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Neutrinos can rapidly change flavor in the inner dense regions of core-collapse supernovae and neutron

star mergers due to the neutrino fast flavor instability. If the amount of flavor transformation is significant,

the fast flavor instability (FFI) could significantly affect how supernovae explode and how supernovae and

mergers enrich the universe with heavy elements. Since many state of the art supernova and merger

simulations rely on neutrino transport algorithms based on angular moments of the radiation field, there is

incomplete information with which to determine if the distributions are unstable to the FFI. In this work we

test the performance of several proposed moment-based instability tests in the literature. We perform time-

independent general relativistic neutrino transport on a snapshot of a 3D neutron star merger simulation to

generate reasonable neutrino distributions and check where each of these criteria correctly predict

instability. In addition, we offer a new “maximum entropy” instability test that is somewhat more complex,

but offers more detailed (though still approximate) estimates of electron lepton number crossing width and

depth. We find that this maximum entropy test and the resonant trajectory test are particularly accurate at

predicting instability in this snapshot, though all tests predict instability where significant flavor

transformation is most likely.

DOI: 10.1103/PhysRevD.106.083005

I. INTRODUCTION

Neutrinos come in one of three known flavors associated
with the three known charged leptons. In the canonical
theory for core-collapse supernovae (CCSNe), neutrinos are
the dominant means by which energy is transported out-
ward, enabling the collapse of the stellar core to result in the
explosion of the rest of the star [1–3]. In neutron starmergers
(NSMs), the neutrino losses determine the thermal evolution
of the disk [4,5], and in both cases neutrino irradiation
determines the nuclear composition of the ejecta that
enriches the universe with heavy elements. (e.g., [6,7]).
Electron neutrinos play a unique role because they partici-
pate in charged-current reactions that transform neutrons
into protons and vise versa. Because of this, models of the
dynamics and nucleosynthesis in these systems are sensitive
to the generation, movement, and absorption of neutrinos of
different flavors [4,8].
The propensity of neutrinos to change flavor in flight

thus poses a significant challenge to these models (see
[9,10] for reviews). In CCSNe and NSMs, neutrinos can be
sufficiently dense that neutrino-neutrino interactions sig-
nificantly modify flavor transformations in a nonlinear
manner that has yielded a rich phenomenology, including
collective oscillations [9], the neutrino halo effect [11], and
the matter-neutrino resonance [12]. More recently, the
neutrino fast flavor instability (FFI) [13,14] was shown

to occur nearly ubiquitously in CCSNe (e.g., [15–19]) and
NSMs [20–23] in a way that may significantly modify the
nuclear composition of ejected matter heavy elements. The
FFI can occur in regions inaccessible to other flavor
transformation mechanisms, but the short timescales and
lengthscales associated with the FFI preclude a direct
treatment in global simulations. Because of this, insight
is needed to predict where the instability occurs and the net
effect it produces.
Although global simulations of flavor transformation in

CCSNe and NSMs are not yet possible, local dynamical
simulations of the FFI (e.g., [24–37]) and analytic calcu-
lations [33,38–40] are able to predict the post-instability
equilibrium with an increasing realism, but a general
solution is still lacking. Fortunately, linear stability analysis
can be used to predict where in a CCSN or NSM the FFI
occurs, even if it cannot predict the nonlinear behavior of
the instability after the instability saturates. Following an
extensive history in application to other collective neutrino
instabilities (e.g., [14,17,41–47]) linear stability analysis
has led to a straightforward criterion for instability: a
neutrino distribution is unstable to the FFI at any location
where there is a propagation direction along which there is
an equal number of neutrinos and antineutrinos [48–50].
This simple concept is very amenable to post-processing of
global simulations that do not include flavor transformation
(e.g., [16–19,51–54]). However, in many of these calcu-
lations, the full neutrino distribution is not calculated, as
only angular moments of the neutrino field are simulated
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[55,56] to reduce the computational costs. A number of
methods have been proposed that use the limited informa-
tion present in these moments to predict whether an electron
lepton number (ELN) crossing, and thus the FFI, is present
for a particular combination of angular moments. These
include the k0 test [46], the polynomial test [52], the α ¼ 1

test [57,58], the unstable pendulum and resonant trajectory
tests [26], and a fitting method to more exact calculations
[54]. In this work, we also provide analytic expressions for a
general maximum entropy test, another ELN crossing test
based on the shape of the distribution used in the popular
maximum entropy closure [26,59,60].
The k0 and polynomial tests have been dynamically

incorporated into global simulations of NSMs [22,23],
and similar simulations of CCSNe are likely underway
(though [61] incorporate flavor transformation into mod-
els of neutrino-driven wind from a protoneutron star).
The ability of some of the tests to accurately predict
instability has been tested in the context of simulations
of one-dimensional (spherically symmetric) CCSNe with
Newtonian gravity [62–64], in which hand-tuned criteria
can perform quite well, but more conservative criteria
naturally tend to under-predict instability. It is also not
clear how these results extend to multidimensional anisot-
ropies and inhomogeneities. In this work, we take each of
these tests and assess how well they perform in the context
of a three-dimensional NSM with a general spacetime
metric. With this information, we hope to provide some
insight into the biases associated with each test such that
flavor transformation can be more realistically incorporated
into simulations of NSMs and so we can better interpret the
results of such simulations.
We begin in Sec. II by reviewing the definition of ELN

crossings, taking care to discuss classical neutrino distri-
butions without reference to quantum kinetics. In Sec. III
we describe the time-independent Monte Carlo radiation
transport method we use to calculate the full neutrino
distribution information and review how analytic closures
are used to determine higher angular moments of the
radiation field from the energy density and flux. In
Sec. IV, we describe the structure of the resulting full
radiation field, derive our new maximum entropy crossing
test, and demonstrate the ability of each of the proposed
tests to accurately detect crossings in the ELN distributions.
Finally, we provide some concluding remarks in Sec. V.

II. ELN CROSSINGS AS AN INDICATION

OF THE FAST FLAVOR INSTABILITY

In this section, we briefly review the conditions for the
growth of the neutrino fast flavor instability. For the sake of
simplicity, we make no reference to the quantum kinetic
equations in this work, and instead appeal to the equiv-
alence between instability and crossings in the angular
distribution of electron lepton number [49]. Understanding
the origin of the instability and how it evolves requires a

treatment of the quantum kinetic equations, but identifying
instability in a distribution of neutrinos in pure flavor states
requires only knowledge of each flavor’s distribution. We
also assume a flat spacetime in this discussion, since the
fast flavor instability tends to operate on length scales much
smaller than the spacetime curvature.
The distribution of each neutrino species νa is repre-

sented by the distribution function fνaðx;Ω; ϵ; tÞ, which for
neutrinos takes on values of 0 ≤ fνa ≤ 1. The distribution

function is a seven-dimensional function of the position x,
direction unit vector Ω, the energy ϵ, and the time t. The
number density, number flux, number “pressure tensor,”
and number “heat tensor” of each species are integrals of
the distribution function over momentum:

nνa ¼
1

ðhcÞ3
Z

fνadΩϵ
2dϵ

Fi
νa
¼ 1

ðhcÞ3
Z

fνaΩ
idΩϵ2dϵ

P
ij
νa ¼

1

ðhcÞ3
Z

fνaΩ
i
Ω

jdΩϵ2dϵ

L
ijk
νa ¼ 1

ðhcÞ3
Z

fνaΩ
i
Ω

j
Ω

kdΩϵ2dϵ: ð1Þ

The neutrino lepton number distribution is defined as an
energy integral of the difference between the distributions
of a pair of neutrino flavors. Specifically,

Gνaνb
ðx;Ω;tÞ¼ 1

ðhcÞ3
Z

½ðfνa −fνbÞ−ðfν̄a −fν̄bÞ�ϵ2dϵ: ð2Þ

There is a neutrino lepton number crossing, and thus flavor
instability [49], at any x and t whereGνaνb

takes on positive

values in some directions and negative values in others. It is
common to assume that due to the energy scales involved in
core-collapse supernovae and neutron star mergers, inter-
actions producing heavy leptons are kinematically sup-
pressed, and the distributions of mu and tau neutrinos and
antineutrinos are all similar. Although small deviations
from this assumption can be important (see [62,65]), we do
assume that heavy lepton neutrinos have the same distri-
bution for the sake of analyzing crossings in the electron
flavor sector. With this assumption, the neutrino lepton
number distributions become

Gνeνμ
≈Gνeντ

¼ 1

ðhcÞ3
Z

ðfνe − fν̄eÞϵ2dϵ

Gνμντ
≈ 0: ð3Þ

In the following, we refer simply to the electron lepton
number (ELN) distribution G to mean either Gνeνμ

or Gνeντ
.

Angular moments of the lepton number distribution are
defined analogously to moments of the distribution func-
tion itself. That is,
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… ð4Þ

Note that the moment subscript also denotes the tensor rank
of the moment. I0 is a scalar, I1 is a vector, I2 is a rank-2
tensor, etc.
Many of the instabilitymetrics described in thisworkwere

derived assuming the distributions of all species exhibit axial
symmetry around the same axis, which is generally not true
in three-dimensional systems, and especially difficult to
justify in neutron star mergers [60,66]. In order to connect
with work that assumes axial symmetry, we extract the
component of each moment along the direction of the net
ELN flux Î1. The scalarized moments are then

I�
1
¼ Ii

1

I1;i

jI1j

I�
2
¼ I

ij
2

I1;iI1;j

jI1j2

I�
3
¼ I

ijk
3

I1;iI1;jI1;k

jI1j3
: ð5Þ

We use Einstein summation notation in these expressions,
but since everything is defined in an orthonormal tetrad,
down-index quantities are identical to up-index quantities.
The rest of this work is devoted to assessing how well we

can predict the presence of the fast flavor instability using
only these angular moments of the ELN.

III. METHODS

We perform general-relativistic Monte Carlo neutrino
radiation transport to directly solve for a realistic distribu-
tion function everywhere on the domain and determine
where there are ELN crossings. We then take angular
moments of the distribution in order to assess how well
several moment-based tests are able to detect ELN cross-
ings In this section, we lay out the details of the
Monte Carlo calculations that yield the full angular dis-
tribution. We then review how an analytic closure is used to
estimate the pressure and heat tensors when only the
number density and number flux are known.

A. Monte Carlo radiation transport

We use SedonuGR [60] to calculate the steady-state
radiation field in a snapshot of a three-dimensional neutron

star merger simulation from [66] at 10 ms after merger.
SedonuGR imports the mass density ρ, electron fraction
Ye, temperature T, and spacetime metric gμν at every point

in space. We use only one refinement level spanning a
domain of size 563 km × 563 km × 145 km (assuming
reflection symmetry across z ¼ 0) with a grid size of
207 × 207 × 54, corresponding to a spatial resolution of
2.7 km in all directions.
The emissivity η, absorption opacity κabs, and elastic

scattering opacity κscat for each neutrino species is determined
by NuLib [67], including charged current absorption/emis-
sion on nucleons and nuclei, elastic scattering on nucleons,
nuclei, and electrons, and neutrino pair creation and annihi-
lation (including nucleon-nucleon Bremsstrahlung). For pair
processes, the neutrino annihilation rate is determined by
applying Kirchoff’s law to the emissivity. We use the LS220
equation of state [68] to calculate the neutrino interaction
rates, consistentwith that used in the simulation that produced
the background data. The steady-state approximation and
the approximate treatment of the scattering and pair processes
are not realistic, but they suffice to produce believable
distributions of neutrino radiation that we can use to judge
schemes for detecting an ELN crossing. We employ 12
energy groups with upper bounds logarithmically spaced
from 4 to 150 MeV.
We outline the major features of the Monte Carlo

method, but refer the reader to [60] for details. Sedonu
initializes a large number of Monte Carlo particles in each
grid cell and each energy bin. In this work, we create a total
of 1.2 × 1010 Monte Carlo particles for each flavor. Each
particle is given a weight N (i.e., the number of physical
neutrinos the particle represents) according to the emis-
sivity of each neutrino species in that space-energy zone.
The direction of each particle is isotropically randomly
sampled in the frame comoving with the fluid. The distance
(again in the comoving frame) to the next scattering event is
randomly sampled from an exponential distribution. The
particle then propagates that distance or to the next grid cell
wall (whichever is closer) according to the geodesic
equation, and the comoving-frame distance traversed is
labeled Δs. Throughout this step, the weight of each
particle is continuously decreased according to the absorp-
tion opacity. If the distance chosen was the scattering
distance, the particle is then given a new random direction
in the new comoving frame, preserving the neutrino energy
in that frame. In any case, all opacities and metric quantities
are then reinterpolated from the background grid, a new
distance is sampled, and the process repeats until the
particle weight decreases below a threshold (in which case
it is rouletted) or it leaves the domain of the calculation.
Each space-energy zone collects radiation information

from the particles that pass through it. This aggregate
radiation field is discretized into discrete direction bins,
with 16 bins uniformily spaced in azimuthal angle around
the ẑ axis, and 8 polar bins uniformily spaced in the cosine
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of the angle from the same axis, all defined in a comoving
orthornormal tetrad. During the step, each particle con-
tributes a bit of energy density ΔE to the radiation field
stored in the space-energy-direction zone it occupies. The
energy density contribution is determined by

ΔE ¼ hNipt
tetΔs

cV
; ð6Þ

where hNi is the average neutrino weight during the step
(recall, it is changing due to absorption) and V is the four-
volume of the grid cell. Both the emission (which deter-
mines the initial weight N) and the four-volume assume a
particular coordinate time interval Δt, but this arbitrary
choice cancels in the energy density accumulation. By the
end of the calculation, each zone contains contributions
from many separate particles. In addition, to remove
Monte Carlo noise, we perform gaussian smoothing in
space (x, y, z) with a width of 1 grid cell and a maximum
extent of 1 grid cell. Doing the data analysis with and
without this smoothing allows us to confirm that our results
do not vary under differing amounts of noise.
The main output of the Monte Carlo transport is six-

dimensional energy density grid Elmnpqr, where ðl; m; nÞ
are spatial grid cell indices, p is the energy bin index, q is
the azimuthal angle grid index, and r is the polar angle grid
index, all defined in a comoving orthonormal tetrad. We
also define a unit vector pointing to the center of each

direction binΩi
qr and the bin-center neutrino energy ϵp. The

first four number density moments for each neutrino flavor
can then be evaluated as straightforward sums over the
energy density array:

nlmn ¼
X

pqr

Elmnpqr

ϵp

Fi
lmn ¼

X

pqr

Elmnpqr

ϵp
Ω

i
qr

P
ij
lmn ¼

X

pqr

Elmnpqr

ϵp
Ω

i
qrΩ

j
qr

L
ijk
lmn ¼

X

pqr

Elmnpqr

ϵp
Ω

i
qrΩ

j
qrΩ

k
qr: ð7Þ

B. Maximum entropy closure

We briefly review the classical maximum entropy
closure of [59], as this is currently the most popular choice
of analytic closures in modern moment-based neutrino
transport methods. The closure also lends itself to an
approximate crossing test described in Sec. IV B.
Maximizing the angular entropy of the energy-integrated
distribution constrained to a given number density and flux
of each neutrino species as described in [59] yields a
functional form of the distribution at each location:

fMEðx;Ω; tÞ ¼ n

4π

Z

sinhðZÞ e
Z cosðθÞ: ð8Þ

Although n, F, and Z are different for each species, we drop
the species subscripts for the rest of this section with the
understanding that this whole process is applied separately
to each species. Here, θ is the angle between Ω and the
direction of the net number flux of the given neutrino

species, such that cos θ ¼ Ω · F̂. Z is a parameter deter-
mined by solving the transcendental equation

f̃ ¼ cothðZÞ − 1

Z
: ð9Þ

The left-hand side of this equation is the flux factor, defined

as f̃ ¼ jFj=n.
When using any analytic closure, all components of the

pressure and heat tensor are constructed by interpolating
between the optically thick and thin limits as

P
ij
ME ¼ 3ð1 − χpÞ

2
P
ij
thick þ

3χp − 1

2
P
ij
thin

L
ijk
ME ¼ 3ð1 − χlÞ

2
L
ij
thick þ

3χl − 1

2
L
ij
thin ð10Þ

Again taking advantage of our orthonormal tetrad for
simplicity, these thick and thin limits are

P
ij
thick ¼

n

3
δij P

ij
thin ¼ n

FiFj

jFj2

Liii
thick ¼

3Fi

5
L
iij
thick ¼

Fi

5

L
ijk
thick ¼ 0 L

ijk
thin ¼

FiFjFk

jFj3 ð11Þ

In the expressions for Lthick, repeated indices are assumed
to be the same and distinct indices are assumed to be
different. All components of both tensors can be deter-
mined noting that they are symmetric upon exchange of any
pair of indices.
Taking the second and third angular moments of the

maximum entropy distribution along the flux direction
yields the familiar closure relations [59,60]

χp ¼ 1

n

Z

fMEcos2θdΩ
ϵ2dϵ

ðhcÞ3 ≈
1

3
þ 2

15
f̃2ð3 − f̃ þ 3f̃2Þ

χl ¼
1

n

Z

fMEcos3θdΩ
ϵ2dϵ

ðhcÞ3 ≈
1

3
þ 2

3
f̃5 ð12Þ

In the case of spectral transport, this process is generally
applied separately to each energy bin, as we do when
evaluating the “closed” moments later in this work. Also,
the closure is usually, though not always, applied to energy
moments rather than number moments (i.e., with one more
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factor of energy in the integrand). However, in the case of
simulated spectral moments where one assumes for numeri-
cal purposes that all of the radiation within a bin has the
same energy, the result is identical.

IV. RESULTS

In this section, we assess how well various moment-
based ELN crossing detection schemes perform. In order to
put those results in context, we first describe some of the
prevalent features of the neutrino radiation field. We then
show where ELN crossings occur in the full radiation
field data in Sec. IVA. We introduce the generalized
maximum entropy crossing test in Sec. IV B and demon-
strate the efficacy of each moment-based crossing test in
Secs. IV B–IV F.
We show results of the Monte Carlo radiation transport

calculation in Fig. 1 to demonstrate differences between the
electron neutrino and antineutrino distributions that lead to
ELN crossings. The top panel shows the lepton number
density asymmetry, where dark red implies that 100% of
the neutrinos are electron neutrinos, and dark blue implies
that 100% of the neutrinos are electron antineutrinos. Far
from the merger, there is an overall overabundance of
electron antineutrinos, a reflection of the fact that the
neutron star matter is by and large increasing its electron
fraction and emitting antineutrinos. There is an overabun-
dance of electron neutrinos in the hot and dense parts of the
inner accretion disk where the electron fraction is some-
what higher (up to about 0.25), since electron antineutrinos

are able to escape more easily. Finally, there is a significant
overabundance of electron antineutrinos in the central
hypermassive neutron star because the neutron chemical
potential significantly exceeds the proton and electron
chemical potentials. The black contour (repeated in all
other plots in this work) shows where electron neutrinos
and antineutrinos have an equal number density, guaran-
teeing the presence of an ELN crossing [57,58].
Even in regions where one flavor is significantly more

abundant than another, an ELN crossing is possible if
the fluxes of the two distributions are sufficiently
different. The center panel shows the difference between
the electron neutrino and antineutrino flux factors. In the
central hypermassive neutron star, both flux factors are
approximately 0 (hence a difference also of 0). Far from
the merger, both flux factors approach 1 (also trending
toward a difference of 0). In intermediate equatorial regions
(10 km≲ x≲ 200 km), the electron antineutrino flux fac-
tor is significantly larger than the electron neutrino flux
factor, a result of the fact that the electron antineutrino
interaction rates are smaller, allowing them to decouple
from the fluid more easily.
The lower panel shows the angle between the electron

neutrino and antineutrino fluxes. At large radii, all fluxes
trend toward pointing radially. We color by the logarithm of
the angle in order to better show small differences between
the fluxes at jxj≳ 150. Even though the electron anti/
neutrino flux factors differ significantly in these regions,
the flux directions differ by at most a few degrees and do
not exhibit as much structure as the flux factors.
In the following sections, we demonstrate that these

differences between electron neutrino and antineutrino
distributions lead to ELN crossings and assess how well
these crossings are detected by various moment-based tests.

A. Direct crossing search

When the full distributionof neutrinos is available, one can
search for ELN crossings without approximation beyond the
numerical discretization. However, there is generally a trade-
off in simulations between the accuracy of the radiation
transport and other components of the simulation, so this is
only possible for a small subset of simulations. In the
language of our discrete energy density array output from
theMonteCarlo calculation (see Sec. III A), the discreteELN
distribution is

Glmnqr ¼
Ndirection bins

4π

X

p

Elmnpqr;νe
− Elmnpqr;ν̄e

ϵp
; ð13Þ

where here Ndirection bins ¼ 16 × 8 ¼ 128. For any spatial
location ðl; m; nÞ, there is an ELN crossing by definition if

ðmax
qr

GlmnqrÞðmin
qr

GlmnqrÞ ≤ 0: ð14Þ

FIG. 1. Top panel: neutrino/antineutrino asymmetry. Red in-
dicates more electron neutrinos and blue indicates more electron
antineutrinos. Center panel: difference between the neutrino and
antineutrino flux factor. Lower panel: angle between the electron
neutrino and antineutrino flux vectors. The flux directions differ
most significantly in the polar regions and just above the
accretion disk. Imposing a closure does not change these
quantities, since they are defined with only the first two moments.
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The coarseness of our angular grid prevents us fromdetecting
ELN crossings smaller than the angular grid cell size of
Δϕ ¼ 22.5°. Small and shallow crossings seem to lead to
minimal flavor transformation [35], so although finer angular
resolution may reveal slightly more volume with an ELN
crossing, we do not expect this to significantly influence
implications for flavor transformation, mass ejection, and
nucleosynthesis. In addition, we verified that we use suffi-
cient angular resolution by checking that all results are
unchanged resulting fromanotherMonteCarlo calculation in
which we collect the radiation field directly into angular
moments (see [60] for details). The regions containing an
ELN crossing are shown as green in Fig. 2. There are noELN
crossings within the hypermassive neutron star because the
distributions of both electron neutrinos and antineutrinos are
nearly isotropic and there is a strong over-abundance of
electron antineutrinos.However, in the rest of thedomain, the
relative amounts of each species are much more similar (top
panel of Fig. 1), and variations in the angular distributions are
sufficient to induce crossings in 98% of the domain.
Extrapolating beyond the calculation domain, collisional
processes are very weak due to low densities. Trajectories
that have equal numbers of neutrinos and antineutrinos will
remain so, implying that crossings should remain present at
larger distances, in agreement with [21–23]. In the following
subsections, we will try to reproduce these results with a
variety of moment-based tests.

B. Maximum entropy test

We provide analytic expressions for a generalized ELN
crossing test based on the assumption that the energy-
integrated neutrino distributions follow the form assumed
in deriving themaximum entropy closure [Eq. (8)]. This is in
general not a valid assumption, since even if each of several
neutrino energy bins follows a maximum entropy distribu-
tion, the sumof thedistributions from those energybins (each
with different flux factors and directions) is not a maximum
entropy distribution. However, we will see that it is never-
theless useful for estimating other properties of the distri-
butions, although its applicability is limited in large-scale

simulations due to the need to iteratively solve a transcen-
dental equation. Note that Johns and Nagakura [26] use this
concept to analyze spherically symmetric neutrino distribu-
tions, but the approach presentedhere allows theneutrino and
antineutrino fluxes to point in arbitrary directions.
There is an ELN crossing at any direction where G ¼ 0.

We can make intuitive sense of the crossings by taking a
cross-section of the distributions in momentum space as in
Fig. 3, plotting the differential number density of each
neutrinos (blue) and antineutrinos (red) in each direction θ

as the radial coordinate of the curve. In this example, the
two distributions cross at the black points, which are part of
a continuous loop passing through the plane. Given the
number densities and number fluxes of each distribution
[and thus also Z from Eq. (9)], it is straightforward to
determine the directions in this plane where the distribu-
tions cross by solving

n

4π

Z

sinhðZÞ e
Z cosðθ−θFÞ ¼ n̄

4π

Z̄

sinhðZ̄Þ e
Z̄ cosðθ̄−θF̄Þ: ð15Þ

This can be expressed more simply as

η ¼ α sin θ þ γ cos θ; ð16Þ

where α ¼ Z̄ sin θF̄ − Z sin θF, γ ¼ Z̄ cos θF̄, and η ¼
lnðnZ sinh Z̄=n̄ Z̄ sinhZÞ. Further defining the variable

FIG. 2. Direct crossing search. Locations with ELN crossings
are shown in green and locations without crossings are shown in
white. The majority of the domain contains an ELN crossing, but
the presence of a crossing does not necessarily imply significant
flavor transformation. There are equal densities of electron
neutrinos and antineutrinos on the black contour (identical to
the top panel of Fig. 1).

FIG. 3. ELN crossing between two different maximum en-
tropy distributions. The plot shows a cross section of the
distributions along the plane containing both the electron neutrino
flux F⃗νe

and the electron antineutrino flux F⃗ν̄e
. The direction of

the net electron lepton flux I⃗1 is shown in purple. The radius
represents the differential number density of electron neutrinos
(blue) and antineutrinos (red) propagating in the direction given
by the angle θ from some arbitrary direction θ ¼ 0. In most
directions, there are more antineutrinos than neutrinos (shaded
red), but the directions between the ELN crossings (black points)
are dominated by electron neutrinos (shaded blue).
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θ̃ ¼ tan−1ðα=γÞ allows a simple expression for the angles at
which a crossing occurs

θ ¼ θ̃ þ cos−1
�

η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ γ2
p

�

ð17Þ

A crossing exists if θ is real. Therefore, the condition for
instability is

η2

α2 þ γ2
≤ 1: ð18Þ

Nonlinear flavor transformation simulations are still
needed to precisely predict the implications for the eventual
flavor transformation, but previous work has indicated that
wide crossings are favorable for more significant flavor
transformation (e.g., [28,33,35]). In addition to predicting
the presence of a crossing, we can follow the analysis
behind the maximum entropy test further to estimate the
properties of the crossing. The inverse cosine in Eq. (17)
yields two results, and we can use the difference between
them to estimate the angular width of the crossing as

Δθ ¼ 2 cos−1
�

η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ γ2
p

�

ð19Þ

The bottom panel of Fig. 4 shows the angular width of the
crossing as determined from Eq. (19) (bottom panel), along
with an estimate of the same quantity extracted directly
from the Monte Carlo results. We also estimate the angular
width of the crossing from the Monte Carlo data using

ΔθMC ≈ 2 cos−1
�

1 −
ΔΩ

2π

�

ð20Þ

where ΔΩ is the solid angle occupied by the inverted
portion of the ELN. The results are displayed in the top
panel of Fig. 4. In both cases, there is a broad region out to
r ≈ 200 km that exhibits wide crossings (green and yel-
low). However, there are significant differences in the
structure. The ME estimation of the width in the polar
region is significantly larger than the MC estimate. This is
unsurprising given that analytic moment closures are
known to perform poorly in polar regions. Outside of
r ≈ 200 km, the ME test seems to indicate significantly
wider crossings than those present in the MC data along
radial structures. This structure reflects the structure ap-
parent in the differences between flux factors between
neutrinos and antineutrinos shown in the center panel of
Fig. 1, falsely correlating large electron neutrino flux
factors with wide crossings.
The growth rate of the FFI is sensitive to the depth of the

crossing. Following [16], the growth rate ℑðωÞ can be
estimated to scale with the “crossed” and “uncrossed” ELN
densities Iþ and I−, defined as

ℑðωÞ
ffiffiffi

2
p

GFðnνe þ nν̄eÞ
≈

ffiffiffiffiffiffiffiffiffiffi

IþI−
p

nνe þ nν̄e
: ð21Þ

We calculate the “crossed” and “uncrossed” ELN densities
from the discrete Monte Carlo data as

Iþ ¼
Z

dΩGΘðGÞ

I− ¼
Z

dΩGΘð−GÞ; ð22Þ

where Θ is the Heaviside theta function. This is directly
evaluated from the Monte Carlo data and displayed in the
top panel of Fig. 5. The deepest crossings are present in the
dense part of the accretion disk, but crossings are present
almost everywhere in the domain. As already described in
several previous works, even the regions with a small
crossing depth have growth rates that are much faster than
the relevant advection or collisional timescales. While it is

FIG. 4. Estimates of the angular width of ELN crossings from
the discrete Monte Carlo data [top panel, Eq. (20)] and from the
maximum entropy test [bottom panel, Eq. (19)]. The ME test
correctly predicts wide crossings out to r≲ 200 km, but falsely
predicts radial structures with alternating wide and no crossings
outside this region.

FIG. 5. Depth of the ELN crossing as an estimate of the density-
normalized growth rate of the FFI. The positive and negative
regions of the ELN distribution are directly integrated from the
Monte Carlo data in the top panel [Eq. (21)], and the correspond-
ing estimate from the ME test is shown in the bottom panel
[Eq. (24)]. The ME test qualitatively predicts the crossing depth in
the disk, but predicts an artificially large crossing depth in the
polar regions.
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in general possible to integrate Iþ and I− for ME distri-
butions, we instead approximate Eq. (21) in a way that is
more straightforward to evaluate in the context of a global
two-moment radiation hydrodynamics simulation. We
evaluate the ME distribution in the direction of the net
ELN flux (purple vector in Fig. 3) and in the opposite

direction. Specifically, if I⃗1 is oriented with angle θI1 , we

evaluate

fME
νe;þ ¼ fMEðN;Z; θI1 − θFÞ

fME
ν̄e;þ ¼ fMEðN̄; Z̄; θI1 − θF̄Þ
fME
νe;−

¼ fMEðN;Z; θI1 − θF þ πÞ
fME
ν̄e;−

¼ fMEðN̄; Z̄; θI1 − θF̄ þ πÞ ð23Þ

Using, δfME ¼ fME
νe

− fME
ν̄e

, We can then approximate the

crossing depth as

ℑðωÞ
ffiffiffi

2
p

GFðnνe þ nν̄eÞ
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðδfME
þ ÞðδfME

− Þ
p

fME
νe;þ þ fME

νe;þ þ fME
ν̄e;−

þ fME
ν̄e;−

ð24Þ

This is plotted in the bottom panel of Fig. 5. Once again, the
ME test reproduces the actual crossing depth rather well
within the accretion disk. However, the ME test over-
predicts the crossing depth in the polar regions, which is
again expected due to the known problems of analytic
closures in this region. However, since the growth rate
everywhere is faster than other timescales, the particular
growth rate is not as important as the presence of instability
and the net flavor change it produces.
Finally, the total amount of eventual flavor change is

related to the relative amount of electron neutrino and
antineutrino excess (i.e., the relative sizes of Iþ and I−).
That is, if either the blue or red shaded regions in Fig. 3 is
small, there is not significant freedom for the fast flavor
instability to transform overall flavor [28,35,69]. We
evaluate the crossing ratio as

Rcrossing ¼ min

�jIþj
jI−j

;
jI−j
jIþj

�

≈min

�jδfME
þ j

jδfME
− j ;

jδfME
− j

jδfME
þ j

�

ð25Þ

These are plotted on the top and bottom panels, respectively,
in Fig. 6. For the case of the direct MC data (top panel), the
ratio is close to unity (indicating possible significant flavor
transformation) near the contour of nνe − nν̄e ¼ 0 (black

curve). The ME test predicts a large crossing ratio at similar
locations, but at smaller radii. This estimate would likely be
improved by a full angular integral of the ME test, but such
an approach is likely too expensive to implement in global
simulations of neutron starmergers. Note that the inability of
much of the domain to undergo significant changes in flavor

is consistent with the calculations by [70,71] using a related
“instability parameter” and a toy model of flavor trans-
formation in the merger system.
The main results for this test are shown in the top left

panel of Fig. 7. The maximum entropy test predicts a
crossing almost everywhere that one exists (green), never
showing a false positive and predicting no crossing where
one exists in only a few percent of the domain. Overall, the
ME closure is quite good at predicting where ELN cross-
ings are present and offers the ability to estimate qualitative
details of the crossings. These details (crossing width,
crossing depth, and crossing ratio) are approximately
correct within the disk out to ∼200 km where most of
the flavor transformation is expected to occur, but rather
inaccurate in polar regions and at large radii.

C. Polynomial test

The polynomial test of [52] states that if two different
positive-weighted angular integrals of the ELN distribution
GðΩÞ have opposite sign, then the ELN itself must carry
positive and negative values. This test has the advantage that
if the full tower of angular moments is known, it can exactly
predict the presence of an ELN crossing. In general, it also
requires a sweep over parameter space, but we will show
here that one can judiciously choose parameters tomaximize
the ability of polynomial tests to capture a crossing without
requiring a parameter sweep. Unfortunately, polynomial
tests also do not offer insight into the properties (wave
number, growth rate) of unstable modes.
Specifically, for two different positive semidefinite

functions F�ðΩÞ, the integrals are

I� ¼
Z

dΩF�G: ð26Þ

Note that the definitions of I� are different from those in
Sec. II. The distribution is unstable if

FIG. 6. Relative amounts of net ELN density integrated over
ELN positive and negative directions [Eq. (25)]. A value of 1
indicates that Iþ ¼ I− (i.e., complete flavor transformation is
possible), while a value of 0 indicates that either Iþ or I− is very

small (i.e., little flavor transformation is possible). The ME test
(bottom panel) qualitatively predicts the locations of large
crossing ratio in the Monte Carlo data (top panel).
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IþI− ≤ 0: ð27Þ

The weighting functions can then be chosen such that the
integrals I� are combinations of the known moments by
using the form

F�ðΩÞ ¼ aþ biΩ
i þ cijΩ

i
Ω

j þ dijkΩ
i
Ω

j
Ω

k þ � � � ð28Þ

resulting in corresponding integrals of the form

I� ¼ aI0 þ biI
i
1
þ cijI

ij
2
þ dijkI

ijk
3

þ � � � ð29Þ

Following this process, one must search through all
coefficients a, bi, etc. that make F� positive for all Ω
to see if any two combinations yield I� of different signs.

FIG. 7. Comparison of the ability of moment-based crossing tests to detect ELN crossings. The black curve indicates where nνe ¼ nν̄e .
Green indicates the test and the MC data expect a crossing. Blue indicates there is a crossing in the MC data, but the test does not predict
a crossing. Red means the test predicts a crossing not present in the MC data. White indicates that neither the test nor the MC predict a
crossing. We include the maximum entropy test [Eq. (18)], the polynomial tests [Eq. (27) using Eqs. (33)–(36)], the k0 test [Eq. (37)], the
resonant trajectory test [Eq. (38)], and the unstable pendulum test [Eq. (39)]. In the top panels for each test, all moments are integrated
from the Monte Carlo data. In the bottom panels, rank-2 and rank-3 moments are replaced by values determined by the maximum
entropy closure [Eq. (10) using Eq. (12)]. The maximum entropy and resonant trajectory tests agree with the largest volume of
Monte Carlo data, but all of the tests exhibit instability in the regions near the black contour where significant flavor transformation is
possible (Fig. 6). The tests that use information from the pressure and heat tensors are sensitive to the choice of closure.
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With moments up to rank 3, this is a 40-dimensional
parameter space that is not practical to fully search. Instead,
in the following we try to simplify the approach to extract
straightforward polynomial expressions that can be applied
without a numerical search procedure. We can capture the
most significant effects by noting that, intuitively, the ELN
is likely to have values of opposite sign in the directions

along and opposite the direction of the net ELN flux I⃗1.
Thus, we can create a smaller class of weighting functions

F�ðμÞ ¼ aþ bμþ cμ2 þ dμ3 þ � � � ð30Þ

with corresponding integrals

I� ¼ aI0 þ bI�
1
þ cI�

2
þ dI�

3
þ � � � ; ð31Þ

where μ ¼ Ω · Î1 and the scalaraized ELN moments are
defined in Eq. (5).
If we only use the number densities, the only meaningful

weighting function is Fþ ¼ F− ¼ 1 (and positive scalar
multiples), resulting in Iþ ¼ I− ¼ I0. Thus ELN crossings
are guaranteed if Eq. (27) is satisfied with

I
ð0Þ
� ¼ I0; ð32Þ

which is equivalent to the α ¼ 1 test of [57,58] and is plotted
as a black curve in all cross-sectional figures. As we explain
in Sec. IV B in reference to Fig. 6, this traces the regions
most likely to experience significant flavor transformation.
In core-collapse supernovae, this condition is satisfied in
regions inside the protoneutron star where neutrinos are
nearly in equilibriumwith zero chemical potential, implying
that even if the distributions are unstable to flavor mixing,
the flavors are already effectively fullymixed. This is not the
case in neutron star mergers, where there are significantly
fewer heavy lepton neutrinos, leaving a great deal of room
for significant flavor transformation.
If we now also use information from the number flux,

we can choose weighting functions in the form of Eq. (30)
with only a and b nonzero. The impact of the flux
information is maximized if we choose Fþð−1Þ ¼ 0

and Fþð1Þ ¼ 1 (for a “forward-weighted” integral), and
F−ð−1Þ ¼ 1 and F−ð1Þ ¼ 0 (for a backward-weighted
integral). This requires a� ¼ 1=2 and b� ¼ �1=2, and
the corresponding polynomials are plotted in blue in
Fig. 8. Thus, the distribution is unstable to the FFI if
Eq. (27) is satisfied with

I
ð1Þ
� ¼ 1

2
ðI0 � I�

1
Þ: ð33Þ

The results of this test are plotted in the “Polynomial 1”
panel of Fig. 7. The region of predicted instability now
obtains some spatial extent, largely encompassing the
regions of large Rcrossing shown in Fig. 6. Thus, although

this method does not predict crossings everywhere they are
present in the Monte Carlo data, it likely predicts crossings
in the regions most important for flavor transformation,
though this must be tested by nonlinear simulations. This
treatment of the order-1 polynomial test is also exactly
equivalent to a complete search, so there is no possibility that
a different choice of coefficients of the energy density and
fluxes would yield a larger unstable region. In addition, this
test does not depend on the choice of closure, since it does
not use information from the pressure or heat tensors.
If we now also allow use of the pressure tensor, c can be

nonzero. The weighting function is maximally weighted to
one side if we require Fþð−1Þ ¼ F−ð1Þ ¼ 0, F 0

þð−1Þ ¼
F 0

−ð1Þ ¼ 0, and Fþð1Þ ¼ F−ð−1Þ ¼ 1. This requires that
a� ¼ 1=4, b� ¼ �1=2, and c� ¼ 1=4, and the resulting
functions are plotted in green in Fig. 8. The distribution is
unstable if Eq. (27) is satisfied with

I
ð2Þ
� ¼ 1

4
ðI0 � 2I�

1
þ I�

2
Þ: ð34Þ

The results are displayed in the top panel of the
“Polynomial 2” plot in Fig. 7. The method is able to
capture a bit more volume than the order-1 polynomial test,
but not significantly so. In the bottom panel of the
“Polynomial 2” plot, we replace I�

2
with that determined

by applying the maximum entropy closure [Eq. (12)] to the
number density and number flux of each species separately
for each energy bin. This causes the crossing test to detect
crossings in wings above and below the disk where the

FIG. 8. Polynomial weighting functions used to design crossing
tests based on moments up to rank 1 [blue, Eq. (33)], rank 2
[green and orange, Eqs. (34) and (35)], and rank 3 [red, Eq. (36)].
Fþ (solid) and F− (dotted) maximally weight opposite sides of
the distribution to maximize the probability that Equation (27)
will detect a crossing.
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antineutrino flux factors are significantly larger than the
neutrino flux factors (center panel of Fig. 1). This indicates
that the crossing test can be significantly influenced by the
choice of closure.
We could also try to maximally weight the ELN

distribution at μ ¼ 0 (the “equatorial” region around Î1)
by requiringFþð0Þ¼F−ð−1Þ¼F−ð1Þ¼0 andFþð−1Þ ¼
Fþð1Þ ¼ F−ð0Þ ¼ 1. This constrains the coefficients to
a� ¼ ð1 ∓ 1Þ=2 and b� ¼ �1. The corresponding weight-
ing functions are plotted in green in Fig. 8. The distribution
is unstable if Eq. (27) is satisfied with

I
ð2;eqÞ
� ¼

�

1

2
∓

1

2

�

I0 � I�
2
: ð35Þ

The results are shown in the top panel of the “Polynomial 2
(Equatorial)” plot in Fig. 7. Applying the ME closure to the
second moment (bottom panel) slightly further shrinks the
volume of detected crossings. This method detects insta-
bility in only a subset of the region detected by other
polynomial methods, and does not appear to be represen-
tative of any qualitative features of the FFI-unstable
regions. However, it does affirm our choice to use poly-
nomials that maximally emphasize the distribution along or
opposite I1, as in the other polynomial tests.
Finally, if we now allow use of the heat tensor, d can be

nonzero. The weighting function is maximally weighted to
one side if we require Fþð−1Þ ¼ F 0

þð−1Þ ¼ F 00
þð−1Þ ¼

F−ð1Þ ¼ F 0
−ð1Þ ¼ F 00

−ð1Þ ¼ 0 and Fþð1Þ¼F−ð−1Þ¼1.
This constrains the coefficients to a� ¼ 1=8, b� ¼ �3=8,
c� ¼ 3=8, and d� ¼ �1=8. The corresponding weighting
functions are plotted in gold in Fig. 8. The distribution is
unstable if Eq. (27) is satisfied with

I
ð3Þ
� ¼ 1

8
ðI0 � 3I�

1
þ 3I�

2
� I�

3
Þ: ð36Þ

The results are shown in the top panel of the
“Polynomial 3” plot in Fig. 7. As expected, the extra
information allows the method to detect a slightly broader
region of instability, the most significant differences being
inside of the I0 ¼ 0 contour. For larger radii, the top panel
of Fig. 4 shows that the crossing angular width can be quite
small, suggesting the need for very high-order polynomials
to be able to detect them. It thus seems unlikely that
polynomial crossing tests will be able to detect the full
range of crossings in neutron star merger simulations.
However, [22,23] already show that the FFI is present in
a large fraction of the domain during simulations that
dynamically include FFI-inspired flavor mixing. In addi-
tion, we note that all of the polynomial tests encompass the
region where Iþ ≈ I− in which significant flavor trans-
formation is possible, so the inability of the polynomial
method to detect crossings at large radii does not neces-
sarily make it significantly less realistic.

An order-3 polynomial maximally weighting μ ¼ 0 can
be derived by requiring F 0

�ð0Þ ¼ 0, but the result is

identical to F
ð2;eqÞ
� .

D. k0 test

Dasgupta et al. [46] note that there is always a wave
number k0 for which the dispersion relation can be
expressed as a function of only moments up to rank 2.
This is a conservative test in that it cannot yield false
positives, it provides insight into the growth rate of the k0
mode, but it has the disadvantage that it cannot detect
instability of any other mode. It requires finding roots of a
matrix’s characteristic polynomial, compared to transcen-
dental equation solving in the maximum entropy test or
parameter sweeping in some polynomial tests, but the
brevity of this section attests to the simplicity of the idea
and the lack of free parameters to tune.
While we do not reproduce the derivation here, the

frequency ω of this special mode can be determined by
solving

detðωηαβ − VαβÞ ¼ 0; ð37Þ

where Vtt ¼ I0, V
ti ¼ Vit ¼ Ii

1
, and Vij ¼ I

ij
2
. The mode

with wave number k0 is unstable if there is a solution ω

with nonzero imaginary component. The results of the test
are shown in the top half of the k0 panel of Fig. 7, where it
appears to perform very comparably to the Polynomial 2
test. This is perhaps not unexpected, as the two tests use
information from moments up to the pressure tensor, even
though they are sensitive to different unstable modes. The
bottom half of the panel shows the results when the ME
closure is used to provide the pressure tensor. Again, the
results are very similar to the Polynomial 2 test that uses the
ME closure. Although this suggests that simulations
performed with different stability metrics may be consis-
tent, this similarity might not be present in other realiza-
tions of NSM simulations or other systems (e.g., CCSNe).

E. Resonant trajectory test

References [26,72] showed that for isotropic modes (i.e.,
k ¼ 0) and with axially symmetric distributions, if there is a
direction that satisfies a particular resonance condition,
then the distribution is unstable to the FFI. We do not repeat
the derivation here, and the general distributions in this
work are not axially symmetric. However, we nevertheless
use the scalarized moments defined in Eq. (5) to test how
well this test performs in a realistic environment. This
criterion states that the distribution is unstable to the FFI if

ðI�
2
Þ2 ≤ ðI�

1
Þ2: ð38Þ

The above condition reduces to the instability criterion of
[26] if axial symmetry is restored. This is an approximate
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test, since breaking the axial symmetry assumption allows
for false positives, but this test performs surprisingly well.
Despite its approximate nature, it misses only a small part
of the domain known to be unstable and overpredicts
instability in a few isolated pixels (top panel of the resonant
trajectory plot in Fig. 7). When I�

2
is determined using the

maximum entropy closure, the results do not significantly
change (bottom panel of the resonant trajectory plot in
Fig. 7). More testing would be required to determine
whether this holds up in general at different points in time
in the merger and in other situations like core-collapse
supernovae, but its simplicity and apparent robustness
against the choice of closure would make it very attractive
to include in dynamical simulations.

F. Unstable pendulum test

Similar to the resonant trajectory test, [26,72] appeal to
the pendulumlike nature of the evolution of angular
moments of the neutrino radiation field, again under the
assumptions of homogeneity and axial symmetry. This test
suggests instability if

ðI�
2
Þ2 ≤ 4

5
I�
1
ð5I�

3
− 3I�

1
Þ: ð39Þ

Once again, this can be considered an approximate insta-
bility criterion, as there is no guarantee against false
positives when the assumption of axial symmetry is broken.
Like the resonant trajectory test, the unstable pendulum test
performs better than expected (top panel of the unstable
pendulum plot in Fig. 7), although it misses a significant
amount of instability in the polar regions. In addition, it
appears to be more sensitive to the choice of closure, such
that applying a closure (bottom panel) causes the test to
falsely determine that disk some disk regions outside of the
black contour are not unstable. We expect the resonant
trajectory test to be more representative of instability than
the unstable pendulum test, but more testing in other
scenarios is required to see if this holds true in general.

V. CONCLUSIONS

We calculate a representative neutrino radiation field in a
snapshot of a neutron star merger simulation using time-
inedependent Monte Carlo radiation transport (Fig. 1). We
use the results to show that there are electron lepton number
crossings, and hence flavor instability, everywhere on the
domain except in the central hypermassive neutron star
(Fig. 2). We then take angular moments of this radiation
field and assess how well a number of proposed tests are
able to correctly determine the presence of ELN crossings
using only these moments (Fig. 7). All of the methods

predicted instability near the regions where significant
flavor transformation is likely (Fig. 6). The resonant
trajectory test and the generalized maximum entropy test
derived in this work predicted instability in almost all
locations where ELN crossings are present in the full
Monte Carlo data. Many of the tests showed significant
dependence on the choice of closure, but the resonant
trajectory showed remarkably little dependence, and the
maximum entropy tests and order-1 polynomial tests are
independent of the closure choice by construction. We note
that each of these tests has particular advantages, including
simplicity of implementation, guarantees to not overpredict
instability, and insight into the growing modes of the
distribution, and the optimal test to use varies by the need
for each of these. In addition, while we chose a challenging
and rich environment in which to test these instability
metrics, the reader should be cautioned that the successes
and similarities of the metrics may not carry through to
other realizations of NSMs or other systems like CCSNe.
We generalized the maximum entropy test mentioned

above in order to qualitatively predict the width (Fig. 4),
depth (Fig. 5), and relative size (Fig. 6) of the ELN crossing
in addition to a binary determination of the presence of an
ELN crossing. While the maximum entropy test is not able
to quantitatively reproduce these quantities, much of the
qualitative structure is reproduced. However, the need to
solve a transcendental equation iteratively may make it too
expensive to include in dynamical simulations.
Although many of the crossing tests are able to predict

where instability occurs, they all remain rather agnostic
about the amount of flavor transformation. More work in
nonlinear simulation and analytic estimation of the final
fixed point to which neutrinos relax after the instability
(including coherent flavor waves [73]) are needed to
address this deficiency. Finally, nonlocal effects that follow
from neutrinos experiencing flavor instabilities in multiple
parts of the domain can only be addressed with global
simulations. Although much work remains to be done, we
are hopeful that the results presented here guide the use and
further development of the treatment of the FFI in simu-
lations of neutron star mergers.
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