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Next-generation sequencing technologies have revolutionized
our ability to read sequence information at the genome and
transcriptome levels in a high-throughput manner. However,
genetic screening at a large or genomic scale remains
challenging in plants. Recently, the RNA-guided CRISPR-Cas
nucleases have been optimized for high-throughput functional
genomic screens combined with guide RNA (gRNA) libraries in
plants. This approach has shown great promise in facilitating
genetic screening, directed evolution, and quantitative trait
engineering. However, this technology is still in its infancy. In
this short review, we describe the recent progress in gRNA
library-based CRISPR screens in plants. We provide a critical
assessment of the current approaches and emerging delivery
methods for CRISPR screens. We also highlight the challenges
and present future perspectives on CRISPR screens in plants.
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Introduction

The exponential increase of assembled plant genomes
inspires the development of more effective functional
genomic approaches to define gene function. Sequence-
specific nucleases (SSNs), in particular, the type-II
clustered regularly interspaced short palindromic repeats
(CRISPR) and clustered regularly interspaced short

palindromic repeats-associated protein 9 (Cas9) [1] and
Cas12a (formerly Cpfl) [2] have emerged as promising
genetic  perturbation systems. DNA double-strand
breaks (DSBs) are induced by SSNs (e.g. CRISPR/Cas9)
(Figure 1a) and predominately repaired by non-
homologous end-joining (NHE]) [3]. NHE]-introduced
insertions and deletions (indels) can result in a frame-
shift that likely introduces a premature stop codon.
Owing to the ease of designing, gRNA targeting almost
all genome loci can be quickly synthesized. Therefore,
gRNA library-based CRISPR/Cas systems have been
quickly adopted for high-throughput loss-of-function
screens even on a genome-wide scale [4,5].

Recently, DSB-independent CRISPR-based methods
such as CRISPR-mediated base editing (Figure 1a) [6,7]
and prime editing (Figure 1a) [8] technologies have been
developed to generate nucleotide variation in the
genome. T'wo major classes of base editors, cytidine base
editors (CBEs) [7] and adenine base editors (ABEs) [6]
(Figure 1a), have been shown to introduce base con-
versions within a defined nucleotide window. CBEs and
ABEs resulting from the fusion of nickase Cas9 (nCas9,
Cas9D10A) with either the cytidine deaminase (e.g.
APOBECI1, BE3) or the adenine deaminase (e.g. TadA,
ABE) enable programmable CeG-to-T®A or AeT-to-
GeC conversion, respectively. Prime editing is a recent
genome editing technology that is composed of a
Cas9H840A nickase, an engineered reverse transcriptase
domain, and a prime editing guide RNA (pegRNA) [8]
(Figure 1a). Prime editors (PEs) can introduce all 12
types of base-to-base conversions, and install small in-
sertions and deletions in a precise and targeted manner
without donor DNA templates.

Beyond genome editing, CRISPR/Cas systems have
been engineered as a programmable RNA-guided plat-
form for transcription regulation [9,10] (Figure la). A
catalytically inactive Cas protein (dCas) that lacks DNA
cleavage activity but remains competent for RNA-
guided DNA binding is utilized in CRISPR/dCas sys-
tems for various purposes. Functional units such as
transcriptional activators and repressors can be fused to
dCas protein, enabling efficient CRISPR-mediated
transcriptional activation (CRISPRa) and interference
(CRISPRI), respectively [9] (Figure 1a).
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These new CRISPR/Cas systems have further broa-
dened the capabilities of CRISPR screens in the life
sciences. One of the most appealing features of
CRISPR/Cas-mediated genetic screens is that the un-
ique gRNAs can serve as barcodes, which enable the
rapid connection between the phenotype and genotype,
a central goal that has been pursued through either for-
ward or reverse genetic screens. Here, we provide a
succinct overview of the advances of CRISPR screens in
plant research. We also discuss the current challenges

and potential perspectives for future improvements in
CRISPR screening.

Libraries and CRISPR screens strategies

Two popular CRISPR/Cas genetic screens have been
conducted in previous studies [5,11], arrayed (Figure
1b), or pooled screens (Figure 1c). In the arrayed
screens, individual CRISPR reagents were separately
prepared and introduced into the culture well of a
multiwell plate (Figure 1b). The arrayed screens are
typically low throughput and labor-intensive. Another
disadvantage is that the studies based on arrayed screens
are mainly limited to the cellular level. These short-
comings have prevented the wide application of arrayed
screens in plant research.

Compared with the arrayed screens, the CRISPR-based
pooled screens have been adopted in high-throughput
functional screens in plants in proof-of-concept studies
[12,13]. In pooled screens, in silico-designed gRNAs
targeting multiple genes are synthesized as a pool of
oligonucleotides (gRNA library) [12-14] (Figure 1c).
The gRNA sequences can serve as barcodes for the li-
brary screening readouts. These oligonucleotides are
then cloned into expression vectors to generate a pooled
plasmid library. In plant research, the pooled library is
typically transformed into Agrobacterium cells and then
used to create a large mutagenized population by Agro-
bacterium  tumefaciens-mediated transformation [12,13].
Next, genotypes of all transgenic lines or those with the
phenotypes of interest are analyzed by first sequencing
across the gRNA-containing T-DNA regions to identify
the corresponding single-guide RNAs (sgRNAs) and
then sequencing the corresponding genomic target re-
gions using NGS (next-generation sequencing) to figure
out the genotype (Figure la and b). Significant enrich-
ment of specific gRNAs indicates the causal links be-
tween the targeted genes and phenotypes of interest.

CRISPR/Cas screens for high-throughput
functional genomics

Genome-scale functional genomics screening allows a
high-throughput identification of the causal links

CRISPR screens in plants Pan et al. 3

between genotypes and phenotypes (Figure 2a). Two
studies have successfully used CRISPR/Cas9 for
genome-wide functional screens in rice (Oryza sativa)
[12,13] (Table 1). Lu et al. generated a pooled library of
88 541 gRNAs targeting 34 234 genes [12]. A total of 84
384 Ty transgenic lines with around 80% targeted mu-
tagenesis frequency were generated. Phenotypic altera-
tions in fertility, growth, tiller angle, and leaf color were
observed in T plants grown in the field. Similarly, Meng
et al. constructed a pooled library of 25 604 gRNAs
targeting 12 802 genes highly expressed in rice shoot
tissue [13]. In addition, small-scale CRISPR-based
functional genomics screening has been executed in
tomato (Solanum lycopersicum) [15], soybean (Glycine max
(LL.) Merr.) [16], and maize (Zea mays) [17] with pooled
libraries of 165, 70, and 1368 gRNAs, respectively
(Table 1). More recently, Chen et al. developed a
FLLASH pipeline for high-throughput genetic screening
of 1072 members of the receptor-like kinase family in
rice using an arrayed CRISPR library [18] (Table 1).

These proof-of-concept studies provide a workflow for
performing  CRISPR-based  functional  genomics
screening in plants (Figure 2a), highlighting the flex-
ibility and scalability of CRISPR screens. Unlike the
conventional random mutagenesis methods, target genes
can be customized in CRISPR screens, from a few gene
family members to all annotated genes in a genome.

CRISPR/Cas screens for directed evolution
Genetic variants lead to genetic diversity, contributing to
trait evolution and crop domestication [19]. Con-
ventionally, natural mutations or physical and chemical
mutagenesis randomly induce genectic variations. By
contrast, CRISPR/Cas-based directed evolution is effi-
cient and powerful as mutations are induced directly at
the target gene, instead of randomly at the whole
genome [20,21] (Figure 2b). Using clustered regularly
interspaced  short  palindromic  repeats  knockout
(CRISPRko) approach, Butt et al. successfully induced
variants of the spliceosome component SF3B1 for re-
sistance to splicing inhibitors [22] (Table 1). A pooled
library of 119 gRNAs representing all protospacer-ad-
jacent motif sites in the whole coding sequence of
SF3B1 was employed. Since CRISPR/Cas nucleases
predominantly introduce indels rather than nucleotide
substitutions, they are not most suitable for directed
protein evolution.

However, CRISPR-derived base editors enable precise
conversion of individual nucleotides within editing win-
dows [23,24], making them better tools for directed evo-
lution (Figure 2b). Combined with gRNA libraries, base
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6 Plant Biotechnology

editors allow high-throughput protein variant screening at
endogenous locus. Several groups have applied these
tools to the directed evolution of herbicide-tolerance
genes such as ACETOLACTATE SYNTHASEI (OsALST)
[25-27], 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE
SYNTHASE (EPSPS) (27], and ACETYL-COENZYME A
CARBOXYLASE (OsACC) |28,29] ('Table 1). Either CBEs
or ABEs, when applied in isolation, can only confer one
type of base transition that is C-to-T or A-to-G. To di-
versify the base editing outcomes, Li et al. developed a
dual cytosine and ABE system with a demonstration of
near-saturation mutagenesis of the carboxyltransferase
domain of OsACC using a pooled library of 200 gRNAs
[29] (Table 1).

To confer targeted saturation mutagenesis, one could
use PEs. A recent study applied PE-based library
screening to the directed evolution of OsACC in rice [30]
using a total of 64 pegRNAs conferring all possible
amino acid changes of a targeted three-nucleotide unit
(Table 1). These reports indicate that base editors and
PEs would greatly facilitate direct evolution and trait
improvement for agriculture (Figure 2b).

CRISPR/Cas screens for quantitative trait
engineering

Noncoding cis-regulatory elements control gene expres-
sion and play a central role in the evolution of quanti-
tative traits [31]. CRISPR/Cas screens can generate
diverse cis-regulatory alleles in a high-throughput
manner, contributing to crop domestication and quanti-
tative trait engineering (Figure 2c). Wang et al. em-
ployed CRISPR/Cas9 with eight sgRNAs targeting the
cis-regulatory sequences of S/ICLV3 (CLAVATA3) and
SIWUS (WUSCHEL) promoters, respectively, generating
a range of quantitative variations of stem cell prolifera-
tion and fruit size in tomato [32,33] (‘Table 1) (Figure
2¢). Similarly, Liu et al. used CRISPR/Cas9 with nine
sgRNAs to edit the cis-regulatory regions of CLE (CLA-
VATA3/ESR-RELATED) promoter in maize, resulting in
weak promoter alleles of CLLE and enhanced grain-yield-
related traits [34] (Table 1). By screening the cis-reg-
ulatory regions of WOX9 (WUSCHEL HOMEOBOX?9)
promoter using CRISPR/Cas9 with eight sgRNAs, the
Lippman’s group further revealed the hidden pleiotropic
roles of WOXY in vegetative and reproductive develop-
ment in tomato [35] (Table 1). Comparing with the ca-
nonical sgRNA library-based CRISPR screens, these
studies represent a new kind of CRISPR screen since
multiplexed sgRNA expression was used to generate a
library of promoter editing events with large deletions
and inversions [32-35] (Figure 2c). By contrast, in rice,
one group utilized a tiling-deletion-based screen for the
cis-regulatory regions of /PA7 (IPAl-interacting protein
1) via CRISPR/Cas9 with a pooled library of 39 sgRNAs
[36] (Table 1). They identified one allele with a certain

cis-regulatory region deletion that can increase both pa-
nicle number and size, leading to enhanced rice yield
[36]. These studies, despite with limited scope and re-
solution, have demonstrated CRISPR/Cas-based screens
on cis-regulatory elements as a promising approach for
rapidly developing quantitative traits in crop domes-
tication and breeding.

Agrobacterium-mediated delivery is the most
promising method for pooled clustered
regularly interspaced short palindromic
repeats screens in plants

An effective and universal method of delivering
CRISPR reagents is essential for the high-throughput
application of CRISPR-Cas screens in plants. For deli-
vering the pooled CRISPR libraries in plants, only
Agrobacterium  tumefaciens-mediated transformation has
been demonstrated in previous reports [5] (Table 1)
(Figure 1c). This is because an individual cell/plant re-
ceives only one T-DNA integration from A. tumefaciens
most times, which allows for establishing a simple
linkage between genotype and phenotype (Figure 2a).
By contrast, nonbiotic delivery methods such as poly-
ethylene glycol and biolistic delivery are not suitable for
large-scale gRNA library-based screens unless they
provide a solution to meet the one or few gRNAs per cell
requirement. However, Agrobacterium-mediated trans-
formation is limited to a narrow range of plant species,
and it may not work for all genotypes with one plant
species [37]. Developing efficient Agrobacterium-medi-
ated transformation protocols for recalcitrant plant spe-
cies or genotypes is needed. On the other hand,
Agrobacterium-mediated stable transformation generally
takes a long period for the whole plant regeneration from
the transformed tissues or cells [37]. Therefore, new
techniques and approaches for accelerating or avoiding
tissue culture are needed before CRISPR screens to
reach their full potential. Encouraging progresses have
been reported on co-expression of plant growth reg-
ulators [38,39] or direct activation of the endogenous
growth regulators using CRISPR-Combo that enables
orthogonal gene activation and editing [40].

Virus-mediated delivery can be used for
arrayed CRISPR screens

To overcome the tissue culture bottleneck, plant virus-
induced genome editing technologies have been devel-
oped, enabling delivering CRISPR reagents to generate
germline mutations (Figure 3a). Ellison et al. first suc-
cessfully generated efficient multiplexed heritable gene
editing using an engineered Tobacco rattle virus (TRV)
via increasing the mobility of gRNAs by fusing gRNA
with a truncated flowering Locus T (F'T') in Nicotiana
benthamiana [41]. Following this, a fusion of tRNA iso-
leukine (c(RNA™Y) to sgRNA has been shown to induce
highly efficient heritable gene knockout and base
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Representative CRISPR reagent delivery in plants. (a) Plant virus- and nanoparticle-mediated delivery of CRISPR reagents into intact plants. Dash line
indicates that nanoparticle-based CRISPR reagent delivery has not been demonstrated yet. (b) Plant virus and nanoparticle could be used for arrayed
CRISPR reagents in plants. (c) Agrobacterium-mediated delivery represents the most promising method for pooled CRISPR screens. The figure was

created with BioRender.

editing outcomes in Arabidopsis using TRV delivery
[42,43]. Besides dicots, the other two studies achieved
up to 100% heritable editing in monocot wheat using
Barely stripe mosaic virus (BSMV) [44,45]. All these stu-
dies used positive-strand RNA viruses to deliver
CRISPR gRNAs to transgenic plants expressing Cas9 or
CBE (Figure 3a). Therefore, there are still limitations to
employing positive-strand RNA viruses such as TRV
and BSMV to achieve germline mutations in plants
without demonstrated stable transformation procedures.

Ma et al. recently successfully delivered the entire
CRISPR/Cas9 components into Nicotiana benthamiana and
achieved highly efficient DNA-free genome editing by
using Sonchus yellow net rhabdovirus (SYNV), a negative-
strand RNA virus [46]. SYNV has a large cargo capacity and
ensures the success of delivering the whole CRISPR/Cas9
system in plant cells, which cannot be achieved in most
DNA viruses or positive-strand RNA viruses with limited
capacity for delivering DNA/RNA fragments [46]. It is
worth noting that SYNV-mediated DNA-free germline
editing is still dependent on tissue culture regenerated
plants from virus-infected tissues [46].

The virus-based delivery tools are still limited by tissue
culture at a certain level, however, promise to make

them perform germline editing for arrayed CRISPR
screens in plants (Figure 3b). In the future, technological
advances on viruses that prevent co-infection or sub-
sequent infection in host cells will pave the way toward
pooled gRNA library-based CRISPR screens in plants.

Nanoparticle-mediated delivery may be used
for arrayed CRISPR screens

Recent breakthroughs in nanomaterial synthesis have
enabled nanoparticles to deliver DNA/RNA reagents to
intact plants for genetic engineering applications [47-49]
(Figure 3a). Compared with conventional delivery
methods, nanomaterials enable the delivery of functional
biomolecules to previously inaccessible plant tissues and
organelles in a DNA integration-free and species-in-
dependent manner [47-49]. Although nanoparticle-
mediated DNA/RNA delivery has been applied in a
wide range of plant species, including cotton, tobacco,
arugula, wheat, Arabidopsis, and maize [50,51], nanoma-
terial-mediated CRISPR reagent delivery in plants has
not yet been reported. The major challenges are the
large size and unique physicochemical properties of the
CRISPR/Cas complex where attaching Cas protein with
nanomaterial is not stable or efficient [50]. There are
clear barriers hindering nanoparticle delivery for high-
throughput CRISPR screens. By overcoming these
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barriers, nanoparticles could play a critical role in facil-
itating arrayed CRISPR screens to realize their full po-
tential in plant genetic engineering (Figure 3b).

Conclusions and perspectives

High-throughput CRISPR screens as a game-changing
approach could potentially revolutionize basic and applied
research in plants. Four classes of CRISPR-Cas-derived
screening  strategies, including targeted gene knockout
[12,13,15-17,22], base editing [25-27], prime editing [30],
and transcriptional regulation [9], are currently available for
genome-scale screening. They are typically com-
plementary, thus, the combinatorial CRISPR screens [40]
further offer an opportunity to comprehensively under-
stand plant functional genomics. With the robust CRISPR-
Act3.0 gene activation system, gain-of-function CRISPR
screen should soon be realized in plants (Figure 2d). Fur-
thermore, the combination of single-cell sequencing with
CRISPR screens allows for high-resolution characterization
of the causal gene regulatory network at the single-cell
level [52]. Currently, the Agrobacterium-mediated delivery
represents the most promising method for gRNA library-
based CRISPR screens in plants (Figure 3c). However,
cach strategy comes with its inherent capabilities and
limitations. Further improvements in development of
species-independent CRISPR reagent delivery methods
and improving their editing capabilities are most critical to
achieving the full potential of CRISPR screens. Taken
together, the gRNA library-based CRISPR screening is
leading us into a new era, and the continued efforts to
improve these CRISPR screening approaches will un-
doubtedly benefit crop improvement and future agri-
culture.
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