(m-1) o EL k(m—1)

mtl M ~ Tmel
Di(rm) = ———mtL ™
k(1 + 7m) Lm) = A )

#m

(3.10) Dy (#m) =
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The combining rule ﬁlw(fm) is useful when computing J’W is difficult but
computing E?;V and estimating 7, are simple. However, the resulting power
may deteriorate if the estimator of #,, is inefficient or inaccurate. This type
of test statistics is also mentioned in Li et al. (1991a). Indeed, there are
infinitely many asymptotically equivalent test statistics, e.g., any convex
combination of Dy (#m) and Dy (#m), i.e., dDw(#m) + (1 — ¢) Dy (#m), for
¢ € [0,1]. When 7w 1 or Ty 1/2 is used for estimating #+,, the null distribu-
tions of the resulting MI test statistics can be approximated by F bt (o )

where df’ (#my k) = (m —1)(1 + 2, 1)2k73/™; see Li et al. (1991a).
Next, we introduce and recall some notation to facilitate the comparison:
(a) standard complete-data moments estimation (M#w and #1,) and testing

(QZW and 91,) procedures, and (b) non-standard complete-data procedures
(S%L, D1, D11 and D, 1), where

D (X) = dw(B(X),U(X)), Dra(X 32 log f(X* | $*(X)).

3

Clearly, /w produces Dy, and {A,, QNZL} produces 9y,. If users can perform
optimization, .EJNZL produces {1, D1,, D1, 1}. Note that an un-normalized den-
sity can be used in 91,1 and gL,l.

Table 2 summarizes whether a particular pair of D(-) and r, resulting the
statistic D(r), has the following statistical or computational properties.

(Inv) D(r) and r are invariant to re-parametrization of v;

(Rob) r is robust against 6, i.e., consistent under both Hy and Hj;
(=20) D(r) and r are non—negatlve for all m and n;

(Pow) the test has high power to reject Hy under Hy;

(Def) D(r) and r are always well-defined and numerically well-conditioned,;
(Sca) the MI procedure requires users only to deal with scalars;

(Dep) Xi,...,X,, can be dependent; and

(EFMI) whether EFMI is assumed for 6 or for .

In summary, ﬁs(?g ) is the most computationally attractive test statistic.
If the user is willing to make stronger assumptions, Dg (?g ) has better statis-
tical properties, and is still computationally feasible. Nevertheless, ZA)L(?E )
is the most general test statistic and has the best statistical properties.



TABLE 2
Computational requirements and statistical properties of MI test statistics, their associated combining rules and estimators of FMI #y,.
The symbols “+7 and “—7 mean that the test statistic (or estimator) is equipped and not equipped with the indicated property,
respectively; see the end of § 3.2 for heading descriptions. The reference papers/book are abbreviated as follows: Rubin (2004) (R04), Li
et al. (1991a) (LMRRY1) and Meng and Rubin (1992) (MR92).

Combining Rule Estimator of »,,, Approx. null distribution® Properties

Test No. Formula Routine Formula Routine  Original Proposed  Reference Inv Rob >0 Pow Def Sca Dep EFMI

WT W-1 Diy(rm) Mw Ty My Fogzon o' Figions R - 0 4 - - 44
W2 Diy(rm)®  lw Py Dw Foge. NA R4 - — + — - — + 0
W-3 Diy(rm)  lw  Fyup  Dw Fogr, NA LMRR9l — - + — — — 4+ @8
W-4 Dw(T)"  Mw T Dw oG Fediomr RO4 - + + - - - 4 of
W5 Dw(rm)  Pw  Fwa Ow Fogvoo NA R4 - - — - - 4+ + 0
W-6 Dw(m) Dw  Pwap 2w Fgrg. NA LMRROI — - — — — + + ¢

LRT L1 Di(rw) M, Pv 7 M, 9 Fog, o Fogenw MR2Z - — — — 4+ -7 4+ 9
L2 Df(rm) oo, 2r 7 M, D F g Fedigns  MR92Y O - — o+ — o+ -+ 4§
L-3 l:)s(f‘m) D1, s D1 Fk,&?(»m,k) Fk,dAf(rm,k) Proposal + — @ — -+ o+ - 9
L-4 ?S(?‘m) )9 P DL Fkﬁ(rm’k) thAf(mek) Proposal +  — + — N 0
L-5  Ds(#m) a1, 7S D1 Fogipnn  Fedtenn Proposal + o+ 4+ 4+ 4+ 4+ - "
L-6 I?L(#m) %L T ?L Feaiomny  Fredign, s Proposal +  —  +  —  + 4+ 4 0
L-7 Dr(rm) D, ?ﬁ D1 Fkgf(,,m’h) Fk,a\f(rm,h) Proposal + + + + + + + P

“In actual computation, the 7, in the denominator degree of freedom of F' is replaced by its corresponding estimator given in the
previous column.

The original approximate null distribution documented in Rubin (2004) was modified by Li et al. (1991a). This footnote also applies
to W-2,4,5.

“The estimator 7y does not depend on 6y, but its MSE may be inflated under H; if a bad parametrization of € is used.

IThe originally proposed combining rule is 5?;\/ (#m); see (3.10). Although ﬁ/\;v(%m) is more computational feasible, the power loss
is more significant than ﬁ{;v(fm) after inserting an inefficient estimator 7y ; for #y,. This footnote also applies to W-3.

“Computing the test statistic Dw (T) = dw (6, T)/k does not require estimating #,.

JEFMI is not required for the test statistic Dw (T'), but it is required for its approximate null distribution.

9Averaging and processing vector estimators of ¥, but not their covariance matrixes, is needed. This footnote also applies to L-2.

"t is a trivial modification of the original proposal in MR92 by replacing 71, with 7 = max{0,7L}.

‘L-6 is equivalent to L-4 when the rows of X are independent.

IJL-7 is equivalent to L-5 when the rows of X are independent.

0¢

ONHN "T-"X ANV NVHD "M "M
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TABLE 3
The values of parameters used in the simulation experiment in § 4.1.

Parameters
Experiment Fixed Variable
No. Varying p p f Casel Case2 Case3 Cased4d Casebd
I Correlationp - 2 0.5 -0.8 —-0.4 0 0.4 0.8
II Dimensionp 04 - 0.5 2 3 4 5 6
111 FMI ¢/ 04 2 - 0.1 0.3 0.5 0.7 0.9

4. Empirical Investigation and Findings.

4.1. Simulation Studies. Suppose that Xi,..., X, ~ (1, 2) indepen-
dently, where ¥ = o2{(1 — p)I, + p1,1}}, and 1, is the p-vector of ones.
The values of p, 02, p and p are specified below. Further assume that only
nobs = | (1 — £)n] data points are observed, where £ € (0,1) is the FMI. Let
Xobs ={Xi:i=1,...,n0ps} and Xpis = {X; : 7 = ngps + 1,...,n}. Suppose
that we want to test whether the means of all components are equal, i.e.,
Hy : pp = poly,, where pp € R is an unknown constant.

Obviously, one may directly use the observed dataset to construct the
LRT statistic Dy, without MI. The test Dy, (denoted by L-0) is regarded as
a benchmark for comparison. Throughout this subsection, W-1,2,3,4 and L-
1,2,3,4,5 listed in Table 2 are compared. In the imputation step, a Bayesian
model is employed for imputation. Assume a multivariate Jeffreys prior on
(1, ), i.e., f(p, )oc|B|~PFD/2 Let X s and Sops be the sample mean and
sample covariance matrix based on Xgps. Then, the fth imputed missing
dataset can be produced by the following procedure, for £ =1,...,m.

1. Draw a posterior sample ¥ from the inverse-Wishart distribution with
(nops — 1) degrees of freedom and scale matrix S(;)ls.

2. Draw one posterior sample ¢ from Ny (X obs, Y nops)-

3. Draw (n—ngps) imputed missing values {Xf 21 =neps+1,...,n} from
./Vp(uz, »%) independently. Also, denote Xf =X, fori=1,...,Nobs.

With the fth completed dataset, the unconstrained MLEs for y and ¥ are

v 1 & ~ 1 & . AT
MZZEZXZ‘E’ EezﬁZ(Xf_/«‘Z)<Xf_/«‘Z)-
i=1 i=1

Whereas we generate data using a covariance matrix with common variance
and correlation, our model does not assume any structure for 3. The only
restriction we can impose is the common-mean assumption under the null,



22 K. W. CHAN AND X.-L. MENG

for which the constrained MLEs are

lT(iZ)_lﬁé a & T
~0 P V4 Vi ~f ~f N N
o =3 —=—— ¢ 1,, ZzZ—i—(u—,u,)(,u,—u).
0 {1;,(25)_11,3 P 0 0

In the experiment, we study the impact of parametrization on different
test statistics. For the Wald tests, three parametrizations of 6 are examined:

(i) 6 = (u2 — p1, .., pp — pp—1)" — differences of means,
(ii) 0 = (p2/p1,-- - pp/pp—1)" — 1,—1 — relative differences of means, and
(iif) 6 = (p3 —pd, ... ,,ug - M2_1)T — differences of cubic means.

For any case above, Hj can be re-expressed as 6y = 0,1, an (p — 1)-vector
of zeros. For LRTSs, the following parametrizations of i are used:

(i) ¥ = {p; X} — means and covariances,
(ii) v = {\/04/1i, 1 <1 < p; X} — noise-to-signal and covariances, and
(iii) ¥ = { pTE 2, Y1} — standardized means and precisions,

where ¥ = (0;;) and £/2 is the symmetric square root of ¥. The dimension
of 1 is h = (p? + 3p)/2.

In the first part of the experiment, we study the distribution of p-values
derived from each test under Hy. In particular, we use n = 100, m = 3,
0?2 =5and u = 1,, with various values of p, p and £ specified in Table 3. All
simulations are repeated 2! times. The comparison under parametrization
(ii) is shown in Figure 4; whereas those under parametrizations (i) and (iii)
are deferred to Appendix C. Note that, for Wald tests under parametrization
(i), the matrix U* is singular in less than 0.25% of the replications, and those
cases are removed from the analysis (which should favor the Wald tests).

The empirical sizes (i.e., type-I errors) of the MI Wald tests generally
deviate from the nominal size « under parametrization (ii). In contrast, the
sizes of all LRTs are closer to a. However, the original L-1 and its trivial
modification L-2 do not have accurate sizes when |p| or £ is large. They can
be over-sized or under-sized depending on which parametrization is used.
Moreover, the trivial modification L-2 does not help to correct the size,
and it may even worsen the test. For our test statistics L-3 and L-4, they
are invariant to parametrizations and have quite accurate sizes, although
they are under-sized in challenging cases where both p and £ are large.
Moreover, they are identical throughout our simulation experiments, i.e.,
we never observed 7, < 0. For our recommended statistic L-5, it gives the
most satisfactory overall results. It generally has very accurate size, except
that it is slightly over-sized for large p, a problem that should diminish when
we use m beyond the smallest recommended m = 3.
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Parametrization (ii)

Case1 (Smallp,p,f) Case 2 Case 3 \ Case 4 \ Case5 (Largep,p.f) \

Nominal size a.

Empirical size

Test statistics

I (Varyp) ‘ Experiment | (Vary p) ‘
3

—— L-1: MR92
—— L-2: MR92(+)
<~ L-3: Proposal
— L-4: Proposal(+)
-0~ L-5: Proposal(R)
|~o- L0

Il (Varyf) ‘
I
]

Fi1Gc 4. The comparison between empirical size and nominal size o under parametrization
(i) for a € (0,5%]. The Wald tests (W-1,2,3,4) and LRTs (L-0,1,2,8,4,5) are represented
by grey dashed and black solid lines, respectively. The LRT statistic Dy, (L-1: MR92)
and its modification 5{ (L-2: MR92(+)) are the tests that greatly improved upon by our
proposals Ds (L-8: Proposal), lA)gr (L-4: Proposal(+)) and ﬁg (L-5: Proposal(R)).

Interestingly, as seen clearly in Figure 4, the benchmark L-0 performs very
badly for large p and £. The sample size per parameter, n/h, is small; for
p =4, n/h < 100/14 < 8. The asymptotic null distribution x3/k then can
fail badly under arbitrary or even all parametrizations; (ii) apparently falls
into this category. An F approximation would be more appropriate. But this
is exactly what is being used for MI tests, albeit with different choices of the
denominator degrees of freedom. Table 4 documents how often 77, Dy, and
rs are negative. In some cases, nearly half of the simulated values of 7, and
l~?L are negative. In contrast, rg is always non-negative in our simulation,
despite the fact that it can be negative in theory.

To study the power of each test, we set £ = 0.5, p = 2, p = 0.8,
o2 =5and pu = (=2 +§,—2+ 26)T for different values of m € {3, 10,30},
n € {100,400, 1600} and 6 = po — p1 € [0,4]. The empirical power functions
for size 0.5% tests under parametrizations (i), (ii) and (iii) are plotted in Fig-
ure 5. The results for size 5% tests are deferred to Table 12 of the Appendix.
Generally, none of the Wald tests exhibits monotonically increasing power as
0 increases, and their performance is affected significantly by parametriza-
tion. In particular, the powers can be as low as zero when 1 < < 2 under
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TABLE 4
The empirical proportions of negative 71, and Dy. The results under parametrizations (i)
and (i) are shown. For parametrization (i), 71, = 0 and Dy, = 0 in the experiments.

Case

1 2 3 4 5 1 2 3 4 5

Experiment Parametrization % of 7, <0 % of Dy, < 0
I (ii) 1 2 3 4 5 26 16 13 12 12
(ii) 6 6 701 1 1 1 2
11 (ii) 4 1 0 0 0 12 5 3 4 3
(ii) 7 3 1 1 1 1 0 0 0 0
11 (ii) 13 6 4 4 3 5 25 12 5 2
(i) 18 9 7 5 4 2 5 1 1 0

Nominal size o = 0.5 %
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Fia 5. The power curves under different parametrizations. The nominal size is o = 0.5%.
In each plot, the vertical axis denotes the power, whereas the horizontal axis denotes the
value of 6 = p2 — p1. The legend in Figure 4 also applies here.

parametrizations (i) and (iii). Under parametrization (ii), L-1 is not pow-
erful even for large §. Moreover, its trivial modifications L-2 cannot retrieve
all the power it should have. On the other hand, our first proposed test



MULTIPLE IMPUTATION LR TESTS 25

TABLE 5
The range of empirical size [min &, max & in percentage, where max and min are taken
over the three parametrizations. Only one value is recorded for those tests that are
inwvariant to parametrization. The nominal size is o = 0.5%.

Range of empirical size: [min &, max a]/%

(n,m)  (1600,3) (400, 3) (100, 3) (100,10) (100, 30)
W-1  [0.90,1.05] [0.76,1.05] [0.20,1.22] [0.07,0.56] [0.02,0.49]
W-2  [0.90,1.05] [0.98,1.22] [0.93,1.25] [0.32,0.73] [0.20,0.85]
W-3  [0.98,1.05] [0.98,1.25] [0.90,1.29] [0.34,0.71] [0.22,0.73]
W-4  [0.90,1.05] [0.76,1.05] [0.20,1.22] [0.07,0.56] [0.02,0.49]
L-1  [0.90,1.03] [1.10,1.64] [1.15,1.49] [0.37,1.05] [0.10,0.46]
L-2  [0.90,1.05] [1.10,1.76] [1.15,2.37] [0.37,0.98] [0.10,0.49]
L-3 0.90 1.10 0.83 0.24 0.07
L-4 0.90 1.10 0.83 0.24 0.07
L-5 0.46 0.44 0.68 0.46 0.42
L-0 0.39 0.66 0.66 0.66 0.66

statistics L-3 and L-4 perform better than L-1 and L-2 at least for large m,
however, they also lose a significant amount of power when m is small.
Compared with all these, our recommended test statistic L-5 performs
extremely well for all m and n, with power very close to the benchmark
L-0 even for small m. To ensure the comparisons of power are fair, we also
investigate the empirical (actual) size, &, in comparison to the nominal type-
I error a. Table 5 shows the minimum and maximum of the empirical sizes
over the three parametrizations considered in each test — and only one value
is needed for those tests that are invariant to parametrization — when the
nominal size o = 0.5%. We see the deviations from the nominal « can be
noticeable, especially when m = 3. To take that into account, we report
the empirical size adjusted power, that is, O = power/a, which also has the
interpretation as (an approximated) posterior odds of H; to Hy (Bayarri
et al., 2016). Figure 6 plots the result for size 0.5% tests. Compared with
the benchmark L-0, the odds O of the proposed robust MI test (L-5) is
closer to the nominal value 1/« as § — 0. Nevertheless, the finite sample
performances of all size 0.5% tests are less satisfactory than those for size
5% tests (given in Appendix) because a very large sample size n is required
in order to approximate the tail behavior of test statistics satisfactorily.
We also compare the performance of estimators of 7, for different 6 and
parametrizations. In our experiment, we have 7, = 1+1 /m because we have
set » = 1. The MSEs of estimators f =7/(1+7) of £, = #m/(1 + 7,) are
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Nominal size o = 0.5 %

[ Parametrization (i) [ Parametrization (ii) [ Parametrization (iif) |
S=pp—py
0 2 40 1 2 3 40 1 2 3 4
] 400 . . . . . . . . . . . .
2| 8 3004
I »
2 22383RBRIRIIRRIRARY| | 0BIRRIIZRIZRRIRARRAR| | 7RRRIRRIRRAIRAIRRIR
‘f % 200
® 2
I
LE|
o
o
<
I
c
‘]’ Test statistics
£ W1
P w-2
=] W-3
I W-4
< —m— L-1: MR92
™ 2 A A A 7| M= L-2: MR92(+)
é 7 ettty gy e g NN sy | < L-3: Proposal
= ¢ B NN . o i R N | |-4: Proposal(+)
3| 400 SHIRRRIRRRRIRR O~ L-5: Proposal(R)
N 300 4 —O— L-0: Benchmark
< A s Y
) " LSOO,
- 200
o 0000000000000000 '0000000000000000 0000000000000000
N 100,f Dﬁ;MMMMMMMMmmmMMMM ﬁ;MMMMMMMMMMMMMMM
£ 0
[g] 4004
1l 300
< AL P e et tatatat % 0 £ 0 00 PRO.0:9:9.9:9:9:9:0:0:0:0:0.:0:0.91
. 200 M- f
s 0000000000000000 ﬁ,ﬁ:ﬂq,ﬁd?ﬂﬁooooo-o»oo 0000000000000000
] 4
f 100 / /
Le] o

Fic 6. The ratios of empirical power to empirical size under different parametrizations.
The nominal size is a = 0.5%. In each plot, the vertical azxis denotes the ratio, whereas
the horizontal axis denotes 6 = ps — u1. The legend in Figure 4 also applies here.

shown in Figure 7, in log scale. Clearly, the only estimator that is consistent,
invariant to parametrization and robust against § is our proposal fL =
/ (1+ rL) It concentrates at the true value £, quite closely even for small
m and n. Since fL is the only reliable estimator of f,,, it verifies why L-5
has the greatest power. On the other hand, the estimator fi, = /(1 +71)
has very large MSE when § = 0. It also explains why L-1 is not powerful.

4.2. Monte Carlo Experiments Without EFMI. To check how robust var-
ious tests are to the assumption of EFMI, we simulate X; = (Xj1,..., X;p)7 i
Np(p, X) for i = 1,...,n. Let R;; be defined by R;; = 1 if X;; is observed,
otherwise R;; = 0. Suppose that the first variable X.; is always observed,
and the rest form a monotone missing pattern as defined by a logistic model

on the missing propensity:

[1 + exp(ao + Cthiyj_l)]_l if a =1;

P(RijZO’Ri’j‘lza):{l if a =0,



MULTIPLE IMPUTATION LR TESTS 27

Mean squared error of estimators of FMI
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Fic 7. The MSEs of estimators of fm used in the test statistics. In each plot, the vertical
azis denotes the log of MSE, whereas the horizontal axis denotes the value of § = p2 — 1.
The legend in Figure 4 also applies here.

for j = 2,...,p, where ag, a1 € R. If a; = 0, then the data are missing com-
pletely at random (MCAR); otherwise they are missing at random (MAR),
as defined in Rubin (1976). Let n; = >,;" | Ri; be the number of observed
jth component. Without loss of generality, assume Xp¢ is arranged in such
a way that R;; > Ry, for all ¢ < ¢ and j.

To impute the missing data, it is useful to represent X; by

[Xil |ﬁ177—12] ~ '/V(6177—12)7
[Xij | Xivj-1),B5:77] ~ /V(/BJTZij,TJZ), J=2,...,p,

where 7'12,... Tp € R+ ﬁj € Rj, Xi,l:(j—l) = (Xily---aXi,jfl)T and Zij =

(1, Xz G- 1)) for j > 2. Denote the (complete-case) least squares estimators
of Bj and 77 by B; = (2] Z;) "' Z]Wj and 77 = ﬁ(wj—zjﬁj)mwj—zjﬁj),
where Zj = (le, ey anj)T and Wj = (le, ce ,anj)T.

To perform MI, we assume a Bayesian model with the non-informative
prior f(B1,.--, Bpy T2y e e vs p) o 1/(r2-- 2) For each £ = 1,...,m, the fth

imputed dataset X*, whose (1, 7)th element is Xf;, is produced as follows.
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Letij=Xijfora111<j<pandi<nj.

For each j = 2,...,p, repeat Step 3 to Step 5.
£)2 2200 /2
Draw a sample (1) from 75 (n; j)/an_j.

Draw a sample ,Bf from ./Vj(Bj, (Tf)2(ZJTZj)_1)-
Draw a sample ij from ./V((ﬁf)Tny

Zi; = (L (X))

Ol W=

(75)2) fori =n;+1,...,n, where

We test Hy : u = 0, against Hy : u = 0,. In the experiments, we set
1 = 01,, where § € [0,0.6]; the (i, j)th element of ¥ to be ¥;; = 0.5/" 77! for
i,j =1,...,p; n = 500; m € {3,5}; p = 5; (ap, 1) € {(2,—1),(1,0)}. Our
model treats ¥ unknown, and hence k = p and h = (3p+p?)/2. With the ¢th
imputed dataset, the Ho-constrained MLEs of y and ¥ are i = 0, and S =
(X HT(X*) /n; whereas the unconstrained counterparts are i = 1}, X*/n and
S = (Xt = aHT(X? — i) /n. Under Hy and MAR, the fractions of missing
observations of the five variables are (0, 16%, 28%, 38%,47%), whereas the
average fractions of missing information, i.e, the eigenvalues of %’9%_1, are
(0,19%, 34%, 45%, 55%). So, the assumption of EFMI does not hold.

We compare (14) DIJ: A Fk’&f(?;k), (L5) DS A Fk,&f(?ﬁ,h)’ (C1) complete-
data (asymptotic) LRT using {X;:i=1,...,n}, and (C2) complete-case
(asymptotic) LRT using {X; : i = 1,...,n,}. The results are shown in Figure
8. The size of 158 is quite accurate when the nominal size is small. If the data
are MCAR, complete-case test C2 is valid, however, with slightly less power.
(Test C2 is typically invalid without MCAR.) In terms of power-to-size ratio,
the performance of Dg is the best among the three implementable tests 1.4,
L5 and C2. Its performance is comparable to the (unayaﬂable)’\complete-
data test Cl. Note also that the power-to-size ratio of DIJ: and DI? become
closer to the nominal value 1/0.5% when m increases. All these indicate that
the performance of our proposed tests are acceptable despite of the serious
violation of the EFMI assumption.

4.3. Applications to a Care-Survival Data. Meng and Rubin (1992) ap-
plied their test to the data given in Table 6, where ¢, 7 and k index, respec-
tively, clinic (A or B), amount of parental care (more or less) and survival
status (died or survived). However, the clinic label & is missing for some of
the observations (and the missing-data mechanism was assumed to be ignor-
able). Two hypotheses were tested in Meng and Rubin (1992). The first is
whether the clinic and parental care are conditionally independent given the
survival status, and the second is whether all three variables are mutually
independent. The MI datasets are generated from a Bayesian model in § 4.2
of Meng and Rubin (1992). Our aim here is to investigate the impact on the
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show the powers and the power-to-size ratios, respectively, where the nominal size is 0.5%.

test statistics 153, ﬁ; and ﬁg by different parametrizations of {m;;}; and

the impact on the estimators 77, ?ér and ?g under different null hypotheses.

TABLE 6

Survival Status (j)

Clinic (k) Parental care (i) Died Survived
A Less 3 176
More 4 293
B Less 17 197
More 2 23
? Less 10 150
More 5 90

Data from Meng and Rubin (1992). The notation “?” indicates missing label.

Specifically, the ¢th imputed log-likelihood function is log f(X* | 7) =
> .nflogm., where X* are the cell counts n’ in the fth imputed dataset.
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{

Hence the unconstrained MLE of 7. is 7% = n’/nf, where nf, = 3 n’.

Consequently, the joint log-likelihood based on the stacked data is

m

(4.1) log f(X5 | 7) = Z Znﬁlogﬂ'c = an log 7,

{=1 c c

where n/ = )", nf. Thus the unconstrained MLE with respect to (4.1)

is 75 = n}/nt, where nT = Y _n}. Similarly, we can find the constrained

MLEs under a given null. We consider the following parametrizations:
(i) ¥ijk = mijr — the identity map,
(ii) *ijr = log{mi;ji/(1 — mi,)} — the logit transformation, and
(ili) vij1 = mij1 and 50 = mije/mij1 — ratios of probabilities.
The p-values pr,, ﬁg and ]3<S> of the tests INJL, ﬁg and ﬁg and the associated

estimates of 7, i.e., T, ?ér and ?<S>, are shown in Table 7. A more detailed
comparison is deferred to Table 9 of the Appendix.

o _ TABLE 7
The LRTs using Dy, Dg’ and Dg under different parametrizations in § 4.3.

| Parametrization (i)

Hp: Conditional independence Ho: Full independence

m| Fu,7g,7  Du,DE.DY  pLpg.py | g7 DuDg,DY pu.pg.pY

3] 0.54,0.54,0.38 0.08,0.08,0.09 0.93,0.93,0.92| 0.31,0.31,0.38 54.2,54.2,51.4  0,0,0
10| 0.50,0.50,0.70 0.14,0.14,0.12 0.87,0.87,0.88| 0.56,0.56,0.70 45.4,45.4,41.7  0,0,0
50| 0.31,0.31,0.45 0.11,0.11,0.10 0.90,0.90,0.91| 0.33,0.33,0.45 51.5,51.5,47.3  0,0,0

| Parametrization (ii)

‘ Hp: Conditional independence Hy: Full independence

m‘ ?L7?§»7’?é> BL76§76<S> ﬁLyﬁg’ﬁg ‘ ?L7?§»7’?é> EL7ﬁ§7ﬁg ﬁLaﬁgvﬁg
3| 1.08,0.54,0.38 —0.07,0.08,0.09 1.00,0.93,0.92| 0.61,0.31,0.38 43.9,54.2,51.4 0,0,0
10| 0.99,0.50,0.70 —0.10,0.14,0.12 1.00,0.87,0.88| 1.09,0.56,0.70  33.7,45.4,41.7 0,0,0

50| 0.63,0.31,0.45 —0.10,0.11,0.10 1.00,0.90,0.91| 0.65,0.33,0.45 41.3,51.5,47.3  0,0,0

| Parametrization (iii)

‘ Hp: Conditional independence Hp: Full independence

m| Fu,7g,7  Du,DEDS pLpd.py | fLig.FS DuDg,DS pu.pg.pg
3 1-2.35,0.54,0.38 —1.16,0.08,0.09 1.00,0.93,0.92|—1.22,0.31,0.38 —321,54.2,51.4 1,0,0
10| —2.04,0.50,0.70 —2.20,0.14,0.12 1.00,0.87,0.88|—1.85,0.56,0.70 —86,45.4,41.7 1,0,0

50(-1.22,0.31,0.45 —-7.39,0.11,0.10 1.00,0.90,0.91|-1.06,0.33,0.45 —1136,51.5,47.3 1,0,0

The simulation outputs demonstrate that lA)g and ﬁg are invariant to
parametrizations, whereas Dy, is not. Moreover, the impact on Dy, is large
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under the parametrization (iii). In particular, the value of 7, is inflated; and
some of the values of 71, and Dy, are negative, leading to the meaningless
1, = 1, especially under parametrization (iii). In contrast, rs = 0 for all cases
in this example (and hence 7§ = 7s). In addition, D ~ D<> for testing the
conditional independence, a hypothesis that is not reJected by either test.
In contrast, for testing the full independence, ﬁ; and ﬁg are not very close
to each other, but they both lead to essentially zero p-value, and hence both
reject the null hypothesis. These results reconfirm the conclusions in Meng
and Rubin (1992). Last but not least, the estimator T‘S does not change
under different null hypotheses, however it is not true for 71, and 7 Tg -

5. Conclusions, Limitations and Future Work. In addition to con-
ducting a general comparative study of MI tests, we proposed two particu-
larly promising MI LRT based on DY = ﬁs(?g) and l’jg = Dg (7d). Both test
statistics are non-negative, invariant to re-parametrizations, and powerful to
reject a false null hypothesis (at least for large enough m). Test ﬁg is most
principled, and the resulting test has the desirable monotonically increasing
power as H; departs from Hy. However, it is derived under the stronger
assumption of EFMI for ¢, not just for 8; and row independence of X oy, is
needed for the ease of computation. (The computationally more demanding
test based on DL(?E ) relaxes the independence assumption.) The main ad-
vantage of l’jg is that it is easier to compute, as it requires only standard
complete-data computer subroutines for likelihood ratio tests. One drawback
is that the ad hoc fix 7§ = max(0, 7s) is inconsistent in general. However, the
inconsistency does not appear to significantly affect the asymptotic power,

at least in our experiments. Whereas DJr and D<> significantly improve over
existing counterparts, more studies are needed, for reasons listed below.

e When the missing data mechanism is not ignorable but the imputers
fail to fully take that into account, the issue of uncongeniality becomes
critical (Meng, 1994a). Xie and Meng (2017) provides theoretical tools
for addressing such an issue in the context of estimation, and research
is needed to extend their findings to the setting of hypothesis testing.

e Although the violation of the EFMI assumption may not (seriously)
invalidate a test, it will affect its power. It is therefore desirable to
explore MI tests without this assumption.

e The robust ﬁg relies on a stronger assumption of EFMI on 1. We can
modify it so only EFMI on @ is required, but the modification may
be very difficult to compute and may require users to have access to
non-trivial complete-data procedures. Hence a computational feasible
robust test that only assumes EFMI on 6 needs to be developed.
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e Because the FMI is a fundamental nuisance parameter here and there
is no (known) pivotal quantity, all MI tests are approximate in nature.
In particular, they all have the potential of doing poorly when FMI is
large and /or m is small. It is therefore of both theoretical and practical
interest to seek powerful MI tests that are least affected by FMI.
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APPENDIX A: SUPPLEMENTARY RESULTS

A.1. Another Motivation for ?ﬁ. The definition of ?ﬁ can also be
motivated by the following observation. First, observe that one simple method
to construct an always non-negative estimator of 4, is to perturb @ZS‘ and z%
by a suitable amount, say A, so that the perturbed version of 7, is always
non-negative, and is still asymptotically equivalent to the original L. We
show, in Theorem A.1 below, that the right amount of A is A = 1/1* zpo
Using the perturbed version of 71, we obtain

?A m+1 ~a
L km—1)"F
where

a2 (XY X B A1 L
" mglog{ﬂﬂrw)f(xwgﬂ 2 T+ 851X,

Then we have the following result.

THEOREM A.l. Suppose RCy. Under Hy, we have (i) ?f > 0 for all
m,n; and (ii) ?f = 71, as n — o for each m.

Although ?f > 0, it is only invariant to affine transformations, and not
robust against y, and less computational feasible than 71,; see § 3. However,
it gives us some insights on how to construct a potentially better estimator.
Note that, in (A.1), the constrained MLE is not used in dr,(-, - | X*), but it is
still always non-negative. We call this a “pseudo” LRT statistics. Then, gf
is just a multiple of an average of many “pseudo” LRT statistics. In order
to find a good estimator of #,,, we may seek for an estimator which admits
this form. Indeed, our proposed estimator ?]? also takes the same form:

m—l—l ~
7= Zde ' XY,

A.2. Results for Dependent Data. This is a supplement for § 3.1.
If the data are not independent, dL =~ ds is still true under the following
conditions.

ASSUMPTION 5. (a) Define R(y)) = ° () — L(x), where L(¢p) =
(mn) "' S log (X | 9) and L(¥) = (mn) " log (XS | ). For
each m, as n — o0,

0

sup |[R(¢)| = Op(1/n), sup @

el hew

Rw)\ — 0,(1/n).
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(b) For each m, there exists a continuous function 1 — Z (1), which is
free of n but may depend on m, such that, as n — o0,

sup |L() — Z(¥)| = 0p(1).
Pew

(c) Let ibf = argmaxyey ; 4(9)—0, Z () and Y* = argmax,cq Z(¢). For
any fized m, and for all ¢ > 0, there exists § > 0 such that

sup {ZW5) - ZW)} =4, sup {(ZW*) - ZW)} = 0.
we‘llez(\zzb)(i—ozpba YEW : [Ph* —1p|>e

Conditions (b) and (c) in Assumption 5 are standard RCs that are usu-
ally assumed for M-estimators (see § 5 of van der Vaart (2000)); whereas
condition (a) is satisfied by many models (see Example A.1 below).

THEOREM A.2. Suppose RCy and Assumption 5. Under both Hy and
Hy, we have (i) czs,?s > 0 for all m,n; (i) Jg,?s are invariant to the
parametrization of v for all m,n; and (iii) di, = ds and 7y, = 7 as n — o0
for each m.

Theorem A.2 implies that the handy test statistics ﬁs and ﬁé’ approxi-
mate Dr, and DIJ: for dependent data, provided that Assumption 5 holds.

ExaMPLE A.1. Consider a stationary autoregressive model of order one.
Suppose the complete data X = (Xi,...,X,)T is generated as following:
X1 ~ #(0,v%) and [X;|X;_1] ~ N (#X;_1,0?) for i > 2, where v? =
o2(1+ ¢)/(1 — ¢). Then o = (¢,0%)T, and

— 1 1 X{ n-1
L) = —flog(27r)——nlog02 Zﬁ_ o™ log

(=11i=2
75 1 2 (X1 mn-—1 2
L = ——log(2m) — —1 — — 1
L () 5 log(27m) — 5 g 2mm? an ogo
LG (X —0XP ) 1 & ast h?
I

Then, it is easy to see that condition (a) of Assumption 5 is satisfied.
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APPENDIX B: PROOFS

ProOOF OF THEOREM 2.1. (i, ii) From (2.3), we know dy, > 0 is invariant
to parametrization 1. (iii) Since dy, is invariant to transformation of 1, we
assume, without loss of generality, that ¢ admits a parameterization such
that Cov(é\é, ') = 0 by taking suitable linear transformation of 1. Also write
Ug as an efficient estimator of Var(#) based on X*; and recall that Ug = U’

is an efficient estimator of Var() based on X*.

Using Taylor’s expansion on ¢ — L(yp) =m~ 1Y log f(X* | ¥) around
P* = ((9*) (7*)T)T, we know that for ¢ = o*,
T T e\ T 5/ s e
(B.1) L) = T 5 (w—9%) 760 (v - 3°)
where () = —02L(1))/0v0T, which satisfies
T\ Ugl 0
" e (7 )

with U, = m~ 13", Uf;. Under the null, 12)\* = 12)\5‘ So, using (B.1), we have

~

dv = (d5—97) 16" (95 - 97).

N -0\ (T, o oo — 0"
1(60) — 7(6%) o T, 1(60) — 7(6*)

(B.3) @ = 00)T, ' (@ — 00) = dyy,
)

o

where we have used (a 9: = 0 see, e.g., Lemma 1 of Wang and Robins
(1998), and (b) (6?0) n(0*) = O,(1/n) if b — 6% = Op(1/4/n); see Cox and
Reid (1987). Since dw dr, (Meng and Rubin, 1992), we have d, = dy,. O

PROOF OF PROPOSITION 2.2. The given condition implies that
O = (@ @M, = O, )T
Ot = (@)@, B = (05, ()T
Clearly, we also have the decomposition: Lf() = Lﬁ(@) + Lg(n) for all ¢,
where L{(0) = Li(0 | X*) and L{(n) = Ly(n | X*). Then,

2

d,—d, = {6 = L) - L") + L) }

3
Dz T3

2 00 0
" 1{LT(e )= Li@*)} = 0
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since Lf;(é\z) > L?(é*) for all £. O

PROOF OF COROLLARY 2.3. Applying Taylor’s expansion on v — Lf(1)),
we can find 1,7/ lying on the line segment joining ¢ and @Dé such that

L@ = @Y - 5 (% - 8) 1@ (% - 7).

where I'(1)) = —02L¢(¢)/0y0yT. By the lower order variability of I¢(¢)f),
we can find ¢* such that I‘(¢¢) = I*(¢*) for all £. Then, using similar
techniques as in (B.2) and (B.3), we have

LAY — LYY = % (% - W)T I'(9) (1% - @3‘)
% (90 - é\e)T U_l (90 - "9\6)

for some matrix U. Similarly, we have

(B.4)

o

(B.5) L) — 108) = 5 (0 —8) 0 (60— 0%).

Write A®¥2 = AAT for any appropriate matrix A. Using (B.4), (B.5) and the
cyclic property of trace, we have

o S0 0 0) - (07T (05

= tr 7 lm _ gt ®2_ ~\®

ol {m;(eo M (07 }]

=~ {r llm ¢ ° =~ {r = tr

~ o |T m;{(e)@ g }] ¢ (U B> ¢ (% %)

as m,n — o0, where %p o is a deterministic matrix that depends on both 6
and 0%, and satisfies n(U — %) > 0. Note that tr(%;éﬁg) = k#, for some
finite 79 by Assumption 2. Then 7, &> 7 = tr(%ejée%’g)/k, proving (ii). (But
%pp may not equal to %y, and hence 71, may not be consistent for #,.)

If Hy is true, then 8 2 6y = 0* and U = U = Y% = Up . Then, 71, g
as m,n — . So, (i) follows. O

PROOF OF THEOREM 2.4. (i, ii) It is trivial by the definition of ?ﬁ (iii)
Applying Taylor’s expansion to 1) — L‘(1)) again, we know there is 125 lying
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on the line segment joining 22)\5 and 12* such that
Ty > L/~ ~o\T ~ T 7
(B6) L) = LW - 5 (97 = 0) 1@ (6 =)

By the lower order variability of I¢(¢!), we know that If (125)74—* T(zz*) for
all £, where (1)) = m~1 Y% | I*(v). We also know that ¢* = t). Thus

SL_SL = %Z(@Z*—
=1

<

0T (9 - d)

o1& ~\ @2
_ *\ * Ol
- tr{f(:w)m;(w o) }
A1l \®2
~ A 12 ~ -1
(B.7) ~ tr{[(w )m; (w w) } tr (czzw 9@)
as m,n — o0. By the assumption of EFMI of v, we have ?I? 2 O

PROOF OF LEMMA 2.5. First, recall that, as n — oo, the observed data
MLE éobs of 0 satisfies (2.4), which can be written as [éobs | 6*] 2 N (0, Tp),

where Ay, 2 Az, means that A;, and Aj, have the same asymptotic
distribution, i.e., there exist deterministic sequences u, and 3, such that
(A1 — Mn)ET_le = A and (A2, — un)Z,Zl/Q = A for some non-degenerate
random variable A. From Assumption 3, a proper imputation model is used.

So, we have (2.5), which is equivalent to say that, as n — oo,

~, D ~

(B8) I:eg ‘ Xobs] ~ -/Vk(eobsﬂ%@)a
independently for for £ = 1,..., m. Therefore we can represent
(B.9) Oops ~ 0"+ 7,2 W,

(B.10) 0" R O+ B2, 0=1,....m

where Z1,..., Zym, W id N (0, Iy). Also write Zy = (Z14,. .., Zge)T, for £ =

1,2,...,m,and W = (Wy,...,W;)T. Averaging (B.10) over £, we have 0 2

~

Oops + %é/QZ., where Z, = m~1 > | Zy. Since By = »Up, we have

%, (0 — 0*)
%y 0 -0%)

(14 »)2W + #1227,
(14 »)2W + 127,

RY XY
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Note that (2.6) implies %y = U. Under Hy, we have 6* = 6 and

Ip

k
EL Z{ +7‘1/2W +7‘1/2Zg}2,
- k
CZL = JL Z{1+7‘1/2W+r1/2 }2.

After some simple algebra, we obtain

k - 2
— and D+ 2 my {1+ ) PWi + ’(1/2Zi'}
mk = L mk + (m+ 1) Zle SQZl_

9

where s7 = (m — 1)1 37" (Zig — Zia)? is the sample variance of {Z}j" ;.
Since W;, Z;s and S2Zi are mutually independent for each fixed i, we can

simplify the representation of ZA)E to

1) . —1 1 e
AT S a2 bin G
1)k - m(m — 1)k + (m+1)»>,_, H?

where G2 ~ x? and H; 2 d x2,_q, for i = 1,...,k, are all mutually indepen-
dent. Clearly, they can be further simplified to (2.14). O

PROOF OF THEOREM 2.6. Similar to (B.9) and (B.10), we can have a
more general representation:

~ % * 1/2 N DA~ 1/2
Pos = U+ T W O R s + B2, =1, m,
11d

where Z1,...,Zp, W ~ WM,(0,1},). Also write Zy = (Z14y...,Zpe)7, for £ =
1,2,...,m, and W = (Wy,...,W,)T. Using (B.7), we have

{w;i ) (@ —w}
|

=

1% i { V2 (2, —Z.)}@I

(=1

—_

&“

T

m m h
_ %Ztr{flh (2e-Z)%} = 23 32— Zu)

{=1 l=11i=1
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Equivalently, we can say 6y, — SL = #Xi(mfl)/m as n — 00. Hence

20 e mEl o
L= hm(m — 1) Xn(m—1),

which is equivalent to (2.15). Note that it is true under both Hy and H;. [

PROOF OF THEOREM 2.7. From the representations of gl? and @ in Lemma
2.5 and Theorem 2.6, we know that they are asymptotically (n — o0) inde-
pendent. The proof then follows the derivation for Lemma 2.5. O

PROOF OF PROPOSITION 3.1. It is trivial. O]

PrROOF OF THEOREM A.l. (i) Using the representation (A.l), we can
easily see that ?f > 0. (ii) It suffices to show

m ™Y dy (6 + A, ' | XF) = dy, — dy,
(=1
where A,, = 12* — QZS‘ Under Hp, A, = 0 and z% = 125, SO 1% + A, = W.

Using Taylor’s expansion on ¢ — L*(¢)) around its maximizer 121\4 , we have
for 1 = 1) that

~ 1 ~N\T ~ ~
L) = LW = 5 (v =) 1@ (v - 0Y).
Under the parametrization of v in the proof of Theorem 2.1, we know that

the upper k x k sub-matrix of I g({b\e) is (U 5)71. Using the lower order vari-
ability of U*, we have (UZ)_1 ~T " and

1 & ~ ~
— M AL (W + A, | XY
mZ:l

~

(96 + A —0) 146" (95 + A —0F)

~
Il
—_

3|
NgE

@' —0)TT (0" 0) = dy — diy = dy, — ..

~
Il
—_

Ib
3=
NgE

Therefore, the desired result follows. ]

PROOF OF THEOREM A.2. Throughout this proof, conditions (a), (b)
and (c) refer to the list given in Assumption 5. (i, ii) It trivially follows
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from the definitions of cig and 7g. (iii) First, by the definition of maximizer
and condition (a), we have

L") - L) = L@*) - L°(0%) + L°($®) — L({®)
< L@ -L°@") + (%) - L(4°)
< 25up|L(0) - L°()] = Oyl1/m).

which, together with condition (b), imply that
Z(W*) ~ 2@8)

- {Z(w") - L")} + {Z09) - L6} + {Z60°) - 205
(B.11) <2zgg|z<w>—z<w>| (L") - L5} = o,(1).

Using (B.11) and (c), we have oS B y*. By (b) and (c), we also have
G 250, [§5

B 0asn— w. By the definition of maximizer,

(B.12) 0 = VI (45) = VL(4®) + VR({S),

where Vg(vp) = dg(1))/d1 is the gradient of ¢ — g(1). By condition (a ) we
know VR(ws) Op(1/n). Thus, together with (B.12), we have VL(w ) =
Op(1/n). Also, by the definition of MLE, we have VL(4*) = 0.

By Taylor’s expansion, there exists ¢ such that
(B13) LW -L6%) = {VI@)} (3% =) = o,(1/m),

where we have used the continuity of ¢ — VL (1) to yield VL(¢)) = O,(1/n).
Rewriting (B.13), we have

(B.14) L({*) = L° (%) = R(®) + 0,(1/n).
Similar to (B.14), we have
(B.15) L(0%) — L(§) = R(Y) + 0p(1/n).

Then, using (B.14) and (B.15), we have
d—ds| = 2. {ZE - @} - {Zan) - L@}
= 20 |R(°) = R(S) + 0(1/n).

Now consider two cases.
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(i) Under Hp, we have di, = Op(1) and @L\g =~ ¢S, Thus condition (a)
implies R(45) — R($§) = 0,(1/n). Then, we have ‘JL - JS| — o,(dL).

(ii) Under Hi, we have di, B 0. Condition (a) and (B.11) imply that
L") — L7 (9%) = 0,(1/n). Similarly, we also have L($%) — L (45) =
O,(1/n). Hence ‘JL - c?s‘ = Op(1). Thus we have ‘JL - a?s‘ = op(dAL).

~

Therefore, under either Hy or Hy, we also have ‘JL — a/l\s‘ = op(dL). Since

di, = dg and dj, = dg, we know 7, = 7s. d

Note that, even under the assumption of this theorem, s and f“g are not
equivalent. From (3.5) and (3.6), 7s and 7’“\<S> are a “difference of difference”
estimator and a “difference” estimator, respectively. So, the “bias” of using

° (1)) cannot be canceled out in ?g .

APPENDIX C: ADDITIONAL FIGURES AND TABLES
This section presents additional figures and tables in § 2.5 and § 4

e Figure 9: the performance of different approximations to the reference
null distribution when o = 5%; see § 2.5.

e Figures 10 and 11: the empirical distributions of the p-values under
Hj and parametrizations (i) and (iii), respectively; see § 4.1.

e Figures 12 and 13: the empirical power functions and the empirical
ratio of power-to-size for size 5% tests, respectively; see § 4.1.

e Table 8: the ranges of empirical sizes over different parametrizations
for size 5% tests; see § 4.1.

e Table 9: detailed results of the care-survival example in § 4.3.
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Nominal size o= 5 %
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Fic 9. The performances of two different approximate null distributions when the nom-
inal size is a = 5%. The vertical axis denotes & or &, and the horizontal axis denotes
the value of fm. The number attached to each line denotes the value of T = h/k. The
proposed approzimation & is denoted by thick solid lines with triangles, and the existing
approzimation & is denoted by thin dashed lines with circles.



44 K. W. CHAN AND X.-L. MENG

Parametrization (i)

Case 1 (Smallp,p.f) | Case 2 Case 3 [ Case 4 [ case5 (Largep,p.f)

Nominal size o
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Fi1c 10. The comparison between empirical size and nominal size o under parametrization
(i) for a € (0,5%)]. The Wald tests (W-1,2,3,4) and LRTs (L-0,1,2,3,4,5) are represented
by grey dashed and black solid lines, respectively. The LRT statistic Dy, (L-1: MR92) (Meng
and Rubin, 1992) and its modification ﬁﬂ' (L-2: MR92(+)) are the existing counterparts
of our proposals Ds (L-3: Proposal), ﬁ; (L-4: Proposal(+)) and ﬁg (L-5: Proposal(R)).

Parametrization (jii)

[case (smallp.p.1) | Case 2 [ Case 3 [ Case 4 [ case5 (Largep.p.f)
ominal size o

N
0% 1% 2% 3% 4% 1% 2% 3% 4% 5% 0% 1% 2%
P R Y P S St

Empirical size

Test statistics

L-1: MR92

L-2: MRO2(+)
L-3: Proposal
L-4: Proposal(+)
L-5: Proposal(R)
Lo:

‘ Experiment Ill_( Vary ) ‘ Experiment Il (Varyp) ‘ Experiment | (Vary p) ‘

Fi1G 11. The comparison between empirical size and nominal size o under parametrization
(ii3) for o€ (0,5%]. The legend in Figure 10 also applies here.
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Nominal size a.= 5%
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Fi1Gc 12. The power curves under different parametrizations. The nominal size is a = 5%.
In each plot, the vertical axis denotes the power, whereas the horizontal axis denotes the
value of 6 = p2 — 1. The legend in Figure 10 also applies here.

TABLE 8

The range of empirical size [min &, max & in percentage, where max and min are taken
over the three parametrizations. Only one value is recorded for those tests that are
inwvariant to parametrization. The nominal size is o = 5%.

Range of empirical size: [min @, maxa]/%

(n,m)  (1600,3) (400, 3) (100, 3) (100,10) (100, 30)
W-1  [5.62,5.71] [5.30,6.03] [3.22,6.20] [1.64,4.81] [1.37,5.00]
W-2  [5.93,6.05] [6.08,7.18] [5.52,8.69] [4.42,8.47] [4.20,8.50]
W-3  [5.81,6.03] [6.01,6.98] [5.37,8.28] [4.20,7.67] [4.10,7.50]
W-4  [5.62,5.71] [5.30,6.03] [3.22,6.20] [1.64,4.81] [1.37,5.00]
L-1  [5.57,6.15] [6.37,6.57] [5.88,6.47] [4.39,5.66] [4.22,5.32]
L-2  [5.52,6.10] [6.37,6.52] [5.88,7.47] [4.39,5.66] [4.22,5.32]
L-3 5.76 6.37 5.42 3.78 3.71
L4 5.76 6.37 5.42 3.78 3.71
L5 4.96 5.32 4.93 4.79 4.54
L-0 5.03 5.03 5.57 5.57 5.57
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Fic 13. The ratios of empirical power to empirical size under different parametrizations.
The nominal size is a = 5%. In each plot, the vertical axis denotes the ratio, whereas the
horizontal axis denotes 6 = 2 — p1. The legend in Figure 10 also applies here.
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The LRTs using ﬁL, ﬁ; and f)g under different parametrizations in § 4.5.

Parametrization (i)

Hp: Conditional independence

Hp: Full independence

m| #7878 Du,DE,DS BLpd.pg | Tu.igL RS Di,Dg, DY pr.bg.pS
2] 0.63,0.64,0.83 0.14,0.14,0.12 0.87,0.87,0.89| 0.53,0.53,0.83 44.4,44.4,37.1 0,0,0
3] 0.54,0.54,0.38  0.08,0.08,0.09 0.93,0.93,0.92| 0.31,0.31,0.38 54.2,54.2,51.4  0,0,0
51 0.49,0.48,0.89 0.12,0.12,0.10 0.89,0.89,0.91| 0.72,0.72,0.89  40.8,40.8,37.1 0,0,0
71 0.23,0.23,0.47 0.06,0.06,0.05 0.94,0.94,0.95| 0.31,0.31,0.47 53.2,53.2,47.6 0,0,0
10| 0.50,0.50,0.70 0.14,0.14,0.12 0.87,0.87,0.88| 0.56,0.56,0.70  45.4,45.4,41.7 0,0,0
25| 0.35,0.35,0.47 0.06,0.06,0.06 0.94,0.94,0.95| 0.35,0.35,0.47 51.4,51.4,47.0 0,0,0
50| 0.31,0.31,0.45 0.11,0.11,0.10 0.90,0.90,0.91| 0.33,0.33,0.45 51.5,51.5,47.3 0,0,0

| Parametrization (ii)

‘ Hp: Conditional independence Hp: Full independence
m| Fu,7g,7  Du,DEDS pLpd.py | fLig.FS DuDg,DS pu.pg.pg
2| 1.23,0.64,0.83 0.01,0.14,0.12 0.99,0.87,0.89| 0.98,0.53,0.83  34.2,44.4,37.1 0,0,0
3| 1.08,0.54,0.38 —0.07,0.08,0.09 1.00,0.93,0.92| 0.61,0.31,0.38 43.9,54.2,51.4 0,0,0
51 1.02,0.48,0.89 —0.09,0.12,0.10 1.00,0.89,0.91| 1.40,0.72,0.89  29.0,40.8,37.1 0,0,0
7| 0.45,0.23,0.47 —0.07,0.06,0.05 1.00,0.94,0.95| 0.58,0.31,0.47 43.9,53.2,47.6 0,0,0
10| 0.99,0.50,0.70 —0.10,0.14,0.12 1.00,0.87,0.88| 1.09,0.56,0.70  33.7,45.4,41.7 0,0,0
25| 0.71,0.35,0.47 —0.14,0.06,0.06 1.00,0.94,0.95| 0.68,0.35,0.47 41.0,51.4,47.0 0,0,0
50| 0.63,0.31,0.45 —0.10,0.11,0.10 1.00,0.90,0.91| 0.65,0.33,0.45 41.3,51.5,47.3 0,0,0

| Parametrization (iii)

‘ Hp: Conditional independence Hp: Full independence
m| #7878 Du,DI,DS BLpd.pe | Tu.igLRS Di,Dg, DY pr.bg.pS
2| 1.06,0.64,0.83 0.04,0.14,0.12 0.96,0.87,0.88|—0.38,0.53,0.83 109,44.4,37.1 0,0,0
3 -2.35,0.54,0.38 —1.16,0.08,0.09 1.00,0.93,0.92|—1.22,0.31,0.38 —321,54.2,51.4  1,0,0
5 —2.64,0.48,0.89 —1.38,0.12,0.10 1.00,0.89,0.91|—2.24,0.72,0.89 —58,40.8,37.1 1,0,0
71-0.01,0.23,0.47 0.25,0.06,0.05 0.78,0.94,0.95|—0.34,0.31,0.47 107,53.2,47.6  0,0,0
10| —2.04,0.50,0.70 —2.20,0.14,0.12 1.00,0.87,0.88|—1.85,0.56,0.70 —86,45.4,41.7 1,0,0
25(-1.39,0.35,0.47 —4.30,0.06,0.06 1.00,0.94,0.95|—1.12,0.35,0.47 —603,51.4,47.0 1,0,0
50|—1.22,0.31,0.45 —7.39,0.11,0.10 1.00,0.90,0.91|—1.06,0.33,0.45 —1136,51.5,47.3 1,0,0




	Historical Successes and Failures
	Notation and Complete-data Tests
	MI Wald Test and Fraction of Missing Information
	The Current MI Likelihood Ratio Test and Its Defect

	Improved MI Likelihood Ratio Tests
	An Invariant Combining Rule
	An Improved Estimator of rm
	A Complication Caused by Nuisance Parameter
	A Consistent and Non-negative Estimator of rm
	Reference Null Distributions

	Computational Considerations and Comparisons
	Computationally Feasible Combining Rule
	Computational Comparison with Existing Tests

	Empirical Investigation and Findings
	Simulation Studies
	Monte Carlo Experiments Without EFMI
	Applications to a Care-Survival Data

	Conclusions, Limitations and Future Work
	References
	Supplementary Results
	Another Motivation for `39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603A
	Results for Dependent Data

	Proofs
	Additional Figures and Tables
	Author's addresses

