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The fast flavor instability (FFI) is expected to be ubiquitous in core-collapse supernovae and neutron star

mergers. It rapidly shuffles neutrino flavor in a way that could impact the explosion mechanism, neutrino

signals, mass outflows, and nucleosynthesis. The variety of initial conditions and simulation methods

employed in simulations of the FFI prevent an apples-to-apples comparison of the results. We simulate a

standardized test problem using five independent codes and verify that they are all faithfully simulating the

underlying quantum kinetic equations under the assumptions of axial symmetry and homogeneity in two

directions. We quantify the amount of numerical error in each method and demonstrate that each method is

superior in at least one metric of this error. We make the results publicly available to serve as a benchmark.

DOI: 10.1103/PhysRevD.106.043011

I. INTRODUCTION

Neutrinos energize the explosions of massive stars and

drive outflows from neutron star mergers and protoneutron

stars. In both systems, interactions between neutrinos and

outflows determine the elements that form and enrich the

Universe [1–4]. Furthermore, electron-flavor neutrinos and

antineutrinos interact more strongly with matter than other

flavors due to the large masses of muons and taons, and it is

effectively only this flavor of neutrino that is able to convert

neutrons to protons and vice versa. The fact that neutrinos

can change their flavor in flight yields a complicated

relationship between neutrino flavor and observable prop-

erties of supernovae and compact object mergers (see

Ref. [5] for a recent review).

Interactions between neutrinos and other neutrinos are

expected to drive rapid and nonlinear evolution of neutrino

flavor in these extreme astrophysical environments. A rich

variety of flavor transformation phenomena have been

found resulting from the mean-field neutrino quantum

kinetic equations, including collective flavor transforma-

tions [6], the matter-neutrino resonance [7], the neutrino

halo effect [8], collisional instability [9], and more. In this

work, we focus on the fast flavor instability (FFI) [10,11],

another flavor transformation mechanism that has the

potential to drive neutrino flavor change in particularly

important regions that are inaccessible to other flavor

transformation phenomena. In a supernova, this instability

is expected to be present above the shock front, beneath the

shock front, and in the convecting protoneutron star (see

Ref. [12] and references therein). Following a neutron star

merger, the FFI is expected to be ubiquitous near and inside

the resulting accretion disk, precisely where the generation

of the Universe’s heavy elements is thought to occur

[13–16].

While instability of a distribution can be determined

analytically [17–25], numerical simulations are as of yet

required to determine the fate of the distribution after the

instability saturates (though see Refs. [26–28] for analytical

work on restricted classes of models). Unfortunately, the

spatial and time scales on which the instability operates

(sub-centimeter, sub-nanosecond) are much shorter than

the scales of the explosive processes they affect (tens of

kilometers and seconds), so direct global simulation of the

neutrino quantum kinetics in the full system is, to put it

lightly, presently not possible. In order to begin searching

for a solution to this conundrum, one can pluck out a small

piece of the explosion—i.e., small enough that the neutrino

and matter fields look approximately homogeneous—and

simulate the instability in that domain only.
*
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To this end, several methods of simulating the FFI have

arisen in recent years, each carrying their own set of

assumptions and numerical techniques. For simplicity,

many calculations impose symmetries in spatial, momen-

tum, or flavor degrees of freedom. Since the neutrino-

neutrino interactions driving the FFI do not depend on

neutrino energy, it is overwhelmingly common to integrate

out the neutrino energy so that the momentum space has at

most two direction dimensions. Many early calculations

were performed in a beam model, in which all neutrinos

are moving in one of two directions [29–31]. The neutrino

line model, useful for its geometric simplicity, is an initial-

value problem that assumes homogeneity and isotropy

in one Cartesian direction and allows inhomogeneity and

anisotropy in the other (the third spatial dimension is the

direction along which the calculation progresses) [32–35].

One can alternatively assume that the neutrino distribution

remains axially symmetric around some direction, usually

taken to be the radial direction for application to a core-

collapse supernova, and impose homogeneity or periodic

boundary conditions [26,27,36–52]. Most methods assume

two neutrino flavors for simplicity, but there are a growing

number of three-flavor simulations of the FFI [48,52–55].

There are relatively few methods that account for all of the

angular degrees of freedom [53,55,56] (though see similar

calculations of the multi-azimuthal-angle instability [57–

59]), and this has only recently been combined with a

treatment of two [60] and three [54] spatial dimensions.

There are as many choices of initial conditions as there

are codes. Given the increasing complexity of the codes,

there is a need to understand which aspect of the results

are a result of numerical approximations and which

are physical results of the evolution equations. Lacking

physical data against which to directly validate results, a

common approach is to verify that each code is faithfully

solving the differential equations via a comparison between

codes (e.g., Refs. [61–65]). Such comparisons will be

increasingly important in the future as the physics included

in simulations becomes more sophisticated (e.g., collisions

[9,31,47,66] and matter inhomogeneities [49]).

In this work, we demonstrate good agreement between

several codes in the literature on a standardized test

problem in one spatial dimension, axial symmetry in

momentum space, and two neutrino flavors. In Sec. II,

we summarize the salient features of each simulation

method compared in this work. We describe our carefully

defined test problem in Sec. III and show the results of the

simulations in Sec. IV. Finally, we summarize and provide

some discussion in Sec. V. The numerical data presented

here are available at Ref. [67].

II. METHODS

In this work, we assume the mixing of two neutrino

flavors, e and x. The flavor state of a neutrino can

be described either in terms of the polarization vector

P ¼ ðP1; P2; P3Þ or the density matrix ρ, where the

polarization vector components are defined as

P1 ≔ TrðρσxÞ ¼ 2ReðρexÞ;
P2 ≔ TrðρσyÞ ¼ −2ImðρexÞ;
P3 ≔ TrðρσzÞ ¼ ρee − ρxx; ð1Þ

and σi are Pauli matrices. We collectively refer to the

flavor-coherent components of the polarization vector with

the complex quantity S ¼ P1 − iP2.

For the sake of a common test problem, we assume the

neutrino distributions remain axially symmetric around ẑ
and are homogeneous along x̂ and ŷ. The direction of a

neutrino with velocity v⃗ is then specified by u ¼ v̂ · ẑ.
Under these assumptions, the neutrino distribution evolves

according to the quantum kinetic equation

ð∂t þ u∂zÞρ ¼ −i½H; ρ�; ð2Þ

or equivalently,

ð∂t þ u∂zÞP ¼ H × P: ð3Þ

We neglect contributions from non-neutrino interaction

sources and from the neutrino mass to focus on the pure

FFI. Furthermore, we assume ρ̄ ¼ ρ� for antineutrinos

(discussed below), so that

Hðz; uÞ ¼
Z

1

−1

du0ð1 − uu0Þ½μgðu0Þ − μ̄ḡðu0Þ�ρðz; u0Þ: ð4Þ

In the above expression, μ ¼
ffiffiffi

2
p

GFnν is the characteristic
strength of the Hamiltonian, where GF is the Fermi

coupling constant and nν is the total number density

of all neutrino flavors (and similarly for μ̄ for antineutri-

nos). gðuÞ and ḡðuÞ describe the angular distribution

of the neutrinos and antineutrinos with normalization
R

dugðuÞ ¼
R

duḡðuÞ ¼ 1. H follows the same vector

representation as the density matrix in Eq. (1).

Although not all of the codes in thisworkmake all of these

assumptions, the initial conditions are carefully constructed

such that the simulations are logically equivalent to this form

of the equations. In particular, the self-interaction contribu-

tion to the Hamiltonian considered here obeys H̄ ¼ −H�,
implying that ∂tðρ − ρ̄�Þ ¼ 0. If ρ ¼ ρ̄� is true in the initial

conditions, it remains true throughout the simulation up to

numerical error. Axial symmetry is also enforced in the

initial conditions for codes that do not assume it.

A. EMU

EMU is a particle-in-cell method for simulating neutrino

flavor transformation in a periodic box. The neutrino

radiation field is represented by a large number of indi-

vidual computational particles. Each particle carries with it
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the number of physical neutrinos N and antineutrinos N̄ it

represents, the density matrix ρab (ρ̄ab) common to each

(anti)neutrino in the computational particle, the position r⃗,
and the momentum p⃗ of each (anti)neutrino. Each particle

contributes to the number density and number flux vector

stored on a background Cartesian grid, which is then used

to determine the Hamiltonian for each individual particle.

The particles are integrated forward in time using that

Hamiltonian and translating at the speed of light. The full

PIC implementation uses a second-order shape function

and an unsplit fourth-order Runge-Kutta time integrator.

Further details are described in Ref. [53], and the code is

publicly available [68].

B. NuGas

NuGas is a PYTHON package that computes collective

flavor oscillations of dense neutrino media. The F2E0D1A

module, which is used in this comparison, implements

simple quadrature rules (the composite Simpson rule

in this case) for the integration over the neutrino angular

distributions and the Lax42 algorithm, a high-precision

variant of the two-step Lax-Wendroff method developed by

Joshua Martin [40,69], for spatial differentiation and

temporal integration. The details of the Lax42 algorithm

are explained in Ref. [42]. NuGas is publicly available

through GitHub [70].

C. COSEν

The COSEν code used in Ref. [50] evolves the compo-

nents of the density matrix discretized in space and the

polar angle assuming azimuthal symmetry with two differ-

ent methods for the advection. The COSEν-FD version

evaluates advection terms using a fourth-order finite-

difference method with third-order Kreiss-Oliger artificial

dissipation. The COSEν-FV version adopts a finite-volume

method with seventh-order WENO reconstruction to evalu-

ate advection terms. In both versions, the time evolution is

performed with a fourth-order Runge-Kutta scheme. The

code is publicly available at [71], and detailed description

of the code structure, test results, and performance is

documented in Ref. [72].

D. Bhattacharyya et al.

The Bhattacharyya code used in Refs. [27,60,73] is

written in PYTHON. The main principle behind this numeri-

cal setup is to convert a set of coupled nonlinear partial

differential equations to a set of coupled nonlinear ordinary

differential equations. The code discretizes space (r⃗) and
momentum direction (v⃗) into equally spaced bins, and thus

converts the set of coupled nonlinear partial differential

equations into a same set of ordinary differential equations

(ODE) as a function of time for each ðr⃗; v⃗Þ pair. The

number of discretized bins is chosen to obtain sufficient

accuracy and precision, as well as to trigger as many

Fourier modes as possible, especially the unstable ones

within limited CPU hours. The total set of ODEs are solved

in a finite spatial domain as a function of time using Zvode

solver, a variable-coefficient differential equation solver in

SciPy [74], which implements the backward differentiation

formula for numerical integration. The code uses the fast

Fourier transformmethod implemented in the SciPy.fftpack.diff

package to calculate the gradient term at each spatial

location. The differential equation solver adapts the time

step based on target relative and absolute errors. The

integrator in this simulation was allowed a relative and

absolute error of 10−12 for 0 ≤ t ≤ 1474μ−1 and a relative

and absolute error of 10−9 for 1474 ≤ t ≤ 5000μ−1. The

change was made to speed up the calculation while

maintaining acceptably low errors.

E. Zaizen et al.

The Zaizen code evolves the Fourier components of the

polarization vector discretized in wave number and neu-

trino direction with a fourth-order Runge-Kutta scheme in

time. This code adopts a pseudospectral method in evalu-

ating the advection term and computes the nonlinear mode-

coupling term in the Hamiltonian using the fast Fourier

transformation implemented in the FFTW3 library [75]

according to the convolution theorem. To align the simu-

lation setup with others, initial conditions are first built on

configuration space and then converted into Fourier space.

The spatial Fourier modes are discretized by the inverse

of the simulation box size L in this work (by vacuum

frequency in a recent application [52]). Also, this code

adopts the Gauss-Legendre quadrature for the angular

integration and arranges the angular distribution on the

roots of Legendre polynomials.

III. PROBLEM DESCRIPTION

Here, we define a common test problem to simulate

based on the neutrino distributions in Refs. [40,50] and

specify initial perturbations with a random spectrum in

order to seed the growth of the fast flavor instability. All

codes use the same spatial and angular resolution and the

same domain size. We do not control the size of the time

steps, as some methods are adaptive and others limit the

time step using a Courant factor.

A. Electron lepton number distribution

We adopt an electron lepton number (ELN) distribution

corresponding to the G3a distribution in Ref. [40]. That is,

the angular distribution of each neutrino flavor is initially

described by

gðuÞ ¼ Ae−ðu−1Þ
2=2σ2 : ð5Þ

The normalization constant A is determined by requiring

that
R

dugðuÞ ¼ 1. Specifically,
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1

A
¼ σ

ffiffiffi

π

2

r

erf

�

ffiffiffi

2
p

σ

�

: ð6Þ

The parameters, we use are listed in Table I. We choose this

ELN distribution because it has already been studied by

multiple groups, allowing this verification effort to directly

impact those works as well.

B. Perturbations

The fast flavor instability amplifies unstable modes

seeded by perturbations in the initial conditions. We perturb

P1 and P2 (or equivalently, ρex) according to

Sðt ¼ 0; zÞ ¼
X

amax

a¼−amax

Bae
iðkazþϕaÞ; ð7Þ

where ka ¼ 2πa=L, with L being the length of the periodic

box along z. We cut off the spectrum of the perturbations at

amax ¼ Nz=20, where Nz is the number of grid cells along

z, in order to avoid small-scale structure in the perturbations

that might induce numerical errors in some methods. This

causes the smallest wavelength of perturbations to be

resolved by 20 grid cells. The amplitudes of each sinusoid

are arbitrarily chosen to be

Ba¼0 ¼ 0 and Ba≠0 ¼ 10−7jaj−1: ð8Þ

We also choose the phase ϕa to be uniformly random,

sampled independently for each a, and not synchronized

between the different simulations. The perturbations

are isotropic, in that Ba and ϕa are the same for all u.
Following perturbations to P1 and P2, P3 is adjusted to

preserve jPj ¼ 1.

C. Simulation grid

In order to come as close as possible to the calculations

of Refs. [40,50], we adopt a simulation box of size

L ¼ 10240μ−1 spanned by a uniform grid of Nz ¼
10240 cells. This choice of simulation domain, together

with the above perturbation amplitude and ELN distribu-

tion, allow the instability to saturate long before neutrinos

are able to wrap around the simulation domain. In addition,

we use 200 polar angular bins (or 201 bins in the case of

NuGas) uniformly spaced in u. In the Zaizen code, angular

bins are not uniform but set on the roots of Legendre

polynomials. The PIC calculations do not have angular

bins, per se, but instead distribute 400 particles around the

equatorial direction, which results in approximately 200

polar angles (i.e., 400 particles are needed to represent the

single direction u ¼ 0 in other methods). We assume

homogeneity in the x̂ and ŷ directions, and impose periodic

boundary conditions in the ẑ direction. We limit the

duration of the simulations to tmax ¼ 5000μ−1 in order

to prevent potential consequences for the periodic boundary

conditions. This resolution was chosen based on a reso-

lution study using the NuGas and COSEν-FV codes; doubling

the spatial resolution caused the polarization vector to be

different by at most 0.12 (NuGas) or 0.0035 (COSEν) any-

where on the domain at the end of the simulation. The

excellent agreement between methods with different con-

vergence properties (and therefore different amounts of

numerical error) suggests that the results are not signifi-

cantly influenced by the resolution.

IV. RESULTS

We first show good agreement in the average amount of

flavor transformation over time. The fraction of neutrinos

that remain in the electron-flavor state (i.e., the survival

probability) can be expressed as

PsurvðtÞ ¼
Z

1

−1

gνeðuÞ
hP3ðt; uÞi þ 1

2
du; ð9Þ

where the spatially averaged polarization vector is

hPðt; uÞi ¼ 1

L

Z

L

0

Pðt; z; uÞdz: ð10Þ

We plot the survival probability and the transition proba-

bility Ptrans ¼ 1 − Psurv in Fig. 1 with a different color for

each method. The results are remarkably similar between

simulations, especially given the very different numerical

methods and different realizations of the random perturba-

tions. The survival probability has a value close to 1 during

0 < t≲ 1300μ−1 as the perturbations grow. This can be

seen in the bottom panel, which shows a transition

probability growing exponentially during that time frame.

The differing floor values of Psurv near t ¼ 0 are a result of

differing amounts of floating-point error realized in the

different methods, but once the transition probabilities rise

above this floor, they line up very closely and grow with an

indistinguishable rate. We will discuss numerical error in

more detail below.

Once the instability saturates at t ≈ 1300μ−1, the survival

probability oscillates for a few cycles with approximately

the same amplitude and frequency in all of the simulations.

The oscillations damp out as the distribution decoheres, and

after t≳ 3000μ−1 the survival probabilities in all of the

TABLE I. Parameters for the initial angular distribution of

neutrinos as used in Eq. (5).

Flavor
ffiffiffi

2
p

GFnνi=μ σ A

νe 1 0.6 1.33095

ν̄e 0.9 0.53 1.50568

νx 0
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simulations fluctuate about Psurv ≈ 0.82. By this time, the

different simulations are in very different microscopic

realizations of the same macroscopic state as a result of

the randomized initial conditions.

Figure 2 shows the spatial average of the flavor vector

components at t ¼ 5000μ−1. The top panel shows the

magnitude of the flavor-coherent (i.e., transverse) compo-

nents of the polarization vector. The small values indicate

that by this point the flavor-coherent components of the

polarization vectors at different locations largely cancel

each other because of a persisting wavelike pattern in space

(see below). The bottom panel shows that the polarization

vectors have settled to a well-defined flavor distribution to

the left of the crossing (vertical dashed line). To the right

of the crossing, the neutrinos are fluctuating just below

hP3i ¼ 0, or complete flavor mixing. All of this is in good

agreement with Refs. [50,53].

The Fourier spectrum of the distribution also shows

excellent agreement throughout the simulation. We com-

pute the number-weighted, direction-averaged power spec-

trum given by

hS̃ðt; kÞi ¼
Z

1

−1

gðuÞdu
Z

L

0

e−ikzSðt; z; uÞdz: ð11Þ

The power spectrum of the initial perturbation common to

all simulations and described in Eq. (7) is apparent in the

dotted curves in Fig. 3. The solid curves show the power

spectrum at the end of the simulation (t ¼ 5000μ−1). By

this point, the unstable modes have already grown and

saturated. Even at this late time, all methods show excellent

agreement. The horizontal bands in both the initial and final

spectra are a result of numerical errors, and the Zaizen code

shows the smallest error in this metric. As suggested in

Ref. [53] (for different choices of neutrino distribution), the

resulting power spectrum is static, with exponential tails

away from the peak. The peak of the equilibrium spectrum

is not at k ¼ 0, reflecting the presence of a long-lived

coherent wavelike pattern in the spatial distribution of the

polarization vectors, as demonstrated by Ref. [42] and

observed in the TwoThirds simulation of Ref. [54].

This coherent wave structure is not apparent in the upper

panel of Fig. 2, because the data there are spatially

integrated over many periods, yielding a number close

to 0. Although the exponential tails seem to be a robust

feature of these simulations, we still lack a satisfactory

explanation for them.

FIG. 1. Domain-integrated survival property (top panel) and

transition probability (bottom panel) as a function of time. The

initial perturbations grow exponentially until the instability

saturates at t ≈ 1300μ−1. All simulations show the same insta-

bility growth rate, saturation time, saturation amplitude, and late-

time equilibrium.

FIG. 2. Space-integrated polarization vector components as a

function of direction at t ¼ 5000μ−1. The vertical dashed line at

u ¼ 0.786 shows the location of the ELN crossing in the initial

distribution. All simulations agree on the distribution of neutrino

flavor to the left of the crossing and show near complete mixing

to the right of the crossing. All simulations agree on the

magnitude of the flavor off-diagonal components at the end of

the simulation.
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The SU(2) symmetry of the neutrino self-interaction

Hamiltonian should preserve the net electron lepton num-

ber (ELN) of the neutrino distribution. As a test of the

quality of the numerical scheme, we show the violation of

this constraint in Fig. 4. Specifically, we define

ELNError ¼ 1

nνe þ n̄νe

�

�

�

�

Z

1

−1

½nνegνeðuÞ − n̄νe ḡνeðuÞ�

×

�

1 − hP3ðt; uÞi
2

�

du

�

�

�

�

; ð12Þ

where nνe and n̄νe are the initial electron neutrino and

antineutrino number densities listed in Table I. This

quantity probes the self-interaction term in Eq. (3) more

strongly than the advection term. In all cases, the error

remains smaller than one part in 106. The error grows most

significantly during the linear growth phase, even growing

exponentially with the perturbation amplitude in some

codes. After saturation, the error continues to grow sub-

linearly with time at a rate that is not visible on this plot for

most codes. Although EMU (green) has the lowest error for

the first 1200μ−1 time units, the error then quickly grows

above both of the COSEν codes, which maintain remarkably

low ELN error throughout the duration of the simulation.

We found that in general, using an angular integration

method during postprocessing that is inconsistent with that

used to model the evolution equations shows significantly

and artificially large ELN errors. For instance, artificially

large error is reported if during the simulation angular

integrals are performed with Simpson’s rule, but in post-

processing, the integrals are performed with the pyramid

rule. Similarly, artificially large errors can be reported if the

code does not restrict P3 ¼ P̄3 but assumes so in post-

processing. The continuous and finite-difference evolution

equations based on only the neutrino-neutrino potential

(in combination with our choice of initial conditions) both

guarantee that P3 ¼ P̄3, but only up to floating-point

precision, allowing finite precision errors that violate this

guarantee to accumulate in time. Finally, errors can be

introduced by assuming that P2

3
¼ 1 − P2

1
− P2

2
, which is

numerically true only up to floating-point precision. Each

code made a particular combination of choices, and we

found that errors are minimized when the postprocessing

methods make the same assumptions as the underly-

ing code.

The Hermitian nature of the Hamiltonian also guarantees

that the length of the physical polarization vector does not

change. Since all polarization vectors start with unit

magnitude, the deviation from this at a given space-

direction bin is

δjPj ¼
�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2

1
þ P2

2
þ P2

3

q

− 1

�

�

�

�

: ð13Þ

In Fig. 5, we show the evolution of the maximum of this

quantity over all direction bins and spatial grid cells as a

probe of numerical error. Once again, all codes show

excellent results. The vector length error grows exponen-

tially during the linear growth phase, following the expo-

nential growth of the perturbations. After saturation, the

FIG. 3. Fourier power spectrum of the flavor-coherent off-

diagonal component of the neutrino number density nex at t ¼ 0

(dotted) and t ¼ 5000 (solid). All simulations are seeded with the

same spectrum of perturbations but with random phases, and all

simulations agree on the location of the peak and the slope of the

exponential tails at late times. The horizontal bands are a result of

numerical error.

FIG. 4. Deviation of the domain-integrated electron lepton

number from its initial value, as defined in Eq. (12). The

SU(2) symmetry of the Hamiltonian guarantees that this remains

at zero, so nonzero values reflect numerical error. All codes

exhibit excellent ELN conservation to better than one part in 106.
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error grows superlinearly in time. These errors are most

strongly affected by the advection term in Eq. (3). Here the

Bhattacharyya, NuGas and COSEν codes, which evaluate the

advection terms with discretized spatial grids, yield rela-

tively larger errors compared to the Zaizen code and EMU.

In particular, the EMU results show the lowest error because

the particle nature of the code eliminates advection errors,

and the errors shown are a result of only the self-

interaction term.

V. CONCLUSIONS

All of the codes presented robustly predict the instability

growth rate, saturation amplitude, angular distribution, and

postsaturation Fourier spectrum of the neutrino distribu-

tion. As suggested by Refs. [27,28,50,53], the neutrinos

within the ELN crossing (i.e., directions dominated by the

less abundant species) undergo near complete flavor mix-

ing, while neutrinos outside the ELN crossing only exhibit

partial transformation. As demonstrated by Ref. [42] and

observed in the TwoThirds simulation of Ref. [54], the

postsaturation distribution maintains modes that do not

decay away. The exponential tail of the postsaturation

spectrum observed in Ref. [54] is robustly produced by

all codes.

Each simulation exhibits small numerical errors, though

no method is consistently better or worse than others in all

metrics. As one might expect, the Lagrangian method in

EMU yields small advection errors, and the Zaizen code,

which operates fully in the Fourier domain, has the smallest

errors in Fourier space. The COSEν code, which actively

enforces ELN conservation, maintains low ELN error. We

naturally find that time-step size and integration method

impact the magnitude of the errors, though the adaptive

nature of some codes precluded a uniform time-step choice.

We also find that it is particularly important to use a

postprocessing integration method that is consistent with

that used to evolve the distribution in order to accurately

report errors.

Since global simulations of neutrino quantum kinetics

are currently not possible, practitioners of local simulations

are forced to pick their poison when it comes to initial

conditions and boundary conditions. One approach, as we

have done here, is to perturb the entire domain and assume

periodic boundary conditions. This choice reflects an

expectation that the background distribution is homo-

geneous on the scale of the simulation domain and that

perturbations in adjacent domains look like those in the

simulated domain. Another approach is to provide a single

local perturbation and end the simulation before the

boundary conditions come into play, thereby ensuring that

any results are not a consequence of the choice of artificial

boundary conditions. Both are unrealistic, because a super-

nova is not infinitely periodic, and nature is unlikely to

ensure that perturbations in different locations never

interact with each other. Reference [50] takes the middle

ground and provides a local perturbation, but simulates

with periodic boundary conditions for more than a domain

traversal time. The results look similar to but distinct from

the same simulations with random perturbations. This work

lends confidence to the robustness of simulation results

given artificial initial and boundary conditions, setting the

stage for work toward more realistic simulations.
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