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Unrepresentative big surveys significantly 
overestimated US vaccine uptake

Valerie C. Bradley1,6, Shiro Kuriwaki2,6, Michael Isakov3, Dino Sejdinovic1, Xiao-Li Meng4 & 
Seth Flaxman5 ✉

Surveys are a crucial tool for understanding public opinion and behaviour, and their 
accuracy depends on maintaining statistical representativeness of their target 
populations by minimizing biases from all sources. Increasing data size shrinks 
confidence intervals but magnifies the effect of survey bias: an instance of the Big 
Data Paradox1. Here we demonstrate this paradox in estimates of first-dose COVID-19 
vaccine uptake in US adults from 9 January to 19 May 2021 from two large surveys: 
Delphi–Facebook2,3 (about 250,000 responses per week) and Census Household 
Pulse4 (about 75,000 every two weeks). In May 2021, Delphi–Facebook overestimated 
uptake by 17 percentage points (14–20 percentage points with 5% benchmark 
imprecision) and Census Household Pulse by 14 (11–17 percentage points with 5% 
benchmark imprecision), compared to a retroactively updated benchmark the 
Centers for Disease Control and Prevention published on 26 May 2021. Moreover, 
their large sample sizes led to miniscule margins of error on the incorrect estimates. 
By contrast, an Axios–Ipsos online panel5 with about 1,000 responses per week 
following survey research best practices6 provided reliable estimates and 
uncertainty quantification. We decompose observed error using a recent analytic 
framework1 to explain the inaccuracy in the three surveys. We then analyse the 
implications for vaccine hesitancy and willingness. We show how a survey of 250,000 
respondents can produce an estimate of the population mean that is no more 
accurate than an estimate from a simple random sample of size 10. Our central 
message is that data quality matters more than data quantity, and that compensating 
the former with the latter is a mathematically provable losing proposition.

Governments, businesses and researchers rely on survey data to inform 
the provision of government services7, steer business strategy and guide 
the response to the COVID-19 pandemic8,9. With the ever-increasing vol-
ume and accessibility of online surveys and organically collected data, 
the line between traditional survey research and Big Data is becoming 
increasingly blurred10. Large datasets enable the analysis of fine-grained 
subgroups, which are in high demand for designing targeted policy 
interventions11. However, counter to common intuition12, larger sample 
sizes alone do not ensure lower error. Instead, small biases are com-
pounded as sample size increases1.

We see initial evidence of this in the discrepancies in estimates of 
first-dose COVID-19 vaccine uptake, willingness and hesitancy from 
three online surveys in the US. Two of them—Delphi–Facebook’s COVID-
19 symptom tracker2,3 (around 250,000 responses per week and with over 
4.5 million responses from January to May 2021) and the Census Bureau’s 
Household Pulse survey4 (around 75,000 responses per survey wave and 
with over 600,000 responses from January to May 2021)—have large 
enough sample sizes to render standard uncertainty intervals negligible; 
however, they report significantly different estimates of vaccination 

behaviour with nearly identically worded questions (Table 1). For exam-
ple, Delphi–Facebook’s state-level estimates for willingness to receive a 
vaccine from the end of March 2021 are 8.5 percentage points lower on 
average than those from the Census Household Pulse (Extended Data 
Fig. 1a), with differences as large as 16 percentage points.

The US Centers for Disease Control and Prevention (CDC) compiles 
and reports vaccine uptake statistics from state and local offices13. 
These figures serve as a rare external benchmark, permitting us to 
compare survey estimates of vaccine uptake to those from the CDC. 
The CDC has noted the discrepancies between their own reported 
vaccine uptake and that of the Census Household Pulse14,15, and we find 
even larger discrepancies between the CDC and Delphi–Facebook data 
(Fig. 1a). By contrast, the Axios–Ipsos Coronavirus Tracker5 (around 
1,000 responses per wave, and over 10,000 responses from January 
to May 2021) tracks the CDC benchmark well. None of these surveys 
use the CDC benchmark to adjust or assess their estimates of vaccine 
uptake, thus by examining patterns in these discrepancies, we can infer 
each survey’s accuracy and statistical representativeness, a nuanced 
concept that is critical for the reliability of survey findings16–19.
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The Big Data Paradox in vaccine uptake
We focus on the Delphi–Facebook and Census Household Pulse surveys 
because their large sample sizes (each greater than 10,000 respond-
ents20) present an opportunity to examine the Big Data Paradox1 in sur-
veys. The Census Household Pulse is an experimental product designed 
to rapidly measure pandemic-related behaviour. Delphi–Facebook has 
stated that the intent of their survey is to make comparisons over space, 
time and subgroups, and that point estimates should be interpreted 
with caution3. However, despite these intentions, Delphi–Facebook has 
reported point estimates of vaccine uptake in its own publications11,21.

Delphi–Facebook and Census Household Pulse surveys persistently 
overestimate vaccine uptake relative to the CDC’s benchmark (Fig. 1a) 
even taking into account Benchmark Imprecision (Fig. 1b) as explained 
in ‘Decomposing Error in COVID Surveys’. Despite being the smallest 
survey by an order of magnitude, the estimates of Axios–Ipsos track 
well with the CDC rates (Fig. 1a), and their 95% confidence intervals 
contain the benchmark estimate from the CDC in 10 out of 11 surveys 
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine 
uptake are correct, even if each snapshot is biased. However, errors have 
increased over time, from just a few percentage points in January 2021 
to Axios-Ipsos’ 4.2 percentage points [1–7 percentage points with 5% 
benchmark imprecision (BI)], Census Household Pulse’s 14 percentage 

points [5% BI: 11–17] and Delphi-Facebook’s 17 percentage points  
[5% BI: 14–20] by mid-May 2021 (Fig. 1b). For context, for a state that  
is near the herd immunity threshold (70–80% based on recent  
estimates22), a discrepancy of 10 percentage points in vaccination rates 
could be the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead 
when applied to biased big surveys because as sample size increases, 
bias (rather than variance) dominates estimator error. Figure 1a shows 
95% confidence intervals for vaccine uptake based on the reported 
sampling standard errors and weighting design effects of each survey23. 
Axios–Ipsos has the widest confidence intervals, but also the smallest 
design effects (1.1–1.2), suggesting that its accuracy is driven more by 
minimizing bias in data collection rather than post-survey adjustment. 
The 95% confidence intervals of Census Household Pulse are widened 
by large design effects (4.4–4.8) but they are still too narrow to include 
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi–Facebook are extremely small, driven by 
large sample size and moderate design effects (1.4–1.5), and give us a 
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of 
spatial and demographic subgroups24–26. However, relative to the CDC’s 
contemporaneously reported state-level estimates, which did not include 
retroactive corrections, Delphi–Facebook and Census Household Pulse 

Table 1 | Comparison of survey designs

Axios-Ipsos Census Household Pulse Delphi-Facebook

Recruitment mode Address-based mail sample to Ipsos 
KnowledgePanel

SMS and email Facebook Newsfeed

Interview mode Online Online Online

Average size 1,000/wave 75,000/wave 250,000/week

Sampling frame Ipsos KnowledgePanel; internet/
tablets provided to ∼5% of panelists 
who lack home internet

Census Bureau’s Master Address 
File (individuals for whom email /  
phone contact information is 
available)

Facebook active users

Vaccine uptake question “Do you personally know anyone who 
has already received the COVID-19 
vaccine?”

“Have you received a COVID-19 
vaccine?”

“Have you had a COVID-19 vaccination?”

Vaccine uptake definition “Yes, I have received the vaccine” “Yes” “Yes”

Other vaccine uptake 
response options

“Yes, a member of my immediate 
family”, “Yes, someone else”, “No”

“No” “No”, “I don’t know”

Weighting variables Gender by age, race, education, 
Census region, metropolitan status, 
household income, partisanship.

Education by age by sex by state, 
race/ethnicity by age by sex by 
state, household size

Stage 1: age, gender “other attributes which we have 
found in the past to correlate with survey outcomes” 
to FAUB; Stage 2: state by age by gender

Comparison of key design choices across the Axios–Ipsos, Census Household Pulse and Delphi–Facebook studies. All surveys target the US adult population. See Extended Data Table 1 for 
additional comparisons and Methods for additional implementation details.
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Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).
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overestimated CDC state-level vaccine uptake by 16 and 9 percentage 
points, respectively (Extended Data Fig. 1g, h) in March 2021, and by equal 
or larger amounts by May 2021 (Extended Data Fig. 2g, h). Relative esti-
mates were no better than absolute estimates in March of 2021: there is 
little agreement in a survey’s estimated state-level rankings with the CDC 
(a Kendall rank correlation of 0.31 for Delphi–Facebook in Extended Data 
Fig. 1i and 0.26 for Census Household Pulse in Extended Data Fig. 1j) but 
they improved in May of 2021 (correlations of 0.78 and 0.74, respectively, 
in Extended Data Fig. 2i, j). Among 18–64-year-olds, both Delphi–Facebook 
and Census Household Pulse overestimate uptake, with errors increasing 
over time (Extended Data Fig. 6).

These examples illustrate a mathematical fact. That is, when biased 
samples are large, they are doubly misleading: they produce confidence 
intervals with incorrect centres and substantially underestimated 
widths. This is thev Big Data Paradox: “the bigger the data, the surer 
we fool ourselves”1 when we fail to account for bias in data collection.

A framework for quantifying data quality
Although it is well-understood that traditional confidence intervals 
capture only survey sampling errors27 (and not total error), the tradi-
tional survey framework lacks analytic tools for quantifying nonsam-
pling errors separately from sampling errors. A previously formulated 
statistical framework1 permits us to exactly decompose the total error 
of a survey estimate into three components:

Total error = Data quality

defect × Data scarcity × Inherent problem difficulty
(1)

This framework has been applied to COVID-19 case counts28 and 
election forecasting29. Its full application requires ground-truth bench-
marks or their estimates from independent sources1.

Specifically, the ‘total error’ is the difference between the observed 
sample mean Yn as an estimator of the ground truth, the population 
mean YN. The ‘data quality defect’ is measured using ρ̂Y R,

, called the 
‘data defect correlation’ (ddc)1, which quantifies total bias (from any 
source), measured by the correlation between the event that an indi-
vidual’s response is recorded and its value, Y. The effect of data quan-
tity is captured by ‘data scarcity’, which is a function of the sample size 
n and the population size N, measured as N n n( − )/ , and hence what 
matters for error is the relative sample size—that is, how close n is to 
N—rather than the absolute sample size n. The third factor is the ‘inher-
ent problem difficulty’, which measures the population heterogeneity 
(via the standard deviation σY of Y), because the more heterogeneous 
a population is, the harder it is to estimate its average well. Mathemat-
ically, equation (1) is given by Y Y ρ N n n σ− = ˆ × ( − )/ ×n N Y R Y,

   . This expres
sion was inspired by the Hartley–Ross inequality for biases in ratio 
estimators30. More details on the decomposition are provided in ‘Cal-
culation and interpretation of ddc’ in the Methods, in which we also 
present a generalization for weighted estimators.

Decomposing error in COVID surveys
Although the ddc is not directly observed, COVID-19 surveys present 
a rare case in which it can be deduced because all of the other terms in 
equation (1) are known (see ‘Calculation and interpretation of ddc’ in 
the Methods for an in-depth explanation). We apply this framework to 
the aggregate error shown in Fig. 1b, and the resulting components of 
error from the right-hand side of equation (1) are shown in Fig. 1c–e.

We use the CDC’s report of the cumulative count of first doses admin-
istered to US adults as the benchmark8,13, YN. This benchmark time series 
may be affected by administrative delays and slippage in how the CDC 
centralizes information from states31–34. The CDC continuously updates 
their entire time series retroactively for such delays as they are reported. 
But to account for potentially unreported delays, we present our results 

with Benchmark Imprecision (BI) in case the CDC’s numbers from our 
study period, 9 January to 26 May 2021, as reported on 26 May by the 
CDC suffer from ±5% and ±10% imprecision. These scenarios were cho-
sen on the basis of analysis of the magnitude by which the CDC’s initial 
estimate for vaccine uptake by a particular day increases as the CDC 
receives delayed reports of vaccinations that occurred on that day 
(Extended Data Fig. 3, Supplementary Information A.2). That said, 
these scenarios may not capture latent systemic issues that affect CDC 
vaccination reporting.

The total error of each survey’s estimate of vaccine uptake (Fig. 1b) 
increases over time for all studies, most markedly for Delphi–Facebook. 
The data quality defect, measured by the ddc, also increases over time 
for Census Household Pulse and for Delphi–Facebook (Fig. 1c). The ddc 
for Axios–Ipsos is much smaller and steady over time, consistent with 
what one would expect from a representative sample. The data scar-
city, N n n( − )/ , for each survey is roughly constant across time (Fig. 1d). 
Inherent problem difficulty is a population quantity common to all three 
surveys that peaks when the benchmark vaccination rate approaches 
50% in April 2021 (Fig. 1e). Therefore, the decomposition suggests that 
the increasing error in estimates of vaccine uptake in Delphi–Facebook 
and Census Household Pulse is primarily driven by increasing ddc, which 
captures the overall effect of the bias in coverage, selection and response.

Equation (1) also yields a formula for the bias-adjusted effective 
sample size neff, which is the size of a simple random sample that we 
would expect to exhibit the same level of mean squared error (MSE) 
as what was actually observed in a given study with a given ddc. Unlike 
the classical effective sample size23, this quantity captures the effect 
of bias as well as that of an increase in variance from weighting and 
sampling. For details of this calculation, see ‘Error decomposition with 
survey weights’ in the Methods.

For estimating the US vaccination rate, Delphi–Facebook has a 
bias-adjusted effective sample size of less than 10 in April 2021, a 99.99% 
reduction from the raw average weekly sample size of 250,000 (Fig. 2). 
The Census Household Pulse is also affected by over 99% reductions 
in effective sample size by May 2021. A simple random sample would 
have controlled estimation errors by controlling ddc. However, once 
this control is lost, small increases in ddc beyond what is expected in 
simple random samples can result in marked reductions of effective 
sample sizes for large populations1.
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Comparing study designs
Understanding why bias occurs in some surveys but not others requires 
an understanding of the sampling strategy, modes, questionnaire and 
weighting scheme of each survey. Table 1 compares the design of each 
survey (more details in ‘Additional survey methodology’ in the Methods, 
Extended Data Table 1).

All three surveys are conducted online and target the US adult 
population, but vary in the methods that they use to recruit respond-
ents35. The Delphi–Facebook survey recruits respondents from active 
Facebook users (the Facebook active user base, or FAUB) using daily 
unequal-probability stratified random sampling2. The Census Bureau 
uses a systematic random sample to select households from the subset 
of the master address file (MAF) of the Census for which they have 
obtained either cell phone or email contact information (approximately 
81% of all households in the MAF)4.

In comparison, Axios–Ipsos relies on inverse response propensity 
sampling from Ipsos’ online KnowledgePanel. Ipsos recruits panel-
lists using an address-based probabilistic sample from USPS’s delivery 
sequence file (DSF)5. The DSF is similar to the MAF of the Census. Unlike 
the Census Household Pulse, potential respondents are not limited to 
the subset for whom email and phone contact information is available. 
Furthermore, Ipsos provides internet access and tablets to recruited 
panellists who lack home internet access. In 2021, this ‘offline’ group 
typically comprises 1% of the final survey (Extended Data Table 1).

All three surveys weight on age and gender; that is, assign larger 
weights to respondents of underrepresented age by gender subgroups 
and smaller weights to those of overrepresented subgroups2,4,5 (Table 1). 
Axios–Ipsos and Census Household Pulse also weight on education and 
race and/or ethnicity (hereafter, race/ethnicity). Axios–Ipsos addition-
ally weights to the composition of political partisanship measured by 
“recent ABC News/Washington Post telephone polls”5 in 6 of the 11 waves 
we study. Education—a known correlate of propensity to respond to 
surveys36 and social media use37 are notably absent from Delphi–Face-
book’s weighting scheme, as is race/ethnicity. As noted before, none 
of the surveys use the CDC benchmark to adjust or assess estimates 
of vaccine uptake.

Explanations for error
Table 2 illustrates some consequences of these design choices. Axios–
Ipsos samples mimic the actual breakdown of education attainment 
among US adults even before weighting, whereas those of Census 
Household Pulse and Delphi–Facebook do not. After weighting, 

Axios–Ipsos and Census Household Pulse match the population 
benchmark, by design. Delphi–Facebook does not explicitly weight 
on education, and hence the education bias persists in their weighted 
estimates: those without a college degree are underrepresented by 
nearly 20 percentage points. The case is similar for race/ethnicity. Del-
phi–Facebook’s weighting scheme does not adjust for race/ethnicity, 
and hence their weighted sample still overrepresents white adults by 8 
percentage points, and underrepresents the proportions of Black and 
Asian individuals by around 50% of their size in the population (Table 2).

The overrepresentation of white adults and people with college 
degrees explains part of the error of Delphi–Facebook. The racial 
groups that Delphi–Facebook underrepresents tend to be more willing 
and less vaccinated in the samples (Table 2). In other words, reweighting 
the Delphi–Facebook survey to upweight racial minorities will bring 
willingness estimates closer to Household Pulse and the vaccination 
rate closer to CDC. The three surveys also report that people with-
out a four-year college degree are less likely to have been vaccinated 
compared to those with a degree (Table 2, Supplementary Table 1). If 
we assume that vaccination behaviours do not differ systematically 
between non-respondents and respondents within each demographic 
category, underrepresentation of less-vaccinated groups would con-
tribute to the bias found here. However, this alone cannot explain the 
discrepancies in all the outcomes. Census Household Pulse weights 
on both race and education4 and still overestimates vaccine uptake 
by over ten points in late May of 2021 (Fig. 1b).

Delphi–Facebook and Census Household Pulse may be unrepresenta-
tive with respect to political partisanship, which has been found to be 
correlated with vaccine behaviour38 and with survey response39, and thus 
may contribute to observed bias. However, neither Delphi–Facebook  
nor Census Household Pulse collects partisanship of respondents. 
US Census agencies cannot ask about political preference, and no 
unequivocal population benchmark for partisanship in the general 
adult population exists.

Rurality may also contribute to the errors, because it correlates with 
vaccine status8 and home internet access40. Neither Census Household 
Pulse nor Delphi–Facebook weights on sub-state geography, which may 
mean that adults in more rural areas who are less likely to be vaccinated 
are also underrepresented in the two surveys, leading to overestima-
tion of vaccine uptake.

Axios–Ipsos weights to metropolitan status and also recruits a frac-
tion of its panellists from an ‘offline’ population of individuals without 
internet access. We find that dropping these offline respondents (n = 21, 
or 1% of the sample) in their 22 March 2021 wave increases Axios–Ipsos’ 
overall estimate of the vaccination rate by 0.5 percentage points, thereby 

Table 2 | Composition of survey respondents by educational attainment and race/ethnicity

Composition of US adults Survey estimates

Axios–Ipsos Household Pulse Delphi–Facebook ACS Household Pulse

Raw Weighted Raw Weighted Raw Weighted Benchmark Vax Will Hes

Education

High school 35% 39% 14% 39% 19% 21% 39% 39% 40% 21%

Some college 29 30 32 30 36 36 30 44 38 18

Four-year college 19 17 29 17 25 25 19 54 36 10

Post-graduate 17 14 26 13 20 18 11 67 26 7

Race/ethnicity

White 71% 63% 75% 62% 74% 68% 60% 50% 33% 17%

Black 10 12 7 11 6 6 12 42 39 19

Hispanic 11 16 10 17 11 16 16 38 48 14

Asian 5 5 2 3 6 51 43 5

Axios–Ipsos: wave ending 22 March 2021, n = 995. Census Household Pulse: wave ending 29 March 2021, n = 76,068. Delphi–Facebook: wave ending 27 March 2021, n = 181,949. Benchmark 
uses the 2019 US Census American Community Survey (ACS), composed of roughly 3 million responses. The rightmost column shows estimates of vaccine uptake (Vax), willingness (Will) and 
hesitancy (Hes) from the Census Household Pulse of the same wave.
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increasing the total error (Extended Data Table 2). However, this offline 
population is too small to explain the entirety of the difference in accuracy 
between Axios–Ipsos and either Census Household Pulse (6 percentage 
points) or Delphi–Facebook (14 percentage points), in this time period.

Careful recruitment of panellists is at least as important as weighting. 
Weighting on observed covariates alone cannot explain or correct the 
discrepancies we observe. For example, reweighting Axios–Ipsos 22 
March 2021 wave using only Delphi–Facebook’s weighting variables 
(age group and gender) increased the error in their vaccination esti-
mates by 1 percentage point, but this estimate with Axios–Ipsos data 
is still more accurate than that from Delphi–Facebook during the same 
period (Extended Data Table 2). The Axios–Ipsos estimate with Delphi–
Facebook weighting overestimated vaccination by 2 percentage points, 
whereas Delphi–Facebook overestimated it by 11 percentage points.

The key implication is that there is no silver bullet: every small part 
of panel recruitment, sampling and weighting matters for control-
ling the data quality measured as the correlation between an outcome 
and response—what we call the ddc. In multi-stage sampling, which 
includes for example the selection of potential respondents followed 
by non-response, bias in even a single step can substantially affect the 
final result (‘Population size in multi-stage sampling’ in the Methods, 
Extended Data Table 3). A total quality control approach, inspired by 
the total survey error framework41, is a better strategy than trying to 
prioritize some components over others to improve data quality. This 
emphasis is a reaffirmation of the best practice for survey research as 
advocated by the American Association for Public Opinion Research:6 
“The quality of a survey is best judged not by its size, scope, or promi-
nence, but by how much attention is given to [preventing, measuring 
and] dealing with the many important problems that can arise.”42

Addressing common misperceptions
The three surveys discussed in this article demonstrate a seemingly 
paradoxical phenomenon—the two larger surveys that we studied are 
more statistically confident, but also more biased, than the smaller, 
more traditional Axios–Ipsos poll. These findings are paradoxical only 
when we fall into the trap of the intuition that estimation errors neces-
sarily decrease in larger datasets12.

A limitation of our vaccine uptake analysis is that we only examine 
ddc with respect to an outcome for which a benchmark is available: 
first-dose vaccine uptake. One might hope that surveys biased on vac-
cine uptake are not biased on other outcomes, for which there may not 
be benchmarks to reveal their biases. However, the absence of evidence 
of bias for the remaining outcomes is not evidence of its absence. In 
fact, mathematically, when a survey is found to be biased with respect 
to one variable, it implies that the entire survey fails to be statistically 
representative. The theory of survey sampling relies on statistical rep-
resentativeness for all variables achieved through probabilistic sam-
pling43. Indeed, Neyman’s original introduction of probabilistic sampling 
showed the limits of purposive sampling, which attempted to achieve 
overall representativeness by enforcing it only on a set of variables18,44.

In other words, when a survey loses its overall statistical representative-
ness (for example, through bias in coverage or non-response), which is 
difficult to repair (for example, by weighting or modelling on observable 
characteristics) and almost impossible to verify45, researchers who wish to 
use the survey for scientific studies must supply other reasons to justify the 
reliability of their survey estimates, such as evidence about the independ-
ence between the variable of interest and the factors that are responsible 
for the unrepresentativeness. Furthermore, scientific journals that pub-
lish studies based on surveys that may be unrepresentative17—especially 
those with large sizes such as Delphi–Facebook (biased with respect to 
vaccination status (Fig. 1), race and education (Table 2))—need to ask for 
reasonable effort from the authors to address the unrepresentativeness.

Some may argue that bias is a necessary trade-off for having data 
that are sufficiently large for conducting highly granular analysis, 

such as county-level estimation of vaccine hesitancy26. Although 
high-resolution inference is important, we warn that this is a 
double-edged argument. A highly biased estimate with a misleadingly 
small confidence interval can do more damage than having no esti-
mate at all. We further note that bias is not limited to population point 
estimates, but also affects estimates of changes over time (contrary to 
published guidance3). Both Delphi–Facebook and Census Household 
Pulse significantly overestimate the slope of vaccine uptake relative 
to that of the CDC benchmark (Fig. 1b).

The accuracy of our analysis does rely on the accuracy of the CDC’s 
estimates of COVID vaccine uptake. However, if the selection bias in the 
CDC’s benchmark is significant enough to alter our results, then that 
itself would be another example of the Big Data Paradox.

Discussion
This is not the first time that the Big Data Paradox has appeared: Google 
Trends predicted more than twice the number of influenza-like illnesses 
than the CDC in February 201346. This analysis demonstrates that the 
Big Data Paradox applies not only to organically collected Big Data, like 
Google Trends, but also to surveys. Delphi–Facebook is “the largest 
public health survey ever conducted in the United States”47. The Census 
Household Pulse is conducted in collaboration between the US Census 
Bureau and eleven statistical government partners, all with enormous 
resources and survey expertise. Both studies take steps to mitigate 
selection bias, but substantially overestimate vaccine uptake. As we have 
shown, the effect of bias is magnified as relative sample size increases.

By contrast, Axios–Ipsos records only about 1,000 responses per 
wave, but makes additional efforts to prevent selection bias. Small 
surveys can be just as wrong as large surveys in expectation—of the 
three other small-to-medium online surveys additionally analysed, 
two also miss the CDC vaccination benchmark (Extended Data Fig. 5). 
The overall lesson is that investing in data quality (particularly during 
collection, but also in analysis) minimizes error more efficiently than 
does increasing data quantity. Of course, a sample size of 1,000 may be 
too small (that is, leading to unhelpfully large uncertainty intervals) for 
the kind of 50-state analyses made possible by big surveys. However, 
small-area methods that borrow information across subgroups48 can 
perform better with higher-quality—albeit few—data, and whether 
that approach would outperform the large, biased surveys is an open 
question.

There are approaches to correct for these biases in both probability 
and nonprobability samples alike. For COVID-19 surveys in particular, 
since June 2021, the AP–NORC multimode panel has weighted their 
COVID-19 related surveys to the CDC benchmark, so that the weighted 
ddc for vaccine uptake is zero by design49. More generally, there is an 
extensive literature on approaches for making inferences from data col-
lected from nonprobability samples50–52. Other promising approaches 
include integrating surveys of varying quality53,54, and leveraging the 
estimated ddc in one outcome to correct bias in others under several 
scenarios (Supplementary Information D).

Although more needs to be done to fully examine the nuances of 
large surveys, organically collected administrative datasets and social 
media data, we hope that this comparative study of ddc highlights the 
concerning implications of the Big Data Paradox—how large sample 
sizes magnify the effect of seemingly small defects in data collection, 
which leads to overconfidence in incorrect inferences.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-021-04198-4.
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Methods

Calculation and interpretation of ddc
The mathematical expression for equation (1) is given here for com-
pleteness:

Y Y ρ
N n
n

σ− = ˆ ×
−

× (2)n N Y R Y,

The first factor ρ̂Y R,
 is called the data defect correlation (ddc)1. It is 

a measure of data quality represented by the correlation between the 
recording indicator R (R = 1 if an answer is recorded and R = 0 otherwise) 
and its value, Y. Given a benchmark, the ddc ρ̂Y R,

 can be calculated by 
substituting known quantities into equation (2). In the case of a single 
survey wave of a COVID-19 survey, n is the sample size of the survey 
wave, N is the population size of US adults from US Census estimates55, 
Yn is the survey estimate of vaccine uptake and YN  is the estimate of 
vaccine uptake for the corresponding period taken from the CDC’s 
report of the cumulative count of first doses administered to US 
adults8,13. We calculate σ Y Y= (1 − )Y N N  because Y is binary (but equa-
tion (2) is not restricted to binary Y).

We calculate ρ̂Y R,
 by using total error Y Y−n N, which captures not 

only selection bias but also any measurement bias (for example, 
from question wording). However, with this calculation method, 
ρ̂Y R,

 lacks the direct interpretation as a correlation between Y and 
R, and instead becomes a more general index of data quality directly 
related to classical design effects (see ‘Bias-adjusted effective sam-
ple size’).

It is important to point out that the increase in ddc does not nec-
essarily imply that the response mechanisms for Delphi–Facebook 
and Census Household Pulse have changed over time. The correlation 
between a changing outcome and a steady response mechanism could 
change over time, hence changing the value of ddc. For example, as 
more individuals become vaccinated, and vaccination status is driven 
by individual behaviour rather than eligibility, the correlation between 
vaccination status and propensity to respond could increase even if 
the propensity to respond for a given individual is constant. This would 
lead to large values of ddc over time, reflecting the increased impact 
of the same response mechanism.

Error decomposition with survey weights
The data quality framework given by equations (1) and (2) is a special 
case of a more general framework for assessing the actual error of a 
weighted estimator Y =w

w R Y

w R

∑

∑
i i i i

i i i
, where wi is the survey weight assigned 

to individual i. It is shown in Meng1 that

Y Y ρ
N n
n

σ− = ˆ ×
−

× , (3)N Y R Yw ,
w

ww

where ρ Y Rˆ = Corr( , )Y R, ww
 is the finite population correlation between 

Yi and R wR=i i iw,  (over i = 1, …, N). The ‘hat’ on ρ reminds us that this 
correlation depends on the specific realization of {Ri, i = 1, …, N}. The 
term nw is the classical ‘effective sample size’ due to weighting23; that 
is, n = n

w (1 + CV )w
2 , where CVw is the coefficient of variation of the weights 

for all individuals in the observed sample, that is, the standard devia-
tion of weights normalized by their mean. It is common for surveys to 
rescale their weights to have mean 1, in which case CVw

2  is simply the 
sample variance of W.

When all weights are the same, equation (3) reduces to equation (2). 
In other words, the ddc term ρ̂Y R, w now also takes into account the effect 
of the weights as a means to combat the selection bias represented by 
the recording indicator R. Intuitively, if ρ Y Rˆ = Corr( , )Y R,  is high (in 
magnitude), then some Yi’s have a higher chance of entering our data-
set than others, thus leading to a sample average that is a biased estima-
tor for the population average. Incorporating appropriate weights can 

reduce ρ̂Y R,  to ρ̂Y R, w, with the aim of reducing the effect of the selection 
bias. However, this reduction alone may not be sufficient to improve 
the accuracy of Yw because the use of weight necessarily reduces the 
sampling fraction f = n

N  to f =
n
Nw

w  as well, as nw < n. Equation (3) pre-
cisely describes this trade-off, providing a formula to assess when the 
reduction of ddc is significant to outweigh the reduction of the effec-
tive sample size.

Measuring the correlation between Y and R is not a new idea in survey 
statistics (though note that ddc is the population correlation between Y 
and R, not the sample correlation), nor is the observation that as sample 
size increases, error is dominated by bias instead of variance56,57. The 
new insight is that ddc is a general metric to index the lack of repre-
sentativeness of the data we observe, regardless of whether or not 
the sample is obtained through a probabilistic scheme, or weighted 
to mimic a probabilistic sample. As discussed in ‘Addressing common 
misperceptions’ in the main text, any single ddc deviating from what 
is expected under representative sampling (for example, probabilistic 
sampling) is sufficient to establish that the sample is not representative 
(but the converse is not true). Furthermore, the ddc framework refutes 
the common belief that increasing sample size necessarily improves 
statistical estimation1,58.

Bias-adjusted effective sample size
By matching the mean-squared error of Yw with the variance of the 
sample average from simple random sampling, Meng1 derives the fol-
lowing formula for calculating a bias-adjusted effective sample size, 
or neff:

n
n

N n E ρ
=

−
×
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Ŷ R
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w
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2
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
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Given an estimator Yw with expected total MSE T due to data defect, 
sampling variability and weighting, this quantity neff represents the 
size of a simple random sample such that its mean YN, as an estimator 
for the same population mean YN, would have the identical MSE T. The 
term E ρ[ ˆ ]Y R,

2
w

 represents the amount of selection bias (squared) 
expected on average from a particular recording mechanism R and a 
chosen weighting scheme.

For each survey wave, we use ρ̂Y R,
2

w
 to approximate E ρ[ ˆ ]Y R,

2
w

. This esti
mation is unbiased by design, as we use an estimator to estimate its 
expectation. Therefore, the only source of error is the sampling vari-
ation, which is typically negligible for large surveys such as Delphi–
Facebook and the Census Household Pulse. This estimation error may 
have more impact for smaller surveys such as the Axios–Ipsos survey, 
an issue that we will investigate in subsequent work.

We compute ρ̂Y R, w by using the benchmark YN, namely, by solving 
equation (3) for ρ̂Y R, w,

ρ
Z
N

Z
Y Y

σ
ˆ = , where =

−
Y R

N
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n Y

,
w

w
w

1 −w w

w

We introduce this notation Zw because it is the quantity that deter-
mines the well-known survey efficiency measure, the so-called ‘design 
effect’, which is the variance of Zw for a probabilistic sampling design23 
(when we assume the weights are fixed). For the more general setting 
in which Yw may be biased, we replace the variance by MSE, and hence 
the bias-adjusted design effect D E Z= [ ]e w

2 , which is the MSE relative to 
the benchmark measured in the unit of the variance of an average from 
a simple random sample of size nw. Hence D E ρ≡ [ ˆ ]I Y R,

2
w

, which was 
termed as ‘data defect index’1, is simply the bias-adjusted design effect 
per unit, because D =I

D
N
e .

Furthermore, because Zw is the standardized actual error, it captures 
any kind of error inherited in Yw. This observation is important because 
when Y is subject to measurement errors, Z

N
w  no longer has the simple 

interpretation as a correlation. But because we estimate DI  by Z
N
w
2
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directly, our effective sample size calculation is still valid even when 
equation (3) does not hold.

Asymptotic behaviour of ddc
As shown in Meng1, for any probabilistic sample without selection 
biases, the ddc is on the order of 

N
1 . Hence the magnitude of ρ̂Y R,

 (or 
ρ̂ )Y R, w

 is small enough to cancel out the effect of N n−  (or N n− w ) in 
the data scarcity term on the actual error, as seen in equation (2) (or 
equation (3)). However, when a sample is unrepresentative; for exam-
ple, when those with Y = 1 are more likely to enter the dataset than those 
with Y = 0, then ρ̂Y R,

 can far exceed 
N
1  in magnitude. In this case, error 

will increase with N  for a fixed ddc and growing population size N 
(equation (2)). This result may be counterintuitive in the traditional 
survey statistics framework, which often considers how error changes 
as sample size n grows. The ddc framework considers a more general 
set-up, taking into account individual response behaviour, including 
its effect on sample size itself.

As an example of how response behaviour can shape both total error 
and the number of respondents n, suppose individual response behav-
iour is captured by a logistic regression model

R Y α βYlogit[Pr( = 1| )] = + . (4)

This is a model for a response propensity score. Its value is deter-
mined by α, which drives the overall sampling fraction f = n

N , and by β, 
which controls how strongly Y influences whether a participant will 
respond or not.

In this logit response model, when β ≠ 0, ρ̂Y R,
 is determined by indi-

vidual behaviour, not by population size N. In Supplementary Informa-
tion B.1, we prove that ddc cannot vanish as N grows, nor can the 
observed sample size n ever approach 0 or N for a given set of (finite 
and plausible) values of {α, β}, because there will always be a non-trivial 
percentage of non-respondents. For example, an f of 0.01 can be 
obtained under this model for either α = −0.46, β = 0 (no influence of 
individual behaviour on response propensity), or for α = −3.9, β = −4.84. 
However, despite the same f, the implied ddc and consequently the 
MSE will differ. For example, the MSE for the former (no correlation 
with Y) is 0.0004, whereas the MSE for the latter (a −4.84 coefficient 
on Y) is 0.242, over 600 times larger.

See Supplementary Information B.2 for the connection between 
ddc and a well-studied non-response model from econometrics, the 
Heckman selection model59.

Population size in multi-stage sampling
We have shown that the asymptotic behaviour of error depends on 
whether the data collection process is driven by individual response 
behaviour or by survey design. The reality is often a mix of both. Con-
sequently, the relevant ‘population size’ N depends on when and where 
the representativeness of the sample is destroyed; that is, when the 
individual response behaviours come into play. Real-world surveys 
that are as complex as the three surveys we analyse here have multiple 
stages of sample selection.

Extended Data Table 3 takes as an example the sampling stages of 
the Census Household Pulse, which has the most extensive set of docu-
mentation among the three surveys we analyse. As we have summarized 
(Table 1, Extended Data Table 1), the Census Household Pulse (1) first 
defines the sampling frame as the reachable subset of the MAF, (2) 
takes a random sample of that population to prompt (send a survey 
questionnaire) and (3) waits for individuals to respond to that survey. 
Each of these stages reduces the desired data size, and the correspond-
ing population size is the intended sample size from the prior stage 
(in notation, Ns = ns −1, for s = 2, 3). For example, in stage 3, the popula-
tion size N3 is the size of the intended sample size n2 from the second 
stage (random sample of the outreach list), because only the sampled 
individuals have a chance to respond.

Although all stages contribute to the overall ddc, the stage that domi-
nates is the first stage at which the representativeness of our sample is 
destroyed—the size of which will be labelled as the dominating popu-
lation size (dps)—when the relevant population size decreases mark-
edly at each step. However, we must bear in mind that dps refers to the 
worst-case scenario, when biases accumulate, instead of (accidentally) 
cancelling each other out.

For example, if the 20% of the MAFs excluded from the Census House-
hold Pulse sampling frame (because they had no cell phone or email 
contact information) is not representative of the US adult population, 
then the dps is N1, or 255 million adults contained in 144 million house-
holds. Then the increase in bias for given ddc is driven by the rate of N1 
where N1 = 2.55 × 108 and is large indeed (with 2.5 × 10 ≈ 15,0008 ). By 
contrast, if the the sampling frame is representative of the target pop-
ulation and the outreach list is representative of the frame (and hence 
representative of the US adult population) but there is non-response 
bias, then dps is N3 = 106 and the impact of ddc is amplified by the square 
root of that number ( 10 = 1,0006 ). By contrast, Axios–Ipsos reports 
a response rate of about 50%, and obtains a sample of n = 1,000, so the 
dps could be as small as N3 = 2,000 (with 2,000 ≈ 45).

This decomposition is why our comparison of the surveys is consist-
ent with the ‘Law of Large Populations’1 (estimation error increases 
with N), even though all three surveys ultimately target the same US 
adult population. Given our existing knowledge about online–offline 
populations40 and our analysis of Axios–Ipsos’ small ‘offline’ popula-
tion, Census Household Pulse may suffer from unrepresentativeness 
at Stage 1 of Extended Data Table 3, where N = 255 million, and Delphi–
Facebook may suffer from unrepresentativeness at the initial stage of 
starting from the Facebook user base. By contrast, the main source of 
unrepresentativeness for Axios–Ipsos may be at a later stage at which 
the relevant population size is orders of magnitude smaller.

CDC estimates of vaccination rates
Our analysis of the nationwide vaccination rate covers the period 
between 9 January 2021 and 19 May 2021. We used CDC’s vaccination 
statistics published on their data tracker as of 26 May 2021. This dataset 
is a time series of counts of 1st dose vaccinations for every day in our 
time period, reported for all ages and disaggregated by age group.

This CDC time series obtained on 26 May 2021 included retroac-
tive updates to dates covering our entire study period, as does each 
daily update provided by the CDC daily update. For example, the CDC 
benchmark we use for March 2021 is not only the vaccination counts 
originally reported in March but also includes the delayed reporting for 
March that the CDC became aware of by 26 May 2021. Analyzing several 
snapshots before 26 May 2021, we find that these retroactive updates 
40 days out could change the initial estimate by about 5% (Extended 
Data Fig. 3), hence informing our sensitivity analysis of +/− 5% and 10% 
benchmark imprecision.

To match the sampling frame of the surveys we analyze, US adults 18 
years and older, we must restrict the CDC vaccination counts to those 
administered to those adults. However, because of the different way states 
and jurisdiction report their vaccination statistics, the CDC did not pos-
sess age-coded counts for some jurisdictions, such as Texas, at the time 
of our study. The number of vaccinations with missing age data reached 
about 10 percent of the total US vaccinations at its peak at the time of our 
study. We therefore assume that the day by day fraction of adults among 
individuals for whom age is reported as missing is equal to the fraction 
of adults among individuals with age reported. Because minors became 
eligible for vaccinations only towards the end of our study period, the 
fraction of adults in data reporting age never falls below  97%.

Additional survey methodology
The Census Household Pulse and Delphi–Facebook surveys are the 
first of their kind for each organization, whereas Ipsos has maintained 
their online panel for 12 years.



Question wording
All three surveys ask whether respondents have received a COVID-19 
vaccine (Extended Data Table 1). Delphi–Facebook and Census House-
hold Pulse ask similar questions (“Have you had/received a COVID-19 
vaccination/vaccine?”). Axios–Ipsos asks “Do you personally know any-
one who has already received the COVID-19 vaccine?”, and respondents 
are given response options including “Yes, I have received the vaccine.” 
The Axios–Ipsos question wording might pressure respondents to 
conform to their communities’ modal behaviour and thus misreport 
their true vaccination status, or may induce acquiescence bias from 
the multiple ‘yes’ options presented60. This pressure may exist both 
in high- and low-vaccination communities, so its net effect on Axios–
Ipsos’ results is unclear. Nonetheless, Axios–Ipsos’ question wording 
does differ from that of the other two surveys, and may contribute to 
the observed differences in estimates of vaccine uptake across surveys.

Population of interest
All three surveys target the US adult population, but with different sam-
pling and weighting schemes. Census Household Pulse sets the denomi-
nator of their percentages as the household civilian, non-institutionalized 
population in the United States of 18 years of age or older, excluding 
Puerto Rico or the island areas. Axios–Ipsos designs samples to be rep-
resentative of the US general adult population of 18 or older. For Del-
phi–Facebook, the US target population reported in weekly contingency 
tables is the US adult population, excluding Puerto Rico and other US 
territories. For the CDC Benchmark, we define the denominator as the 
US 18+ population, excluding Puerto Rico and other US territories. To 
estimate the size of the total US population, we use the US Census Bureau 
Annual Estimates of the Resident Population for the United States and 
Puerto Rico, 201955. This is also what the CDC uses as the denominator 
in calculating rates and percentages of the US population60.

Axios–Ipsos and Delphi–Facebook generate target distributions 
of the US adult population using the Current Population Survey 
(CPS), March Supplement, from 2019 and 2018, respectively. Census 
Household Pulse uses a combination of 2018 1-year American Com-
munity Survey (ACS) estimates and the Census Bureau’s Population 
Estimates Program (PEP) from July 2020. Both the CPS and ACS are 
well-established large surveys by the Census and the choice between 
them is largely inconsequential.

Axios–Ipsos data
The Axios–Ipsos Coronavirus tracker is an ongoing, bi-weekly tracker 
intended to measure attitudes towards COVID-19 of adults in the US. 
The tracker has been running since 13 March 2020 and has released 
results from 45 waves as of 28 May 2021. Each wave generally runs over a 
period of 4 days. The Axios–Ipsos data used in this analysis were scraped 
from the topline PDF reports released on the Ipsos website5. The PDF 
reports also contain Ipsos’ design effects, which we have confirmed are 
calculated as 1 plus the variance of the (scaled) weights.

Census Household Pulse data
The Census Household Pulse is an experimental product of the US 
Census Bureau in collaboration with eleven other federal statistical 
agencies. We use the point estimates presented in Data Tables, as well 
as the standard errors calculated by the Census Bureau using replicate 
weights. The design effects are not reported, however we can calculate 
it as 1 + CVw

2 , where CVw is the coefficient of variation of the 
individual-level weights included in the microdata23.

Delphi–Facebook COVID symptom survey
The Delphi–Facebook COVID symptom survey is an ongoing survey 
collaboration between Facebook, the Delphi Group at Carnegie Mel-
lon University (CMU), and the University of Maryland2. The survey 
is intended to track COVID-like symptoms over time in the US and in 

over 200 countries. We use only the US data in this analysis. The study 
recruits respondents using daily stratified random samples recruiting a 
cross-section of Facebook active users. New respondents are obtained 
each day, and aggregates are reported publicly on weekly and monthly 
frequencies. The Delphi–Facebook data used here were downloaded 
directly from CMU’s repository for weekly contingency tables with 
point estimates and standard errors.

Ethical compliance
According to HRA decision tools (http://www.hra-decisiontools.org.
uk/research/), our study is considered Research, and according to the 
NHS REC review tool (http://www.hra-decisiontools.org.uk/ethics/), 
we do not need NHS Research Ethics Committee (REC) review, as we 
used only (1) publicly available, (2) anonymized and (3) aggregated 
data outside of clinical settings.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw data have been deposited in the Harvard Dataverse, at https://
doi.org/10.7910/DVN/GKBUUK. Data were collected from publicly 
available repositories of survey data by downloading the data directly 
or using APIs.

Code availability
Code to replicate the findings is available in the repository https://
github.com/vcbradley/ddc-vaccine-US. The main decomposition of 
the ddc is available on the package ‘ddi’ from the Comprehensive R 
Archive Network (CRAN).
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Extended Data Fig. 1 | Comparisons of state-level vaccine uptake, hesitancy 
and willingness across surveys and the CDC for March 2021. Comparison of 
Delphi-Facebook and Census Household Pulse’s state-level point estimates  
(a–c) and rankings (d–f) for vaccine hesitancy, willingness and uptake Dotted 
black lines show agreement and red points show the average of 50 states. 
During our study period, the CDC published daily reports of the cumulative  
number of vaccinations by state that had occurred up to a certain date. Due to 

reporting delays, these may be an underestimate, but retroactively updated 
data was not available to us. g–j compare state-level point estimates and 
rankings for the same survey waves to CDC benchmark estimates from 31 
March 2021. The Delphi–Facebook data are from the week ending 27 March 
2021 and the Census Household Pulse is the wave ending 29 March 2021. See 
Extended Data Fig. 3 for details on the degree of retroactive updates we could 
expect, and Supplementary Information A.2 for details.



Extended Data Fig. 2 | Comparisons of state-level vaccine uptake, hesitancy 
and willingness across surveys and the CDC for May 2021. Comparison of 
Delphi-Facebook and Census Household Pulse’s state-level point estimates  
(a–c) and rankings (d–f) for vaccine hesitancy, willingness and uptake. Dotted 
black lines show agreement and red points show the average of 50 states. 
During our study period, the CDC published daily reports of the cumulative  
number of vaccinations by state that had occurred up to a certain date. Due to 

reporting delays, these may be an underestimate, but retroactively updated 
data was not available to us. g–j compare state-level point estimates and 
rankings for the same survey waves to CDC benchmark estimates from 15 May 
2021. The Delphi–Facebook data are from the wave week ending 8 May 2021 and 
the Census Household Pulse is the wave ending 10 May 2021. See Extended Data 
Fig. 3 for details on the degree of retroactive updates we could expect, and 
Supplementary Information A.2 for details.
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Extended Data Fig. 3 | Retroactive adjustment of CDC vaccine uptake 
figures for 3–12 April 2021, over the 45 days from 12 April. Increase is shown as 
a percentage of the vaccine uptake reported on 12 April. Most of the retroactive 
increases in reported estimates appear to occur in the first 10 days after an 
estimate is first reported. By about 40 days after the initial estimates for a 

particular day are reported, the upward adjustment plateaus at around 5–6% of 
the initial estimate. We use this analysis to guide the choice of 5% and 10% 
threshold for the possible imprecision in the CDC benchmark when computing 
Benchmark Imprecision (BI) intervals.



Extended Data Fig. 4 | Revised estimates of hesitancy and willingness after 
accounting for survey errors for vaccination uptake. The grey point shows 
the reported value at the last point of the time series. Each line shows a different 
scenario for what might be driving the error in uptake estimate, derived using 
hypothetical ddc values for willingness and hesitancy based on the observed 

ddc value for uptake. Access scenario: willingness suffers from at least as much, 
if not more, bias than uptake. Hesitancy scenario: hesitancy suffers from at 
least as much, if not more, bias than uptake. Uptake scenario: the error is split 
roughly equally between hesitancy and willingness. See Supplementary 
Information D for more details.
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Extended Data Fig. 5 | Vaccination rates compared with CDC benchmark for 
four online polls. Ribbons indicate traditional 95% confidence intervals, 
which are twice the standard error reported by the poll. Grey line is the CDC 
benchmark. Data for Progress asks “As of today, have you been vaccinated for 
Covid-19?”; Morning Consult asks “Have you gotten the vaccine, or not?”; Harris 

Poll asks “Which of the following best describes your mindset when it comes to 
getting the COVID-19 vaccine when it becomes available to you?”. 
YouGov surveys are not analysed because they explicitly examined how their 
surveys tracked CDC vaccine uptake. See Supplementary Information C.3 for 
the sampling methodology of each survey and discussion of differences.
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Extended Data Fig. 6 | Survey error by age group (18–64-year-olds, and 
those aged 65 and over). a, Estimates of vaccine uptake from Delphi–
Facebook (blue) and Census Household Pulse (green) for 18–64-year-olds (left) 
and those aged 65 or older (right). Bounds on the CDC’s estimate of vaccine 
uptake for those groups are shown in grey. The CDC receives 
vaccination-by-age data only from some jurisdictions. We do know, however, 

the total number of vaccinations in the US. Therefore, we calculate the bounds 
by allocating all the vaccine doses for which age is unknown to either 18–64 or 
65+. b, Unweighted ddc for each Delphi–Facebook and Census Household 
Pulse calculated for the 18–64 group using the bounds on the CDC’s estimates 
of uptake. ddc for 65+ is not shown due to large uncertainty in the bounded 
CDC estimates of uptake.
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Extended Data Table 1 | Methodologies of Axios–Ipsos, Census Household Pulse and Delphi–Facebook studies



Extended Data Table 2 | Contribution of offline recruitment and weighting schemes to discrepancies between surveys

A portion of each Axios–Ipsos wave is recruited from a population with no stable internet connection; Ipsos KnowledgePanel provides tablets to these respondents. In the Axios–Ipsos  
22 March 2020 wave, the offline panellists (n = 21) were 24 percentage points less likely to be vaccinated than online panellists (n = 974). Weighting the same Axios–Ipsos data (n = 995) to the age 
and gender target distribution implied by Delphi–Facebook’s weights make the vaccination estimates higher by 1 percentage point. However, this number is still lower than Delphi–Facebook’s 
(responses from 14–20 March 2020, n = 249,954) own estimate of 46%. During this time period, the CDC benchmark vaccination rate was 35.2%. This suggests that the recruitment of offline 
respondents and different weighting schemes each explains only a small portion of the discrepancy between the two data sources.
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Extended Data Table 3 | Example of multi-stage population selection

The law of large populations described in the Methods section ‘Population size in multi-stage sampling’ shows that the population size at the sampling stage at which simple random sampling 
breaks down will dominate the error. This table explains these stages with a concrete example, using the Census Household Pulse. Population and sample sizes for three stages (stage number 
denoted s = 1, 2 or 3) of sampling of the Census Household Pulse survey data collection process. Approximate sample sizes based on the 24 March 2021 wave. ‘m’ stands for millions and ‘hh’ 
stands for household. The final row compares the total adult population in the US (255 million adults, made up of 144 million households) to the sample size in one wave of the household pulse. 
For illustration, we have ignored the effect of unequal sampling probabilities on the sample sizes at each stage.
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Data collection We collected the raw data from publicly available sources. No specific software was applicable.

Data analysis Our code to download the public data and analyze it are all deposited at https://github.com/vcbradley/ddc-vaccine-US.  All analysis was 
conducted in R (>= 3.6.0).  All functions used are available at the Comprehensive R Archive Network (CRAN).
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We analyze publicly available data from three surveys (available as microdata or summary statistics on their respective websites). An archive of the data we analyze 
is deposited in the Harvard Dataverse: https://doi.org/10.7910/DVN/GKBUUK. Delphi-Facebook provides summary statistics at https://www.cmu.edu/delphi-web/
surveys/weekly-rollup/. Census Household Pulse provides microdata at https://www.census.gov/programs-surveys/household-pulse-survey/datasets.html.  Axios-
Ipsos provides microdata at https://covid-19.parc.us.com/client/index.html#/search.  The CDC benchmark is available at https://covid.cdc.gov/covid-data-tracker. 
The offline indicator of the Axios-Ipsos survey was provided to us and is included with permission in our Harvard Dataverse deposit.
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Study description The data are survey responses sampled by external organizations. It is  quantitative in nature.

Research sample We analyzed surveys by Delphi-Facebook, the Census Household Pulse, and Axios-Ipsos, and provide additional results comparing 
Data for Progress, Harris Poll, Morning Consult, and YouGov. We also analyzed administrative data on COVID-19 vaccinations 
reported by the CDC.

Sampling strategy The three main surveys we analyzed were picked due to their frequency, large sample size, availability of summary statistics or 
microdata, large sample size, prominence in journalistic coverage and academic research, and the mode (online). The sampling 
strategies of each particular survey organization took is the main focus of the article and described in Table 1. 

Data collection We collected the survey data using download links and APIs from external, publicly available sources as described in the Data 
Availability Statement. The data collection strategies each particular survey organization took is the main focus of the article and 
described in Table 1. 

Timing We analyzed the survey waves taken from January 2021 to mid-May 2021.

Data exclusions No data exclusions were made.

Non-participation We take the survey estimates provided by the external providers as is and analyze its representativeness. The nature of the non-
participation is a main focus of our methodological article.

Randomization The surveys we analyzed are based in part on random samples; shortcomings are discussed in our methodological article.
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