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Abstract

This article expands upon my presentation to the panel on “The Radical Prescription for Change”
at the 2017 ASA (American Statistical Association) symposium on A World Beyond p < 0.05. It
emphasizes that, to greatly enhance the reliability of—and hence public trust in—statistical and data
scientific findings, we need to take a holistic approach. We need to lead by example, incentivize study
quality, and inoculate future generations with profound appreciations for the world of uncertainty and
the uncertainty world. The four “radical” proposals in the title—with all their inherent defects and
trade-offs—are designed to provoke reactions and actions. First, research methodologies are trustworthy
only if they deliver what they promise, even if this means that they have to be overly protective, a
necessary trade-off for practicing quality-guaranteed statistics. This guiding principle may compel us to
doubling variance in some situations, a strategy that also coincides with the call to raise the bar from
p < 0.05 to p < 0.005 (Benjamin et al., 2018). Second, teaching principled practicality or corner-cutting
is a promising strategy to enhance the scientific community’s as well as the general public’s ability to
spot—and hence to deter—flawed arguments or findings. A remarkable quick-and-dirty Bayes formula
for rare events, which simply divides the prevalence by the sum of the prevalence and the false positive
rate (or the total error rate), as featured by the popular radio show Car Talk, illustrates the effectiveness
of this strategy. Third, it should be a routine mental exercise to put ourselves in the shoes of those who
would be affected by our research finding, in order to combat the tendency of rushing to conclusions
or overstating confidence in our findings. A pufferfish/selfish test can serve as an effective reminder,
and can help to institute the mantra “Thou shalt not sell what thou refuseth to buy” as the most
basic professional decency. Considering personal stakes in our statistical endeavors also points to the
concept of behavioral statistics, in the spirit of behavioral economics. Fourth, the current mathematical
education paradigm that puts “deterministic first, stochastic second” is likely responsible for the general
difficulties with reasoning under uncertainty, a situation that can be improved by introducing the concept
of histogram, or rather kidstogram, as early as the concept of counting.

Keywords : Behavioral Statistics, K-12 Mathematical Education; Outerval; p-value; Quick-and-dirty
Bayes Theorem; Research Replicability and Reliability; Principled Corner Cutting (PC2); Quality-guaranteed
Statistics; Selfish Test; Soft Elimination.
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1 Be As Radical As You Wish ...

“Unlike the ASA Statement, which attempted to be a consensus document, we are not trying to

build consensus at this symposium. We are trying to effect change, even though we might not all

agree on what change. So be as radical as you wish.”

Ronald Wasserstein, Executive Director, American Statistical Association (ASA)

The ASA Statement referred to in Ron’s invitation is perhaps the most widely debated—or at least

discussed—statement ASA ever issued: The ASA Statement on p-values (see Wasserstein and Lazar, 2016).

I felt lucky that I was invited to be radical rather than consensual, for I did not envy at all the task faced by

the authors of the p-value statement. Ron, however, did include some fine print with his encouragement: “If

your radical prescription involves closing down the ASA or firing its executive director, I would appreciate

two weeks notice.”

Whereas the thought of closing down or firing was not on my mind, elimination was, when I started to

contemplate which radical track I should follow. A symposium on p-value obviously would have many talks

on p-value, so I could at least avoid talking about that. After all, there are a good number of statisticians

who would avoid the use of p-value, or even hypothesis testing, entirely. They would prefer estimation,

whether point estimators, interval estimators, or distributional estimators (e.g., Xie and Singh, 2013).

However, there is a fundamental premise underlying hypothesis testing that no statistical inference or

prediction procedure can avoid. We repeatedly emphasize to our students that, when a null hypothesis

survives a statistical test, they should never declare the acceptance of the hypothesis but only that the test

fails to reject it. Cynical minds may consider this careful wording is statisticians’ way to cover their assets.

Anyone who has a good understanding of statistical tests, however, would have to agree that this is the

only logical conclusion one can reach from this test result alone. Statistical testing is about determining if

there are sufficiently large discrepancies between a (null) hypothesis and the observed data, according to a

pre-specified probabilistic criterion. Because no test is almighty, when a test fails to find the discrepancies

in selected aspects, it says little about discrepancies in other aspects. More importantly, for any data set,

we can find uncountably many models (and hypotheses) that fit the data perfectly: any zigzagging curves

or surfaces that connect every observed data point cannot be rejected by any pure “goodness-of-fit” test

by definition. Yet almost all such “models” would look and sound ridiculous for any purposes other than

illustrating how ridiculous they are. Therefore, we can eliminate a hypothesis when the test finds sufficient

discrepancies with the data, but we can say little about its validity otherwise. Readers who enjoy reading

(and thinking) about philosophy of science may wish to look into the extensive writings on this line of

thinking by Karl Propper, one of the greatest philosophers of science of the twentieth century1.

More precisely and generally, statistical inference and prediction is a soft-elimination game, by declaring

certain a priori permissible values of our target are no longer plausible according to a pre-specified criterion

evaluated on the actual data. It is a soft elimination because the implausible values are not mathematically

impossible, and indeed we may bring some of them back in light of new data or understanding. It is a

game because it has—or should have—clearly stated rules, and our opponent is nature (or God or devil or

whomever/whatever we should thank for challenging our intelligence and for making our profession vital).

A confidence—or posterior/fiducial—interval therefore is more about declaring that any value outside of

it can be eliminated from further consideration, as a way to sharpen our inference driven by our insatiable

1See https://plato.stanford.edu/entries/popper
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desire for certainty, than saying anything about the truthfulness of the values inside of it. Or, using a term

attributed to John Tukey (see O’Rourke’s comments on Gelman’s blog about “uncertainty interval”2), our

aim is to seek an outerval to eliminate implausible values as declared by our chosen criterion. We therefore

might modify Gelman’s proposal (in the same blog) of replacing “confidence interval” with “uncertainty

interval” by adopting the less inflammatory term “plausible” for “confidence.”

From this perspective, the general preference to err on over-coverage than under-coverage is not much

about being conservative or liberal. Indeed, equating over-coverage with being conservative can seriously

mislead ourselves. For example, Junk and Lyons (2020) pointed out that over-estimating the sensitivity

of a nuisance parameter can lead to under-estimating uncertainties for parameters of interest. Rather, it

is a practical way to ensure delivering on promise, a critical step for gaining general trust in statistical

methodologies and for improving scientific replicability and reliability. Section 2 illustrates this point in the

context of doubling variance as a small premium for insuring against hidden complications (e.g., inestimable

dependence) that may render our promise misleading. Section 3 explores further the usefulness of moving

away from conventional methods for the purpose of gaining practical insights that can increase the chance

of detecting and preventing flawed reasoning, as illustrated by a “quick-and-dirty” Bayes formula for rare

events. Section 4 and Section 5 move from methods and theorems into ethics and education, proposing

respectively a not-so-radical ethical test for research confidence and a more radical pedagogical paradigm for

early childhood education to teach stochastic thinking as early as the deterministic manipulations. Section 6

concludes with a call for action to ensure the vitality of statistics in the data science ecosystem.

An acknowledgement and warning before proceeding. An early draft of this article was sent to about

a dozen of researchers and educators, and their reactions made it clear that my attempt at being radical

is partially successful. The most diverse and strong reactions are to the suggestion on doubling variance,

varying from “really nice” to “a dangerous idea”. I am deeply grateful to all the previewers for their candid

criticisms, inspiring insights, and reasoned reflections, which have given me much food for thought. Some

of the concerns I clearly had overlooked (e.g., competitive advantages of researchers who adopt different

criteria). Others reminded me once more of the importance of effective communication, especially when

presenting methods with general appeals (e.g., easy to implement) but come with a long list of caveats.

For example, we clearly should not double variance unnecessarily; we obviously need to worry about the

negative consequences of over-assessing uncertainties; and we ought to seek methods that can do better

without incurring undue cost. The need for listing such caveats tends to be more evident in their general

forms and in abstraction than in specific studies, where our ability to conduct disinterested and critical

introspection tends to be reduced by our goal-oriented passion and investment in the studies. I therefore

invite readers to join me in a somewhat demanding journey as we explore together the “radical” proposals

in this article: navigating between generality and particularity to inform and form a collective strategy for

communicating and realizing the benefits of each proposal while containing and reducing its negative impact.

2 Deliver on Our Promises: Double the Variance (and Our Effort)

2.1 Your method is expired ...

Many products, especially for human consumption, come with an expiration date: milk, juice, canned food,

medications, etc. The date is a guarantee of freshness or efficacy when the product is consumed prior to

2https://andrewgelman.com/2010/12/21/lets say uncert/
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it. To provide such guarantees for (nearly) all individual products, the declared expiration date cannot be

some average of individual expiration dates, but rather a (statistically) safe lower bound. We therefore may

still consume a product after its expiration date but at our own risk. Even if some producers may desire to

declare longer shelf-life for marketing reasons, they (should) understand well the price of overdoing it. A few

bad cases may ruin the public’s trust in a producer, and hence it is in the latter’s best interest to be better

safe than sorry.

The same principle should apply to research methodologies and receipts, at least to those that are for

general consumption. When we invoke an interval procedure with a declared 95% confidence or posterior

probability or whatever term we use, we are telling ourselves, and everyone else, that the values excluded by

our procedure account for no more than 5% of the term we adopt. It is therefore safe to remove those values

outside of the interval from further considerations, when we decide and declare that 5% is our threshold.

That is, our trust in a procedure lies in its delivery of its promises. If we are comfortable about eliminating

a state from further consideration at the 5% level, then we can accept eliminating it at any level below 5%,

just as a consumer we do not mind—indeed we hope—that the actual expiration date exceeds the declared

one. But we cannot, and should not, accept an error above 5%, just as we would not be happy if a glass of

milk tastes sour prior to the stated expiration date (and we have stored the milk properly as instructed).

Unfortunately, much of our current practice does not come with such a seemingly minimal quality guar-

antee. The lack of quality by no means occurs only to estimation or hypothesis testing procedures, but

their defects are most visible because many of our confidence procedures are verifiable (e.g., via simulation)

to have significantly less coverage than the promised one. A recent large-scale benchmark study, on the

reliability of many common methods for observational studies in health care, found that only about 50% of

the “95%” intervals cover the truth (Schuemie et al., 2020). This should be a very scary finding for anyone

who cares about reliability of statistical methods—few business entities can do business as usual, if half

of their products are found to be defective. This is sadly not the first time—or the last time—that such

staggering quality disasters are revealed (e.g., Ioannidis, 2005; Simmons et al., 2011). Indeed, it is these

types of findings that have led to general concerns of the so-called “replicability crisis”, which has generated

many discussions, debates, and decisions. ASA’s statement on p-values and this subsequent symposium is

one of them, so was the 2019 report on “Reproducibility and Replicability in Science” issued by the US’s

National Academies of Sciences, Engineering and Medicine; see the special theme collection with the same

title in Harvard Data Science Review (HDSR)3, especially the interview (Fineberg et al., 2020) and the

introduction (Stodden, 2020).

As a part of our effort to combat such persistent problems, we need to stress constantly the need for quality

control especially in situations where we tend to slip. For example, the shortage of (confidence) coverage

could be due to inaccuracies in the mathematical or numerical approximations we adopt, or because of flawed

applications, such as applying a procedure built for independent observations to cases where the dependence

is not negligible. In practice, using approximations in methods or modeling is the rule rather than the

exception. But this fact does not justify ignoring quality assurance. A pharmaceutical company cannot

excuse itself for providing no expiration date or giving a misleading one simply because it cannot determine

accurately the date of reduced efficacy. Rather, because of the approximate nature of inference or prediction,

quality assurance at every step is critical for ensuring the overall reliability of our findings, especially in view

3See https://hdsr.mitpress.mit.edu/reproducabilityandreplicability. For full disclosure, I have served as Founding
Editor-in-Chief of HDSR since July 2018

4



of the general tendency of rushing to conclusions induced by our current systems of incentives (see Section 4).

A reader may question that, given all the approximations we make and all the uncertainties we face,

does it really make sense to worry about, say, a nominal 95% confidence interval procedure having actual

coverage of 92%? After all, the whole concept of coverage is a thought experiment over some idealized set of

hypothetical replications we conceive to be relevant. For any particular application, if we can be sure that

this under-coverage is the only leeway we allow ourselves, then it may well be counterproductive to worry

about a small deterioration of quality. The trouble is that, exactly because we necessarily make all kinds

of approximations in an inference or prediction process, errors can accumulate in ways far more damaging

than we expect or even understand, leaving us in a vulnerable position to say the least. (The phenomenon

that a seemingly tiny data defect correlation (e.g., 0.005) due to selection bias can cause over 95% loss of

effective sample size is such a vivid example (Meng, 2018).) Establishing a protocol and habit of ensuring

quality at every step goes a long way in reducing this vulnerability. This practice is not merely to enhance

our professional ethical code. It also reveals methods that otherwise would be deemed inferior.

2.2 Double the variance or adding up the standard errors?

As an example, Copas and Eguchi (2005) proposed to double the variance as a way to guard against possible

local misspecifications of missing data mechanisms. Under the conventional mindset of “getting it right on

average at least approximately”, this suggestion may sound very conservative, and indeed it can be. However,

when our priority is to ensure our procedures deliver what they promise, we may be much more willing to

pay a premium to insure against disastrous violation. A recent study of multiple imputation (MI) inference

under uncongeniality demonstrates this preference well (Xie and Meng, 2017), as summarized in Section 2.6.

It shows how the strategy of doubling variance provides an extremely simply practical solution to a long

standing challenge of uncongeniality due to the incompatibility between the imputer’s (Bayes) model and

user’s (frequentist) procedure (Meng, 1994a). Those readers who do not need to be convinced by a technical

illustration can skip that section. Nevertheless, the specific argument that led to the “doubling variance”

proposal there is worthy of highlighting because it comes in rather handy in some situations, such as when we

have (reliable) estimates of variances of individual components/estimates, but not of their covariances. Such

kind of problems with missing correlation information have arisen in many areas and hence are continuously

being researched in multiple disciplines; see Koch (2021) for a most recent work in physics.

As a specific case, suppose our confidence procedure (or hypothesis testing) calls for the evaluation or

estimation of V(θ̂1 + θ̂2), but we have information only to estimate the individual V(θ̂1) and V(θ̂2). Can

we still guarantee to deliver at least the declared coverage probability or not to exceed the stated Type-I

error in a meaningful way (that is, not to use trivial procedures such as employing the entire line as our

confidence interval)? The not uncommon practice of pretending zero correlation between θ̂1 and θ̂2—and

hence (erroneously) using T = V(θ̂1) + V(θ̂2) for V(θ̂1 + θ̂2), clearly does not do the job. But doubling T

will do because

V(θ̂1 + θ̂2) = V(θ̂1) + V(θ̂2) + 2Cov(θ̂1, θ̂2) ≤ 2T (2.1)

regardless of the relationship between θ̂1 and θ̂2, a simple consequence of V(θ̂1 − θ̂2) ≥ 0. This inequality

holds more generally for multivariate θ, in terms of semi-positive definitiveness.

Interestingly, for a univariate θ, a sharper bound is obtained by adding standard errors (SE) instead of
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variances. That is, regardless of the relationship between θ̂1 and θ̂2,

SE(θ̂1 + θ̂2) ≤ SE(θ̂1) + SE(θ̂2), (2.2)

which is a consequence of |Corr(θ̂1, θ̂2)| ≤ 1. When V(θ̂i)(i = 1, 2) can be regarded as known (e.g., either

can be calculated or approximated to desired accuracy), we clearly should use (2.2) instead of (2.1) because

there is no reason to pay extra premium when we do not have to. However, when V(θ̂i)(i = 1, 2) themselves

need to be estimated or approximated, as typical in practice, if our goal is to reduce false quality assurance,

then it is justifiable to seek additional protection by using a mathematically more generous bound. Hence

we may prefer (2.1) over (2.2), when constructing a confidence interval (to ensure the stated coverage is no

lower than declared) or hypothesis testing (to ensure the stated Type-I error rate is not exceeded).

2.3 Let’s practice quality-guaranteed statistics

The emphasis on extra protection against exceeding stated Type-I errors naturally would lead to the question

“But what about Type-II errors?” This question must be on many readers’ minds. Indeed it has been on

mine too since I embarked on this quest to “double the variance, double the fun(d)”4. Unlike the debate

on p-values, there is a crisp answer—or rather question—here: What is the stated criterion? In the context

of hypothesis testing, the stated criterion (in the Neyman-Person setup) has almost always been to control

Type-I error first, and then to seek the most powerful test, that is, to minimize Type-II error. Controlling

Type-I error, i.e., false positive rate, obviously cannot be the only criterion, but it is also well-understood

that there is no free lunch—it is mathematically impossible to simultaneously minimize both false positive

and false negative errors in general. We therefore must choose or compromise (e.g., using the total error, as

in Section 3). When our stated and advertised criterion is that “statistically significant at the level 0.05”,

we must first deliver that promise. Indeed, we all have been taught that it is not meaningful to compare the

powers of two tests without first equating/controlling their Type-I errors, for the obvious reasons.

If our stated criterion is to control Type-II error first, e.g., the test must be at least 80% powerful under a

specified alternative hypothesis, then indeed we may have to find a (non-trivial) lower bound of the variance

or standard error (such as SE(θ̂1 + θ̂2) ≥ |SE(θ̂1) − SE(θ̂2)| when SE(θ̂1) 6= SE(θ̂2)). Obviously, such a

procedure may have a (much) larger Type-I error than when we actually know the standard error, say, the

value of SE(θ̂1 + θ̂2). If we want to ensure that our desire for 80% power will not cause unacceptably large

Type-I error, then we need to specify our tolerance level for it. In general, we need to be clear about any

criterion that will become a part of our guarantee. For example, we may want our procedure for the null

hypothesis, θ = 0, to have (I) at last 70% power when θ > 1 and (II) but no more than 15% Type-I error

rate. To practice quality-guaranteed statistics means that we must either deliver a procedure with these two

properties guaranteed or state the properties the procedure actually delivers.

For instance, it is entirely possible that we are unable to find any procedure that we can prove to possess

both (I) and (II), but we can guarantee (I) if we relax (II) to “no more than 30% Type-I error”. Whereas

this new threshold doubles the tolerable Type-I error rate as we stated, we have no choice but to honestly

report this higher false positive rate, if we insist on guaranteeing 80% power. Or we may choose to relax

(I) from 80% to 70% in order to protect (II). If we find neither is acceptable, we also have the option, at

least in principle, to work harder to collect more data and information to achieve our original goal. This

is the case, for example, with study size determination based on power considerations (Roy et al., 2007;

4I, however, will not ruin any interested reader’s double fun to explicate the double puns here!
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Bhaumik et al., 2008, 2009; Amatya et al., 2013), where we can also derive statistically safe lower bounds by

using low confidence interval end points for effective sample size that take into account considerations such

as non-response rates and data defect correlations (Meng, 2018; Isakov and Kuriwaki, 2020; Bradley et al.,

2021).

All these options are within the domain of practicing quality-guaranteed statistics and science, and hence

each of them can help to enhance replicability of statistical and scientific studies. What is unhelpful, and

typically harmful, is to deliver procedures without the stated quality guaranteed, or with wishful claims but

without disclaimers. A consumer may choose to take a dietary supplement despite its disclaimer “The stated

benefits have not been evaluated by FDA” on its label, but that would be the consumer’s informed—though

not necessarily wise—decision. In a similar vein, if we must deliver a procedure without quality guarantee,

then minimally we should remind practitioners of the potential of overconfidence by providing warnings such

as “The actual performance of this nominal 95% confidence interval procedure has not been established.”

2.4 Extra protections: Chebyshev confidence and p < 0.005

Doubling variance, like any (practical) statistical procedure or rule of thumb, obviously is not a universal

recipe. Clearly it does not necessarily deliver desired quality when the variance itself is of inferential interest,

such as for assessing volatility of financial instruments. We also should not double a variance estimate when

we already know it is an overestimation, such as when the imputer’s model is nested within the user’s model

in the context of MI inference and both models are valid (Xie and Meng, 2017). The suggested doubling

strategy is for deriving our final confidence interval or p-value, yet we have good reasons to believe that

our variance term has not captured some major sources of uncertainty, such as from model mis-specification

(e.g., very questionable assumption of independence) or from model over-fitting (e.g., due to adaptive model

selection). However, as I was reminded by several of the previewers, one study’s final confidence internal can

be another study’s input, and hence it is important to report explicitly the doubling variance strategy when

adopting it. This is not an extra burden, but rather a reminder of always being transparent about the data

and process that lead to our findings, unless there are legitimate proprietorial or privacy constraints

Doubling variance is an embarrassingly practical procedure to provide some extra protections in cases

where it might not seem necessary initially, or where researchers have worked hard to obtain more sophisti-

cated and hence costly remedies. It is an approximation in nature, but as John Tukey emphasized 60 years

ago (Tukey, 1962), “Far better an approximate answer to the right question, which is often vague, than an

exact answer to the wrong question, which can always be made precise.” Considering the case where we have

good confidence in the normal approximation to the distribution of our estimator θ̂ as well as our variance

assessment σ2 = σ2(θ̂), and hence the usual confidence interval (say) (θ̂−2σ, θ̂+2σ) should have nearly 95%

coverage, as claimed. Doubling the variance therefore seems unnecessary. However, if we double the variance,

namely, we replace σ by
√

2σ, the resulting interval (θ̂− 2
√

2σ, θ̂+ 2
√

2σ) would have 99.5% coverage. From

an inferential point perspective, this increased confidence should be welcomed not only because it helps to

guard against various approximation errors (e.g., when we replace σ by an estimator σ̂) but also because

the extra protection comes with a reasonable cost, adding about 40% width. Coincidentally, for hypothesis

testing, this result turns out to be practically the same as raising the bar from p < 0.05 to p < 0.005 under

a normal approximation because Pr(|Z| ≥ 2
√

2) = 0.0047), which can be argued from several perspectives

(see Benjamin et al., 2018).
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More generally, by the Chebyshev inequality, if θ̂ is an unbiased estimator of θ, then

Pr
(
|θ̂ − θ| ≤ cσ

)
≥ 1− 1

c2
. (2.3)

Therefore, if we take c = 2, then the usual (θ̂ − 2σ, θ̂ + 2σ) would have at least 75% coverage regardless of

the distribution of θ̂. If we double the variance, which is the same as letting c = 2
√

2, then the guaranteed

coverage, again regardless of the distribution of θ̂, would be 7/8 = 87.5%. Therefore, doubling the variance

also provides some reasonable insurance against the assumption of normal approximation. We of course can

guarantee any level 1− α by letting c = 1/
√
α. For example, the interval (θ̂ − 4.5σ, θ̂ + 4.5σ) will guarantee

95% coverage regardless of the distribution of θ̂ as long as it is unbiased for θ, because 1/
√

0.05 = 4.47 < 4.5.

Finally, doubling the variance also provides reasonable insurance against the bias in our estimate θ̂. As

an illustration, suppose E[θ̂|θ] = θ + β, where β represents the bias. Consequently, the mean-squared error

MSE(θ̂) = β2 + σ2. Then the same Chebyshev inequality (argument) tells us that

Pr
(
|θ̂ − θ| ≤ cσ

)
≥ 1− E[θ̂ − θ]2

c2σ2
= 1− 1 + b2

c2
, (2.4)

where b = |β|/σ measures the magnitude of the bias relative to the standard deviation. By comparing (2.4)

with (2.3), we see clearly how the reduction of guaranteed coverage is determined by b. For example, if

b = 1, that is, if 50% of our MSE is due to the bias β, then (θ̂ − 2σ, θ̂ + 2σ) no longer has the guaranteed

75% coverage, but only 50%(= 1− 2/22) coverage. However, if we double our variance, which means we use

c = 2
√

2, then the guaranteed coverage when b = 1 returns to 1− (2/8) = 75%. In general, it is easy to see

that doubling variance, that is, using c = 2/
√
α, protects the claimed coverage 1 − α from having the bias

as large as standard error in magnitude, that is, permitting b to be as large as 1.

Interestingly, this protected range b ≤ 1 can be extended by about 20% (for α − 0.05), if we permit

ourselves to adopt the normal assumption. That is, if θ̂ ∼ N(θ + β, σ2), then

Pr
(
|θ̂ − θ| ≤ cσ

)
= Φ (c− b)− Φ (−c− b) .

Therefore, when we double the variance, the coverage becomes γ = Φ
(√

2c− b
)
− Φ

(
−
√

2c− b
)
. Hence

when c = 2, we can have b up to 1.18 and still guarantee γ ≥ 0.95.

2.5 Why doubling but not tripling or using some other multipliers?

As I reported earlier, reactions to the idea of doubling variance have been rather mixed, with several ques-

tioning the use of the factor 2, which seems ad hoc and arbitrary. In a specific context, such as given in

previous sub-sections and in the next one, the theoretical justifications of doubling are as rigorous as or even

more so than, say, adopting large-sample approximations, which are in routine use but without routine check

on their applicability or accuracy. My colleague Joe Blitzstein also provided a compelling reason (attributed

to Joe Gastwirth) for using mathematically proven bounds rather than approximations in presenting evi-

dence: “If you are testifying as an expert witness and you’ve proven an upper bound on a probability p, you

can say very confidently (no pun intended) that p is less than the upper bound. It may look much weaker

to the jury if you only have an approximation for p, when the opposing lawyer can easily question whether

it is possible that the approximation is far off from the truth.”

Indeed, being able to easily and persuasively communicate statistical methods to general users or findings

to general audiences is a critical motivation for advocating methods such as doubling the variance. Or, as
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Aaditya Ramdas commented succinctly (personal communication), “I like this price of 2 idea. It’s not

much, easy to state, and buys some nice robustness...” It is a small—indeed the smallest among integer

multipliers—price or premium for insuring against defects of a procedure, and it is the easiest idea of all

to convey. Ramdas also reported several cases where one achieves a safer bound by doubling the original

answer (e.g., Katsevich and Ramdas, 2018). An earlier example that I encountered is in calibrating posterior

predictive p-values (ppp). It is well-known that, for a frequentest p-value p for testing a (null) model M , we

have Pr(p ≤ α) ≤ α for any α ∈ [0, 1], under M , assuming the test is exact. This result does not carry over

to a ppp because the dependence of the posterior on data. However, one can show that Pr(ppp ≤ α) ≤ 2α

for any α(< 0.5) under the Bayesian null, i.e., the prior predictive distribution under M (Meng, 1994b).

In specific problems or domains, we can and should develop more sophisticated adjustment factors for

procedural improvements and for validity protections. For example, Particle Data Group (PDG), an interna-

tional collaborative team that publishes the Review of Particle Physics, advises a data-dependent inflection

factor (see Particle Data Group, 2020, p. 16) for assessing measurement errors when they are suspected to be

large. However, when we compare methods for reducing irreplicable and unreliable studies (or other similar

general problems) at a general level, we need to consider their respective success rates in actual practice.

The aforementioned “replication crisis” is far more about false positive results than false negative results

(Meng, 2009b). Being overly confident perhaps is the second most likely statistical culprit for generating

too many false positive results (the first being cherry picking). Statistically speaking then, doubling the

variance, as a general strategy for ensuring replicability, would do more help than harm in our effort to

improve replicability compared to not using it. At the same time, because it is the smallest integer as an

inflation factor, it also minimizes the potential negative consequences of being too overly protective.

2.6 Doubling variance for combating uncongeniality in multiple imputation

MI (Rubin, 1987) was originally motivated by the fact that typical data collectors, such as the US Census

Bureau, have much more information and resources to handle the missing data (e.g., due to non-responses),

Ymis, than individual users of the data. The MI approach asks the data collector to impute each missing value

m times (e.g., m = 10) from an appropriately constructed imputation model. These m sets of imputation are

combined with the observed data Yobs to form m completed data sets, D1, . . . , Dm, where D` = {Yobs, Y (`)
mis},

with Y
(`)
mis being the `th imputation for the missing Ymis. The users can then apply their chosen complete-data

procedures to each of these m data sets to obtain m sets of complete-data results, say {θ̂(D`), U(D`), ` =

1, . . . ,m}, where θ̂(D) is users’ complete-data estimator for the parameter θ and U(D) is an estimator of the

variance of θ̂(D) when the users have access to the complete data D. These results are combined according to

Rubin’s combining rules (Rubin, 1987) to form the so-called MI inference. In particularly, the MI estimator

is simply the average of θ̂(D`), ` = 1, . . . ,m, denoted by θ̄m. The variance of θ̄m is estimated via Rubin’s

variance combining rule that decomposes the total variance estimate Tm into the within-imputation variance

Ūm and the between-imputation variance Bm, which are respectively the sample average of U(D`) and

sample variance of θ̂(D`). More precisely,

Tm = Ūm +

(
1 +

1

m

)
Bm, (2.5)

where the extra inflection factor (1 + m−1) is due to the use of a finite m.

From early on, a key controversy about MI is the issue of uncongeniality, that is, the imputation model

may not be compatible with the users’ procedures (Meng, 1994a). A serious consequence of this unconge-
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niality is that it can lead to biases in Rubin’s variance combining rule (Fay, 1992; Kott, 1995), even if we

assume both the imputer’s model and the analyst’s procedure are valid (if either of them is invalid, then it

is not surprising something can go wrong). This uncongeniality is inevitable because it is not possible for

the imputers to anticipate all the analyses that would be performed on the imputed data sets. Even if they

could, they would not be able to construct one coherent imputation model that would be compatible with

all these analysis procedures, because they may not be compatible with each other. Furthermore, the users

are not given all the information about the imputation models, and indeed some of the information may

be protected by confidentiality constraints, which was a part of the reason that we want the data collectors

to perform the imputation in the first place. Hence the problem is unsolvable if we insist on a consistent

variance estimator or exact coverage.

However, there is an extremely simple solution when we are guided by the goal of delivering quality

for our confidence procedure, as discovered by Xie and Meng (2017). To see the essence of this approach

most clearly, let us assume m = ∞ to avoid the distraction of Monte Carlo error due to finite number of

imputations m. By the trivial decomposition θ̄∞ = θ̂(D) +
[
θ̄∞ − θ̂(D)

]
, we have

V(θ̄∞) = V
[
θ̂(D)

]
+ V

[
θ̄∞ − θ̂(D)

]
+ 2Cov

[
θ̂(D), θ̄∞ − θ̂(D)

]
.

As shown in Xie and Meng (2017), regardless of uncongeniality, the first two terms on the right-hand side

are consistently estimated by Ū∞ and B∞ respectively. Under congeniality, the third cross term is zero,

and hence T∞ of (2.5) (with m =∞) is a consistent estimator of V(θ̄∞). Otherwise this third term can be

negative or positive, and it is not possible to estimate it consistently based on {D1, . . . , Dm} alone. However,

because

2Cov
[
θ̂(D), θ̄∞ − θ̂(D)

]
≤ V

[
θ̂(D)

]
+ V

[
θ̄∞ − θ̂(D)

]
,

we see that if we use 2T∞ as an estimator for the absolute upper bound of V[θ̄∞], we can guarantee

the resulting confidence interval to have at least the declared coverage (asymptotically) regardless of the

uncongeniality. And this bound is achievable with extreme uncongeniality, that is, the possible over-coverage

due to doubling variance is a very reasonable premium we pay to insure against any degree of uncongeniality.

3 Principled Corner Cutting: A Car-Talk Bayes Theorem

3.1 A Car Talk puzzler

On July 11, 2015, I was driving to my dentist’s office when I heard on the Car Talk radio broadcast the

answer to its previous week’s puzzler (July 4th). One of the host brothers, Ray Magliozzi, was rendering, in a

slightly naughtier way, the text version in https://www.cartalk.com/content/possible-false-positive,

reproduced below.

RAY: There’s a rare disease that’s sweeping through your town. Of all the people who are

exposed to it, 0.1 percent of the people actually contract the disease. There are no symptoms

until the disease actually occurs. However, there’s a diagnostic test that can detect the presence

of the disease up to a year before it strikes.

You go to your doctor, and he administers the test. It comes out positive. You say, “I’m done

for!”
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Then you get a little bit encouraged. You say, “Wait a minute, doc, is this test 100 percent

accurate?” Your doctor responds, “Well, not really. It’s 95 percent accurate.” In other words, 5

percent of the people who take the test will test positive but they don’t really have the disease.

Here’s the question: What are the chances that you actually have the disease?

My heart pounded faster, literally. I was excited. Another great story about Bayes theorem that I can

use for public lectures and introductory courses—I am always on the lookout for materials that can help to

engage statistically innocent audiences. I was anxious. What would be Ray’s answer—would he get it right?

I was worried. How could he get it right—there is not enough information to apply the Bayes formula!

I had to hold my breath (and the steering wheel) when Ray gave his answer. Again, the following text

posted on Car Talk website is a bit crisper than the radio version.

RAY: Let’s say 1000 people take the test. Fifty people will test positive and yet they will not

have it. One will test positive and have it. So your chances of actually having it, even though

you tested positive, are one in 51, or a little less than 2 percent. So who’s our winner?

TOM: The winner is – wow! Frank Migliozzi from Rye Brook, New York! Congratulations.

WOW indeed, but not for keeping the winner almost in family. Ray had accomplished something that a

card-carrying statistician like myself would never try, at least not publicly. That is, invoking an incorrect or

at least incomplete reasoning to handle incomplete information to reach an approximately correct answer—

letting two wrongs somehow cancel each other.

Ray’s reasoning was clearly incomplete because the Bayes theorem requires three rates (prevalence,

specificity and sensitivity), but the original problem assumes only two rates (1% and 95%). Indeed, it seems

that whoever originally posted the problem (which may or may not be Ray) may not even realize the concept

of false negative, because the problem appears to interpret “95 percent accurate” as specificity, that is, the

percentage of people in the healthy population who will be declared as such by the test (but see Section 3.4

for an alternative to this interpretation). Hence the problem only specified false positive rate, which is one

minus specificity. The false negative rate, which is one minus sensitivity, can be anything. So how could

there be a unique answer, or any meaningful answer?

3.2 Single-error bounds on Bayes risks for rare events

Intrigued by Ray’s argument, I decided to get to the bottom of it, an exercise which also helped to distract

me from my or(al)deal. Let p be the prevalence rate of a specified disease in a given population, and f−

and f+ be respectively the false negative and false positive rates of a chosen test for that disease to be

administered in the population. Then Bayes theorem tells us that the probability of a randomly selected

individual with a positive test result who actually suffers from the disease—the so called positive predictive

value—is

B =
p(1− f−)

p(1− f−) + (1− p)f+
=

p

p+ ηf+
, (3.1)

where η = (1 − p)/(1 − f−), which is well defined as long as f− < 1. (Let’s hope no one uses a test with

100% false negative rate.) Formular (3.1) immediately suggests that, as long as p ≤ f−, that is, η ≥ 1, then

B ≤ p

p+ f+
. (3.2)
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But the right-hand side is exactly the expression Ray used! Therefore, Ray’s method actually delivers a safe

upper bound for assessing risk for rare events, as long as the rarity does not exceed the false negative rate,

which typically is a safe assumption to make. Indeed, it is easy to see from the above derivation that the

inequality (3.2) holds if and only if p ≤ f−.

In biostatistics and epidemiology, a handy rule of thumb has been that for a rare disease and a reasonably

good test, specificity matters far more than sensitivity in determining the positive predictive value; see for

example Van Belle et al. (2004, p. 559) or Blitzstein and Hwang (2019, pp. 43-44). The inequality given in

(3.2) rigorously establishes this fact, telling us exactly when and how to use this rule as a safe upper (or

lower) bound, and explicating the meaning of “reasonably good” (i.e,, f− ≤ p).
Somewhat unexpectedly, however, the elegant if-and-only-if result also holds with the overall error rate:

fo = Pr(the test renders a wrong diagnosis) = pf− + (1− p)f+. (3.3)

That is, we have the following intriguing result

B ≤ p

p+ fo
, if and only if p ≤ fo. (3.4)

This result says that, should Ray’s 5% error be the total error instead of false positive rate, his numerical

answer would still provide a rather useful upper bound. These bounds are useful because they are rather

close to the actual B. For example, assuming f− = f+ = 0.05, then B = 1.87%, and the bound in (3.2)

(which is the same as (3.4)) is 1.96%. Such a difference between them is inconsequential for many practical

purposes, yet the upper bound is considerably easier to obtain instantly: adding up prevalence and the

total error rate, and divide the prevalence by this sum. Such a practical tool can help to enhance general

professionals’ (e.g., doctors, lawyers) as well public’s ability to obtain reasonable risk assessments, and hence

to increase their chances to spot flawed reasoning and false conclusions. For example, no prosecutors can

convince a jury by arguing 2+3=6, yet they can easily impress on uninformed juries by declaring “Look,

there should be little doubt that the defendant is guilty because the blood test is 99% accurate.” Those who

have listened to Ray’s reasoning would at least have a chance to remind themselves: “‘Wait a minute ...”.

Given the potential use of such single error rate bounds and approximations, Theorem 1 below collects

three bounds and provides the error assessments when these bounds are used as approximations to B of

(3.1).

Theorem 1 (A Dirtified Bayes Theorem) Let D be an event for which we wish to assess risk, with prior

risk p = Pr(D). Let T be a test for assessing if D is present, with f− = Pr(T = −|D) and f+ = Pr(T = +|Dc)

being its respectively false negative and false positive rates, and with fo = pf− + (1 − p)f+ being its overall

error rate. Then for assessing the risk of D after a positive assessment T , B = Pr(D|T = +), we have the

following three sets of results.

(I) When only fo is available. Let O− = f−/(1− f−) be the odds of committing false negative and

Bo =
p

p+ fo
, then δo ≡

Bo −B
B

=
fo − p
p+ fo

O−. (3.5)

In particular, B ≤ Bo if and only if p ≤ fo, and also B = 1/2 if and only if fo = p. Furthermore,

|δo| ≤ O−, for all p ∈ [0, 1]. (3.6)
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(II) When only f+ is available. Let

B+ =
p

p+ f+
, then δ+ ≡

B+ −B
B

=
1−B+

1− f−
(f− − p). (3.7)

In particular, B ≤ B+ if and only if p ≤ f−. Furthermore

|δ+| ≤ max

{
O−,

f+
1 + f+

}
, for all p ∈ [0, 1]. (3.8)

(III) When only f− is available. Let Op = p/(1− p) be the prior odds for D and

B− =
Op

Op +O−
, then δ− =

B− −B
B

=
(f+ − f−)

(1− f−)Op + f+
. (3.9)

In particularly B ≤ B− if and only if f− ≤ f+. Furthermore, we have

|δ−| ≤
|f+ − f−|

f+
, for all p ∈ [0, 1]. (3.10)

Figure 1: Demonstrating the absolute errors in approximating the posterior probability B by three bounds:
Bo (requiring overall error rate fo; dash lines), B+ (requiring false positive rate f+; dot lines), and B−
(requiring false negative rate f−; dot-dash lines). Four cases by crossing f+ ∈ {5%, 10%} with f− ∈
{5%, 10%}
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Part (III) deviates from the previous two bounds because it operates with odds (slightly harder to

calculate mentally), and the condition on being a bound is not driven by the rarity of the event, but by

comparing the false positive and false negative rates. It is included here for completeness with cases where

one has access only to false negative rate f− but still needs to roughly assess positive predictive value B.

Because B is largely determined by f+ as discussed earlier, the only way that we can still have a reasonable

bound or approximation is when we possess some knowledge about the proximity between f+ and f−. It

therefore should not come as a surprise that in general the bound in (III) can work badly (or really well)

regardless the magnitude of p. Figure 1 (absolute error) and Figure 2 (relative error) illustrate this point via

the plots with f− 6= f+. They also illustrate that the first two bounds in Parts (I) and (II) work rather well

as approximations, with relative errors in approximation not exceeding 11% across board, as anticipated by

(3.6) and (3.8) (in this case, both relative errors are controlled by O− ≤ 1/9 ≈ 11%).

Figure 2: Demonstrating the relative errors in approximating the posterior probability B by three bounds: Bo

(requiring overall error rate fo; dash lines), B+ (requiring false positive rate f+; dot lines), and B− (requiring
false negative rate f−; dot-dash lines). Four cases by crossing f+ ∈ {5%, 10%} with f− ∈ {5%, 10%}

3.3 Principled Corner Cutting (PC2)

The dirtified Bayes theorem revealed above is a very effective illustration of what I have been advocating:

principled corner cutting (PC2) (see http://videolectures.net/nips2010 meng mlhi/). In the grand

scheme of things, any scientific study must cut corners both for its feasibility and utility. For example,
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applying Bayes theorem would neither be feasible nor useful if we were to insist on modeling all unknowns

(jointly) given all knowns. In general, the moment we adopt an assumption, we effectively cut out all the

considerations that contradict the assumption. And we inevitably cut corners due to constraints from all

directions: data limitations, computational challenges, knowledge inadequacies, time and funding shortages,

etc. Therefore, the differences among good, bad, and ugly studies lie mainly in what corners are cut,

according to what principles, resulting in what consequences, and is it worthy to restore them? That is, PC2

has three main parts:

(A) Guide and prioritize the corner cutting with theoretical understanding and pragmatic acumen under

practical constraints;

(B) Identify and cut corners with controlled consequences and approximate constrained optimality;

(C) Understand if it is wise or even possible to seek additional resources and information for restoring the

corners cut, and if so, in what sequence and how to restore.

For Ray’s problem above, the guiding principle needed by (A) is probabilistic assessment via Bayes

theorem, and the practical constraints are (i) lack of full information for applying Bayes theorem, and (ii)

the method and reasoning need to be accessible to the general public. The corner cutting in (B) is to replace

the exact answer, which is unknowable without further information, by an upper bound, which is far easier

to calculate and explain than the full Bayes theorem. Indeed, although Bayes theorem has been around

for centuries and has entered popular media5, explaining Bayes theorem and its ingredients (prevalence,

specificity, and sensitivity) to the general public is still a demanding task, as demonstrated in the grand

finale article by Waller and Levi (2021) for the COVID-19 issue in HDSR.

For (C), this is the type of situation where insisting on getting more information (e.g., the false negative

rate) in order to obtain the exact principled answer (e.g., from Bayes theorem) would make us statisticians

irrelevant in the eyes of practitioners, because they simply do not have that kind of luxury. But this does not

make the principle itself—in this case Bayes theorem—irrelevant. To the complete contrary, it is precisely

the understanding of Bayes theorem that renders us the insight on when and why Ray’s argument works,

and how well it does compared to the ideal answer.

This last comparison is particularly important for answering the practical question: “Is the answer good

enough for my purposes?” In this case, the answer is almost surely a yes. It is rare for a medical screen test

to have a false negative rate less than 0.1%, and the difference between 1.87% or 1.96% is inconsequential

for either patients or doctors in their decision making. The more refined answer, even if it were available,

would have essentially zero practical impact in such cases.

Whereas the benefits of PC2 are obvious from both practical and economical perspectives (e.g., in terms

of human capital investment for research), its routine adoption is far from trivial. Practicing PC2 requires

minimally good understanding of pros and cons of the available tools, and their applicability and cost of

implementation in a particular context. Good judgments under time and other constraints are key for its

success and for achieving its maximal benefits. Neither of them can be learned effectively in classrooms or

from textbooks alone. To make the matter worse, currently, we have far too few educators with sufficient PC2

experiences to design and teach PC2-oriented curriculum and training programs. But good progress is being

made, especially as a part of the broader effort to ensure statistical education meets the general demand

5See https://www.newyorker.com/books/page-turner/what-nate-silver-gets-wrong or

https://www.nytimes.com/2020/08/04/science/coronavirus-bayes-statistics-math.html
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of data science, where acquiring pragmatic acumen is being recognized as a central skill for successful data

scientists; see a series of articles in HDSR, e.g., Haas et al. (2019); Berthold (2019); Fayyad and Hamutcu

(2020), and especially Kolaczyk et al. (2021) and its eight discussions (followed by a rejoinder).

3.4 Avoid head waving : Cut corners, not principles

Further discussions on how to improve the general education on statistical thinking and insight, a critical

competency for executing PC2, are presented in Section 5. Inspired by a previewer’s comments, here we

discuss a closely related competency issue: the ability of fluently transitioning and translating between

the cognitive language for intuitive thinking and probabilistic language for formal reasoning. This issue

is particularly tricky and consequential when we reason with conditional probabilities. Considering Ray’s

interpretation of the “95% accuracy” in the Car Talk example: “In other words, 5 percent of the people

who take the test will test positive but they don’t really have the disease.” Using our notation, does Ray’s

descriptive language capture the conditional Pr(T = +|Dc) or the joint Pr(T = +, Dc)? Given the description

is about a group of people who share two characteristics: test positive and disease free, interpreting it as

a joint probability seems more logical. Indeed, if one argues that this description is about a conditional

probability, then it is more a description for Pr(Dc|T = +) than for Pr(T = +|Dc) because the first stated

condition is the test being positive.

Those who have training in probabilistic languages would be careful to avoid such ambiguous descriptions.

The issue here is not merely communicating clearly, but rather that the descriptive language reflects our

thinking, especially its ambiguity, which can seriously mislead us. As a previewer pointed out, if we interpret

Ray’s descriptions as about joint probabilities, then his statement that “Fifty people will test positive and

yet they will not have it” (out of 1,000) specifies Pr(T = +, Dc) = f+(1 − p), and “One will test positive

and have it” gives us Pr(T = +, D) = (1 − f−)p. Ray’s formula using the second quantity divided by the

sum of the two then would yield Pr(T = +, D)/Pr(T = +), which is exactly the positive predictive value

Pr(D|T = +)! In other words, we can either take Ray’s reasoning as an approximation leading to an upper

bound as established in the dirtified Bayes Theorem, or conclude that it is Ray’s ambiguous descriptive

language that injects assumptions that were not given by the original question, which made it possible for

him to arrive at a complete and unique answer.

This is a case of “gain in translation”, which is no less troublesome than lost in translation. As a matter

of the fact, many inference puzzles, such the prison dilemma and Simpson’s paradox, are consequences of

injecting assumptions that are not given, and sometimes even in logically inconsistent ways; see for example

Gong and Meng (2021) for an overview and delineation. An effective way of identifying and avoiding influ-

entially consequential ambiguity is to put intuitive contemplation in writing using mathematical notations

with explicit meanings. Mathematical languages are most challenging precisely when they are most in need,

because they exposes the laziness in our “head waving”, such as bypassing the step for explicating what we

mean or without examining internal inconsistencies.

A key message here is that for PC2 to work well, we must not cut corners on principles, whether for

theoretical insights or for practical acumen (Cox, 2006; Cox and Donnelly, 2011; Reid and Cox, 2015; Hacking,

2016; Cox and Snell, 2018). Indeed PC2 demands higher and deeper levels of principled contemplation for

foreseeing consequences more steps ahead. Perhaps a reasonable analogy is that master chess of Weiqi (i.e.,

Go) players have better ability than average players to see farther ahead the consequences of each move,

an ability that permits them to make seemingly foolish sacrifices to spectators, and yet decisively winning
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strategies. Statistical and data analytical thinking is even harder because the rules of the (soft elimination)

game are less clearly laid out. Indeed, without sufficient rules and principles to tame our innate desire for

success, head waving often gets us into trouble because of its cherry-picking tendency, fueling self-fulfilling

prophecies rather than self-critical introspection, the topic of the next section.

4 Quality Introspection: The Pufferfish/Selfish Test

4.1 Thou shalt not sell what thou refuseth to buy

Pufferfish, known as Fugu in Japan and Hetun in China, is a delicacy. That is, if it does not kill you. In

Japan, being a Fugu chef requires a license. Legend6 has it that to obtain a license requires a 2-3 year

apprenticeship with a licensed Fugu chef, and then an examination. This exam must be among the world’s

most well prepared ones, because it involves a very practical test: eat what you prepare. This surely increases

consumers’ confidence in being served by Fugu chefs—they are alive.

(a) A Northern Pufferfish caught in Long
Island’s Great South Bay, and was released
back into the water alive and well.
(Photo by Brian Yurasits on Unsplash)

(b) An alleged Hetun for a Shanghai lunch,
and its diner was released back into the city
alive and well, but unimpressed.
(Photo by an involuntary diner on alert.)

Figure 3: The only reason that I was willing to let my palate do the thinking was because the chef had done
the same (but this particular chef might have used p < 0.005 instead of p < 0.05, because the result was
too safe to be a delicacy; rumor has it that the deliciousness of a Hetun comes from a carefully calculated
dosage of its poison.)

I doubt that there is any statistical delicacy worth dying for. But we can institute a similar selfish test.

If I am ready to write about my wonderful data analysis to show that a new treatment is the best for a

serious disease, then surely I’d request that treatment for myself or a loved one, if (God forbid) I or my loved

one contracts the disease, right? Similarly, if I have shown how a new education program is at least twice as

effective as any existing ones, then (of course) I’d place my kids into that program, correct?

If any hesitation arises in answering such self-questioning, then we owe it to ourselves and our profession

a pause and some introspection. Without hesitation does not necessarily imply high confidence, since each of

us has a different tolerance for risk, but at least we do not impose on others the risks that we are not willing

to take ourselves. We know best what we have done or not done, the judgments rendered or self-overruled,

6See https://www.nytimes.com/1981/11/29/travel/one-man-s-fugu-is-another-s-poison.html
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the criticisms accepted or rejected, the shortcut made that should not have been taken, the incentives for

rushing that should have been resisted, etc. We may never tell anyone about all the defects for which we

would take points away if they had appeared in our students’ projects. But our professional consciousness—if

we have one—should remind ourselves of how we made our sausages, when we consider ourselves consumers

of our own products. If there is anything we find hard to swallow, then we should not serve it to others, or at

least not without serious warning. This is in the same spirit as the mantra in the business world: “Eat your

own dog food”, though the assertion7 that “If a dog food is of the high quality advertised to consumers, then

it should be good enough for a person to eat as well” itself is an ironic demonstration of lack of introspection:

how do humans know that our pecking order for the food quality is shared by dogs?8

Among all professional ethical considerations, practically motivated or ideologically driven, the mantra

“Don’t sell what you refuse to buy” should constitute the most basic professional benchmark for decency,

just as “Don’t treat others the ways you don’t want be treated” reflects the golden rule for human decency.

Indeed, this personal introspection can be viewed as an attempt to formulate and achieve empathy-driven

objectivity, complementing the notion of scientific disinterestedness (in parallel to aesthetic disinterestedness,

see for example Came, 2009), which share the same goal of ensuring scientific reliability but by removing

one’s interests instead of injecting them.

Ideally, our introspection should take a critical look at the entire process that produced the results we

want to scrutinize. In reality, this step itself will suffer from various omissions—most of us cannot work

more than 12 hours a day without damaging our health or relationships. Therefore, the checklist provided

below should be considered as an introspective menu for us to look through and to choose from, depending

on which aspects of our process are more likely to make our results fishy, just as we tend to choose the most

savory items from a restaurant menu.

• Did I understand and consider carefully the data collection and pre-processing processes in my study?

How much do I know about the quality of the data I used?

• Did I have sufficient understanding of the substantive problem to recognize its inherent challenges,

such as confounding factors and lack of identifying information?

• Are the assumptions and models I adopted free of internal contradictions? If not, what justifications

do I have to allow such contradictions?

• Did I follow principled and holistic methods such as probabilistic propagation and conditioning or did

I rely on ad hoc “intuitive” methods?

• What approximations did I make in modeling, mathematical derivations, or computation? Which ones

are most vulnerable?

• Did I understand the impact of these approximations, especially the worst damage they can cause?

Have I looked at studies on their impact, or have I investigated them theoretically or empirically?

• Did I perform sufficient validation or robustness check for models and assumptions I posited? Am I

confident that my results would hold reasonably well if my data are perturbed somewhat?

7See, for example, https://www.investopedia.com/terms/e/eatyourowndogfood.asp
8Presumably this can be studied via a blind testing, in the fashion of Judgement of Paris (see

https://www.cnn.com/travel/article/judgment-of-paris-wine-tasting-cmd/index.html), which was very effective in
elevating underdogs; some clever design, however, is needed to record dogs’ preferences.
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• Did I carry out reliability checks on the numerical evaluations or simulation, such as verifying compu-

tational results independently by two different methods, routines, or even research assistants?

• Did I commit any form of cherry picking, from data gathering to results validation? If so, what reasons

do I have to believe that my cherry picking would not do much damage?

• Do I understand the findings at a level that would enable me to explain and teach them confidently to

non-experts?

I am sure many readers will find this list incomplete or even inappropriate. The emphasis here is not

on any particular way of conducting the introspection, but on having it as an integrated part of our quality

control before we sign off on any study for which we serve in our professional capacity. The more we institute

such self-scrutiny, the better we serve science, society, and our profession. Yes, it is not an easy process to

do well, and it is not rewarded or even recognized by many of the current incentive systems. But by putting

ourselves in the shoes of those whose lives or livelihoods will be affected by our analyses, we can be much more

mindful in making assumptions, choosing methods, cutting corners, interpreting results, etc. Delivering what

we promise is one way to gain public trust. Being self-critical is another, especially when we can establish

it as a professional culture, just as particle physicists have (see Junk and Lyons, 2020). Furthermore, by

routinely engaging in such a practice, we also encourage anyone who conducts statistical or data analytical

investigations to do that same. We statisticians—myself included—are often frustrated from seeing abusive

or even just shallow statistical analyses, and a part of the frustration is that even if our entirely profession

gives up sleep, we still would not have remotely sufficient human power to eliminate statistical nightmares,

so to speak. Our best bet is to lead by example, help to incentivize quality control, and inoculate future

generations with a mindset for appreciating the world of uncertainty and the uncertainty world.

4.2 Incentivizing quality introspection

Introspection via selfish test relies on internal reward systems such as peace of mind or a sense of professional

pride, because our (any?) profession has no effective ways to enforce it. But it is possible to conceive external

incentive systems that can encourage higher levels of self-scrutiny, if we allow ourselves to contemplate the

notion of behavioral statistics, to paraphrase behavioral economics (e.g. Mullainathan and Thaler, 2000;

Camerer and Loewenstein, 2004; Wilkinson and Klaes, 2017), a rather self-explanatory term.

To start, consider incentives for publication in universities regarding appointments, tenure, salary raises,

etc. During my deanship (2012-2017), I surprised myself for having succumbed to becoming a bean counter,

despite my best efforts to avoid it. It is an NP-hard (Not Practical) problem for a dean to read even just

a single article from each candidate to form a direct sense of research quality instead being impressed (and

imposed upon) by candidates’ CVs and others’ testimonies of their accomplishments. Even if I were given

all the time to do so, I’d not have the basic knowledge to understand the key messages of most articles

outside of my knowledge stream, which sadly is not even an epsilon compared to the ocean of knowledge

that a dean is effectively asked to navigate. Consequently, I constantly caught myself counting the number

of articles and books or the number of awards in a CV, and I was not alone in dealing with such a reality.

Granted, promotion and hiring decisions should be and are made collectively, but each of us should provide

our opinions informed by at least some understanding of quality of the candidate’s work instead of quantities.

The experience reminded me of a broader lesson: any mechanism for discouraging trading quantity for quality
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is most forceful when it is incentivized to be self-enforced before the product is made. Relying on external

enforcement is often too late and weak, because realities can easily turn our best wishes into wishful thinking.

Understanding this reality, a brave university may announce that it would (permanently) deduct α% of a

professor’s salary if some of the professor’s published statistically significant results at the α level turn out to

be wrong. A 5% salary reduction is non-trivial for most academics, especially considering its compounding

effect. In contrast, a 0.5% reduction is much more tolerable, even with its compounding effect, considering

the length of a professor’s serving years. Granted, proving that any statistically significant result is wrong

is a daunting (and unpleasant) task, and using a smaller α may delay or even eliminate a publication. But

why risk it if it is under the control of my choice of the α level? I still can choose α = 5% if I’m so sure of

the results and hence willing to take the risk. But this is exactly the thinking process such incentive systems

aim to encourage: the more researchers are incentivized to self-control quality, the fewer non-reliable studies

would leak into scientific literature.

“Xiao-Li, you are hallucinating—no university would ever consider such a laughably näıve and frankly

dangerous idea!”. Very true. Such a system can penalize productive faculty (though it is partly intended

to discourage chasing quantity instead of quality), hurt collaborations (why should I be penalized for my

collaborators’ sloppiness over which I have no control?), and even stifle creativity (in fear of making costly

mistakes).

However, it might not be a completely crazy or harmful idea for regulatory agencies, such as the FDA,

to consider incentives that would encourage applicants’ self quality controls beyond established standard

requirements. For example, those applicants who volunteer to impose a more stringent criterion (e.g., a

smaller α level) would be given accordingly more benefit of doubt, such as a higher bar for requiring them

to withdraw drugs from markets when post-approval complications arise. Or the priorities in the approval

process depend on the degree of self-quality control, e.g., the smaller the α the higher priority. The exact

scheme is less important than introducing a quality control knob that allows the applicants to dial to optimize

over their own risk and economic considerations. As long as the dial is set to minimally maintain the current

standard (e.g., α must not exceed 5%), the self-incentivized system can only improve upon the current

practice.

Of course, realities typically are more complicated than what we conceive. For example, an adjustable

incentive system can and will induce more serious gaming behaviors or even fraudulent manipulations. But

these complications are expected in any system, and we can deal with them as a part of many trade-off

considerations. For instance, in the drug approval context, Chaudhuri et al. (2020) considered the trade-

off permitting a larger α in exchange for a shorter clinical trial period involving anti-infective therapeutics

during pandemic outbreaks, while minimizing the expected harm of false positives and false negatives. Their

findings of α’s being as large as 26% would be considered too radical to be entertained during a normal

time. But during a pandemic, they could be the optimal numbers, saving more lives (and livelihoods) than

otherwise. It is in the same spirit that we should permit ourselves to explore more radical incentive systems

as a part of our effort to reduce irreplicable or more critically unreliable studies (Meng, 2020a).

4.3 Incentivizing more behavioral statistics

Methodologically, instituting any of such incentive systems would also encourage and challenge ourselves to

systematically study behavioral statistics, that is, statistical modeling and analyses that inherently take into

account the behavior of entities involved in the study. This is in parallel to behavioral economics, which arose
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because of the general recognition that the traditional “rational choice” framework (Becker, 1976), although

mathematically convenient, is too ideal to capture how individuals and organizations behave in reality (see,

e.g. Samson, 2016). In this sense, behavioral statistics is not new at all, and in fact one can argue that many

statistical concepts and methods cannot be rigorous or applicable without being behavioral.

For example, it is well known (see e.g., Little and Rubin, 2019) that to sensibly handle non-responses

in surveys, we must take into account the responding behaviors of the surveyed individuals. Assuming that

people response randomly, the so-called missing completely at random (MCAR) model (Rubin, 1976), would

be extremely convenient in theory and for computation, because then the observed sample inherits all the

good (and bad) properties of the surveyed sample, but just with a smaller size. In reality, however, MCAR

is extremely rare. Worse, a seemingly small deviation from MCAR can easily destroy any confidence we can

place in the survey estimates if we fail to correct for the non-MCAR behavior; a most striking recent example

is for predicting US presidential elections (Meng, 2018). The realization of the importance of such behaviors

has led to a large literature on studying missing data mechanisms (Rubin, 1976; Heitjan and Rubin, 1991),

which is the hardest problem to deal with among the three broad class of complications created by missing

data or more broadly by incomplete data (Meng, 2012).

Figure 4: An Enlightening Illustration of Behavioral Statistics, created by https://xkcd.com/795/. Re-
produced under the CC BY NC 2.5 Licence as granted by https://xkcd.com/license.html. [xkcd has
produced a host of thought-&-smile provoking cartoons, and this is just one of many.]

To encourage ourselves to capture as much reality as possible, it is useful to contemplate questions such as:

What will be the actual false positive rate among those studies that choose to adopt α = 0.005? Would it be

higher or lower than 0.5%, and what are the determining factors and conditions (e.g., on researchers’ ability

to assess risk) in driving the directions? Whereas such questions are not easy to answer, the following xkcd

cartoon vividly reminds us of the importance to at least to contemplate their potential impact — at the end

of the day, what really matters is not governed by our wishes or idealization but how we—and our procedures

and products—behave in reality. Such contemplation can also push us to revisit our theory and principles,
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an upward iterative process that is a hallmark of the scientific progress. For example, is significance level

even a meaningful concept when every study is incentivized to choose its own? This question is no longer

hypothetical when we follow the proposal to “justify your alpha” (Lakens et al., 2018), which makes a rather

sensible (and obvious) point that a universal α, regardless of its value, is undesirable. But when everyone

does justify their own α, then a “conditional risk” question highlighted by the xkcd cartoon becomes a very

relevant one for regulatory agencies such as the FDA at both a conceptual and practical levels.

5 Kidstogram: Let’s Plant Some Random Seeds

5.1 A big hole in our elementary education

Among reasons for unreliable statistical and scientific studies, from innocent mistakes to skillful deceptions,

we tend to overlook perhaps the most evasive and invasive one: a big hole in our elementary education for

seeding an appreciation of the necessity and beauty of uncertainty. From the moment we teach our children

counting by fingers, we embark on a mathematical journey designed for developing brains to navigate multiple

mazes of rules and formulas for understanding and manipulating deterministic relationships. We seldom give

them a tour of a random forest, or even show them an ambiguous path to a stochastic land. Yes, even when

we teach statistics, we tend to teach it as a set of rules and in the order of (mathematical) complexity: one

sample test, two sample tests with equal variance, two sample tests with unequal variance, etc. We teach

linear regression as line fitting, treating uncertainty as annoying “residual errors” to be gotten rid off, wasting

great opportunities to intellectually inspire and enhance the young minds (Meng, 2009a, 2010, 2009b).

I venture to argue that the very reason that most of us—myself included—feel uncomfortable in dealing

with uncertainties, whether in life or in work, is that our pre-college education system has failed to accustom

our brains to appreciate uncertainty as much as information. We have failed, collectively, to teach that

uncertainty and information are the two sides of the same coin: variations (Meng, 2020b). For example,

if everyone at a train station has identical appearance, then any description of an individual there would

contain zero information for identifying the individual. We would be as annoyed (and frightened) as if we

were given no description. When taught earlier and given sufficient exposure and opportunities, we can all

appreciate uncertainties just as we desire for information. Statistically speaking, there should not be any

particular group of brains that are more suited for processing uncertainty than others, just as regardless of

the race or ethnicity of a group of children, raise them in any language, and that language will become their

mother tongue.

On the other hand, it is much harder to acquire a second language, and the difficulties generally increase

with the starting age. I have been living in an English speaking environment for 35 years as of this writing,

and I am still struggling with every article or speech, from basic grammar to common pronunciation. I

simply do not have the innate and instant feeling when to use “a” or “the”, for instance, and have to make

a particular effort to avoiding mixing “she” with “he” in pronouncing since this phonetic distinction does

not exist in Chinese. Thinking analogously, I am fully sympathetic to all deterministically trained minds

struggling with stochastic realities. Take linear regression as an example. When we teach it as fitting a line,

how confusing it must be that predicting the sale price of a condo from its rent cannot be read off from the

same line as for predicting the rent from its sale price?

And indeed linear regression is a great example to highlight the inadequacy of our current educational

preparation for understanding stochastic relationships. Even for those who feel comfortable dealing with
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uncertainties in their estimates, many of them fail to emphasize or appreciate that the most important

reason for assessing uncertainty appropriately does not concern the error bars. Much more critically, it

is about properly propagating uncertainties for our inference and prediction, because the uncertainty may

change our estimators in fundamental ways. This is the very reason that converting y = βx into x = y/β

would lead to a mathematically provably inferior prediction for x from y (under square loss), even if this

conversion seems to be the only sensible algebraic rule.

Collectively, we have been breathtakingly innovative in training generations of young brains with ability to

manipulate deterministic rules in the most effective way. I do not use the phrase “breathtakingly” lightly—

my breath was taken away when I was watching a “hand waving” method9 used during an arithmetic

competition. For those of us who do not understand how this method works, it is a bizarre and fascinating

scene. A group of elementary school students wave their left hands rapidly and in seemingly chaotic ways, yet

simultaneously their right hands are writing down answers continuously as their eyes are scanning through

over 220 arithmetic problems in 15 minutes, with a reported success of reaching 219 correct answers. In a

similar vein, for those who have no exposure to statistical thinking, it must be equally bizarre when I explain

to them that y = βx does not imply x = y/β, and fascinating that I, apparently algebraically challenged,

can actually navigate the protean world of data.

If we can be so innovative for teaching a subject as old as arithmetic, then surely we can put our creative

minds together to thrust ahead a path for early childhood education that is based on appreciating and

internalizing the concepts and vocabularies of variations and uncertainties. The sooner we receive such

training, the more fluent we all become in speaking the language of variation later in life. Indeed, teaching

histograms can start immediately after learning about counting, since a histogram is nothing but an ordered

bookkeeping of counts.

5.2 Seeding distributional thinking in early childhood education

Probabilistic calculations and manipulations are challenging for many of us because they do not operate

with numbers, but rather with distributions. The advance from a single count, i.e., a number, to an ordered

collection of counts, that is, a histogram, is far more epistemological than mathematical, because histograms

compel distributional thinking. As Sanders (2020) summarized nicely, “distributional thinking can be defined

as the frame of mind for considering the outcome of a process as not just a singular state of being, but rather

a pattern of alternatives and their likelihoods.” Some might wonder if it is possible at all for a developing

brain to comprehend patterns and processes when it still struggles with counts and rules. I’d argue that it

is not only possible but actually it should be easier to engage developing brains in distributional thinking

because patterns are more pictorial than numbers, and processes are more participatory than rules.

Just as a proof-of-concept illustration, Figure 5 showcases two histograms by children from the One

Room Schoolhouse, an innovative lab school in Denver, Colorado (Burt, 2014). Or we should really term

them as kidstograms, not merely because of the ages of their producers. They provide a glimpse into an

excited young mind as it turns counting, a boring subject for any age, into artistic gliding, with a histogram

as its landing zone. This is vivid from Kiley’s drawing, which depicts the process of tallying, sorting, and

binning, before turning them into a histogram with flying colors, so to speak. It is also a pleasant surprise

that the raw data were presented in three forms, in sticks, by numbers, and as crosses, where the last one

seems to document a confirmatory exercise. Whereas we can never be sure what went through the young

9https://www.thatsmags.com/china/post/29655/watch-chinese-students-use-hand-swinging-technique-at-math-competition
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(a) (b)

Figure 5: Examples of a kidstogram, which also demonstrates the participatory nature in producing them,
especially the one in (a). Source: https://orsch.net/ (“orsch” stands for One Room Schoolhouse)

mind, this rich kidstogram regales us with a colorful story of Kiley’s engagements with the data collection,

data processing, and data visualization. The participatory nature of collecting data from classmates has an

added benefit of encouraging effective communication as the developing brains shape themselves through

social and peer interactions.

Eli’s kidstogram is simultaneously a minimalist’s rendering and Picasso-esque rearranging of the same

process, though I doubt Eli had any training in either style. The almost monolithic color and somewhat

frosty hue perhaps were not accidental, considering the inquiry here was on the number of years spent

on frozen slopes. Together, they seem to paint a rather static picture of a cold histogram, with some

child-play decorations. However, once Eli’s creation is viewed from a perspective orthogonal to our usual

angle—literally and figuratively—a kidstogram-in-kidstogram appears, with a cleverly figured ramp (i.e.,

the disfigured number 4 over a backward and slanted number 3) leading to a piste, nicely tracking our

free-falling imagination. (If a reader has trouble in picturing a sideways histogram, the reader is reminded

that Picasso was not known to respect geometric or numerical proportionality.) “Awesome!” is indeed the

most appropriate A-grade here, because the Picasso-esque sideways depiction reminds us of the most critical

question about data science—what do the data measure?

Whereas it is likely that I have overfitted the pictorial data to my belief, it is also more likely that

neither Kiley nor Eli would engage in their projects nearly as much if they were asked to simply calculate

the average of their data or alike. The participatory (and pictorial) nature of forming a kidstogram may help

to convert the fear for distributional thinking into a desire for social activities that with tangible cognitive

and intellectual benefits, even though the children may not perceive their experiences in those adult terms.

Indeed, as long as we start such activities early, the fear would not be formed in the first place or at least

not to the degree to be singled out by many developing brains as particularly intimating. For example,

interacting with classmates to poll their experiences and being polled by them could be challenging initially

for children who suffer from various degrees of social anxiety disorders. However, the reciprocal nature of

such activities can be both self-motivating and (mutually) therapeutically, especially with sensible pairing

and under proper guidance of teachers with good knowledge of child psychology. Skillful educators can also

engage students by guiding them to imagine the impact of different question wording, or even experiment

with them to test their ideas empirically.
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For example, instead of using “How many times a day do you sharpen a pencil?”, ask Kiley what would

happen if she changes the question to “How many times do you sharpen a pencil?” If Kiley has difficulty

appreciating the difference, the teacher can engage her by asking how would she answer the new question

herself. Would she provide the same answer as to the original one? Why or why not? Is the new question

harder to answer than the original one? Why or why not? Is it a better question for data collection purposes

than the original one? Why or why not? Such questions serve multiple pedagogical purposes. They will help

young minds to appreciate the power of words and the importance of communication. They will facilitate

the development of the understanding that the concept of data is fundamentally different from the concept

of number, a vital distinction that our education system fails to stress. They will also demonstrate that

data collection starts with its purpose, and that variations in data go beyond the differences in numbers.

A young mind may not fully digest all the implications or even appreciate all the questions, just as a child

may not appreciate all the rules of grammar when learning a language. But just as exposing children to a

culture and expressive environment will greatly expedite their language learning, surrounding them with a

data environment and a culture of thinking beyond numbers will go a long way toward engaging them in

distributional thinking and ultimately developing an acumen in dealing with uncertainty, whether for risk

assessments or for prediction and inference.

Indeed, there are many ways to engage generations of developing brains, such as via games or stories

from children’s books, employed as a part of ASA’s initiatives and strategies to engage K-6 students (Mar-

tinez and LaLonde, 2020) and adopted by Pre-K-12 Guidelines for Assessment and Instruction in Statistics

Education II (GAISE II) issued by ASA and the National Council of Teachers of Mathematics (Franklin

and Bargagliotti, 2020; Perez et al., 2021). Producing kidstograms is merely one more such activity, but one

that is designed explicitly to seed the concept and habit of distributional thinking as a part of our future

generations’ native scientific language. In doing so, it is important to relate distributional thinking with per-

sonal welfare and decision making, as a way to continuously reinforce the learning incentivized by personal

experiences. In that regard, Stephen Jay Gould’s touching essay10, “The Median Isn’t the Message” (Gould,

1985, 2013), is a life-saving (and life-changing) reading on distributional thinking that we should recommend

to every student.

6 Let’s Help the Data Science Ecosystem Evolve Healthily

Each of the four proposals in this article may unnerve some of us. If so, my mission is partially accomplished,

for being radical means to touch nerves or at least to push ourselves out of our comfort zones. But improving

the reliability of scientific studies will always be a work in progress, and hence the specific proposals here are

merely a few stepping stones toward directions for general efforts to be made by various stakeholders and

communities of the scientific enterprise. The plural form of “communities” is meant to remind us that the

statistical community, however large or strong, is only one of many that we statisticians should care about,

if we want to sustain our co-leading roles in data science, which has ascended rapidly to become central to

human n inquiries. The trio of articles in the inaugural issue of HDSR, namely the conception of data by a

philosopher (Leonelli, 2019), the data life cycle by a computer scientist (Wing, 2019), and the after-life of

data by an information scientist (Borgman, 2019), vividly demonstrate the vastness of both the data science

topics and the data science citizenry.

10https://journalofethics.ama-assn.org/article/median-isnt-message/2013-01
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Coming with this enormity is the greatly increased varieties and complexity of the problems we need

to deal with. For statisticians, issues such data privacy and a host of “algorithm politics” (e.g., algorithm

accountability, fairness, interpretability, transparency, trustworthiness, etc.) provides exciting newer or

bigger challenges. See for example a host of articles published in HDSR, such as those on differential privacy

(Oberski and Kreuter, 2020; Hawes, 2020), algorithm trustworthiness (Spiegelhalter, 2020), algorithm fairness

(Romano et al., 2020), algorithm transparency (Rudin and Radin, 2019; Rudin et al., 2020), etc. These

challenges should compel us to work harder and more creatively to maintain and enhance the quality of our

work, especially when there are increasingly more reasons and incentives for rushing our studies (e.g., lack

of time or other resources).

Whereas my four “radical” proposals were originally made at the ASA symposium focusing on significance

tests, they have general implications for the much broader data science enterprise. Specifically, doubling

variance nudges researchers to follow the time honored approach for earning trust: deliver on promises.

Dirtifying Bayes is about enhancing and enlarging the community of citizen (data) scientists, a scalable

force for detecting and deterring unreliable studies. Devouring pufferfish/selfish reminds policy makers and

alike the effective role of incentives in encouraging reliable studies. Last and most importantly, drawing a

kidstogram is about addressing the issue of unreliable studies in the most fundamental and sustainable way,

i.e, via education. Or in the words of McNutt (2020), “Self-correction by design”, that is, maintaining and

enhancing the ability of science to self-correct by integrating pertaining training in our curriculum designs.

With data science evolving as an artificial ecosystem (Meng, 2019), harmful mutations are inevitable. Any

effort to enhance scientific reliability can help the ecosystem to evolve healthily, or at least help to prevent it

from serious suffering. Just as physical exercise is an effective but demanding way to keep ourselves healthy,

the directions for improving scientific reliability discussed in this article and in many others (e.g., Fineberg

et al., 2020; Benjamini, 2020; Bush et al., 2020; Goeva et al., 2020; Howell, 2020; Junk and Lyons, 2020; Lin,

2020; Parashar, 2020; Plant and Hanisch, 2020; Vilhuber, 2020; Willis and Stodden, 2020) all involve hard

work and unremitting effort. My call to readers is therefore to help in any way you can, from developing

more principled corner cutters to designing more enlightening pedagogical materials for young minds to

internalizing distributional thinking.

And of course do not forget to take the “selfish oil” with every study, to help keep our collective profes-

sional body in top shape—and yours too. Thank you, my friend (or foe).

A Proof of Theorem 1

(I) Given B as defined in (3.1) and Bo of (3.5), we have

δo ≡
Bo

B
− 1 =

p+ f+η

p+ fo
− 1 =

f+η − fo
p+ fo

=
f−

1− f−
· fo − p
p+ fo

, (A.1)

where the last equality is due to the identity

(1− f−)(f+η − fo) = f−(fo − p), (A.2)

which can be verified directly as both sides are equal to f−(1− f−)(f+η− p). Expression (A.1) clearly

implies that B ≤ Bo if and only if p ≤ fo. Furthermore, because |a − b| ≤ |a| + |b|, the rightmost

expression of δo in (A.1) immediately implies that |δo| ≤ f−/(1− f−) = O− for all p ∈ [0, 1].

We note that p ≤ fo if and only if f+η ≥ p, which holds if and only if B ≤ 1/2. This also implies that

B = 1/2 if only if fo = p, that is, the total error rate is the same as prevalence rate.
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(II) Similarly, by the definition of B+ of (3.7), and recalling that η = (1− p)/(1− f−), we have

δ+ =
B+ −B

B
=
p+ f+η

p+ f+
− 1 =

f+
p+ f+

(η − 1) =
1−B+

1− f−
(f− − p). (A.3)

This implies immediately that B ≤ B+ if and only if p ≤ f−. For the last expression in (A.3), when

p ≤ f−, it is smaller than O−, which is reached when p = 0. When p ≥ f−, its magnitude is an

increasing function of p, and hence it reaches its maximum f+/(1 + f+) when p = 1. Hence, the bound

in (3.8) holds for any p ∈ [0, 1].

(III) Noting that B− amounts to substituting f+ by f−, we have

δ− =
B−
B
− 1 =

(1− p)(f+ − f−)

(1− f−)p+ (1− p)f+
=

(f+ − f−)

(1− f−)Op + f+
. (A.4)

All results then follow.
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