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The successful transition from core-collapse supernova simulations using classical neutrino transport to

simulations using quantum neutrino transport will require the development of methods for calculating

neutrino flavor transformations that mitigate the computational expense. One potential approach is the use

of angular moments of the neutrino field, which has the added appeal that there already exist simulation

codes which make use of moments for classical neutrino transport. Evolution equations for quantum

moments based on the quantum kinetic equations can be straightforwardly generalized from the evolution

of classical moments based on the Boltzmann equation. We present an efficient implementation of neutrino

transformation using quantum angular moments in the free streaming, spherically symmetric bulb model.

We compare the results against analytic solutions and the results from more exact multiangle neutrino

flavor evolution calculations. We find that our moment-based methods employing scalar closures predict,

with good accuracy, the onset of collective flavor transformations seen in the multiangle results. However

in some situations they overestimate the coherence of neutrinos traveling along different trajectories. More

sophisticated quantum closures may improve the agreement between the inexpensive moment-based

methods and the multiangle approach.

DOI: 10.1103/PhysRevD.105.123036

I. INTRODUCTION

The importance of neutrinos to the core-collapse super-

nova (CCSN) paradigm has been recognized since the

earliest simulations of the explosions by Colgate and White

[1]. Even though many details have changed over the years

since that pioneering study, neutrinos are still thought to be

the driver of the explosions of stars with initial masses

≳10 M⊙ that have reached the end of their nuclear burning

lifetimes (see [2–7] for reviews).

Although a complete theoretical accounting of the explo-

sion dynamics remains elusive, state-of-the-art numerical

simulations performed in three dimensions appear to be

converging toward exploding solutions [8–16]. However,

there are still many uncertainties underlying these models.

The structure of the progenitor stars is presently poorly

understood and is complicated by variations in stellar mass,

metallicity, rotation history, magnetic fields and binary

interactions. Another source of uncertainty in the details

of the explosion arises from the unknown equation of state

describing matter above nuclear densities. Variations in the

equation of state have been shown to lead to significant

differences in the outcomes of simulations (e.g., [17–19]).

Furthermore, there is yet work to be done to ensure that

multidimensional simulations are performed with sufficient

resolution and that the approximations employed in various

methods (especially regarding neutrino transport) do not

significantly affect the solution [20,21], though there cur-

rently seems to be more agreement than disagreement

between full supernova simulation codes [22,23].

While the recent progress in supernova simulations is

impressive, the simulations neglect the quantum nature of the

neutrino and its ability to change flavor (though see [24,25]

for some attempts at effective treatments). Until recently, this

omission was not thought to be important for the dynamics of

the explosion (see [26,27] for recent reviews). Flavor trans-

formation calculations based on postprocessing results from

simulations that employ classical transport reveal a number of

neutrino flavor transformation phenomena. As in the Sun,

neutrinos undergo complete flavor transformation at a

Mikheyev-Smirnov-Wolfenstein (MSW) resonance [28–30]

due to the combination of differing neutrino masses and a

potential from neutrinos interacting with the background

matter. However, this flavor transformation occurs well

outside of any supernova engine or nucleosynthesis region
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and is mostly important for understanding future neutrino

detections at Earth, e.g., [31–33]. The neutrino self-

interaction potential due to neutrinos interacting with other

nearby neutrinos makes the flavor transformation non-

linear. The so-called collective neutrino oscillations, which

result from the combined effects of the self-interaction

potential and the differing neutrino masses, are also

thought to occur too far out to affect the supernova engine

in a significant way [24,34,35], unless beyond the standard

model interactions are included, e.g., [36].

But more recently, the so-called fast flavor instability was

shown to have the potential to drive significant and rapid

flavor transformations well inside the shock if the neutrino

distribution fulfils the criterion of an electron lepton number

crossing [37–48]. Conditions fulfilling this instability cri-

terion have been shown to exist both inside [49–52] and

outside [53] the shock front in simulations that use classical

transport. Recent consideration of effects of small-scale

turbulence could make the fast flavor instability even more

ubiquitous than the electron lepton number crossing criterion

predicts [54–56]. Thus these more recent studies now

strongly indicate that flavor transformation may occur in

regions of the supernova where there could be feedback into

the hydrodynamics. While simulations that adopt effective

treatments of flavor transformation within the framework of

classical neutrino transport may be able to capture such

physics in an approximate way, direct calculations of

quantum neutrino transport are needed to understand the

effects of microscopic instabilities from first principles.

There are several challenges to be overcome in imple-

menting and simulating quantum neutrino transport. One

unavoidable challenge is a huge increase in the dynamical

range of length scales that need to be resolved. At the present

time, the spatial resolution of the state-of-the-art simulations

approaches length scales of order ∼100 m for a simulation

covering a domain size of order ∼1000 km. However, the

length scale of neutrino flavor oscillations in matter with a

density of ∼1012 g=cm3 is of order ∼1 μm, which means

one would need a simulation with a dynamical range of at

least 12 orders of magnitude. Multiangle collective flavor

transformation calculations also require hundreds to thou-

sands of angle bins in order for the results to converge, far

more than the ∼10 angle bins often used in simulations of

classical transport [21,57–59]. The results from multiangle

calculations are often seen to exhibit substantial changes

seen as the number of angle bins used is changed. The

number of energy bins used in multiangle calculations is also

usually of order a few hundred, an order of magnitude larger

than the ∼20 energy bins typically used in classical

simulations. However, in contrast to the number of angle

bins, the convergence of the multiangle results with the

number of energy bins is often observed to be much

smoother [58] and the large number of energy bins used

is driven by the desire for sufficient resolution of the

spectrum. Thus the computational expense of even a 1D,

spherically symmetric supernova simulation using quantum

transport is expected to be many orders of magnitude greater

than for a simulation using classical transport. One must

seriously consider alternative approaches that mitigate this

expense if quantum supernova simulations are to be feasible.

One approach, which we consider here, is to use angular

moments of the quantum neutrino distribution, i.e., quantum

moments. There are good motivations for considering this

approach. First, the coupling of the neutrinos to the rest of the

fluid ismost simply expressed via themoments so computing

the moments directly is more efficient than computing the

flavor evolution of neutrinos traveling along different tra-

jectories and then integrating. Second, neutrino transport

based on angular moments of the classical neutrino radiation

field are already used in many state-of-the-art supernova

simulation codes due to their computational efficiency (e.g.,

[60–65]). Modifying such codes to include the equations

describing the evolutionof thequantummomentswill rely on

techniques developed both in the neutrino oscillation liter-

ature and in the neutrino transport literature. Vlasenko et al.

[66] and Volpe [67] developed the equations from first

principles, while Blaschke and Cirigliano [68] expressed

the collision integral in detail. Investigations of the feasibility

of the quantum moment approach have already been taken.

Strack and Burrows [69] (see also Duan and Shalgar [70])

outlined a moment-based formalism for the quantum kinetic

equations (QKEs)s and Richers et al. [71] fleshed out the

form of the collision integral using interaction rates in the

form commonly used in the core-collapse supernova simu-

lation literature. Richers et al. [71] also developed a code to

simulate the QKEs under the assumption of isotropy and

homogeneity, and Johns et al. [72] used a moment method to

analyze the presence of fast flavor instability in parametrized

cases.Disagreement betweenmoment-based approaches and

more sophisticated transport emerges because one is forced

to truncate the tower of moment evolution equations at some

level yielding one or two fewer equations than the number of

unknownmoments. To solve the equations onemust propose

an algorithm to estimate the unknown moment(s) given the

evolvedmoments. If this algorithmwere perfect, the evolved

moments are guaranteed to exactly match those extracted

from a full Boltzmann calculation. Truncating the tower of

moment equations at different levels does not necessarily

lead to more accurate results. The accuracy of the results is

determined by the accuracy of the algorithm for finding the

unevolved moment(s).

The goal of this paper is to present results from a new

code that solves the quantum moment evolution equations

for a supernova neutrino bulb model and allows us to

explore these issues. In Sec. II we present the quantum

kinetic moment equations we use, introduce the one-

moment and two-moment schemes and explain the closures

we adopt for them. In Sec. III we investigate how well

moment methods are able to produce MSW and collective

oscillations by comparing their results to multiangle
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calculations. Finally, we conclude in Sec. IV and discuss

the issues our study uncovers.

II. FLAVOR MIXING WITH MOMENTS

Classical radiation transport is described in general by

the Boltzmann equation, but the six-dimensional distribu-

tion function is exceedingly computationally expensive to

evolve. A moment approach to radiation transport involves

taking angular moments of the full Boltzmann equation and

evolving a subset of these moments rather than directly

discretizing the neutrino distribution in angle. The result is

a system of coupled differential equations for a handful of

four-dimensional (three spatial and one energy dimension)

variables, rather than a differential equation for a six-

dimensional distribution function. The angular moments

which are evolved or prescribed in a two-moment method

in flat spacetime are the differential energy density E,

(energy) flux vector F⃗ and pressure tensor P
↔

, defined as

Eðt; r⃗; qÞ ¼ 1

4π

�

q

2πℏc

�

3
Z

dΩpfðt; r⃗; p⃗Þ; ð1Þ

F⃗ðt; r⃗; qÞ ¼ 1

4π

�

q

2πℏc

�

3
Z

dΩpp̂fðt; r⃗; p⃗Þ; ð2Þ

P
↔

ðt; r⃗; qÞ ¼ 1

4π

�

q

2πℏc

�

3
Z

dΩpp̂ ⊗ p̂fðt; r⃗; p⃗Þ; ð3Þ

where q ¼ jp⃗jc. Note that we omit the speed of light from

the definition of the flux moment in order that the moments

all have the same units. The factor of 1=4π in each

definition of the moments is a units choice made to divide

out the 4π from the solid angle integral when tracking the

evolution of these variables. This means that the total

neutrino flux F⃗ is 4π times the integral of the spectral flux

F⃗ ¼ 4π

Z

∞

0

F⃗dq: ð4Þ

The moments for the antineutrinos are defined similarly and

shall be denoted with overbars, i.e., Ē, ⃗F̄ and P̄
↔

. In classical

transport f and f̄ are distribution functions, taking on values

f ∈ ½0; 1� and describing the occupation number per unit of

phase space. To generalize so as to permit flavor mixing, we

refine f and f̄ to become matrices in flavor space. Thus, the

moments also become matrices and the energy density, for

example, is now (assuming two neutrino flavors) [69]

Eðt; r⃗; qÞ →
 

EðeeÞðt; r⃗; qÞ EðexÞðt; r⃗; qÞ
EðxeÞðt; r⃗; qÞ EðxxÞðt; r⃗; qÞ

!

: ð5Þ

The other moments have a similar structure. We shall refer

to moments that are matrices in flavor space as “quantum

moments” in order to distinguish them from the scalar

“classical” definition of moments, and we indicate flavor

elements of the quantum moments with superscripts in

parentheses to avoid confusions with exponents. EðeeÞ and
EðxxÞ are real, positive definite quantities that represent the

differential energy densities in the electron and representa-

tive heavy lepton (“x”) flavor neutrinos. The off-diagonal

components EðexÞ and EðxeÞ represent the flavor overlap and
are complex quantities. The luminosity matrices of neu-

trinos and antineutrinos are calculated from the radial

component Fr and F̄r of the flux vectors for the neutrinos

and antineutrinos, respectively, and are

L ¼ ð4πrÞ2c
Z

Fr dq; ð6Þ

L̄ ¼ ð4πrÞ2c
Z

F̄r dq: ð7Þ

Similarly to the quantum moments for the energy density,

flux and pressure, the diagonal elements of the luminosity

matrices are the luminosities of each neutrino flavor.

The evolution equations for the moments are found by

following the procedure outlined in Strack and Burrows

[69] and Zhang and Burrows [73] (although the collision

terms therein need to be modified as in [68,71]). There are

an infinite number of angular moments and corresponding

evolution equations (e.g., [74]). Under the assumption of

flat spacetime and spherical symmetry, the evolution

equations for the lowest-order moments (energy density

and energy flux) take the form

1

c

∂E

∂t
þ ∂Fr

∂r
þ 2Fr

r
¼ −

i

ℏc
½HV þHM þHE; E� −

i

ℏc
½HF; Fr� þ CE; ð8Þ

1

c

∂Ē

∂t
þ ∂F̄r

∂r
þ 2F̄r

r
¼ −

i

ℏc
½HV −HM −H�

E; Ē� þ
i

ℏc
½H�

F; F̄r� þ C̄E; ð9Þ

1

c

∂Fr

∂t
þ ∂Prr

∂r
þ 3Prr − E

r
¼ −

i

ℏc
½HV þHM þHE; Fr� −

i

ℏc
½HF; Prr� þ CF; ð10Þ

1

c

∂F̄r

∂t
þ ∂P̄rr

∂r
þ 3P̄rr − Ē

r
¼ −

i

ℏc
½HV −HM −H�

E; F̄r� þ
i

ℏc
½H�

F; P̄rr� þ C̄F; ð11Þ
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where we have defined

HE ¼ 4π
ffiffiffi

2

p
GF

Z

dq

q
ðEðqÞ − Ē�ðqÞÞ; ð12Þ

HF ¼ −4π
ffiffiffi

2

p
GF

Z

dq

q
ðFrðqÞ − F̄�

rðqÞÞ; ð13Þ

and � indicates the complex conjugate. Together HE and

HF are the self-interaction Hamiltonian HSI ¼ HE þHF.

The four terms CE, C̄E, CF and C̄F are the “collision” terms

and, in the context of flavor mixing, are also matrices

[68,71]. We neglect the collision terms in the rest of this

work. For two flavor mixing, the vacuum Hamiltonian has

the form

HV ¼ Δm2

12
c4

4q
½sinð2θ12Þσ1 − cosð2θ12Þσ3�; ð14Þ

where Δm2

12
¼ m2

2
−m2

1
is the splitting between the neu-

trino masses and θ12 is the neutrino vacuum mixing angle.

The matter Hamiltonian has the form

HM ¼
ffiffiffi

2
p

GFne

2
σ3; ð15Þ

where ne is the number density of electrons. In both cases,

σi is the ith Pauli matrix and we have removed terms that

contribute only to the trace of the Hamiltonian, as they do

not affect the flavor evolution.

In order to solve for the evolution of the moments we

need to truncate the tower of equations. In classical moment

transport this is typically done at the first or second level,

i.e., Eqs. (8) and (9), or (8)–(11). But this truncation

introduces a hurdle: inspection of the truncated tower of

equations reveals that they contain, in general, one more

moment than the number of equations allows us to solve for.

Thus to solve the truncated tower we need to close the

evolution equations by divining a relationship between the

moments that are evolved and the moments which are not.

If the closure is chosen correctly the evolved moments are

also computed correctly, approximate closures yield

approximate solutions. Furthermore, truncating the tower

of equations at a higher level does not necessarily lead to

more accurate solutions for the moments that are solved, it

simply permits us to construct better informed closures.

However, increased accuracy of the solutions is not guar-

anteed just because we use a closure with more inputs.

A. Neutrino bulb model

In order to test the ability of moment-based schemes to

reproduce the flavor transformation from more sophisti-

cated transport calculations, we need to compare results

from the two approaches. Unfortunately there are not many

test problems which allow such a comparison. In this paper

the test cases we focus upon the inhomogeneous environ-

ment around a spherical source of neutrinos i.e., a neutrino

bulb. Since this environment has been studied extensively

due to its similarity to core-collapse supernovae, we can

take advantage of results from other codes which have been

developed for this scenario. In what follows we compare

our results with the steady-state “multiangle” BULB model

calculations using the SQA code, which is briefly described

in Appendix A.

For the moment-based calculations we shall consider

truncations at the first and second level of the equation

tower i.e., a schemewhere we solve for E and Ē, or E, Ē, Fr

and F̄r. For each we need a closure. In previous studies of

classical moment transport, closures have been supplied

from analytic physical approximations or ad hoc prescrip-

tions (see [75,76] for summaries) or characteristic methods

(e.g., [77,78]). There is a wealth of physics buried in the

choice of closure and any results will depend on this choice.

We leave exploration of the sensitivity to the closure to

future work and use here two geometrically motivated

examples.

The geometry of the scenario we are considering is

shown in Fig. 1. At a given radial location r above the

source, the neutrinos are confined to propagate within a

cone around the radial direction. Neutrinos which are

propagating along a trajectory which makes an angle θ

with the radial direction have traveled a distance

λ ¼ r cos θ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
ν − r2 sin2 θ

q

ð16Þ

from the neutrinosphere Rν. The half opening-angle of the

cone containing all the neutrino trajectories passing

through the point of interest is θmax and from the geometry

this angle is found to be

cos θmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðRν=rÞ2
q

: ð17Þ

FIG. 1. The bulb model: at a distance r from the center of a

opaque neutrino bulb of radius Rν, the neutrino has traveled a

distance λ and its trajectory makes an angle θ with the radial

direction.
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We will use this to self-consistently inform our choice of

closures.

1. One-moment closure

The first closure is a relationship between the energy and

the radial component of the flux for use in one moment

calculations. In classical flux-limited diffusion, the system

is similarly closed so as to directly evolve only one

moment, though the specific closure is different from that

employed here. When the neutrinos are emitted half-

isotropically from a spherical bulb and do not oscillate,

the integrals defining the scalar energy density and radial

flux (or more generally, the traces thereof) are related

analytically. In this case we find the flux is related to the

energy density via

Fr ¼
ð1 − cos2 θmaxÞ
2ð1 − cos θmaxÞ

E: ð18Þ

Using Eq. (17), this can be used to define a closure as

Fr ¼
E

2

�

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −

�

Rν

r

�

2

s

�

: ð19Þ

In what follows we will refer to this relationship as the

“one-moment” closure. Substituting the one-moment clo-

sure of Eq. (19) into Eq. (8) gives an equation that is now

only a function of the two energy densities. Using this

closure, the form of the self-interaction Hamiltonian

matches that in the single-angle approximation of

Dasgupta et al. [79], although we stress that the advection

terms in the one-moment approximation differ from those in

the single-angle approximation and that the similarity of the

self-interaction Hamiltonian is due to the choice of closure,

not to an approximation.

2. Two moment closure

In the two moment approximation we simultaneously

solve for the evolution of the first two moments as is done

in M1 neutrino transport methods common in CCSN

modeling. These moments, the energy density E and flux

F⃗, must be related to the next highest moment, the pressure

tensor P. In the neutrino bulb model, in the absence of

oscillations, we find that the rr component of the pressure

tensor can be related to the energy density via

Prr ¼
ð1 − cos3 θmaxÞ
3ð1 − cos θmaxÞ

E: ð20Þ

Using Eq. (17), this becomes

Prr ¼
�

2 −

�

Rν

r

�

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −

�

Rν

r

�

2

s

�

E

3
: ð21Þ

In what follows we shall refer to this equation as the “two-

moment” closure.

3. Inner boundary condition

To construct the initial values for the moments at the

neutrinosphere we adopt a steady state distribution f which

is pure diagonal in the flavor basis. The diagonal entries of

the distribution matrix are of the form fðaaÞðRν; q; θÞ ∝
QaðqÞΘaðθÞ with Qa being a function describing the

energy spectrum for flavor a and Θa being a function

describing the angular spectrum for flavor a. For simplicity,

the energy spectra are taken to be Fermi Dirac distributions

QaðqÞ ¼
1

1þ exp ðq=ðkBTaÞ − ηaÞ
; ð22Þ

where Ta is the temperature and ηa is the chemical

potential divided by kBTa. For both the moment-based

and multiangle calculations we adopt a uniform energy

grid from 1 to 60 MeV with 591 energy bins corresponding

to an energy resolution of 100 keV. Repeating all calcu-

lations using a resolution of 50 keV indicates the numerical

error is less than 0.1%. We adopt the parametric form for

the initial angular distributions introduced by Mirizzi and

Serpico [80]

ΘaðθÞ ¼ cosβa θ: ð23Þ

The case of half isotropic emission corresponds to βa ¼ 0.

Using these distributions we write

fðaaÞðRν; q; θÞ ¼ Aaðβa þ 2ÞQaðqÞΘaðθÞ ð24Þ

and imposing the requirement that the luminosity matrix L
be given by Eq. (6) at the neutrinosphere Rν, we find the

constant Aa to be

Aa ¼
π

G2ðηÞ

�

c

Rν

�

2
�

ℏ

kBTa

�

3 LðaaÞ

hqia
: ð25Þ

The function G2ðηÞ is the complete Fermi-Dirac integral

defined as

GjðxÞ ¼
Z

∞

0

tj

1þ exp ðt − xÞ dt;

and the quantity hqia is the mean energy given by

hqia ¼
R

FðaaÞðRν; qÞdq
R

FðaaÞðRν; qÞ=qdq
: ð26Þ

With the distribution matrix now defined, the energy

density and flux moments at radius r (assuming no

oscillations) are computed to be
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Eðr; qÞ ¼ R2
ν

2r2

�

q

2πℏc

�

3

0

B

@

AeQeðqÞ2F1

�

1; 1
2
; 2þ βe

2
; R

2
ν

r2

�

0

0 AxQxðqÞ2F1

�

1; 1
2
; 2þ βx

2
; R

2
ν

r2

�

1

C

A
; ð27Þ

Frðr; qÞ ¼
R2
ν

2r2

�

q

2πℏc

�

3
�

AeQeðqÞ 0

0 AxQxðqÞ

�

; ð28Þ

Prrðr; qÞ ¼
R2
ν

2r2

�

q

2πℏc

�

3

0

B

@

AeQeðqÞ2F1

�

1;− 1

2
; 2þ βe

2
; R

2
ν

r2

�

0

0 AxQxðqÞ2F1

�

1;− 1

2
; 2þ βx

2
; R

2
ν

r2

�

1

C

A
; ð29Þ

where
2
F
1
ða; b; c; zÞ is the ordinary hypergeometric func-

tion. Similar expressions give the initial conditions for the

antineutrino moments.

B. Numerical method

To solve the quantum moment evolution equations we

have developed a new code that computes the steady-state

solution based on an inner boundary condition, given a

specified matter density and electron fraction throughout

the computational domain. We omit the collision terms in

the moment evolution equations in order to focus our

attention upon the oscillation physics. The code solves the

equations using an explicit midpoint (second order Runge-

Kutta) integrator. The radial step is adaptive based on the

three frequencies associated with the various flavor mixing

terms in the Hamiltonian:

ωV ¼ Δm2

12
c4

2ℏq
;

ωM ¼
ffiffiffi

2

p
GFne=ℏ;

ωSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjHSIjj2F −
1

2
½TrðHSIÞ�2

r

=ℏ; ð30Þ

and jjHSIjj2F is the Frobenius norm of the self-interaction

Hamiltonian, and TrðHSIÞ its trace. In the absence of the

collision terms, the quantities jjFrjj2F − 1

2
½TrðFrÞ�2 and

jjF̄rjj2F − 1

2
½TrðF̄rÞ�2 are conserved, i.e., independent of

the radius r, for every energy. Our code enforces the

conservation of these quantities to an error tolerance set to

0.1% per step. If the fractional change in the size of these

quantities exceeds this bound, then the time increment is

halved and the step repeated. In what follows we present

the results from several test problems of the code.

III. TESTING MOMENT-BASED METHODS

If moment-based approaches to flavor oscillations are to

be a feasible alternative to calculations based on discrete

ordinates or other more exact approaches, the results must

agree well with analytic predictions if they exist and/or the

results from less approximate numerical approaches.

A. Constant electron density

Our first test case is flavor mixing of neutrinos emitted

from a hard sphere of radius Rν in a background of constant

electron density. The flavor evolution for a single neutrino

is well known for this scenario. The probability PTðr; θÞ
that a neutrino initially in a particular flavor transitions to a

neutrino of the opposite flavor after traveling a distance λ is

given by a sinusoid with fixed amplitude and wavelength.

Specifically,

PTðr; θÞ ¼ sin2 ð2θMSWÞ sin2
�

ωMSWλ

ℏc

�

: ð31Þ

In this equation the effective matter mixing angle θMSW and

effective frequency ωMSW, are

sin2ð2θMSWÞ ¼
sin2ð2θ12Þ

sin2ð2θ12Þ þ C2
;

ωMSW ¼ ωV

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2ð2θ12Þ þ C2

q

; ð32Þ

where

C ¼ cosð2θ12Þ ∓
ωM

ωV

: ð33Þ

The negative sign is used for neutrinos and the positive sign

for antineutrinos.

Using Eq. (31), one can compute the angular moments of

an ensemble of neutrinos by integrating the single neutrino

solution over the solid angle with the appropriate cos θ

weight and taking into account the different path lengths λ

from the emission point to the radial point of interest.

However one does not need to do this calculation to predict

what one should observe in the solutions. Due to the

differing path lengths, the neutrinos will not all have the

same phase of the flavor oscillations (i.e., they will be not
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all be coherent). The incomplete coherence will inevitably

smear the oscillations of the moments compared to the

flavor oscillations of a single neutrino. The amount of

coherence between the neutrinos on different trajectories is

a function of the distance from the source. When the spread

in path lengths to a given point is much smaller than the

wavelength of the oscillations, all the neutrinos are very

close to being coherent, but as one moves away from the

source the spread in path lengths grows and the amount of

coherence drops. For a neutrinosphere of radius Rν, the

path length difference between neutrinos emitted radially

and those emitted at a tangent to the neutrinosphere

asymptotes to Rν. Thus the amount of coherence should

also asymptote to a level determined by the ratio of the

oscillation wavelength to Rν.

In order to test our code’s ability to reproduce these

predictions we solve the two moment evolution equations

and separately perform a multiangle calculation using SQA.

The spatial grid extends to 40 km, we use artificial vacuum

mixing parameters of Δm2

12
¼ 6.9 × 10−4 eV2 and θ12 ¼

0.28818 and consider monoenergetic neutrinos with an

energy of q ¼ 1 MeV. The elements of the energy density

moments are set arbitrarily according to the hierarchy

EðeeÞðRνÞ ¼ 10ĒðeeÞðRνÞ ¼ 100EðxxÞðRνÞ ¼ 100ĒðxxÞðRνÞ.
The matter density is set to ρ ¼ 8 × 103 g cm−3 and the

electron fraction is Ye ¼ 0.5 in order to put the 1 MeV

neutrinos close to the MSW resonance.

Figure 2 shows the oscillation probabilities as a function

of the radius r for two angular distribution parameters of

βa ¼ 0 (dashed red) and βa ¼ 3 (dashed purple). The

electron neutrino and antineutrino transition probabilities

are defined from the flux moment to be

Pνe→νx
ðrÞ ¼ r2F

ðxxÞ
r ðrÞ − R2

νF
ðxxÞ
r ðRνÞ

R2
ν½FðeeÞ

r ðRνÞ − F
ðxxÞ
r ðRνÞ�

; ð34Þ

P̄ν̄e→ν̄x
ðrÞ ¼ r2F̄

ðeeÞ
r ðrÞ − R2

νF̄
ðxxÞ
r ðRνÞ

R2
ν½F̄ðeeÞ

r ðRνÞ − F̄
ðxxÞ
r ðRνÞ�

: ð35Þ

The top panel shows the flavor evolution as a function of

radius for the neutrinos and the bottom panel for the

antineutrinos. Although the neutrinos are on resonance

and undergo nearly complete flavor oscillations, antineu-

trinos are off resonance and only undergo minor flavor

transformation. A comparison of the SQA results for the

half-isotropic case and a separate, analytic integration of

the survival probability, i.e.

Pνe→νx
ðrÞ ¼ 2r2

R2
ν

Z

1

cos θmax

PTðr; θÞ cos θdðcos θÞ; ð36Þ

are visually indistinguishable.

The SQA results (dashed) display the decoherence

effect of the neutrinos that have traveled along different

trajectories leading to the reduction in the amplitude of

the oscillations with increasing radius. Close to the

neutrinosphere, the amplitudes of the flavor oscillations

predicted from the moment code (solid) are similar in

magnitude to the βa ¼ 0 SQA results (dashed purple).

However, as the neutrinos move away, the moment code

maintains larger flavor oscillations than exhibited in the

multiangle results.

Although the moment code overestimates the coherence

of the neutrinos traveling along different trajectories, it does

capture some phase effects. As the distribution becomes

more forward-peaked, the average phase advances more

slowly due to smaller average path length to a given radial

point. This can be seen by comparing the SQA results for

βa ¼ 3 (forward peaked) and βa ¼ 0 (semi-isotropic). The

moment results, which have initial conditions correspond-

ing to βa ¼ 0, show a more slowly evolving phase than the

βa ¼ 3 results, just as the SQA βa ¼ 0 results do. However,

the agreement does not last for long and a significant phase

difference between the moment and βa ¼ 0 oscillations

exists at larger radius. Of course, in the limit of a perfectly

forward-peaked distribution (not shown), the moment

FIG. 2. Flavor oscillation test including vacuum and matter

contributions to the Hamiltonian. Here we use Δm2

12
¼ 6.9 ×

10−4 eV2 and θ12 ¼ 0.28818 in a background density profile of

ρ ¼ 8000 g=cm3 and Ye ¼ 0.5. The top panel shows the tran-

sition probability of electron neutrinos to x-flavor neutrinos while
the bottom is the same for the antineutrinos. Solid lines are the

results from the moment code and dashed lines are the results

from the SQA using 90,001 angular bins.
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equations become increasingly accurate and agree increas-

ingly well with multiangle data.

B. The steady state self-interaction problem

in spherical symmetry

Our next three tests are for the case of collective neutrino

oscillations in an inhomogeneous environment. Collective

flavor mixing is of interest for the study of core-collapse

supernovae, as it is thought that such oscillations may occur

at late times above the protoneutron star once the explosion

has occurred. This may have a dramatic impact on the

observed neutrino signal and nucleosynthesis in the CCSN

environment [26]. Collective oscillations are well-studied

in the steady state, free streaming approximation [81]. One

of the distinct features of collective flavor mixing are the

spectral swaps and splits that arise in the neutrino and

antineutrino distributions at large radii (e.g., [82,83]). This

feature causes the neutrino spectra to deviate from the

thermal-like spectra emitted from the neutrinosphere. It is

also well established from such studies that the outcome of

these calculations is heavily dependent on fully resolving

the angular distribution of neutrinos [58]. This makes it a

challenging test of a moment-based approach.

We present three simulations of this system using both

the one-moment and two-moment closures in the following

subsections. The first calculation in Sec. III B 1 is a

reasonably realistic representation of the conditions outside

a protoneutron star after the onset of explosion. The second

calculation in Sec. III B 2 is a modified version of this same

setup, where we artificially adjust the parameters in order to

probe the behavior of the moment method when flavor

transformations occur in regions where the neutrino dis-

tribution is not highly forward peaked. Finally, the third

calculation in Sec. III B 3 is the interesting and demanding

case of a double spectral split which tests the ability of

moments to track the correct degree of coherence in the

neutrinos.

1. Instability far from the neutrinosphere

In Table I we present the values for the neutrino

luminosity La, average energy hqia, temperature Ta, and

chemical potential ηa to be used in the first collective test

calculation. These values are a modified version of the case

p ¼ 10 and q ¼ 3.5 in Table 6 of Keil et al. [84], with the

electron neutrino and antineutrino luminosities increased by

a factor of 10. This makes the electron neutrino and electron

antineutrino luminosities typical of what one expects during

the accretion phase of an iron-core collapse supernova—

see, for example, Fig. 2 in [85]. The inner computational

boundary was chosen to be 100 km and the system was

allowed to evolve until the neutrinos reached the radius

of 400 km. We set the mixing parameters to Δm2

12
¼

−2.7 × 10−3 eV2 (similar to Δm2

32
in the inverted mass

ordering [86]) and θ12 ¼ 0.01 in order to emulate the effect

of matter suppression. The neutrinosphere is set to Rν ¼
10 km for all neutrino and antineutrino flavors.

In Fig. 3 we show the results of the calculation. The

figure shows The ratio of the “ee” element of luminosity

matrix relative to its initial value as a function of the radius.

In the figure we see the moment calculations exhibit a

flavor instability at 126 km, similar to, but slightly larger

than the radius of 119 km at which the flavor instability is

seen in the multiangle simulation. For both approaches,

once the instability has begun we see that antineutrinos

experience an almost complete flavor swap. The figure also

indicates that there is little difference between the moment

calculations that use the one-moment and two-moment

closures. This similarity was not enforced nor expected and

motivated the next test problem in Sec. III B 2.

There is also remarkable agreement between the flavor-

transformed spectra between the moment and multiangle

methods. Figure 4 shows the initial and final spectra from

the one-moment, two-moment and multiangle calcula-

tions. In both the moment-based and multiangle calcu-

lations, the antineutrino spectra show an almost complete

swap between the ν̄e and ν̄x flavors and the neutrinos show

a split in the spectra at about 25 MeV. This phenomenon

has been seen many times in previous studies starting with

Duan et al. [87,88].

2. An instability close to the neutrinosphere

As we pointed out in Sec. III B 1, the high degree of

concordance between the results using the one- and two-

moment closures was not enforced nor expected, but in

hindsight is perhaps not surprising. At radii well beyond the

neutrinosphere, there is very little difference between the

flux and pressure moments, since the flux and Eddington

factors are close to unity. One cannot expect to resolve fine

angular features in a pencil-beam distribution using only

coarse moments. If this interpretation is correct, we might

reasonably expect to observe more significant differences

between the one- and two-moment calculations when flavor

TABLE I. Parameters for the realistic collective oscillation

simulation in Sec. III B 1. Listed are the neutrino luminosity

La, average energy hqia, temperature Ta and chemical potential

divided by the temperature ηa used in Eq. (22). These are

modified from the case of p ¼ 10 and q ¼ 3.5 (different from

the q in this work that represents neutrino energy) from Table 6 in

Keil et al. [84], with the electron flavor luminosities increased by

a factor of 10. All angular distributions are described by βa ¼ 0 in

Eq. (23). The initial flux factors Fr=E and initial Eddington

factors Prr=E are also provided.

a La [ergs=s] hqia [MeV] Ta [MeV] ηa βa Fr=E Prr=E

νe 4.1 × 1052 9.4 2.1 3.9 0.0 0.9975 0.995

ν̄e 4.3 × 1052 13.0 3.5 2.3 0.0 0.9975 0.995

νx 3.95 × 1051 15.8 4.4 2.1 0.0 0.9975 0.995

ν̄x 3.95 × 1051 15.8 4.4 2.1 0.0 0.9975 0.995
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instabilities occur closer to the neutrinosphere (i.e., where

the flux and Eddington factors are not close to unity). For

this reason we present results from a second self-interaction

test case where we engender flavor transformation closer to

the neutrinosphere by artificially adjusting the neutrino

luminosities. The new set of parameters we use for this

calculation are shown in Table II. In addition, for this test

the inner boundary of the computational domain is at the

neutrinosphere (Rν ¼ 10 km).

The evolution of the “ee” element of luminosity matrix

relative to its initial value from this second self-interaction

calculation are shown in Fig. 5. The system behaves

similarly to the previous test problem studied in Sec. III

B 1 in that the moment calculations (blue and orange)

closely track each other and exhibit an onset of flavor

transformation in approximately the same location as in the

multiangle calculations. However, due to the decreased

neutrino luminosities, the instability starts at r ≈ 14 km,

much closer to the neutrinosphere than the onset at r ≈
120 km in Sec. III B 1. The moment calculations agree with

the multiangle calculations about the onset of the instability

even better than in the previous case.

In the insets in Fig. 5, we show the same ratio of the ratio

of the “ee” element of luminosity matrix relative to its

initial value, during the first five kilometers of the calcu-

lation. We observe that the ratios from the multiangle and

one-moment calculations are small and slightly below unity

over this region, but that the two-moment calculation are

slightly above unity until significant flavor conversion

occurs at 14 km. Our investigation into the origin of the

greater-than-unity luminosities—which are not physical—

are presented in Appendix B. These investigations revealed

that the origin is not a numerical error and is likely due to

the closure.

The similarity between the results for the one- and two-

moment closures shown in Fig. 5 cannot be attributed to the

fact that the flux and Eddington factors are close as in

Sec. III B 1. Instead, we have found that this behavior arises

because our choice of closure is so self-consistent that the

evolution equation for the flux [Eq. (8)] is essentially

identical using both the one-moment and two-moment

closures. Thinking first about the analytic relationships

for the moments in a bulb model without flavor trans-

formation, one can relate the pressure to the flux as

Prr ¼ DðrÞFr, where DðrÞ is a scalar function given by

DðrÞ ¼ 2ð1þ cos θmax þ cos2 θmaxÞ
3ð1þ cos θmaxÞ

;

¼ 2

3r

�

2r2 − R2
ν þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − R2
ν

p

rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − R2
ν

p

�

: ð37Þ

Inserting this relationship into Eqs. (8) and (10), the

evolution equation for the steady-state flux in the two-

moment approach becomes the same as the radial evolution

of the steady state flux using the one-moment closure,

indicating the self-consistency of our choice of closures.

Thus, wherever the flux and pressure as calculated by the

two-moment approach are related by Eq. (37), the evolution

of the flux in the one- and two-moment systems will evolve

identically.

To examine whether this coherence of the flux and

pressure moment actually occurs in our calculations, in

Fig. 6 we plot DðrÞ (orange) together with the ratio of the

corresponding elements from the pressure and flux

moments for the 15 MeV neutrinos. We find the ratios

of P
ðeeÞ
rr =F

ðeeÞ
r (blue dashed) and P

ðxxÞ
rr =F

ðxxÞ
r (green dashed,

not visible under the blue dashed curve) match the function

DðrÞ very well, indicating that the diagonal moments grow

and shrink due to flavor transformation at the same rate.

The ratio jPðexÞ
rr j=jFðexÞ

r j (purple) does not follow DðrÞ
before the instability, as the flavor off-diagonal elements

FIG. 3. The ratio of the “ee” element of luminosity matrix

relative to its initial value, versus radius for the test in Sec. III B 1

and Table I. The top panel is for neutrinos and the bottom panel is

for antineutrinos. The one-moment results are difficult to discern

due to being largely obscured by the two-moment results.
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are very small. Once flavor transformation begins at

r ∼ 14 km, the flavor off-diagonal ratio more closely

follows DðrÞ, though not as well as the diagonal elements.

Figure 7 shows the phase angle difference ξ ¼
argðPðexÞ

rr Þ − argðFðexÞ
r Þ between the off-diagonal elements

of the flux and pressure moments from the two-moment

and multiangle calculations. The figure shows how the

phase difference for the multiangle calculation is always

small, indicating that the flux and pressure moments

experience tightly coupled evolution. The phase difference

in the two-moment calculation is initially highly variable,

since the off-diagonal components are very small.

However, once the flavor transformation begins around

r ¼ 14 km, the two moments become very coherent and

the phase difference does not exceed a few degrees. Taken

together, Figs. 6 and 7 show that Prr ¼ DðrÞFr is a good

FIG. 4. Initial and final spectra versus energy for the test in Sec. III B 1 and Table I. Neutrinos are in the top two panels and

antineutrinos are in the bottom two. The left column shows the two-moment simulation and the right column shows the multiangle

simulation. The black curves are the electron flavor and the green curves are the x flavor. The solid curves show the initial spectra and

the dashed curves show the final spectra. The neutrino spectrum in all cases shows the spectral splits common in collective mixing.

The antineutrinos show an almost complete spectral swap.

TABLE II. Parameters for the collective oscillation simulation

discussed in Sec. III B 2 designed to expose independent evolu-

tion of multiple moments. Listed are the luminosity La, average

energy hqia, temperature Ta, chemical potential divided by the

temperature ηa, the angular distribution parameter βa, the initial

flux factor Fr=E and initial Eddington factor and Prr=E. Due to

the rapid increase of the run time of the multiangle calculation as

the inner boundary is moved towards the neutrinosphere, the

multiangle calculation was started at 1 km above the neutrino-

sphere.

a La [ergs=s] hqia [MeV] Ta [MeV] ηa βa Fr=E Prr=E

νe 2.050 × 1049 9.4 2.1 3.9 0.0 0.5 0.33

ν̄e 2.550 × 1049 13.0 3.5 2.3 0.0 0.5 0.33

νx 1.698 × 1049 15.8 4.4 2.1 0.0 0.5 0.33

ν̄x 1.698 × 1049 15.8 4.4 2.1 0.0 0.5 0.33

MCKENZIE MYERS et al. PHYS. REV. D 105, 123036 (2022)

123036-10



approximation for this problem and the coherence between

the two moments reduces the system of moment equations

to that for a single moment. Note that this coherence

between the pressure and flux in the two-moment scheme is

not imposed, it emerges as the calculation proceeds.

Finally, Fig. 8 shows the spectra of the neutrinos and

antineutrinos at 50 km from the two-moment and multi-

angle calculations. The spectra from the two methods

agrees well with only slight differences in the high-energy

tails. The moment-based approach accurately calculates the

spectral evolution as well as the gross, integrated behavior.

3. A case with multiple spectral splits

Our final test of the moment code is for a case which

leads to multiple spectral splits. The parameters for this test

problem as shown in Table III and are a slight adjustment

from those used in the first example in [88]. The luminos-

ities and mean energies are such that the number fluxes of

all four flavors are almost equal, with the electron anti-

neutrino number flux ∼2% smaller than the others. This

near equality of the number fluxes leads to a small self-

interaction potential which tends to move the instability

close to the protoneutron star.

Figure 9 shows the evolution of the “ee” element of the

neutrino and antineutrino luminosity matrices as a function

of the radius. A flavor instability is seen to occur around

r ∼ 40 km and, once again, both moment calculations with

the two different closures and the multiangle calculation are

in good agreement about the location of the instability. For

the next ∼20 km thereafter the three calculations track one

another closely, but at r ∼ 60 km there is a noticeable

change in the multiangle calculation compared to the

FIG. 5. The ratio of the “ee” element of luminosity matrix

relative to its initial value, for the modified collective oscillation

test in Sec. III B 2 and Table II. The top panel is for neutrinos and

bottom panel is for antineutrinos. The orange curve shows the

one-moment simulation, blue curve shows the two-moment

simulation, and the black curve shows the multiangle simulation.

FIG. 6. The ratio of the elements from the pressure tensor to the

corresponding elements from the flux as a function of the radius r
for the 15 MeV neutrinos in the two-moment calculation using

the parameters given in Sec. III B 2 and Table II.

FIG. 7. The difference between the phase angles of the off-

diagonal elements of the pressure and flux moments for 15 MeV

neutrinos from the two-moment simulation (cyan) and the

multiangle simulation (orange) in the modified collective oscil-

lation setup of Sec. III B 2 and Table II.
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moment-based approach. Beyond r ∼ 60 km the multi-

angle results exhibit rapid oscillations which decrease in

amplitude so that by r ∼ 200 km they are no longer

observable. The moment-based approaches change notice-

ably at r ∼ 100 km and while the oscillations in the

elements of the luminosity matrix also decrease with

distance, it is over a much longer scale. In contrast to

the two previous self-interaction test problems, there are

substantial difference of the luminosities at large radii of the

different approaches.

We have explored why the multiangle and moment-based

results differ in this test problem by focusing upon the

coherence of the two contributions to the self-interaction.

Figure 10 shows the phase angles ξE and ξF of the

off-diagonal elements of the two contributions to the self-

interaction, HE and HF, respectively [i.e. ξE ¼ argðHeμ
E Þ,

ξE ¼ argðHeμ
F Þ] and the difference between them for the

moment-based approach using the two-moment closure, and

from the multiangle calculation. The evolution of these

phase angles separately with radius indicate the off-diagonal

elements of HE and HF rotate rapidly in the Argand plane,

but even so, for r≲ 60 km the difference between the phase

angles is miniscule and the two terms are coherent. Beyond

FIG. 8. Initial and final spectra versus energy for neutrinos from simulations using parameters in Table II and Sec. III B 2. Neutrinos

are in the top two panels and antineutrinos are in the bottom two. The left column shows the two-moment simulation and the right

column shows the multiangle simulation. The black lines are the electron flavor and the green lines are the x flavor. The solid lines show
the initial spectra and the dashed lines show the final spectra.

TABLE III. Parameters for the collective oscillation simulation

discussed in Sec. III B 3 which lead to a case of multiple spectral

splits. Listed are the luminosity La, average energy hqia, temper-

ature Ta, chemical potential divided by the temperature ηa, the

angular distribution parameter βa, the initial flux factor Fr=E and

initial Eddington factor and Prr=E.

a La [ergs=s] hqia [MeV] Ta [MeV] ηa βa Fr=E Prr=E

νe 1.8 × 1052 12.0 2.1 3.9 0.0 0.933 0.872

ν̄e 2.2 × 1052 15.0 3.5 2.3 0.0 0.933 0.872

νx 2.7 × 1052 18.0 4.4 2.1 0.0 0.933 0.872

ν̄x 2.7 × 1052 18.0 4.4 2.1 0.0 0.933 0.872
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r ∼ 60 km the evolution of the phase angles for the multi-

angle calculation changes noticeably. At first glance the

change in behavior of each phase angle appears to be similar

but closer inspection reveals this not to be the case, and the

difference between the two phases becomes nonzero indi-

cating that actually the degree of coherence between the two

contributions to HSI is weaker. The loss of coherence of

these two contributions to the off-diagonal elements of the

self-interaction Hamiltonian reduces the amount of flavor

transformation in the multiangle calculations beyond

r ∼ 60 km. Fluctuations in ξF − ξE are not seen in the

moment-based results and thus the two contributions to HSI

remain coherent leading to a significant flavor transforma-

tion after r ∼ 60 km. In order to verify this difference

between the two approaches we have repeated the calcu-

lations using different numbers of energy and angle bins, and

even a different code, and found the same results every time.

Thus we suspect that the loss of coherence in the multiangle

calculation is due to the significant cancellation in the self-

interaction Hamiltonian due to the spectral parameters

chosen for this test problem. Less cancellation—as in the

previous two self-interaction test problems—leads to

stronger coherence and better agreement between the

moment-based and multiangle results.

The differences between the two approaches is also seen

in the spectra shown in Fig. 11. The spectra from the

moment calculation shows two splits in the neutrinos at

E ∼ 4 MeV and E ∼ 30 MeV, and E ∼ 25 MeV in the

antineutrinos, with complete swaps of the spectra outside

the split regions. In contrast, the spectra from the multi-

angle calculation are very close to a 50∶50 mixture of the

initial spectra albeit with observable changes in the exact

amount of mixing at the same split energies seen more

clearly in the moment-based approach. These results are a

FIG. 9. The ratio of the “ee” element of luminosity matrix

relative to its initial value, for the modified collective oscillation

test in Sec. III B 3 and Table III. The top panel is for neutrinos and

bottom panel is for antineutrinos. The orange curve shows the

one-moment simulation, blue curve shows the two-moment

simulation, and the black curve shows the multiangle simulation.

FIG. 10. The phase of the off-diagonal element of the HE

component of the Hamiltonian (top panel), the HF contribution

(middle panel) and the difference between them (bottom panel) as

a function of the radial coordinate. Blue lines are the results from

the moment-based approach using the two-moment closure, the

black are from the multiangle calculation.
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close match to those seen in [88] where single-angle

calculations were seen to produce sharp splits and com-

plete swaps, while the splits in the multiangle calculations

were less sharp and the swaps incomplete.

IV. DISCUSSION AND CONCLUSIONS

We have presented here a method for modeling neutrino

flavor mixing using one and two moments. We then

investigated how well it captures the mixing effects of

analytic predictions and of more exact but more computa-

tionally expensive multiangle calculations by considering

several problems in a bulb-model geometry representative

of core-collapse supernovae. Overall, the moment-based

method reproduces results from a multiangle method

surprisingly well. However, errors can emerge in certain

circumstances as a result of the tendency of the moment

method to maintain an artificially high level of coherence

between the simulated moments when using a scalar

closure independent of the level at which we truncate

the evolution equation tower. This supports the claim that

the largest source of error is the nature of the closure and

not the number of evolved moments.

The first problem was the flavor evolution of neutrinos

emitted from a neutrino bulb in matter with a density

chosen to put the 1 MeV neutrinos on the MSW

resonance for the given mixing parameters. We found

that the moment calculations overestimated the amplitude

of the flavor mixing at a given radial point because they

were not able to accurately account for the incoherence of

neutrinos which had traveled along different trajectories.

As the emission at the neutrinosphere becomes more

forward peaked, i.e. a greater proportion of the neutrinos

are emitted along trajectories close to the radial direction,

the transition probabilities from the multiangle calcula-

tion become more similar with those from the moment

calculation.

FIG. 11. Initial and final spectra versus energy for neutrinos from simulations using parameters in Table III and Sec. III B 3. Neutrinos

are in the top two panels and antineutrinos are in the bottom two. The left column shows the two-moment simulation and the right

column shows the multiangle simulation. The black lines are the electron flavor and the green lines are the x flavor. The solid lines show
the initial spectra and the dashed lines show the final spectra.
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The last three test problems were used to study the case of

collective flavor transformation due to neutrino self-inter-

action. In the first of these calculations, designed with a

reasonably realistic inner boundary condition, the moment

and multiangle results were in good agreement in that the

onset of the transformation differed by just a few kilometers.

The results from the one-moment and two-moment calcu-

lations were almost identical. When we adjusted the param-

eters so as to produce flavor transformation much closer to

the neutrinosphere (i.e., where the flux and Eddington

factors are much lower), we again found the multiangle

and moment calculations were in good agreement on where

the flavor transformation begins and that, once again, the

one-moment and two-moment calculations yield essentially

the same radial evolution of the luminosities. We then

demonstrated that the similarity of the two moment-based

approaches is due to a sustained synchronization between

the flux and pressure moments which effectively collapses

the tower of moment equations to that for a single moment.

This coherence between the flux and pressure moments

appears to emerge naturally in steady state self-interaction

situations. As a final attempt to elicit different outcomes

from different methods, we simulate conditions constructed

to produce multiple spectral swaps. Once again, the moment

method correctly predicted the onset of instability and for

some range thereafter, the two approaches were in strong

agreement. But eventually the two approaches diverged due

to the artificially high levels of coherence in the moment

approach compared to the multiangle and, in this case, the

difference resulted in much larger errors.

Overall, the various tests we undertook indicate that a

moment-based approach does well at capturing the overall

neutrino flavor transformation seen in the more computa-

tionally expensive, multiangle, calculation. The onset of

flavor mixing is predicted with an accuracy of a few

kilometers and the spectra are similar. However, we do

find differences between the two approaches indicating

further studies are required before we can completely enjoy

the benefits of the moment-based approach. Our second

self-interaction test problem revealed that the moment-

based approaches can yield, at least temporarily, unphysical

solutions, and we also saw in our third self-interaction test

case how overestimation of the coherence can lead to

different final spectra. The differences between the multi-

angle and moment-based results are entirely due to the

closure. The closures we have used in this paper are scalar

relations, but for quantum moments in general, one would

expect phase differences between the off-diagonal elements

of the two moments used in the closure. A scalar closure

like those used here cannot generate such a phase differ-

ence. To permit the phase differences to appear, one

requires a more general, quantum closure. We shall explore

quantum closures in future work.

In summary, our results indicate that moment-based

schemes are an inexpensive approach to neutrino transport

that are able to capture most of the flavor mixing phe-

nomenology seen in more exact, but more expensive,

calculations. We caution that any enthusiasm for a

moment-based approach to neutrino oscillations must be

tempered by remembering that any approach which trun-

cates the tower of moment equations cannot converge to

those from the full quantum kinetic equations and thus

moment-based approaches will continue to require verifi-

cation against those derived from less approximate meth-

ods. Should further, more demanding comparisons of

moments and less approximate methods, (especially com-

parisons which do not assume a steady state) reveal that

moment-based methods perform well in those situations,

too, wewould proffer moment methods are a promising and

viable avenue for including neutrino transformation in

hydrodynamical simulations.
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APPENDIX A: SQA

For the multiangle calculations we use SQA, which is an

implementation of the bulb model described in Duan et al.

[92]. The momenta of the neutrinos and antineutrinos at the

neutrinosphere are discretized into NE energy bins and NA

angle bins. The energy resolution is uniform, but for the

direction we adopt uniform resolution in the quantity

u ¼ sin2 θR, where θR is the angle at which the neutrino

was emitted at the neutrinosphere relative to the radial

direction. This distribution gives greater weight to the

angles emitted at large angles θR, since these rays have the

largest dispersion in path lengths from the neutrinosphere

to a given radial point. We introduce an evolution matrix S
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that relates the initial density matrix for neutrinos moving

with each momentum p⃗0 at the neutrinosphere to the

density matrix for neutrinos moving at some distance λ

along the same trajectory with momentum p⃗ðλÞ. That is,

ρðλ; p⃗0Þ ¼ Sðλ; p⃗0ÞρðRν; p⃗0ÞS†ðλ; p⃗0Þ: ðA1Þ

Amatrix S̄ðλ; p⃗0Þ plays the same role for antineutrinos. The

matrix Sðλ; p⃗0Þ evolves according to the Schrödinger

equation

i
dS

dλ
¼ Hðλ; p⃗ÞS: ðA2Þ

For the antineutrinos, the matrix S̄ similarly evolves

according to the Hamiltonian H̄. As in the moment method

described in Sec. II, the Hamilton is composed of three

parts: vacuumHV , matterHM, and self-interactionHSI. The

vacuum and matter terms were given previously in

Eqs. (14) and (15), and the self-interaction term is

HSIðr; p⃗Þ ¼
ffiffiffi

2

p
GF

Z

ð1 − p̂ · q̂Þ½ρðr; q⃗Þ

− ρ̄�ðr; q⃗Þ�q2dqdΩ: ðA3Þ

The density matrices are evolved to discrete radial points

rðλÞ common among all trajectories so the Hamiltonian can

be straightforwardly integrated.

To ensure unitarity, the matrices S and S̄ are parametrized

by four real variables: three are the angles defining a unit

vector in a four-dimensional Euclidian flavor space, and the

fourth is the phase of the determinant. The differential

equations for all of the parameters are solved simultane-

ously with an explicit Runge-Kutta integrator that uses an

adaptive step size and the Cash-Karp parameter set. Several

sources of numerical errors in multiangle codes have been

identified over the years [57,58,93,94]. The numerical

accuracy of the SQA calculations presented in this paper

is estimated to be less than 1% based on the lack of visible

differences between the results using different numbers of

energy or angle bins, and initial radii. A related code,

IsotropicSQA, was used for solving the neutrino quantum

kinetic equations in isotropic and homogeneous conditions

[95] is available at [71].

APPENDIX B: NUMERICAL ERRORS IN THE

MOMENT-BASED CALCULATIONS

During our examination of the results from the moment-

based code using the two-moment closure, we observed that

the luminosites became slightly and temporarily greater than

their initial values, as shown in the inset of Fig. 5. The same

ratio from the code using the one-moment closure scheme

did not contain this feature. We have explored the reason

for the appearance of these unphysical results from the

two-moment scheme and attempted several strategies to

remove them. In this appendix we describe those efforts.

The greater-than-initial luminosities are present only

when the self-interaction contribution to the Hamiltonian

is included, and they occur for both neutrinos and anti-

neutrinos. We have no reason to suspect that the errors

are numerical in origin generated from the ordinary

differential equation integrator we used, since decreasing

the error tolerance for the integrator does not improve the

solution. We also changed the algorithm from an explicit

second-order “midpoint” Runge-Kutta integrator to an

adaptive step size routine using the Cash-Karp parameter

set and a fractional error tolerance per step of 10−10, and

found the negative factors persisted. We also tried chang-

ing the parametrization of the moment matrices by writing

the diagonal elements as MðeeÞ ¼ TrðMÞ cos2 θM and

MðxxÞ ¼ TrðMÞ sin2 θM where TrðMÞ is the trace and θM
an angle, in an effort to prohibit the unphysical behavior of

the diagonal elements. However, when we ran our code

using the two-moment closure to evolve these new

parameters, the code terminated prematurely when the

step size shrank to zero at the point where the original

version crossed into the unphysical solution space.

The greater-than-initial luminosities are not dependent

upon the number of energy bins used in the calculation.

While the results in Sec. III B 2 use and energy resolution of

100 keV, we repeated the calculation using a energy

resolution of 50 keV. The evolution of the transition

probability [the transition probability is defined in

Eq. (34)] for the 15MeVneutrinos from the two calculations

is shown in Fig. 12. We observe changes in the transition

probability that are of order 0.001% in the interval 10 km ≤

r ≤ 14 km where the greater-than-initial luminosities

FIG. 12. The difference in the transition probability as a

function of radius for the 15 MeV neutrinos from a two-moment

calculation with an energy resolution of 50 keV compared to the

fiducial energy resolution of 100 keV. The calculation uses the

parameters shown in Table II.
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appear. We also ran a single energy calculation—for which

energy resolution is not a factor—using an energy of 5MeV.

The choice of 5 MeV produces an onset of flavor trans-

formation at r ≈ 13.5 km, similar to that seen in the

multienergy calculation. The results from this single-energy

calculation are shown in Fig. 13 and we observe negative

transition probabilities. Thus we do not believe numerical

error from the energy resolution to be the origin of the

negative factors.

We suspect the origin of the errors to be a combination of

using moments and the closure. In general moments do not

evolve according to a unitary operator because a moment is

an integrated quantity which aggregates information about

the neutrinos traveling along separate trajectories. This is

reflected in the evolution equations themselves. The last

term on the right-hand side of the moment evolution

equations [Eqs. (8)–(11)] unitarily evolves the moment’s

flavor structure and cannot lead to negative probabilities

except for numerical error. The geometrical term (the last

term on the left-hand side of the equation) leads to

nonunitary evolution but this evolution is simply a scaling

and cannot lead to the problems we see. It is the first

commutator on the right-hand side which is the source of

physical nonunitary evolution of the moments and depends

on the choice of closure. Thus we suspect that the closure

we use, while geometrically justified and always realizable,

may not be sufficient to enforce physical evolution of the

moment equations. An analysis of various options for

closures which enforce that the solution always remain

physical is beyond the scope of this paper.
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