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Surveysare a crucial tool for understanding public opinion and behaviour, and their
accuracy depends on maintaining statistical representativeness of their target
populations by minimizing biases from all sources. Increasing data size shrinks

confidence intervals but magnifies the effect of survey bias: aninstance of the Big
Data Paradox’. Here we demonstrate this paradox in estimates of first-dose COVID-19
vaccine uptake in US adults from 9 January to 19 May 2021 from two large surveys:
Delphi-Facebook?? (about 250,000 responses per week) and Census Household
Pulse* (about 75,000 every two weeks). In May 2021, Delphi-Facebook overestimated
uptake by 17 percentage points (14-20 percentage points with 5% benchmark
imprecision) and Census Household Pulse by 14 (11-17 percentage points with 5%
benchmark imprecision), compared to aretroactively updated benchmark the
Centers for Disease Control and Prevention published on 26 May 2021. Moreover,
their large sample sizes led to miniscule margins of error on the incorrect estimates.
By contrast, an Axios-Ipsos online panel’ with about 1,000 responses per week
following survey research best practices® provided reliable estimates and
uncertainty quantification. We decompose observed error using a recent analytic
framework!to explain the inaccuracy in the three surveys. We then analyse the
implications for vaccine hesitancy and willingness. We show how a survey of 250,000
respondents can produce an estimate of the population mean that is no more
accurate than an estimate from a simple random sample of size 10. Our central
message is that data quality matters more than data quantity, and that compensating
the former with the latter is a mathematically provable losing proposition.

Governments, businesses and researchersrely on survey datatoinform
the provision of government services’, steer business strategy and guide
theresponse to the COVID-19 pandemic®®. With the ever-increasing vol-
ume and accessibility of online surveys and organically collected data,
thelinebetween traditional survey research and Big Datais becoming
increasingly blurred™. Large datasets enable the analysis of fine-grained
subgroups, which are in high demand for designing targeted policy
interventions!.. However, counter to common intuition'?, larger sample
sizes alone do not ensure lower error. Instead, small biases are com-
pounded as sample size increases’.

We see initial evidence of this in the discrepancies in estimates of
first-dose COVID-19 vaccine uptake, willingness and hesitancy from
three online surveysin the US. Two of them—Delphi-Facebook’s COVID-
19 symptomtracker®* (around 250,000 responses per week and with over
4.5million responses fromJanuary to May 2021) and the Census Bureau’s
Household Pulse survey* (around 75,000 responses per survey wave and
with over 600,000 responses from January to May 2021)—have large
enough samplesizesto render standard uncertainty intervals negligible;
however, they report significantly different estimates of vaccination

behaviour withnearly identically worded questions (Table 1). For exam-
ple, Delphi-Facebook’s state-level estimates for willingness toreceive a
vaccine from the end of March 2021 are 8.5 percentage points lower on
average than those from the Census Household Pulse (Extended Data
Fig.1a), with differences as large as 16 percentage points.

The US Centers for Disease Control and Prevention (CDC) compiles
and reports vaccine uptake statistics from state and local offices®.
These figures serve as arare external benchmark, permitting us to
compare survey estimates of vaccine uptake to those from the CDC.
The CDC has noted the discrepancies between their own reported
vaccine uptake and that of the Census Household Pulse***, and we find
even larger discrepancies between the CDC and Delphi-Facebook data
(Fig. 1a). By contrast, the Axios-Ipsos Coronavirus Tracker® (around
1,000 responses per wave, and over 10,000 responses from January
to May 2021) tracks the CDC benchmark well. None of these surveys
use the CDC benchmark to adjust or assess their estimates of vaccine
uptake, thus by examining patternsin these discrepancies, we caninfer
each survey’s accuracy and statistical representativeness, a nuanced
concept that s critical for the reliability of survey findings'®™.
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Table 1| Comparison of survey designs

Axios-lpsos

Census Household Pulse

Delphi-Facebook

Recruitment mode

Address-based mail sample to Ipsos
KnowledgePanel

SMS and email

Facebook Newsfeed

Interview mode Online Online Online
Average size 1,000/wave 75,000/wave 250,000/week
Sampling frame Ipsos KnowledgePanel; internet/ Census Bureau’s Master Address Facebook active users

tablets provided to ~5% of panelists
who lack home internet

File (individuals for whom email /
phone contact information is
available)

Vaccine uptake question

“Do you personally know anyone who

“Have you received a COVID-19

“Have you had a COVID-19 vaccination?”

has already received the COVID-19 vaccine?”
vaccine?”
Vaccine uptake definition “Yes, | have received the vaccine” “Yes” “Yes”
Other vaccine uptake “Yes, a member of my immediate “No” “No”, “I don't know”

response options family”, “Yes, someone else”, “No”

Weighting variables Gender by age, race, education,
Census region, metropolitan status,

household income, partisanship.

Education by age by sex by state,
race/ethnicity by age by sex by
state, household size

Stage 1: age, gender “other attributes which we have
found in the past to correlate with survey outcomes”
to FAUB; Stage 2: state by age by gender

Comparison of key design choices across the Axios-Ipsos, Census Household Pulse and Delphi-Facebook studies. All surveys target the US adult population. See Extended Data Table 1 for

additional comparisons and Methods for additional implementation details.

The Big Data Paradox in vaccine uptake

Wefocus onthe Delphi-Facebook and Census Household Pulse surveys
because their large sample sizes (each greater than 10,000 respond-
ents?®) presentan opportunity to examine the Big Data Paradox'insur-
veys. The Census Household Pulse is an experimental product designed
to rapidly measure pandemic-related behaviour. Delphi-Facebook has
stated that theintent of their survey is to make comparisons over space,
time and subgroups, and that point estimates should be interpreted
with caution®. However, despite these intentions, Delphi-Facebook has
reported point estimates of vaccine uptake in its own publications™.

Delphi-Facebook and Census Household Pulse surveys persistently
overestimate vaccine uptake relative to the CDC’sbenchmark (Fig. 1a)
eventakingintoaccount Benchmark Imprecision (Fig. 1b) as explained
in ‘Decomposing Error in COVID Surveys’. Despite being the smallest
survey by an order of magnitude, the estimates of Axios-Ipsos track
well with the CDC rates (Fig. 1a), and their 95% confidence intervals
contain the benchmark estimate from the CDC in 10 out of 11 surveys
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine
uptake are correct, evenif each snapshotisbiased. However, errors have
increased over time, fromjust afew percentage pointsinJanuary 2021
to Axios-Ipsos’ 4.2 percentage points [1-7 percentage points with 5%
benchmarkimprecision (BI)], Census Household Pulse’s 14 percentage

points [5% BI: 11-17] and Delphi-Facebook’s 17 percentage points
[5% Bl:14-20] by mid-May 2021 (Fig. 1b). For context, for a state that
is near the herd immunity threshold (70-80% based on recent
estimates?),adiscrepancy of 10 percentage points in vaccination rates
couldbe the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead
when applied to biased big surveys because as sample size increases,
bias (rather than variance) dominates estimator error. Figure 1a shows
95% confidence intervals for vaccine uptake based on the reported
sampling standard errors and weighting design effects of each survey*.
Axios-Ipsos has the widest confidence intervals, but also the smallest
design effects (1.1-1.2), suggesting that its accuracy is driven more by
minimizing bias in data collection rather than post-survey adjustment.
The 95% confidence intervals of Census Household Pulse are widened
by large design effects (4.4-4.8) but they are still too narrow toinclude
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi-Facebook are extremely small, driven by
large sample size and moderate design effects (1.4-1.5), and giveus a
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of
spatial and demographic subgroups® 2. However, relative to the CDC’s
contemporaneously reported state-level estimates, which did notinclude
retroactive corrections, Delphi-Facebook and Census Household Pulse
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benchmarkrelative toreported values (points).
b-ecomprisethe decompositioninequation (1).



overestimated CDC state-level vaccine uptake by 16 and 9 percentage
points, respectively (Extended DataFig.1g, h)inMarch 2021, and by equal
or larger amounts by May 2021 (Extended Data Fig. 2g, h). Relative esti-
mates were no better than absolute estimates in March of 2021: there is
littleagreementinasurvey’s estimated state-level rankings withthe CDC
(aKendallrank correlation of 0.31for Delphi-Facebook in Extended Data
Fig. liand 0.26 for Census Household Pulse in Extended Data Fig. 1j) but
theyimprovedin May of 2021 (correlations of 0.78 and 0.74, respectively,
inExtended DataFig. 2i,j). Among18-64-year-olds, both Delphi-Facebook
and Census Household Pulse overestimate uptake, with errorsincreasing
over time (Extended Data Fig. 6).

These examplesillustrate amathematical fact. Thatis, when biased
samples are large, they are doubly misleading: they produce confidence
intervals with incorrect centres and substantially underestimated
widths. This is thev Big Data Paradox: “the bigger the data, the surer
we fool ourselves” when we fail to account for bias in data collection.

A framework for quantifying data quality

Althoughiitis well-understood that traditional confidence intervals
capture only survey sampling errors® (and not total error), the tradi-
tional survey framework lacks analytic tools for quantifying nonsam-
plingerrors separately fromsamplingerrors. A previously formulated
statistical framework' permits us to exactly decompose the total error
of a survey estimate into three components:

Total error = Data quality
defect x Data scarcity x Inherent problem difficulty

()]

This framework has been applied to COVID-19 case counts® and
election forecasting®.Its full application requires ground-truth bench-
marks or their estimates from independent sources’.

Specifically, the ‘total error’is the difference between the observed
sample mean¥, as an estimator of the ground truth, the population
meanY),. The ‘data quality defect’ is measured using Py p called the
‘data defect correlation’ (ddc)!, which quantifies total bias (from any
source), measured by the correlation between the event that an indi-
vidual's response is recorded and its value, Y. The effect of data quan-
tity is captured by ‘data scarcity’, whichis afunction of the sample size
nand the population size N, measured as /(N - n)/n,and hence what
matters for error is the relative sample size—that is, how close nis to
N-ratherthanthe absolute sample size n. The third factoristhe ‘inher-
ent problem difficulty’, which measures the population heterogeneity
(via the standard deviation g, of Y), because the more heterogeneous
apopulationis, the harder itis to estimate its average well. Mathemat-
ically,equation(1)isgivenbyY, - ¥y, =ﬁy'R x {(N-n)/n x g,.Thisexpres-
sion was inspired by the Hartley-Ross inequality for biases in ratio
estimators®. More details on the decomposition are provided in ‘Cal-
culation and interpretation of ddc’ in the Methods, in which we also
present a generalization for weighted estimators.

Decomposing errorin COVID surveys
Although the ddcis not directly observed, COVID-19 surveys present
ararecaseinwhichit canbe deduced because all of the other termsin
equation (1) are known (see ‘Calculation and interpretation of ddc’in
the Methods for anin-depth explanation). We apply this framework to
theaggregate error shownin Fig. 1b, and the resulting components of
error from the right-hand side of equation (1) are shown in Fig. 1c-e.
We use the CDC’s report of the cumulative count of first doses admin-
istered to US adults as the benchmark®®, ¥y, This benchmark time series
may be affected by administrative delays and slippage in how the CDC
centralizesinformation fromstates®3*, The CDC continuously updates
their entire time seriesretroactively for such delays astheyarereported.
Butto account for potentially unreported delays, we present our results
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Fig2|Bias-adjusted effective sample size. An estimate’s bias-adjusted
effective sample size (different from the classic Kish effective sample size) is
thesize ofasimple random sample that would have the same MSE as the
observed estimate. Effective sample sizes are shown here onthe log,, scale.
The original sample size was n=4,525,633 across 19 waves for Delphi-
Facebook, n=606,615across 8 waves for Census Household Pulse and
n=11,421across 11 waves for Axios-Ipsos.Shaded bands represent scenarios of
+5%benchmark imprecisioninthe CDC benchmark.

with Benchmark Imprecision (Bl) in case the CDC’s numbers from our
study period, 9 January to 26 May 2021, as reported on 26 May by the
CDCsuffer from+5% and £10% imprecision. These scenarios were cho-
senon the basis of analysis of the magnitude by which the CDC’s initial
estimate for vaccine uptake by a particular day increases as the CDC
receives delayed reports of vaccinations that occurred on that day
(Extended Data Fig. 3, Supplementary Information A.2). That said,
these scenarios may not capture latent systemicissues that affect CDC
vaccinationreporting.

The total error of each survey’s estimate of vaccine uptake (Fig. 1b)
increases over time for all studies, most markedly for Delphi-Facebook.
The data quality defect, measured by the ddc, also increases over time
for Census Household Pulse and for Delphi-Facebook (Fig.1c). Theddc
for Axios-Ipsos is much smaller and steady over time, consistent with
what one would expect from a representative sample. The data scar-
city,./(N - n)/n foreachsurvey isroughly constantacross time (Fig. 1d).
Inherent problem difficulty isapopulation quantity commontoall three
surveys that peaks when the benchmark vaccination rate approaches
50% in April 2021 (Fig. 1e). Therefore, the decomposition suggests that
theincreasingerrorinestimates of vaccine uptake in Delphi-Facebook
and Census Household Pulseis primarily driven by increasing ddc, which
capturesthe overall effect of the biasin coverage, selection and response.

Equation (1) also yields a formula for the bias-adjusted effective
sample size n., which is the size of a simple random sample that we
would expect to exhibit the same level of mean squared error (MSE)
aswhatwasactually observedinagiven study with agiven ddc. Unlike
the classical effective sample size?, this quantity captures the effect
of bias as well as that of an increase in variance from weighting and
sampling. For details of this calculation, see ‘Error decomposition with
survey weights’ in the Methods.

For estimating the US vaccination rate, Delphi-Facebook has a
bias-adjusted effective sample size of less than10in April 2021,a99.99%
reduction from the raw average weekly sample size 0of 250,000 (Fig. 2).
The Census Household Pulse is also affected by over 99% reductions
in effective sample size by May 2021. A simple random sample would
have controlled estimation errors by controlling ddc. However, once
this control is lost, small increases in ddc beyond what is expected in
simple random samples can result in marked reductions of effective
sample sizes for large populations’.
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Table 2 | Composition of survey respondents by educational attainment and race/ethnicity

Composition of US adults

Survey estimates

Axios-Ipsos Household Pulse Delphi-Facebook ACS Household Pulse

Raw Weighted Raw Weighted Raw Weighted Benchmark Vax Will Hes
Education
High school 35% 39% 14% 39% 19% 21% 39% 39% 40% 21%
Some college 29 30 32 30 36 36 30 44 38 18
Four-year college 19 17 29 17 25 25 19 54 36 10
Post-graduate 17 14 26 13 20 18 n 67 26 7
Race/ethnicity
White % 63% 75% 62% 74% 68% 60% 50% 33% 17%
Black 10 12 7 M 6 6 12 42 39 19
Hispanic n 16 10 17 n 16 16 38 48 14
Asian 5 5 2 3 6 51 43 5

Axios-Ipsos: wave ending 22 March 2021, n = 995. Census Household Pulse: wave ending 29 March 2021, n = 76,068. Delphi-Facebook: wave ending 27 March 2021, n =181,949. Benchmark
uses the 2019 US Census American Community Survey (ACS), composed of roughly 3 million responses. The rightmost column shows estimates of vaccine uptake (Vax), willingness (Will) and

hesitancy (Hes) from the Census Household Pulse of the same wave.

Comparing study designs

Understanding why bias occursinsome surveys but not othersrequires
anunderstanding of the sampling strategy, modes, questionnaire and
weighting scheme of each survey. Table 1compares the design of each
survey (more details in ‘Additional survey methodology’in the Methods,
Extended Data Table1).

All three surveys are conducted online and target the US adult
population, but vary in the methods that they use to recruit respond-
ents®. The Delphi-Facebook survey recruits respondents from active
Facebook users (the Facebook active user base, or FAUB) using daily
unequal-probability stratified random sampling?. The Census Bureau
uses asystematic random sample to select households from the subset
of the master address file (MAF) of the Census for which they have
obtained either cell phone or email contactinformation (approximately
81% of all households in the MAF)*.

In comparison, Axios-Ipsos relies on inverse response propensity
sampling from Ipsos’ online KnowledgePanel. Ipsos recruits panel-
lists using an address-based probabilistic sample from USPS’s delivery
sequence file (DSF)°. The DSF is similar to the MAF of the Census. Unlike
the Census Household Pulse, potential respondents are not limited to
the subset for whom emailand phone contact informationis available.
Furthermore, Ipsos provides internet access and tablets to recruited
panellists who lack home internet access. In 2021, this ‘offline’ group
typically comprises 1% of the final survey (Extended Data Table 1).

All three surveys weight on age and gender; that is, assign larger
weights to respondents of underrepresented age by gender subgroups
andsmaller weights to those of overrepresented subgroups>** (Table 1).
Axios-Ipsos and Census Household Pulse also weight on educationand
race and/or ethnicity (hereafter, race/ethnicity). Axios-Ipsos addition-
ally weights to the composition of political partisanship measured by
“recent ABC News/Washington Post telephone polls”in 6 of the 11waves
we study. Education—a known correlate of propensity to respond to
surveys* and social media use are notably absent from Delphi-Face-
book’s weighting scheme, as is race/ethnicity. As noted before, none
of the surveys use the CDC benchmark to adjust or assess estimates
of'vaccine uptake.

Explanations for error

Table 2illustrates some consequences of these design choices. Axios—
Ipsos samples mimic the actual breakdown of education attainment
among US adults even before weighting, whereas those of Census
Household Pulse and Delphi-Facebook do not. After weighting,
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Axios-Ipsos and Census Household Pulse match the population
benchmark, by design. Delphi-Facebook does not explicitly weight
oneducation, and hence the educationbias persistsin their weighted
estimates: those without a college degree are underrepresented by
nearly 20 percentage points. The caseis similar for race/ethnicity. Del-
phi-Facebook’s weighting scheme does not adjust for race/ethnicity,
and hence their weighted sample still overrepresents white adults by 8
percentage points, and underrepresents the proportions of Black and
Asianindividuals by around 50% of their size in the population (Table 2).

The overrepresentation of white adults and people with college
degrees explains part of the error of Delphi-Facebook. The racial
groups that Delphi-Facebook underrepresents tend to be more willing
andlessvaccinatedin the samples (Table 2). In other words, reweighting
the Delphi-Facebook survey to upweight racial minorities will bring
willingness estimates closer to Household Pulse and the vaccination
rate closer to CDC. The three surveys also report that people with-
out afour-year college degree are less likely to have been vaccinated
compared to those with a degree (Table 2, Supplementary Table 1). If
we assume that vaccination behaviours do not differ systematically
between non-respondents and respondents within each demographic
category, underrepresentation of less-vaccinated groups would con-
tribute to the bias found here. However, this alone cannot explain the
discrepancies in all the outcomes. Census Household Pulse weights
onboth race and education* and still overestimates vaccine uptake
by over ten points in late May of 2021 (Fig. 1b).

Delphi-Facebook and Census Household Pulse may be unrepresenta-
tive with respect to political partisanship, which has been found to be
correlated with vaccine behaviour®and with survey response®, and thus
may contribute to observed bias. However, neither Delphi-Facebook
nor Census Household Pulse collects partisanship of respondents.
US Census agencies cannot ask about political preference, and no
unequivocal population benchmark for partisanship in the general
adult population exists.

Rurality may also contribute to the errors, because it correlates with
vaccine status®and home internet access*’. Neither Census Household
Pulse nor Delphi-Facebook weights on sub-state geography, which may
mean thatadultsinmorerural areas who are less likely to be vaccinated
are also underrepresented in the two surveys, leading to overestima-
tion of vaccine uptake.

Axios-Ipsos weights to metropolitan status and also recruits a frac-
tion of its panellists from an ‘offline’ population of individuals without
internetaccess. We find that dropping these offline respondents (n=21,
or 1% of the sample) in their 22 March 2021 wave increases Axios-Ipsos’
overall estimate of the vaccination rate by 0.5 percentage points, thereby



increasing the total error (Extended Data Table 2). However, this offline
populationistoosmalltoexplainthe entirety of the differenceinaccuracy
between Axios-Ipsos and either Census Household Pulse (6 percentage
points) or Delphi-Facebook (14 percentage points), in this time period.
Careful recruitment of panellists is at least asimportant as weighting.
Weighting on observed covariates alone cannot explain or correct the
discrepancies we observe. For example, reweighting Axios-Ipsos 22
March 2021 wave using only Delphi-Facebook’s weighting variables
(age group and gender) increased the error in their vaccination esti-
mates by 1 percentage point, but this estimate with Axios-Ipsos data
isstillmore accurate than that from Delphi-Facebook during the same
period (Extended Data Table 2). The Axios-Ipsos estimate with Delphi-
Facebook weighting overestimated vaccination by 2 percentage points,
whereas Delphi-Facebook overestimated it by 11 percentage points.
The key implication is that there is no silver bullet: every small part
of panel recruitment, sampling and weighting matters for control-
ling the data quality measured as the correlation between an outcome
and response—what we call the ddc. In multi-stage sampling, which
includes for example the selection of potential respondents followed
by non-response, biasin even asingle step can substantially affect the
final result (‘Population size in multi-stage sampling’ in the Methods,
Extended Data Table 3). A total quality control approach, inspired by
the total survey error framework®, is a better strategy than trying to
prioritize some components over others toimprove data quality. This
emphasis is a reaffirmation of the best practice for survey research as
advocated by the American Association for Public Opinion Research:®
“The quality of asurvey is best judged not by its size, scope, or promi-
nence, but by how much attention is given to [preventing, measuring

and] dealing with the many important problems that can arise.*

Addressing common misperceptions

The three surveys discussed in this article demonstrate a seemingly
paradoxical phenomenon—the two larger surveys that we studied are
more statistically confident, but also more biased, than the smaller,
more traditional Axios-Ipsos poll. These findings are paradoxical only
whenwefallinto the trap of the intuition that estimation errors neces-
sarily decrease in larger datasets™.

Alimitation of our vaccine uptake analysis is that we only examine
ddc withrespect to an outcome for which abenchmark is available:
first-dose vaccine uptake. One might hope that surveys biased on vac-
cine uptake are notbiased on other outcomes, for which there may not
bebenchmarks toreveal their biases. However, the absence of evidence
of bias for the remaining outcomes is not evidence of its absence. In
fact, mathematically, when a survey is found to be biased with respect
to one variable, it implies that the entire survey fails to be statistically
representative. The theory of survey sampling relies on statistical rep-
resentativeness for all variables achieved through probabilistic sam-
pling®.Indeed, Neyman'’s original introduction of probabilistic sampling
showed the limits of purposive sampling, which attempted to achieve
overallrepresentativeness by enforcing it only onaset of variables's*,

Inother words, whenasurveyloses its overall statistical representative-
ness (for example, through bias in coverage or non-response), which is
difficult to repair (for example, by weighting or modelling on observable
characteristics) and almostimpossible to verify*, researcherswho wish to
usethesurvey for scientific studies must supply other reasonstojustify the
reliability of their survey estimates, such as evidence about theindepend-
encebetweenthevariable of interest and the factors thatareresponsible
for the unrepresentativeness. Furthermore, scientific journals that pub-
lish studies based on surveys that may be unrepresentative’—especially
those with large sizes such as Delphi-Facebook (biased with respect to
vaccination status (Fig. 1), race and education (Table 2))—need to ask for
reasonable effort fromthe authorsto address the unrepresentativeness.

Some may argue that bias is a necessary trade-off for having data
that are sufficiently large for conducting highly granular analysis,

such as county-level estimation of vaccine hesitancy?®. Although
high-resolution inference is important, we warn that this is a
double-edged argument. A highly biased estimate with a misleadingly
small confidence interval can do more damage than having no esti-
mate atall. We further note that bias is not limited to population point
estimates, but also affects estimates of changes over time (contrary to
published guidance®). Both Delphi-Facebook and Census Household
Pulse significantly overestimate the slope of vaccine uptake relative
to that of the CDC benchmark (Fig. 1b).

The accuracy of our analysis does rely on the accuracy of the CDC’s
estimates of COVID vaccine uptake. However, ifthe selection biasin the
CDC’s benchmark is significant enough to alter our results, then that
itselfwould be another example of the Big Data Paradox.

Discussion

Thisisnot the first time that the Big Data Paradox has appeared: Google
Trends predicted more than twice the number of influenza-like illnesses
than the CDC in February 2013*, This analysis demonstrates that the
Big Data Paradox applies not only to organically collected Big Data, like
Google Trends, but also to surveys. Delphi-Facebook is “the largest
public healthsurvey ever conducted in the United States™’. The Census
Household Pulseis conducted in collaboration between the US Census
Bureau and eleven statistical government partners, all with enormous
resources and survey expertise. Both studies take steps to mitigate
selectionbias, but substantially overestimate vaccine uptake. Aswe have
shown, the effect of bias is magnified as relative sample size increases.

By contrast, Axios-Ipsos records only about 1,000 responses per
wave, but makes additional efforts to prevent selection bias. Small
surveys can be just as wrong as large surveys in expectation—of the
three other small-to-medium online surveys additionally analysed,
two also miss the CDC vaccination benchmark (Extended Data Fig. 5).
Theoveralllessonis thatinvesting in data quality (particularly during
collection, but also in analysis) minimizes error more efficiently than
doesincreasing data quantity. Of course, asample size 0of 1,000 may be
toosmall (thatis, leading to unhelpfully large uncertainty intervals) for
the kind of 50-state analyses made possible by big surveys. However,
small-area methods that borrow information across subgroups*® can
perform better with higher-quality—albeit few—data, and whether
that approach would outperform the large, biased surveysis an open
question.

Thereare approachesto correct for these biasesin both probability
and nonprobability samples alike. For COVID-19 surveys in particular,
since June 2021, the AP-NORC multimode panel has weighted their
COVID-19 related surveys to the CDC benchmark, so that the weighted
ddc for vaccine uptake is zero by design*. More generally, there is an
extensive literature on approaches for making inferences from datacol-
lected from nonprobability samples® 2, Other promising approaches
include integrating surveys of varying quality****, and leveraging the
estimated ddcin one outcome to correct bias in others under several
scenarios (Supplementary Information D).

Although more needs to be done to fully examine the nuances of
large surveys, organically collected administrative datasets and social
media data, we hope that this comparative study of ddc highlights the
concerning implications of the Big Data Paradox—how large sample
sizes magnify the effect of seemingly small defects in data collection,
whichleads to overconfidence inincorrectinferences.
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Methods

Calculation and interpretation of ddc
The mathematical expression for equation (1) is given here for com-
pleteness:

)7n—)7N:py'R><, X gy 2)

Thefirst factor p, . is called the data defect correlation (ddc)’. 1tis
ameasure of data quality represented by the correlation between the
recordingindicator R (R=1ifananswerisrecorded and R = O otherwise)
andits value, Y. Given a benchmark, the ddc p,, , canbe calculated by
substituting known quantities into equation (2. In the case of asingle
survey wave of a COVID-19 survey, n is the sample size of the survey
wave, Nis the population size of US adults from US Census estimates®,
Y, is the survey estimate of vaccine uptake andY), is the estimate of
vaccine uptake for the corresponding period taken from the CDC’s
report of the cumulative count of first doses administered to US
adults®*". We calculate g, = ./ ¥y (1- ¥y) because Yis binary (but equa-
tion (2) is not restricted to binary ¥).

We calculate g, . by using total error Y,— Yy, which captures not
only selection blas but also any measurement bias (for example,
from question wording). However, with this calculation method,
Py placks the direct interpretation as a correlation between Y'and
R,and instead becomes a more general index of data quality directly
related to classical design effects (see ‘Bias-adjusted effective sam-
plesize’).

Itisimportant to point out that the increase in ddc does not nec-
essarily imply that the response mechanisms for Delphi-Facebook
and Census Household Pulse have changed over time. The correlation
between achanging outcome and asteady response mechanism could
change over time, hence changing the value of ddc. For example, as
moreindividualsbecome vaccinated, and vaccination statusis driven
by individual behaviour rather thaneligibility, the correlation between
vaccination status and propensity to respond could increase even if
the propensity to respond for agivenindividual is constant. This would
lead to large values of ddc over time, reflecting the increased impact
of the same response mechanism.

Error decomposition with survey weights

The data quality framework given by equations (1) and (2) is a special

case of amore general framework for assessing the actual error of a
. . o 2 w,RY

weighted estimatorY,,= W ,where w;is the survey weight assigned

toindividuali. It is shown in Meng that

Yo=Yy =Py g, - xoy, @)
w

where py VR =Corr(Y,R )IS thefinite population correlationbetween

YandR,, ;= wR (overi=1,...,N).The ‘hat’ onp remlnds us that this

correlatlon depends on the specxﬁc realizationof {R,,i=1, ..., N}. The

termn,, is the classical ‘effective sample size’ due to weighting®; that

is,n,, = m where CV,, is the coefficient of variation of the weights

for all individuals in the observed sample, that is, the standard devia-
tion of weights normalized by their mean. Itis common for surveys to
rescale their weights to have mean 1, in which case CV2 is simply the
sample variance of W.

When all weights are the same, equation (3) reduces to equation (2).
Inotherwords, theddcterm ﬁy,anow also takesintoaccountthe effect
of the weights as ameans to combat the selection bias represented by
the recording indicator R. Intuitively, if Oy = Corr(Y, R) is high (in
magnitude), then some Y;’s have a higher chance of entering our data-
setthanothers, thusleading to asample average thatisabiased estima-
tor for the population average. Incorporating appropriate weights can

reduce ﬁy,Rto ﬁy,RW, with the aim of reducing the effect of the selection
bias. However, this reduction alone may not be sufficient to improve
the accuracy of ¥, because the use of weight necessarily reduces the
sampling fraction f= %to 5= "TW as well, as n,, < n. Equation (3) pre-
cisely describes this trade-off, providing aformulato assess when the
reduction of ddc is significant to outweigh the reduction of the effec-
tive sample size.

Measuring the correlation between Yand Risnotanewideainsurvey
statistics (though note that ddcis the population correlationbetween Y
andR, notthesample correlation), noris the observationthat as sample
size increases, error is dominated by bias instead of variance®*’. The
new insight is that ddc is a general metric to index the lack of repre-
sentativeness of the data we observe, regardless of whether or not
the sample is obtained through a probabilistic scheme, or weighted
to mimic a probabilistic sample. As discussed in ‘Addressing common
misperceptions’ in the main text, any single ddc deviating from what
is expected under representative sampling (for example, probabilistic
sampling) is sufficient to establish that the sampleis not representative
(but the converseisnottrue). Furthermore, the ddc framework refutes
the common belief that increasing sample size necessarily improves
statistical estimation™*,

Bias-adjusted effective sample size

By matching the mean-squared error of ¥, with the variance of the
sample average from simple random sampling, Meng' derives the fol-
lowing formula for calculating a bias-adjusted effective sample size,
Of Ng:

ne=_w 1
| Ay ]
v ]

Given an estimator Y, with expected total MSE T due to data defect,
sampling variability and weighting, this quantity n. represents the
size of a simple random sample such that its mean ¥, as an estimator
for the same population meanY,, would have theidentical MSE 7. The
term E[py R, ] represents the amount of selection bias (squared)
expected on average from a particular recording mechanism R and a
chosen weighting scheme.

Foreachsurvey wave, we use ﬁﬁ‘R toapproximate E[ﬁ)z,’R 1. Thisesti-
mation is unbiased by design, as we use an estimator to estimate its
expectation. Therefore, the only source of error is the sampling vari-
ation, which is typically negligible for large surveys such as Delphi-
Facebook and the Census Household Pulse. This estimation error may
have moreimpact for smaller surveys such as the Axios-Ipsos survey,
anissue that we will investigate in subsequent work.

We compute ﬁy,RW by using the benchmark ¥y, namely, by solving
equation (3) for ﬁy,Rw,

_)/N
I-f 4

ny Oy

Py~

Z,
here 7, =
N

We introduce this notation Z, because it is the quantity that deter-
mines the well-known survey efficiency measure, the so-called ‘design
effect’, whichis the variance of Z, for a probabilistic sampling design®
(when we assume the weights are fixed). For the more general setting
inwhich¥,, may be biased, we replace the variance by MSE, and hence
the bias-adjusted design effect D, = E[Z2], which is the MSE relative to
thebenchmark measuredin the unit of the variance of an average from
a simple random sample of size n,,. Hence D,EE[ﬁﬁ 1, which was
termed as ‘data defectindex?, is simply the bias-adjusted design effect
per unit, because D=/

Furthermore, because Z,, is the standardized actual error, it captures
anykind of errorinherited in¥,,. This observation isimportant because
| Zw nolongerhasthesimplg
interpretation as a correlation. But because we estimate D, by %




Article

directly, our effective sample size calculation is still valid even when
equation (3) does not hold.

Asymptotic behaviour of ddc
As shown in Meng!, for any probabilistic sample without selection
biases, the ddc is on the order of 1. Hence the magnitude of p, ,, (or
Py r )is smallenough to cancel oufvthe effectof VN-n (or./N-n,)in
the data scarcity term on the actual error, as seen in equation (2) (or
equation (3)). However, when asampleis unrepresentative; for exam-
ple,whenthosewith Y=1are morelikely to enter the dataset than those
withY=0,then p, ,canfarexceed LN in magnitude. In this case, error
will increase with\/N for a fixed dé; and growing population size N
(equation (2)). This result may be counterintuitive in the traditional
survey statistics framework, which often considers how error changes
as sample size n grows. The ddc framework considers a more general
set-up, taking into account individual response behaviour, including
its effect on sample size itself.

Asanexample of how response behaviour canshape bothtotal error
and the number of respondents n, suppose individual response behav-
iour is captured by alogistic regression model

logit[Pr(R=1|Y)]=a+ Y. “4)

This is a model for a response propensity score. Its value is deter-
mined by a, which drives the overall sampling fraction f= % andby g,
which controls how strongly Yinfluences whether a participant will
respond or not.

Inthis logit response model, when S0, ﬁY,R isdetermined by indi-
vidual behaviour, not by populationsize N.In Supplementary Informa-
tion B.1, we prove that ddc cannot vanish as N grows, nor can the
observed sample size n ever approach 0 or Nfor a given set of (finite
and plausible) values of {«, B}, because there will always be anon-trivial
percentage of non-respondents. For example, an f of 0.01 can be
obtained under this model for either a =-0.46, f= 0 (no influence of
individual behaviour onresponse propensity), or fora =-3.9, f=-4.84.
However, despite the samef, the implied ddc and consequently the
MSE will differ. For example, the MSE for the former (no correlation
with ¥) is 0.0004, whereas the MSE for the latter (a —4.84 coefficient
on Y)is 0.242, over 600 times larger.

See Supplementary Information B.2 for the connection between
ddc and a well-studied non-response model from econometrics, the
Heckman selection model*.

Population size in multi-stage sampling

We have shown that the asymptotic behaviour of error depends on
whether the data collection process is driven by individual response
behaviour or by survey design. The reality is often a mix of both. Con-
sequently, the relevant ‘population size’ Ndepends on when and where
the representativeness of the sample is destroyed; that is, when the
individual response behaviours come into play. Real-world surveys
thatareas complexasthethree surveys we analyse here have multiple
stages of sample selection.

Extended Data Table 3 takes as an example the sampling stages of
the Census Household Pulse, which has the most extensive set of docu-
mentation among the three surveys we analyse. As we have summarized
(Table 1, Extended Data Table 1), the Census Household Pulse (1) first
defines the sampling frame as the reachable subset of the MAF, (2)
takes arandom sample of that population to prompt (send a survey
questionnaire) and (3) waits for individuals to respond to that survey.
Each ofthese stages reduces the desired datasize, and the correspond-
ing population size is the intended sample size from the prior stage
(in notation, N, = n,_, for s=2, 3). For example, in stage 3, the popula-
tion size N, is the size of the intended sample size n, from the second
stage (random sample of the outreach list), because only the sampled
individuals have a chance to respond.

Althoughall stages contribute to the overall ddc, the stage that domi-
natesis the first stage at which the representativeness of our sample is
destroyed—the size of which will be labelled as the dominating popu-
lation size (dps)—when the relevant population size decreases mark-
edly ateach step. However, we must bearin mind that dps refers to the
worst-case scenario, when biases accumulate, instead of (accidentally)
cancelling each other out.

Forexample, ifthe 20% of the MAFs excluded fromthe Census House-
hold Pulse sampling frame (because they had no cell phone or email
contactinformation) is not representative of the US adult population,
thenthedpsis N, or 255 million adults contained in 144 million house-
holds. Thentheincrease inbias for given ddcis driven by the rate ofJW1
where N, =2.55 x10%and is large indeed (with~/2.5 x 10® =15,000). By
contrast, ifthethe sampling frameis representative of the target pop-
ulation and the outreachlistis representative of the frame (and hence
representative of the US adult population) but there is non-response
bias, then dpsis N; =10°and theimpact of ddcis amplified by the square
root of that number (W =1,000). By contrast, Axios-Ipsos reports
aresponse rate of about 50%, and obtains asample of n=1,000, so the
dps could be as smallas N;=2,000 (with /2,000 =45).

This decompositionis why our comparison of the surveys is consist-
ent with the ‘Law of Large Populations™ (estimation error increases
with-/N), even though all three surveys ultimately target the same US
adult population. Given our existing knowledge about online-offline
populations*® and our analysis of Axios-Ipsos’ small ‘offline’ popula-
tion, Census Household Pulse may suffer from unrepresentativeness
atStage1of Extended Data Table 3, where N = 255 million, and Delphi-
Facebook may suffer from unrepresentativeness at the initial stage of
starting from the Facebook user base. By contrast, the main source of
unrepresentativeness for Axios-Ipsos may be at alater stage at which
the relevant population size is orders of magnitude smaller.

CDC estimates of vaccination rates

Our analysis of the nationwide vaccination rate covers the period
between 9 January 2021 and 19 May 2021. We used CDC’s vaccination
statistics published on their datatracker as of 26 May 2021. This dataset
is a time series of counts of 1st dose vaccinations for every day in our
time period, reported for all ages and disaggregated by age group.

This CDC time series obtained on 26 May 2021 included retroac-
tive updates to dates covering our entire study period, as does each
daily update provided by the CDC daily update. For example, the CDC
benchmark we use for March 2021 is not only the vaccination counts
originally reported in March but alsoincludes the delayed reporting for
March that the CDCbecame aware of by 26 May 2021. Analyzing several
snapshots before 26 May 2021, we find that these retroactive updates
40 days out could change the initial estimate by about 5% (Extended
DataFig.3), henceinforming our sensitivity analysis of +/- 5% and 10%
benchmarkimprecision.

To match the sampling frame of the surveys we analyze, US adults 18
years and older, we must restrict the CDC vaccination counts to those
administeredtothose adults. However, because of the different way states
andjurisdictionreport their vaccination statistics, the CDC did not pos-
sess age-coded counts for some jurisdictions, such as Texas, at the time
of our study. The number of vaccinations with missing age datareached
about 10 percent of the total US vaccinations atits peak at the time of our
study. We therefore assume that the day by day fraction of adultsamong
individuals for whom age is reported as missing is equal to the fraction
ofadultsamongindividuals with age reported. Because minors became
eligible for vaccinations only towards the end of our study period, the
fraction of adults in data reporting age never falls below 97%.

Additional survey methodology

The Census Household Pulse and Delphi-Facebook surveys are the
first of their kind for each organization, whereas Ipsos has maintained
their online panel for 12 years.



Question wording

Allthree surveys ask whether respondents have received a COVID-19
vaccine (Extended Data Table 1). Delphi-Facebook and Census House-
hold Pulse ask similar questions (“Have you had/received a COVID-19
vaccination/vaccine?”). Axios-Ipsos asks “Do you personally know any-
one who has already received the COVID-19 vaccine?”, and respondents
aregivenresponse optionsincluding “Yes, I have received the vaccine.”
The Axios-Ipsos question wording might pressure respondents to
conform to their communities’ modal behaviour and thus misreport
their true vaccination status, or may induce acquiescence bias from
the multiple ‘yes’ options presented®. This pressure may exist both
in high- and low-vaccination communities, soits net effect on Axios—
Ipsos’resultsis unclear. Nonetheless, Axios-Ipsos’ question wording
does differ from that of the other two surveys, and may contribute to
the observed differences in estimates of vaccine uptake across surveys.

Population of interest
Allthree surveystarget the USadult population, but with different sam-
plingand weighting schemes. Census Household Pulse sets the denomi-
nator of their percentages as the household civilian, non-institutionalized
population in the United States of 18 years of age or older, excluding
PuertoRico or theisland areas. Axios-Ipsos designs samples to be rep-
resentative of the US general adult population of 18 or older. For Del-
phi-Facebook, the US target population reported in weekly contingency
tables is the US adult population, excluding Puerto Rico and other US
territories. For the CDC Benchmark, we define the denominator as the
US 18+ population, excluding Puerto Rico and other US territories. To
estimate the size of the total US population, we use the US Census Bureau
Annual Estimates of the Resident Population for the United States and
Puerto Rico, 2019%. This is also what the CDC uses as the denominator
in calculating rates and percentages of the US population®.
Axios-Ipsos and Delphi-Facebook generate target distributions
of the US adult population using the Current Population Survey
(CPS), March Supplement, from 2019 and 2018, respectively. Census
Household Pulse uses a combination of 2018 1-year American Com-
munity Survey (ACS) estimates and the Census Bureau’s Population
Estimates Program (PEP) from July 2020. Both the CPS and ACS are
well-established large surveys by the Census and the choice between
themiis largely inconsequential.

Axios-Ipsos data

The Axios-Ipsos Coronavirus tracker is an ongoing, bi-weekly tracker
intended to measure attitudes towards COVID-19 of adults in the US.
The tracker has been running since 13 March 2020 and has released
results from 45 waves as of 28 May 2021. Each wave generally runsovera
period of 4 days. The Axios-Ipsos data used in this analysis were scraped
from the topline PDF reports released on the Ipsos website®. The PDF
reportsalso contain Ipsos’ design effects, which we have confirmed are
calculated as 1 plus the variance of the (scaled) weights.

Census Household Pulse data

The Census Household Pulse is an experimental product of the US
Census Bureau in collaboration with eleven other federal statistical
agencies. We use the point estimates presented in Data Tables, as well
asthestandarderrors calculated by the Census Bureau using replicate
weights. The design effects are not reported, however we can calculate
it as 1+ CV2, where CV,, is the coefficient of variation of the
individual-level weights included in the microdata®.

Delphi-Facebook COVID symptom survey

The Delphi-Facebook COVID symptom survey is an ongoing survey
collaboration between Facebook, the Delphi Group at Carnegie Mel-
lon University (CMU), and the University of Maryland?. The survey
isintended to track COVID-like symptoms over time in the US and in

over 200 countries. We use only the US datain this analysis. The study
recruitsrespondents using daily stratified random samples recruiting a
cross-section of Facebook active users. New respondents are obtained
each day,and aggregates are reported publicly on weekly and monthly
frequencies. The Delphi-Facebook data used here were downloaded
directly from CMU’s repository for weekly contingency tables with
point estimates and standard errors.

Ethical compliance

According to HRA decision tools (http://www.hra-decisiontools.org.
uk/research/), our study is considered Research, and according to the
NHS REC review tool (http://www.hra-decisiontools.org.uk/ethics/),
we do not need NHS Research Ethics Committee (REC) review, as we
used only (1) publicly available, (2) anonymized and (3) aggregated
data outside of clinical settings.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Raw data have been deposited in the Harvard Dataverse, at https://
doi.org/10.7910/DVN/GKBUUK. Data were collected from publicly
available repositories of survey databy downloading the datadirectly
or using APIs.

Code availability

Code toreplicate the findings is available in the repository https://
github.com/vcbradley/ddc-vaccine-US. The main decomposition of
the ddcis available on the package ‘ddi’ from the Comprehensive R
Archive Network (CRAN).
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Fig.3for details on the degree of retroactive updates we could expect, and
Supplementary Information A.2 for details.
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Information D for more details.
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Pollasks “Which of the following best describes your mindset when it comes to
getting the COVID-19 vaccine when it becomes available to you?”.

YouGov surveys are not analysed because they explicitly examined how their
surveys tracked CDC vaccine uptake. See Supplementary Information C.3 for
the sampling methodology of each survey and discussion of differences.
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the total number of vaccinations in the US. Therefore, we calculate the bounds
by allocating all the vaccine doses for which age is unknown to either 18-64 or
65+.b, Unweighted ddcfor each Delphi-Facebook and Census Household
Pulse calculated for the 18-64 group using the bounds on the CDC’s estimates
of uptake. ddcfor 65+is not shown due to large uncertainty in the bounded
CDCestimates of uptake.
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Extended Data Table 1| Methodologies of Axios-Ipsos, Census Household Pulse and Delphi-Facebook studies

Axios-Ipsos

Census Household Pulse

Delphi-Facebook

Measure national attitudes

Sub-national social and

Fine-grained COVID-19

Purpose economic impact of .
toward COVID-19 COVID-19 symptom surveillance
Target Pop. 18+ US general pop 18+ US general pop 18+ US general pop
Length of wave 4 days, conducted weekly 2 weeks Daily cross-section samples,
reported weekly
Average
participation 5 6-8% 1%
rate among
invitees
. . Systematic sample of e .
San.lplmg InversF: response propensity households, adjusted for a Unequal-probability stratified
design sampling . random samples
projected response rates
Hesitancy / “How likely, if at all, are you . Once a vaccine preventin “If a vaccine to prevent
srancy to get the first generation . P £ COVID-19 were offered to
Willingness . COVID-19 is available to
. COVID-19 vaccine, as soon " you today, would you choose
question ., . . you, would you... . “
as it’s available to get vaccinated?
Vaccine . .
hesitancy “Not very / at all likely” Deﬁmtely/P’r’oba‘l‘aly NOT, “No, definitely/probably not”
get a vaccine” or “Unsure
responses
English, Spanish, Brazilian
Languages English and Spanish English and Spanish Portuguese, Vietnamese,
French, and Chinese
Report MoE or Report standard errors for Report standard errors for
. Both estimates from replicate estimates (does not include
design effect . . s
weights variance from weighting)
Sources for 2019 CPS March
demographic Supplement, party ID from 2018 ACS, 1-year estimates 2018 CPS March Supplement
benchmarks recent ABC/WaPo polls




Extended Data Table 2 | Contribution of offline recruitment and weighting schemes to discrepancies between surveys

Vaccinated Hesitant

Raw Weighted Weighted Sample size

Axios-Ipsos Survey

only Offline Panelists 19% 13% 64% 21
only Online Panelists 43 37 30 974
with Ipsos Weights 42 36 30 995
with Delphi-implied Weights 42 37 29 995

Delphi-Facebook Survey
with Delphi Weights 42% 46% 37% 249,954

A portion of each Axios-Ipsos wave is recruited from a population with no stable internet connection; Ipsos KnowledgePanel provides tablets to these respondents. In the Axios-Ipsos

22 March 2020 wave, the offline panellists (n = 21) were 24 percentage points less likely to be vaccinated than online panellists (n = 974). Weighting the same Axios-Ipsos data (n = 995) to the age
and gender target distribution implied by Delphi-Facebook’s weights make the vaccination estimates higher by 1 percentage point. However, this number is still lower than Delphi-Facebook’s
(responses from 14-20 March 2020, n = 249,954) own estimate of 46%. During this time period, the CDC benchmark vaccination rate was 35.2%. This suggests that the recruitment of offline
respondents and different weighting schemes each explains only a small portion of the discrepancy between the two data sources.
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Extended Data Table 3 | Example of multi-stage population selection

Stage Population NV Sampling Process — Data n fs=ng/Ng
1. Define frame 144 m hh Subset to reachable address 116 m hh 80%

2. Decide outreach list 116 m hh Random sample 1 m adults 1%

3. Individual behavior 1 m adults Individual responds (or doesn’t) 75,000 7%
Final ~ 255 m adults 75,000 adults 0.03%

The law of large populations described in the Methods section ‘Population size in multi-stage sampling’ shows that the population size at the sampling stage at which simple random sampling
breaks down will dominate the error. This table explains these stages with a concrete example, using the Census Household Pulse. Population and sample sizes for three stages (stage number
denoted s =1, 2 or 3) of sampling of the Census Household Pulse survey data collection process. Approximate sample sizes based on the 24 March 2021 wave. ‘m’ stands for millions and ‘hh’
stands for household. The final row compares the total adult population in the US (255 million adults, made up of 144 million households) to the sample size in one wave of the household pulse.
For illustration, we have ignored the effect of unequal sampling probabilities on the sample sizes at each stage.
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We analyze publicly available data from three surveys (available as microdata or summary statistics on their respective websites). An archive of the data we analyze
is deposited in the Harvard Dataverse: https://doi.org/10.7910/DVN/GKBUUK. Delphi-Facebook provides summary statistics at https://www.cmu.edu/delphi-web/
surveys/weekly-rollup/. Census Household Pulse provides microdata at https://www.census.gov/programs-surveys/household-pulse-survey/datasets.html. Axios-
Ipsos provides microdata at https://covid-19.parc.us.com/client/index.html#/search. The CDC benchmark is available at https://covid.cdc.gov/covid-data-tracker.
The offline indicator of the Axios-Ipsos survey was provided to us and is included with permission in our Harvard Dataverse deposit.
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description The data are survey responses sampled by external organizations. It is quantitative in nature.

Research sample We analyzed surveys by Delphi-Facebook, the Census Household Pulse, and Axios-Ipsos, and provide additional results comparing
Data for Progress, Harris Poll, Morning Consult, and YouGov. We also analyzed administrative data on COVID-19 vaccinations
reported by the CDC.

Sampling strategy The three main surveys we analyzed were picked due to their frequency, large sample size, availability of summary statistics or
microdata, large sample size, prominence in journalistic coverage and academic research, and the mode (online). The sampling
strategies of each particular survey organization took is the main focus of the article and described in Table 1.

Data collection We collected the survey data using download links and APIs from external, publicly available sources as described in the Data
Availability Statement. The data collection strategies each particular survey organization took is the main focus of the article and
described in Table 1.

Timing We analyzed the survey waves taken from January 2021 to mid-May 2021.
Data exclusions No data exclusions were made.
Non-participation We take the survey estimates provided by the external providers as is and analyze its representativeness. The nature of the non-

participation is a main focus of our methodological article.

Randomization The surveys we analyzed are based in part on random samples; shortcomings are discussed in our methodological article.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology & |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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