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Abstract

In this paper, we present a geometric approach for computing controlled
invariant sets for hybrid control systems. While the problem is well stud-
ied in the ellipsoidal case, this family is quite conservative for constrained
or switched linear systems. We reformulate the invariance of a set as an
inequality for its support function that is valid for any convex set. This pro-
duces novel algebraic conditions for the invariance of sets with polynomial or
piecewise quadratic support functions.
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1. Introduction

Computing controlled invariant sets is paramount in many applications [7].
Indeed, the existence of a controlled invariant set is equivalent to the sta-
bilizability1 of a control system [38] and a (possibly nonlinear) stabilizable
state feedback can be deduced from the controlled invariant set [6].

The stabilizability of a linear time-invariant (LTI) control system is equiv-
alent to the stability of its uncontrollable subspace (which is readily accessible
in its Controllability Form) [40, Section 2.4]. Indeed, the eigenvalues of its
controllable subspace can be fixed to any value by a proper choice of linear
state feedback. The resulting controlled system is stable hence an invariant
ellipsoid can be determined by solving a system of linear equations [23]. This

⋆This paper extends our work on continuous-time controlled invariant sets presented
at ADHS 2021 [21] to hybrid systems. Corresponding author B. Legat.
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1In the sense that the state variables can be controlled to remain bounded.
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set is also controlled invariant for the control system. When a control system
admits an ellipsoidal controlled invariant set, it is said to be quadratically
stabilizable. When there exists a linear state feedback such that the result-
ing autonomous system admits an ellipsoidal invariant set, it is said to be
quadratically stabilizable via linear control.

While the stabilizability of LTI control systems is equivalent to their
quadratic stabilizability via linear control, it is no longer the case for un-
certain or switched systems [30]. Furthermore, it is often desirable for con-
strained systems to find a controlled invariant set of maximal volume (or
which is maximal in some direction [1]). For such problems, the method de-
tailed above is not suitable as it does not take any volume consideration but
more importantly, the maximal volume invariant set may not be an ellipsoid
and may not be rendered stable via a linear control. For this reason, a Linear
Matrix Inequality (LMI) was devised to encapsulate the controlled invariance
of an ellipsoid via linear control [9, Section 7.2.2] and the conservatism of the
choice of linear control was analysed [38]. As the linearity of the control was
found to be conservative for uncertain systems [30], the LMI (9) (or (8) for
discrete-time) was found to encapsulate controlled invariance of an ellipsoid
via any state-feedback [6].

While these LMIs have had a tremendous impact on control, the approach
is limited to ellipsoids due to its algebraic nature. Recent advances in control
was enabled thanks to the introduction of new families of sets such as poly-
nomial sublevel sets [27] (see Section 3.2) or polynomial zonotopes [14, 15].
An attempt to generalize the LMIs mentioned above to polynomials can be
found in [31] but as detailed in [21, Section 2], it is quite conservative. The
approach studied in [16] is complementary to our method as [16] computes
outer bounds of the maximal controlled invariant sets while we compute ac-
tual controlled invariant sets (hence inner bounds to the maximal one).

In this paper, we reinterpret the controlled invariance in a geometric/behavioural
framework, based on convex analysis, which allows us to formulate a general
condition for the controlled invariance of arbitrary convex sets via any state-
feedback in Theorem 1. While this condition reduces to (8) and (9) for the
special case of ellipsoids, it provides a new method for computing convex
controlled invariant sets with polynomial and piecewise quadratic support
functions.

This paper genralizes [19, 20, 21] into a framework for computing convex
controlled invariant sets for linear hybrid control systems. In [20], the au-
thors treat the particular case where the continuous dynamic at each mode
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(see Definition 1) is trivial, i.e., ẋ = 0. In [19], the authors extends [20]
to piecewise semi-ellipsoids. In [21], the authors handle the particular case
where there is only one mode and no transitions (see Definition 1). While
[20, 19] covers discrete-time systems and [21] covers continuous-time systems,
we show in this paper that the two methods can be combined to compute
controlled invariant sets for hybrid systems, exhibiting both discrete-time
and continuous-time dynamics. Using the set programming framework (see
Appendix C), this compatibility can be understood as a consequence of the
fact that the controlled invariance conditions require the sets to be repre-
sented with their support functions (see Definition 6) both in discrete-time
and continuous-time.

In Section 2, we show how to reduce the computation of controlled invari-
ant sets for hybrid control systems to the computation of weakly invariant sets
for hybrid algebraic systems. In Section 3, we develop a generic condition of
control invariance for hybrid systems using our geometric approach. We par-
ticularize it for ellipsoids (resp. sets with polynomial and piecewise quadratic
support functions) in Section 3.1 (resp. Section 3.2 and Section 3.3). We il-
lustrate these new results with numerical examples in Section 4.

Reproducibility. The code used to obtain the results is published on codeo-
cean [22]. The set programs are reformulated by SetProg [17] as described
in Appendix C and then solved by Mosek v8 [4].

2. Controlled invariant set

In this section we define hybrid control and algebraic systems as well as
the notion of invariance that will be studied in this paper. We then show
how the invariance relations between the two different classes of systems.

Definition 1. A Linear Control Hybrid Automaton (CHA) is a system S =
(T, (Aq, Bq)q∈V , (Aσ, Bσ)σ∈Σ, (Xq,Uq)q∈V , (Uσ)σ∈Σ) where T = (V,Σ,→), V is
a finite set of modes, Σ is a finite set of signals and →⊆ V × Σ× V is a set
of transitions. We denote (q, σ, q′) ∈→ by q →σ q′.

Given a mode q ∈ V , we denote the state dimension as nq,x and the input
dimension as nq,u Given a signal σ, we denote the input dimension as nσ,u.
The set Xq ⊆ Rnq,x is the safe set corresponding to mode q and the sets
Uq ⊆ Rnq,u ,Uσ ⊆ Rnσ,u are the sets of allowed inputs. For any mode q, we
have Aq ∈ Rnq,x×nq,x , Bq ∈ Rnq,x×nq,u . For any transition q →σ q′, we have
Aσ ∈ Rnq′,x×nq,x , Bσ ∈ Rnq′,x×nσ,u .
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A trajectory of S is an increasing sequence of times t0 < t1 < t2 <
· · · < tN < tN+1, transitions2 q0 →σ1 q1 →σ2 · · · →σN

qN , reset map inputs
ūk ∈ Uσk

for k ∈ {1, . . . , N}, and trajectories xk : [tk, tk+1] → Xqk ∈ C1 and
uk : [tk, tk+1] → Uqk for k = 0, 1, . . . , N satisfying:

∀k ∈ {1, . . . , N}, xk(tk) = Aσk
xk−1(tk) + Bσk

ūk

∀k ∈ {0, 1, . . . , N}, ∀t ∈ [tk, tk+1], ẋk(t) = Aqkxk(t) + Bqkuk(t).

The hybrid system defined in Definition 1 may be interpreted as a hybrid
automaton [3] where the guard of each transition q →σ q′ is Xq or Rnq,x .
In this context, the discrete-time dynamical system x+ = Aσx + Bσū is
commonly referred to as the reset map. We allow the state space of different
modes to differ as our method naturally extends to different state spaces but
the reader may consider them to have identical dimension for simplicity.

We define the tangent cone as follows [7, Definition 4.6].

Definition 2 (Tangent cone). Consider a norm ∥ · ∥ and a distance function
d(S, x) defined as:

d(S, x) = inf
y∈S

∥x− y∥.

Given a closed convex set S, the tangent cone to S at x is defined as follows:

TS(x) =

{
y | lim

τ→0

d(S, x+ τy)

τ
= 0

}
The tangent cone is a closed convex cone and is independent of the norm

used; see [12, Proposition 5.1.3].
We define below the controlled invariance of a collection of closed sets

Sq for each mode q. Equation (1) encodes the controlled invariance for each
transitions. Equation (2) is the Nagumo condition for each mode; see [7, The-
orem 4.7]. The controlled invariant set is also known as viability domain [5].

Definition 3 (Controlled invariant sets for a CHA). Consider a CHA S as
defined in Definition 1. We say that closed sets Sq ⊆ Xq for q ∈ V are
controlled invariant for S if

∀q →σ q′, ∀x ∈ Sq, ∃u ∈ Uσ such that Aσx+Bσu ∈ Sq′ (1)
∀q ∈ V, ∀x ∈ Sq, ∃u ∈ Uq such that Aqx+Bqu ∈ TSq(x) (2)

where TSq(x) denotes the tangent cone defined in Definition 2.

2Note that the transitions can occur arbitrarily often.
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In view of Definition 3, the transitions are considered autonomous and
not controlled ; see details in [24, Section 1.1.3]. In the case of unconstrained
controlled, i.e., Uq = Rnq,u ,Uσ = Rnσ,u , the invariance condition can be refor-
mulated geometrically using projections.

Lemma 1 ([21, Proposition 4]). Given a subset S ⊆ Rn and matrices A ∈
Rr×n, B ∈ Rr×m, the following holds:

AS +BRm = π−1
Im(B)⊥

πIm(B)⊥AS

where πIm(B)⊥ : Rn → Im(B)⊥ is any orthogonal projection matrix onto the
orthogonal subspace of Im(B), the linear span of the columns of B, and
π−1
Im(B)⊥

: Im(B)⊥ → Rr is the preimage defined in Eq. (A.1).

Proof. Given x ∈ S and y ∈ Rr, we have y ∈ A{x} + BRm if and only if
y − Ax ∈ Im(B). As πIm(B)⊥ is orthogonal, its kernel is Im(B). Therefore
y − Ax ∈ Im(B) is equivalent to πIm(B)⊥y = πIm(B)⊥Ax.

2.1. Linear Hybrid Algebraic Automaton
In this section, we show the equivalence of the notion of invariance with

another class of systems that directly models the geometric behaviours of the
trajectories of a CHA with unconstrained input. Algebraic systems are also
known as descriptor systems. The reduction of the computation of controlled
invariant sets of CHA with constrained input to CHA of unconstrained input
is detailed in [20, Section 2.2].

Definition 4. A Linear Algebraic Hybrid Automaton (AHA) is a system
S = (T, (Cq, Eq)q∈V , (Cσ, Eσ)σ∈Σ, (Xq)q∈V ) where T = (V,Σ,→), V is a finite
set of modes, Σ is a finite set of signals and →⊆ V × Σ × V is a set of
transitions.

Given a mode q ∈ V , we denote the state dimension as nq,x. The set
Xq ⊆ Rnq,x is the safe set corresponding to mode q. For any mode q, there
exists a nq,p such that, Cq ∈ Rnq,p×nq,x , Eq ∈ Rnq,p×nq,x . For any transition
q →σ q′, there exists a nσ,p such that, Cσ ∈ Rnσ,p×nq,x , Eσ ∈ Rnσ,p×nq′,x .

A trajectory of S is an increasing sequence of times t0 < t1 < t2 < · · · tN ,
transitions q0 →σ1 q1 →σ2 · · · →σN

qN , and trajectories xk : [tk−1, tk] →
Xqk ∈ C1 for k = 0, 1, . . . , N satisfying:

∀k ∈ {1, . . . , N}, Eσk
xk(tk) = Cσk

xk−1(tk)

∀k ∈ {0, 1, . . . , N}, ∀t ∈ [tk−1, tk], Eqk ẋk(t) = Cqkxk(t).
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Note that the matrices Cq, Eq, Cσ and Eσ do not have to be square and
no assumptions are needed on their rank.

Definition 5 (Weakly invariant sets for a AHA). Consider a AHA S as
defined in Definition 4. We say that closed sets Sq ⊆ Xq for q ∈ V are weakly
invariant for S if

∀q →σ q′, ∀x ∈ Sq, Cσx ∈ EσSq′ (3)
∀q ∈ V, ∀x ∈ Sq, Cqx ∈ EqTSq(x). (4)

We now show that the computation of controlled invariant sets for a CHA
can be reduced to the computation of weakly invariant sets for a AHA. The
following proposition generalizes both [20, Proposition 2] and [21, Proposi-
tion 5].

Proposition 1. The sets S = (Sq)q∈V are controlled invariant for the CHA
S = (T, (Aq, Bq)q∈V , (Aσ, Bσ)σ∈Σ, (Xq,Rnq,u)q∈V , (Rnσ,u)σ∈Σ) if and only if
they are weakly invariant sets for the AHA

S ′ = (T, (πIm(Bq)⊥Aq, πIm(Bq)⊥)q∈V , (πIm(Bσ)⊥Aσ, πIm(Bσ)⊥)σ∈Σ, (Xq)q∈V ).

Proof. By Lemma 1, (1) is equivalent to

πIm(Bσ)⊥Aσx ∈ πIm(Bσ)⊥Sq′

which is (3) for S ′.
Similarly, by Lemma 1, (2) is equivalent to

πIm(Bq)⊥Aqx ∈ πIm(Bq)⊥TSq(x)

which is (4) for S ′.

3. Computing controlled invariant sets

In this section we derive a characterization of the weak invariance of closed
convex sets under the form of inequalities for their support functions.

Definition 6 ([34, p. 28]). Consider a convex set S. The support function
of S is defined as

δ∗(y|S) = sup
x∈S

⟨y, x⟩.
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The exposed face (also called the support set, e.g., in [36, Section 1.7.1])
is defined as follows [12, Definition 3.1.3].

Definition 7 (Exposed face). Consider a nonempty closed convex set S.
Given a vector y ̸= 0, the exposed face of S associated to y is

FS(y) = {x ∈ S | ⟨x, y⟩ = δ∗(y|S) }.

The following theorem generalizes both [19, (27)] and [21, Theorem 7].

Theorem 1. Consider a AHA S as defined in Definition 4. Closed sets
Sq ⊆ Xq for q ∈ V are weakly invariant for S if and only if

∀q →σ q′, ∀y ∈ Rnσ,p , δ∗(C⊤
σ y|Sq) ≤ δ∗(E⊤

σ y|Sq′) (5)
∀q ∈ V, ∀z ∈ Rnq,p , ∀x ∈ FSq(E

⊤
q z), ⟨z, Cqx⟩ ≤ 0 (6)

where FS denotes the exposed face defined in Definition 7 and δ∗(y|S) denotes
the support function defined in Definition 6.

Proof. We start by proving the equivalence between (3) and (5). By Propo-
sition 5, Eq. (3) is equivalent to

∀q →σ q′, ∀y ∈ Rnσ,p , δ∗(y|CσSq) ≤ δ∗(y|EσSq′)

which is equivalent to Eq. (5) by Proposition 4.
We now prove the equivalence between (4) and (6). Given any mode q,

as Sq is convex, TSq(x) is a closed convex cone. By definition of the polar
of a cone, x ∈ EqTSq(x) if and only if ⟨y, x⟩ ≤ 0 for all y ∈ [EqTSq(x)]

◦. By
Proposition 3, [EqTSq(x)]

◦ = E−⊤
q NSq(x). Therefore, the set Sq is weakly

invariant if and only if

∀x ∈ ∂Sq, ∀z ∈ E−⊤
q NSq(x), ⟨z, Cqx⟩ ≤ 0.

By Proposition 2, we have

{ (x, z) ∈ ∂Sq × Rr | E⊤
q z ∈ NSq(x) } =

{ (x, z) ∈ ∂Sq × Rr | x ∈ FSq(E
⊤
q z) }.
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Observe that for the trivial case Im(Bq) = Rnq,x for some node q, Propo-
sition 1 produces a AHA with nq,p = 0 hence the condition (6) would be
trivially satisfied for any Sq, which is expected. The same applies for (5) in
case Im(Bσ) = Rnq′,x for some transition q →σ q′.

As we show in the remainder of this section, Theorem 1 allows to refor-
mulate the invariance as an inequality in terms of the support functions of
the sets Sq. This is already the case of Eq. (5) so it remains to reformu-
late Eq. (6). As shown in the following theorem, this is possible in case the
support function is differentiable. We generalize this result with a relaxed
notion of differentiability in Theorem 3. The following theorem generalizes
both [19, (27)] and [21, Theorem 8].

Theorem 2. Consider a AHA S as defined in Definition 4 and nonempty
closed convex sets Sq ⊆ Xq for q ∈ V such that δ∗(·|Sq) is differentiable for
all q ∈ V . Then the sets are weakly invariant for S if and only if

∀q →σ q′, ∀y ∈ Rnσ,p , δ∗(C⊤
σ y|Sq) ≤ δ∗(E⊤

σ y|Sq′)

∀q ∈ V, ∀z ∈ Rnq,p , ⟨z, Cq∇δ∗(E⊤
q z|Sq)⟩ ≤ 0. (7)

Proof. By Proposition 6, FSq(E
⊤
q z) = {∇δ∗(E⊤

q z|Sq)} hence (6) is equivalent
to (7).

As Theorem 2 formulates the invariance in terms of the support function
of Sq, it allows to combine the invariance constraint with other set con-
straints that can be formulated in terms of support functions. Moreover, for
an appropriate family of sets, also called template, the set program can be
automatically rewritten into a convex program combining all constraints us-
ing the set programming framework detailed in Appendix C. For this reason,
we only focus on the invariance constraint and do not detail how to formu-
late the complete convex programs with the objective and all the constraints
needed to obtain the results of Section 4 as these problems are decoupled.

3.1. Ellipsoidal controlled invariant set
In this section, we particularize Theorem 2 to the case of ellipsoids. Since

the support function of an ellipsoid EQ ≜ {x | x⊤Qx ≤ 1 } is δ∗(y|EQ) =√
y⊤Q−1y, we have the following corollary of Theorem 2 that generalizes

both [20, Theorem 2] and [21, Corollary 9].
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Corollary 1. Consider a AHA S as defined in Definition 4 and positive
semidefinite matrices Qq such that the ellipsoid EQq ⊆ Xq for q ∈ V . Then
the sets are weakly invariant for S if and only if

∀q →σ q′, CσQ
−1
q C⊤

σ ⪯ EσQ
−1
q′ E

⊤
σ (8)

∀q ∈ V,CqQ
−1
q E⊤

q + EqQ
−1
q C⊤

q ⪯ 0. (9)

3.2. Polynomial controlled invariant set
In this section, we derive the algebraic condition for the controlled invari-

ance of a set with polynomial support function. This template is referred to
as polyset ; see [17, Section 1.5.3]. The following corollary generalizes both
[20, Theorem 5] and [21, Corollary 10].

Corollary 2. Consider a AHA S as defined in Definition 4, convex homo-
geneous3 nonnegative polynomials (pq(x))q∈V of degree 2d and the sets Sq

defined by the support function δ∗(y|Sq) = pq(y)
1
2d for q ∈ V . Suppose that

Sq ⊆ Xq for all q ∈ V . Then the sets are weakly invariant for S if and only if

∀q →σ q′, ∀y ∈ Rnσ,p , pq(C
⊤
σ y) ≤ pq′(E

⊤
σ y) (10)

∀q ∈ V, ∀z ∈ Rnq,p , z⊤Cq∇pq(E
⊤
q z) ≤ 0. (11)

Proof. We have

∇δ∗(y|Sq) =
1

pq(y)
1− 1

2d

∇pq(y).

If pq(y) is identically zero, this is trivially satisfied. Otherwise, pq(y)1−
1
2d is

nonnegative and is zero in an algebraic variety of dimension n − 1 at most.
Therefore, (7) is equivalent to (11).

The conditions (10) and (11) require the nonnegativity of a multivariate
polynomial. While verifying the nonnegativity of a polynomial is co-NP-
hard, a sufficient condition can be obtained via the standard Sum-of-Squares
programming framework; see Appendix B. Moreover, the theorem requires
the convexity of the polynomials pq. It is shown in [2] that the convexity
or quasi-convexity of a multivariate polynomial of degree at least four is
NP-hard to decide. However, the convexity constraint can be replaced by
the tractable SOS-convexity constraint which is a sufficient condition for
convexity [2].

3A polynomial is homogeneous if all its monomials have the same total degree
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3.3. Piecewise semi-ellipsoidal controlled invariant set
In [13], the authors study the computation of piecewise quadratic Lya-

punov functions for continuous-time autonomous piecewise affine systems.
In [19], the authors present a convex programming approach to compute
piecewise semi-ellipsoidal controlled invariant sets for discrete-time control
systems. A similar approach is developed in [21] for continuous-time control
system. In this section, we combine the two approaches into a condition for
hybrid systems using Theorem 1. We recall [19, Definition 2] below.

Definition 8. A polyhedral conic partition of Rn is a set of m polyhedral
cones Pi ⊆ Rn with nonempty interior for i = 1, . . . ,m such that for all i ̸= j,
dim(Pi ∩ Pj) < n and ∪m

i=1Pi = Rn.

A polyhedral conic partition defines the full-dimensional faces of a com-
plete fan, as defined in [41, Section 7].

A piecewise semi-ellipsoid is defined as the closed convex set with support
function

δ∗(y|S) =
√
y⊤Qiy, y ∈ Pi, i = 1, . . . ,m (12)

where (Pi)
m
i=1 is a polyhedral conic partition and (Qi)

m
i=1 are positive semidef-

inite matrices. The support function additionally has to satisfy [19, (2) and
(3)] to ensure its continuity and convexity. Note that the convexity of δ∗(y|S)
and δ∗(y|S)2 are equivalent by [34, Corollary 15.3.1].

(a) Set S whose support function is defined by (13).
(b) Set S◦ whose Minkowski function is defined by
(13).

Figure 1: Illustration for sets S and S◦ defined in Example 1.

Example 1. The piecewise semi-ellipsoid defined by the following support
function is represented by Fig. 1. See [19, Example 1] for more details on
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this example.

δ∗(y|S) =



|y1 + y2| if 0 ≤ y1, y2,√
y21 + y22 if y1 ≤ 0 ≤ y2,

|y1| if y1 ≤ y2 ≤ 0,

|y2| if y2 ≤ y1, 2y1 + y2 ≤ 0,

2
√

y21 + y1y2 + y22/
√
3 if 2y1 + y2 ≥ 0, y1 + 2y2 ≤ 0,

|y1| if y1 + 2y2 ≥ 0, y2 ≥ 0.

(13)

The following theorem generalizes both [19, (27)] and [21, Theorem 12].

Theorem 3. Consider a AHA S as defined in Definition 4, polyhedral conic
partitions (Pq,i)

mq

i=1 and nonempty closed convex sets (Sq)q∈V defined by the
support function

δ∗(y|Sq) = fq,i(y) y ∈ Pq,i i = 1, . . . ,mq.

Suppose that Sq ⊆ Xq for all q ∈ V . The sets Sq are weakly invariant for S
if and only if

∀q →σ q′, ∀i ∈ [mq], ∀j ∈ [mq′ ],

∀y ∈ C−⊤
σ Pq,i ∩ E−⊤

σ Pq′,j, fq,i(C
⊤
σ y) ≤ fq′,j(E

⊤
σ y) (14)

∀q ∈ V, ∀i ∈ [mq], ∀z ∈ E−⊤
q Pq,i, ⟨z, Cq∇fq,i(E

⊤
q z)⟩ ≤ 0. (15)

Proof. If y ∈ C−⊤
σ Pq,i∩E−⊤

σ Pq′,j, then δ∗(C⊤
σ y|Sq) = fq,i(C

⊤
σ y) and δ∗(E⊤

σ y|Sq′) =
fq′,j(E

⊤
σ y) hence (5) is reformulated as (14).

We now prove the equivalence between (6) and (15). Consider a mode
q ∈ V . Given z ∈ Rnq,p such that E⊤

q z is in the intersection of the boundary
of Sq and the interior of Pq,i, the support function is differentiable at E⊤

q z
hence, by Proposition 6, FS(E

⊤
q z) = {∇fq,i(E

⊤
q z)}. The condition (6) is

therefore reformulated as (15).
Given a subset I of {1, . . . ,m} and z ∈ Rnq,p such that E⊤

q z is in the
intersection of the boundary of Sq and ∩i∈IPq,i, FSq(E

⊤
q z) is the convex hull

of ∇δ∗(E⊤
q z|Sq) for all i ∈ I. For any convex combination (i.e., nonnegative

numbers summing to 1) (λi)i∈I , (15) implies that

⟨z, Cq

∑
i∈I

λi∇fq,i(E
⊤
q z)⟩ =

∑
i∈I

λi⟨z, Cq∇fq,i(E
⊤
q z)⟩ ≤ 0.
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The following corollary generalizes both [19, Theorem 4] and [21, Corol-
lary 13].

Corollary 3. Consider a AHA S as defined in Definition 4 and piecewise
semi-ellipsoids Sq ⊆ Xq for q ∈ V . The sets are weakly invariant for S if and
only if

∀q →σ q′, ∀i ∈ [mq], ∀j ∈ [mq′ ],

∀y ∈ C−⊤
σ Pq,i ∩ E−⊤

σ Pq′,j, y
⊤CσQq,iC

⊤
σ y ≤ y⊤EσQq′,jE

⊤
σ y (16)

∀q ∈ V, ∀i ∈ [mq], ∀z ∈ E−⊤
q Pq,i, z⊤CqQq,iE

⊤
q z + z⊤EqQq,iC

⊤
q z ≤ 0. (17)

The conditions (16) and (17) amount to verifying the positive semidef-
initeness of a quadratic form when restricted to a polyhedral cone. When
this cone is the positive orthant, this is called the copositivity which is co-
NP-complete to decide [25]. However, a sufficient LMI is given in [19, Propo-
sition 2] and a necessary and sufficient condition is given by a hierarchy of
Sum-of-Squares programs [28, Chapter 5]. We use the sufficient LMI in the
numerical examples of Section 4.

4. Numerical examples

4.1. Illustrative example
This example considers the CHA with one mode of continuous-time dy-

namics:

ẋ1(t) = x2(t)

ẋ2(t) = u(t)

with state constraint x ∈ [−1, 1]2 and input constraint u ∈ [−1, 1] and the
following transition from the only mode to itself:

x+
1 = −x1 + u/8

x+
2 = x2 − u/8

with state constraint x ∈ [−1, 1]2 and input constraint u ∈ [−1, 1].
The union of controlled invariant sets is controlled invariant. Moreover,

by linearity and convexity of the constraint sets, the convex hull of the unions
of controlled invariant sets is controlled invariant. Therefore, there exists a
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maximal controlled invariant set, i.e., a controlled invariant set in which all
controlled invariant sets are included, for any family that is closed under
union (resp. convex hull); it is the union (resp. convex hull) of all controlled
invariant sets included in [−1, 1]2.

For this simple planar system, the maximal controlled invariant set can
be obtained by hand. We represent it in yellow in Figure 3 and Figure 4.

As Proposition 1 requires the input to be unconstrained, it cannot be
applied to this system directly. We follow the approach detailed in [20,
Section 2.2] to reduce the computation of controlled invariant sets for this
system to a system with unconstrained input. In this example, it corresponds
to the projection onto the first two dimensions of controlled invariant sets
for the following lifted system:

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = u(t)

with state constraint x ∈ [−1, 1]3; with a first transition to a temporary
mode:

x+
1 = x1

x+
2 = x2

x+
3 = ū

with state constraint x ∈ [−1, 1]3 and unconstrained input; and a second
transition back to the original mode:

x+
1 = −x1 + x3/8

x+
2 = x2 − x3/8

x+
3 = ū.

Note that the input ū chosen in the first transition is the input that will be
used for the reset map and the input ū chosen for the second transition is
the input that will be used for the state x3 of the continuous-time system.

As shown in Proposition 1, a set is controlled invariant for this system if
and only if it is weakly invariant for the algebraic system

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

13



with state constraint x ∈ [−1, 1]3; with a first transition to a temporary
mode:

x+
1 = x1

x+
2 = x2

with state constraint x ∈ [−1, 1]3 and a second transition back to the original
mode:

x+
1 = −x1 + x3/8

x+
2 = x2 − x3/8.

We represent the safe set [−1, 1]2 and its polar in green in Figure 3 and
Figure 4.

While the maximal invariant set is well defined, it is not the case anymore
when we restrict the set to belong to the family of ellipsoids, polysets or piece-
wise semi-ellipsoids for a fixed polyhedral conic partition as these families are
not invariant under union nor convex hull. The objective used to determine
which invariant set is selected depends on the particular application. For this
toy example, the the goal is to determine how well visually a family is able to
approximate the maximal controlled invariant set. Therefore, we consider D
defined as the convex hull of {(−1+

√
3,−1+

√
3), (−1/2, 1), (−1, 3/4), (1−√

3, 1 −
√
3), (1/2,−1), (1,−3/4)} and we maximize γ such that γD is in-

cluded in the projection of the invariant set onto the first two dimensions.
We represent γD in red in Figure 3 and Figure 4.

For the ellipsoidal template considered in Section 3.1, the optimal solution
is shown in Figure 3 as ellipsoids corresponds to polysets of degree 2. The
optimal objective value is γ ≈ 0.894.

For the polyset template considered in Section 3.2, the optimal solution
are represented in Figure 3. The optimal objective value for degree 4 (resp.
6 and 8) is γ ≈ 0.896. (resp. γ ≈ 0.93 and γ ≈ 0.96).

For the piecewise semi-ellipsoidal template, we consider as polyhedral
conic partitions the face fan [41, Example 7.2], i.e., the conic hull of each
facet, of the polytope with extreme points

(cos(α) cos(β), sin(α) cos(β), sin(β)) (18)

where α = 0, 2π/m1, 4π/m1, . . . , 2(m1−1)π/m1 and β = −π/2, . . . ,−2π/(m2−
1),−π/(m2 − 1), 0, π/(m2 − 1), 2π/(m2 − 1), . . . , π/2.
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The optimal objective value for m = (4, 3) (resp. (8, 5), (16, 7)) is γ ≈
0.894 (resp. γ ≈ 0.92, γ ≈ 0.94). The corresponding optimal solution is
shown in Figure 4.

4.2. Truck with trailers
In this section, we benchmark the computation time of the set program

for the different families considered in this paper. We consider the following
example inspired from the cruise control example of [35]. The system is
illustrated in Fig. 2 and the result of the benchmark is provided in Table 1.

v0 v1 v2

d1 d2

Figure 2: Illustration for Section 4.2 with two trailers.

We consider a truck with M trailers as represented by Figure 2. There is
a truck with mass m0 and speed v0 followed by multiple trailers, each with
mass m. The speed of the ith trailer is denoted vi. There is a spring with
stiffness ks and elongation d1 (resp. di) and a damper with coefficient kd
There is a mass-spring-damper system between the truck and the first trailer
(resp. the (i − 1)th trailer and the ith trailer). The scalar input u controls
the speed v0 of the truck by creating a force m0u. The possible modes are
V = {0, 1, . . . ,M}. The dynamical system of mode q has q trailers and is
given by the following equations:

The dynamics of the system is given by the following equations:

v̇0 =
kd
m0

(v1 − v0)−
ks
m0

d1 + u

v̇i =
kd
m
(vi−1 − 2vi + vi+1) +

ks
m
(di − di+1) 1 ≤ i < q

v̇q =
kd
m
(vq−1 − vq) +

ks
m
dq (19)

ḋi = vi−1 − vi 1 ≤ i ≤ q.

The spring elongation should always remain between −0.5m and 0.5m and
the speeds of the truck and trailers should remain below 36m s−1.

There is a transition from mode q to mode q + 1 defined by v+i = vj and
d+i = di for i < q. That is, the values of v+q , d+q , v

+
q+1, d

+
q+1 are free, as allowed
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M 0 1 2 3
Ellipsoid 0.00251 0.00449 0.00784 0.0123

PolySet d = 4 0.00867 0.0336 0.315 2.80
PolySet d = 6 0.0152 0.268 14.62 435

Piecewise 0.00692 0.0584 1.60 90.1

Table 1: Computation time in seconds for Mosek v8 [4] on codeocean [22] to solve the set
program described in Section 4.2 for computing controlled invariant sets for different fam-
ilies and hybrid automata corresponding to different values of M . The piecewise template
uses the face fan of a hypercube as polyhedral conic partition.

by the transitions defined in Definition 4. Moreover there is a transition from
mode q to mode q − 1 defined by v+i = vi and d+i = di for i < q.

5. Conclusion

We proved a condition for controlled invariance of convex sets for a hy-
brid control system based on their support functions. We particularized
the condition for three templates: ellipsoids, polysets and piecewise semi-
ellipsoids. In the ellipsoidal case, it combines known LMIs for discrete-time
and continuous-time systems. In the polyset case, it provides a condition
significantly less conservative than [31]. Indeed, our condition is equivalent
to invariance by Corollary 2 and, as shown in [21, Section 2], [31] is quite con-
servative. We leave as future work the convergence guarantee as the degrees
of the polynomials defining the polysets increase, such as obtained in [27, 16].
In the piecewise semi-ellipsoidal case, it provides the first convex program-
ming approach for the controlled invariance of hybrid control systems to the
best of our knowledge.

As future work, we aim to apply this framework to other families such as
the piecewise polysets defined in [17]. Moreover, instead of considering a uni-
form discretization of the hypersphere as in (18), a more adaptive methods
could be considered. The sensitivity information provided by the dual solu-
tion of the optimization program could for instance determine which pieces of
the partition should be refined. Alternatively, the polyhedral conic partition
could be chosen as the face fan of a polyhedral outer approximation of the
maximal controlled invariant set that would be obtained for instance with a
few iterations of backward reachability analysis.

Finally, our definition of hybrid control system (Definition 1) does not
support encoding a guard that would restrict the possible transitions de-
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pending on the current state. Integrating this additional feature to the frame-
work would allow the method to handle any hybrid automaton with linear
continuous-time dynamic at each mode and linear reset maps.
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Appendix A. Convex geometry

For a convex set S, the normal cone is the polar of the tangent cone
NS(x) = T ◦

S(x).

Definition 9 (Polar set). For any convex set S the polar of S, denoted S◦,
is defined as

S◦ = { y | δ∗(y|S) ≤ 1 }.

The exposed faces (see Definition 7) and normal cones are related by the
following property [12, Proposition C.3.1.4].

Proposition 2. Consider a nonempty closed convex set S. For any x ∈ S
and nonzero vector y, x ∈ FS(y) if and only if y ∈ NS(x).

Given a set S and a matrix A, let A−⊤ denote the preimage:

A−⊤S ≜ {x | A⊤x ∈ S }. (A.1)

Proposition 3 ([34, Corollary 16.3.2]).
For any convex set S and linear map A,

(AS)◦ = A−⊤S◦.

where S◦ denotes the polar of the set S.

Proposition 4 ([33, Corollary 11.24(c)] or [34, Corollary 16.3.1]). Given a
matrix A ∈ Rn1×n2 and a nonempty closed convex set S ⊆ Rn2 , the following
holds for all y ∈ Rn1 :

δ∗(y|AS) = δ∗(A⊤y|S). (A.2)

Proposition 5 ([34, Corollary 13.1.1]). Consider two nonempty closed con-
vex subsets S1,S2 ⊆ Rn. The inclusion S1 ⊆ S2 is equivalent to the inequality
δ∗(x|S1) ≤ δ∗(x|S2) for all x ∈ Rn.
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When the support function is differentiable at a given point, FS is a
singleton and may be directly obtained using the following result:

Proposition 6 ([34, Corollary 25.1.2]).
Given a nonempty closed convex set S, if δ∗(y|S) is differentiable at y then
FS(y) = {∇δ∗(y|S)}.

In fact, for nonempty compact convex sets, the differentiability at y is
even a necessary and sufficient conditions for the uniqueness of FS(y) [36,
Corollary 1.7.3].

Appendix B. Sum-of-Squares programming

This section briefly describes Sum-of-Squares programming; see [8] for
more details.

Deciding whether a multivariate polynomial of degree 2d ≥ 4 is non-
negative is known to be co-NP-hard. However a sufficient condition for a
polynomial to be nonnegative is easy to check. We say that a polynomial is
a Sum-of-Squares (SOS) if there exist polynomials q1, . . . , qr such that

p(x) =
r∑

k=1

q2k(x).

If a polynomial is SOS, then it is obviously nonnegative.
It is well known that if p(x) is an homogeneous polynomial of degree 2d

then each qk(x) must be an homogeneous polynomial of degree d; this can be
shown easily using the Newton polytope of p(x) and [32, Theorem 1]. We can
check whether a polynomial is SOS using semidefinite programming thanks
to the following theorem.

Theorem 4 ([10, 26, 28, 29, 37]). A homogeneous multivariate polynomial
p(x) of degree 2d is a sum of squares if and only if

p(x) = b⊤Qb

where Q is a symmetric positive semidefinite matrix and b is a basis of the
space homogeneous polynomials of degree d.
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Appendix C. Set programming

In this section, we give a brief introduction to set programming; see [17]
for more details. A generic set program is defined as follows:

min
S1⊆Rn1 ,...,SN⊆RnN

f(S1, . . . ,SN)

subject to: gi(S1, . . . ,SN) ⊆ hi(S1, . . . ,SN), i = 1, 2, . . . ,M.
(C.1)

where Si ⊆ Rni is a set decision variable, f(S1, . . . ,SN) is the objective func-
tion and the inclusion constraints are given by gi(S1, . . . ,SN) ⊆ hi(S1, . . . ,SN)
for i = 1, . . . ,M . Note that this form also encapsulates membership con-
straints x ∈ S as it can be encoded as an inclusion constraint {x} ⊆ S.

We use the following approach to reformulate set programs as Sum-of-
Squares programs:

1. First, given the properties of gauge and support functions and the
program constraints, we determine whether the set variables should be
represented with the gauge or support function.

2. Second, we consider the different templates and analyze the program
obtained by formulating the program in terms of its gauge or support
function, depending on what was determined in the previous step.

The advantage of this approach is that the first step is independent of the
actual template and hence it gives a generic geometric approach to the com-
putation of sets that are solutions to the set program instead of the algebraic
template-dependent approaches.

The reformulation as Sum-of-Squares program is done in the second step
and, interestingly, the interdependence of the different constraints and the
objective only appears in the choice of the representation, which is already
carried out in a template-independent fashion in the first step. Therefore,
the second-step can be done independently for the objective function and for
each constraint; similary to the bridge mechanism in MathOptInterface [18].
For this reason, the reformulation of the constraints and the objective func-
tions can be studied in isolation. Moreover, since each constraint can be
reformulated independently, implementing only a few constraint reformula-
tion enables the reformulation of programs made of any of their combinations,
as long as they agree on the choice of reformulation between the gauge and
support function for the set variables involved in the constraints.

The package SetProg [17] extends JuMP [11] to provide an algebraic mod-
eling language for encoding set programs in the form Eq. (C.1). They are then
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automatically reformulated into Sum-of-Squares programs which are then re-
formulated into a semidefinite program by SumOfSquares [39]. The resulting
program can be solved by any solver implementing MathOptInterface [18].
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Figure 3: In blue are the solution for polysets of different degrees. The degrees from top to
bottom are respectively 2, 4, 6 and 8. The green set is the safe set [−1, 1]2, the yellow set
is the maximal controlled invariant set and the red set is γD. The sets are represented in
the primal space in left figures and in polar space in the right figures. The axis in primal
space are x1 (horizontal) and x2 (vertical). In the dual space, the axis correspond to the
coefficients a1, a2 of the halfspaces { (a1, a2) | a1x1 + a2x2 ≤ 1 } that contain the set.
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Figure 4: In blue are the solution for piecewise semi-ellipsoids for two different polyhedral
conic partitions. The partitions from top to bottom are as described in (18) with m = (4, 3)
(resp. (8, 5), (16, 7)). The green set is the safe set [−1, 1]2, the yellow set is the maximal
controlled invariant set and the red set is γD. The sets are represented in the primal space
in left figures and in polar space in the right figures. The axis are the same as Fig. 3.
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