VIP Hashing - Adapting to Skew in Popularity of Data on the Fly

Aarati Kakaraparthy
University of Wisconsin, Madison
aaratik@cs.wisc.edu

Brian P. Kroth
Microsoft Gray Systems Lab
bpkroth@microsoft.com

ABSTRACT

All data is not equally popular. Often, some portion of data is more
frequently accessed than the rest, which causes a skew in popularity
of the data items. Adapting to this skew can improve performance,
and this topic has been studied extensively in the past for disk-based
settings. In this work, we consider an in-memory data structure,
namely hash table, and show how one can leverage the skew in
popularity for higher performance.

Hashing is a low-latency operation, sensitive to the effects of
caching and code complexity, among other factors. These factors
make learning in-the-loop challenging as the overhead of perform-
ing additional operations can have significant impact on perfor-
mance. In this paper, we propose VIP hashing, a hash table method
that uses lightweight mechanisms for learning the skew in popular-
ity and adapting the hash table layout on the fly. These mechanisms
are non-blocking, i.e, the hash table is operational at all times. The
overhead is controlled by sensing changes in the popularity distri-
bution to dynamically switch-on/off the mechanisms as needed.

We ran extensive tests against a host of workloads generated
by Wiscer, a homegrown benchmarking tool, and we find that VIP
hashing improves performance in the presence of skew (22% in-
crease in fetch operation throughput for a hash table with 1M keys
under low skew) while adapting to insert and delete operations,
and changing popularity distribution of keys on the fly. Our experi-
ments on DuckDB show that VIP hashing reduces the end-to-end
execution time of TPC-H query 9 by 20% under low skew.

PVLDB Reference Format:

Aarati Kakaraparthy, Jignesh M. Patel, Brian P. Kroth, and Kwanghyun
Park. VIP Hashing - Adapting to Skew in Popularity of Data on the Fly.
PVLDB, 15(10): 1978 - 1990, 2022.

doi:10.14778/3547305.3547306

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/aarati-K/wiscer.

1 INTRODUCTION

Hash tables are widely used data structures that provide a point
lookup interface — mapping a key to a value. In database systems,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.
doi:10.14778/3547305.3547306

1978

Jignesh M. Patel
University of Wisconsin, Madison
jignesh@cs.wisc.edu

Kwanghyun Park
Microsoft Gray Systems Lab
kwpark@microsoft.com

I
11
i1

2

.
1
1

(a) Default configuration: VIPs at random
spots

o -C3—CC—C
v —-CO—C3—
2 —~C 33—

s —~C—-C—

(b) VIP configuration: VIPs at the front

Figure 1: Hash Table configurations with VIP keys (in yel-
low) at (a) random spots, vs. (b) at the front. The throughput
of the hash table can be improved by giving VIPs more fa-
vorable spots at the front of the bucket.

they are used for in-memory indexing and for query processing
operations such as hash joins and aggregation. The lightweight
computation involved and the constant time lookup guarantees
enable hash tables to achieve high throughput when processing
point queries.

However, not all keys contribute equally to the performance,
and requests are often skewed towards a smaller set of “hot" keys.
In multiple studies involving production workloads, fetch requests
have been observed to follow the power law [10, 15, 41] where
the popularity of keys exponentially decays with the rank. The
Very Important key-value Pairs (VIPs) are the keys with lower rank,
as they constitute a larger portion of requests and have a greater
impact on the throughput. It is possible to further improve the
throughput obtained from the hash table by leveraging the skew in
popularity, as we show in our work.

Fig. 1 shows the core motivation behind VIP Hashing — giving
more favorable spots to more popular keys. In the VIP configuration
(Fig. 1b), the keys are ordered in descending order of popularity
and the VIPs are at the front, analogous to seating VIPs in the front
row for an event. By placing the popular keys at the front, they
can be accessed faster as they require fewer memory accesses and
lesser computation (discussed in §4), which improves the overall
throughput obtained from the hash table.

https://doi.org/10.14778/3547305.3547306
https://github.com/aarati-K/wiscer
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3547305.3547306
https://www.acm.org/publications/policies/artifact-review-and-badging-current

While attaining the VIP configuration is straightforward if the
popularity of keys is known in advance (keys can be inserted in
the right position in the chain according to their popularity), one
might not have this information up front. Also, the popularity of
the keys can change over time resulting in a different set of VIPs.
Thus, more generally, one needs to learn the popularity of keys and
adapt the configuration of the hash table on the fly.

It is important to note that learning requires additional computa-
tion and storage. In the case of disk-based data structures, the over-
head of learning can be relatively small compared to the latency of
accessing storage devices. However, hash tables are cache-sensitive
data structures that perform lightweight computation, and adding
overhead to hash tables can have significant impact on performance.
This makes learning with hash tables notoriously challenging, as
shown in §5.1 and prior work [34] as well. Thus, a key requirement
for designing fully online learning mechanisms for hash tables is
keeping the overhead in check compared to the gains.

Our contributions in this paper are as follows —

(1) Wiscer (§3) - We developed a benchmarking tool for mea-
suring the performance of hash tables. Wiscer can be used to
generate workloads with varying levels of skew in popular-
ity, with different ratios of fetch, insert and delete operations,
and shifting hot set of keys over time. To our knowledge, no
existing benchmarking tool captures all of this behavior in
one place.

Roofline Analysis of the VIP configuration (§4) - We

study the benefit of the VIP configuration (Fig. 1b) given

prior knowledge of popularity. This analysis shows the max-
imum gain one can obtain from adapting to the skew (for

a hash table with 10M keys at load factor 0.6, we observe a

57% increase in throughput in the best case), as well as the

hardware trends resulting in performance gain for the VIP

configuration.

Learning on a budget (§5) — We developed lightweight

mechanisms for learning the popularity distribution on the

fly, adapting to the skew, sensing changes in the popularity
distribution, and dynamically switching on/off the mecha-
nisms to control the overhead. Put together, they give us the

VIP Hashing method for adapting to the skew in popularity

on the fly.

(4) Application to hash joins (§6.1) - We study the application
of VIP hashing to PK-FK hash joins, and we obtain a 13-
23% reduction in canonical join query execution time (for
a cardinality ratio of 1:16 in the relations and a hash table
with load factor of 1.4). We implemented VIP hashing in
DuckDB [31] to speed up PK-FK hash joins in single-threaded
mode, and we obtain a net reduction of 20% in end-to-end
execution time of TPC-H query 9 [8] under low skew.

(5) Application to point queries (§6.2) — Another common
use of hash tables is processing point queries. We test VIP
hashing under a variety of workloads involving insert and
delete operations, shifting popularity distribution of keys,
different rates of shift, etc. A gain in throughput of 22% is
obtained under low skew, while our choice of parameters
ensures that the overhead of adapting on the fly is capped
in the worst case.

@

®)

1979

s = 0 (Uniform)

 s=1 (Low Skew)

s=2 (Medium Skew)

Probability (log scale)

S=
*VeryTigh Skew)

20 40 60 80 100
Rank

Figure 2: Popularity distribution of keys (number of keys
N = 100) for different Zipfian skew factors s. Skew factor
s = 0 corresponds to uniform popularity distribution, while
s = 1,2,3, 4 simulates low, medium, high, and very high skew
respectively.

Our experiments in §6 show that VIP hashing is a fully online
non-blocking hash table method that adapts to the skew in pop-
ularity on the fly, while transparently capturing changes in the
workload due to inserts, deletes, and shifting popularity distribu-
tion. We discuss related work in §7 and conclude in §8.

2 BACKGROUND
2.1 Hash Tables

A hash table [36] is an associative data structure that maps keys
to values. In our work, we focus on chained hashing (hereafter
referred to as hash table). A hash table (Fig. 1) uses a hash function
to map each key to a unique index or bucket. Since more than
one key can be mapped to the same bucket, the data structure
resolves these collisions by maintaining a chain (linked list) of
entries belonging to the bucket. The flexibility provided by this
data structure for performing insert and delete operations, along
with variable length keys and values make it a popular choice in
many data systems [4, 7, 22, 23].

2.1.1 On Properly Configuring the Hash Table. In this paper, we
focus on hashing of 8-byte integer keys and values, which is a
well studied problem in past research [13, 32]. It is important to
configure the hash table correctly to draw reliable conclusions, and
there are two important factors to consider. The first is the choice
of the hash function. In our work, we use MurmurHash [9], which
is a strong hash function that provides good collision resistance in
practice. The second critical aspect is the load factor, which is the
ratio of keys to the number of buckets in the hash table. Higher load
factors correspond to fewer buckets, which lead to longer chains on
an average, whereas lower load factors require more buckets and
consume more memory. Informed by parameter choices in popular
open-source systems [4, 23, 33], we maintain a load factor between
0.5 and 1.5 to ensure that collisions are at an acceptable level while
utilizing memory efficiently. Wherever applicable, we rehash the
hash table to maintain this range of load factor. The number of
buckets in the hash table are set to be a power of two, which is a
common choice [23, 29, 33] that speeds up the computation of the
hash function. If the load factor exceeds 1.5 (falls under 0.5), we
double (half) the number of buckets in the hash table.

Table 1: Configuration options supported by Wiscer

Option Description
zipf The zipfian factor of the popularity distribution. zipf = 0 corresponds to uniform popularity.
initialSize Initial number of keys in the hash table before running any operations.
operationCount | Total number of operations (fetch, inserts, etc.) to run on the hash table.
(fetch/znsert./delete) Proportion of operations that are fetch/insert/delete.
Proportion
distShiftFreq A shift in popularity distribution occurs after every distShiftFreq operations.
distShiftPrct The popularity distribution shifts by distShiftPrct% every distShiftFreq operations.
storageEngine Which storage engine to benchmark. Options are
ChainedHashing (default), VIPHashing, and none (store workload to disk).
keyPattern The pattern of keys to generate — random (default) or sequential (1 to n).
keyOrder The popularity rank of keys relative to the insertion order. Options are
random (default) and sorted (where keys are inserted in increasing order of popularity; a.k.a. latest).
The seed value (unsigned integer) to initialize the random number generator (default = 0).
randomSeed The random number generator is used to populate the hash table and generate the workload.
Different seed values result in different instances of keys and the workload.

2.2 Some Probability Bounds and Theorems

Below we discuss some tools related to probabilistic random vari-
ables that we use in our work.

e Zipfian distribution: We use Zipfian distribution [43] to model
varying levels of skew in fetch operations issued to keys in a hash
table. Zipfian distribution has been adopted by multiple studies
in the past [10, 13, 44] to statistically model skew in popularity,
as it captures the power law [41] characteristics of workloads
that are often observed in practice [10, 15].

e Estimating mean and variance: Let X be a random variable
with mean p and variance % Let Xy, Xo,... Xp be n indepen-
dent and identically distributed (i.i.d.) measurements of X. The
estimated mean i and estimated variance 62 can be evaluated as

n n 2 n 2
T X; Txt (Zx)

. _ =l sz izt =t

s n’ (n—1 n(n—1))

Gaussian tail bound confidence interval: For a random vari-
able X (refer above), the central limit theorem (CLT) [39] states
that the error in estimated mean (fi—p) is approximately Gaussian
distributed N(0, ¢*/»). By applying the Gaussian pdf, a confidence
interval can be obtained for the error (f — p) as follows

-5

100
Thus, we can at least be L% confident that the error | — p| is less
than t. Note that the confidence increases exponentially with
n (number of samples X; drawn). It is important to note that
(f1—p) is only approximately Gaussian, so the confidence interval
obtained from applying Gaussian tail bound is a heuristic.

—nt?

202

P(f—pl <t)> (1 —exp(

3 SKEWED WORKLOAD GENERATION WITH
WISCER
3.1 Overview

Wiscer is a benchmarking tool that we propose in this paper. Wiscer
has multiple configuration options (Table 1) that can be used to

1980

generate workloads with different levels of skew, varying propor-
tions of fetch, insert, delete operations, different rates of popularity
shift, etc. Below are some key features of Wiscer:

o Level of skew: Increasing levels of skew in the popularity distri-
bution can be simulated by increasing the zipf factor. For instance,
zipf = 0 and zipf = 4 correspond to uniform distribution and
very high skew respectively (see Fig. 2).

Simulating popularity distribution shift: The two related
configuration options are distShiftFreq and distShiftPrct. After
every distShiftFreq fetch operations, the topmost popular keys
that constitute distShiftPrct of the requests are randomly replaced
by less popular keys. This simulates a behavior where keys in
the hot set become less popular after some time, which has also
been observed in some real-world workloads [10].
Benchmarking hash table implementations: Wiscer can op-
tionally be used to compare different hash table implementations
(option StorageEngine) to directly process the generated work-
loads without intermediate storage.

Fine-grained performance metrics using hardware coun-
ters: Wiscer issues operations to the configured hash table in
batches of one million requests at a time, and fine-grained metrics
are collected per batch. Wiscer uses hardware counters provided
by the Intel’s Performance Monitoring Unit (PMU) [6] to get
low-level performance metrics such as cache misses, number of
cycles, retired instructions, etc.

3.2 Experimental Configuration

All experiments in this paper are run on a Cloudlab [21] machine
with two 10-core Intel Xeon Silver 4114 CPUs with a peak fre-
quency of 3.0GHz. The server is used exclusively for running Wis-
cer, and the benchmarking process is pinned to a single core to
avoid any overhead of context switching. The CPU scaling governor
of the core has been set to performance, thus fixing the frequency to
3.0GHz at all times. The CPU has an L3 cache of 13.75MB, and the
server machine has 192GB of RAM. This CPU belongs to the Sky-
lake Intel architecture family [2], and the PMU’s hardware counters
are programmed accordingly.

Fetch Ops o displacement=2 1
R ' |
o)
A é displacement = 1: ------------ E
: (I e B o
A : e displacement = 3|
unction H '
‘ o -0
! i

Total Displacement = 12 Effective Hot Set

(a) Default configuration. A total displacement of 12
(=2%(2+1+3)) is required to process the fetch requests. The less
popular keys in the path of popular keys need to accessed as
well.

Fetch Ops i displacement = 1 i
: o B e T
& E displacement = 1 i
° n —C-C3-C3
z Fuiaciihon i displacement = 1 i
c o MECEC-

Total Displacement = 6 Effective Hot Set
(b) VIP configuration. A total displacement of 6 (=2x(1+1+1)) is
required to process the fetch requests. Only the popular keys
are accessed.

Figure 3: Processing fetch requests in the Default vs the VIP
configuration. Unpopular keys have been grayed out. The
total displacement (number of keys accessed) is higher in the
Default configuration requiring more pointer dereferences.
Also, the effective hot set is larger, increasing the likelihood
of cache misses relative to the VIP configuration.

4 ROOFLINE STUDY

In this section, we compare the performance of the Default and VIP
configurations when the popularity of keys is static and known in
advance. Since there is no overhead of learning involved in this case,
this roofline study shows the maximum gain one can get from the
VIP configuration for different levels of skew (§4.2) in popularity at
different load factors (§4.3) of the hash table.

4.1 Default vs VIP Configuration

4.1.1 Motivation. Fig. 3 shows an example of processing fetch
requests in the Default and the VIP configurations. A key parameter
to note is the displacement encountered, which is the total number
of keys that were accessed to process the fetch requests. Accessing
a key requires dereferencing a pointer and some computation. The
displacement encountered in the Default configuration is higher as
the less popular keys in the path to VIPs need to be accessed when
processing the fetch requests and effectively become part of the
hot set. A larger hot set increases the likelihood of cache misses,
and we observe this trend in our experiments described next.

4.1.2 Generating the configurations using Wiscer. In the VIP con-
figuration, keys in the hash table are arranged in descending order
of popularity in the bucket chains (see Fig. 3b). We attain this
configuration by running Wiscer with the default storage engine

1981

(ChainedHashing) and inserting keys in increasing order of pop-
ularity (keyorder=sorted, default is random). Insert operations on
the hash table are performed at the front of the bucket chain (§2.1).
Thus, when inserting keys in the sorted order, entries are automati-
cally placed in decreasing order of popularity as more popular keys
are inserted later and are ahead in the bucket chain. The Default
configuration is generated using the default parameters of Wiscer.

4.2 Impact of Increasing Skew

4.2.1 Workload. We compare the throughput of fetch operations
in the Default and VIP configurations. We use Wiscer (Table 1) to
generate fetch requests with increasing levels of skew (zipf = 0 to
5 in steps of 0.5) which are issued to a hash table with 10 million
keys at a load factor of 0.6 (= 107 /22%). For each level of skew and
hash table configuration, Wiscer is run with 10 distinct random
seed values to populate the hash table and generate the workload.
Each random seed results in a different arrangement of keys in the
hash table. The popularity distribution is static, i.e., the rank of the
keys remains the same throughout a run. One billion fetch requests
are issued to the hash table for each random seed, and the data
points reported in Fig. 4 are the median statistics over the 10 runs.
We have run experiments on smaller (1M entries) and larger (100M
entries) hash tables and found the trends to be similar.

4.2.2 Results. The results of this experiment are shown in Fig. 4.
The gain in throughput ranges from 9%-57% depending upon the
level of skew in popularity. Below we discuss our takeaways from
the performance metrics measured using Wiscer:

e Throughput: The gap in performance between the VIP and
the Default configuration increases up to zipf = 2 (medium
skew), and gradually diminishes as the skew becomes very high
(zipf = 4.5 or 5). This behavior is correlated with the hot sets
becoming smaller as the skew increases and becoming (L1/2/3)
cache resident at different rates for the two configurations.

¢ Displacement: As expected, the displacement encountered in
the VIP configuration is lower than the Default (see Fig. 3). For
zipf = 1.5 and up, the total displacement becomes close to 1B (for
1B fetch requests), indicating that popular keys are at the front
of their chains (displacement = 1) in the VIP configuration. For
the Default configuration, the median displacement approaches
1B at higher levels of skew (zipf > 4), but the variance is high as
some random seeds can result in the popular keys placed further
in the chains (however the likelihood of this happening is low as
the load factor is not very high).
Instructions Executed: The instructions executed are lower
in the VIP configuration (up to 6% lower in the best case). The
relative trend observed is similar to that of displacement, as the
number of instructions executed is correlated with the number
of keys accessed.
Cache misses: The VIP configuration becomes L3 and L1 cache
resident (at zipf = 2 and 2.5 respectively) more quickly compared
to the Default configuration (at zipf = 3.0 and 4.5 respectively),
which is expected as the hot set of the former is smaller than
the latter (Fig. 3). At very high skew (zipf = 4.5 and 5), both the
configurations are L1 resident and correspondingly, we do not
observe much difference in the throughput. This indicates that
caching has a big impact on the performance of hash tables.

1e8 9y 25% 57%|53% 32% 18% 10% 5% 1w 0% 1e9 .8y -20%-16%-104 -6% -3% 20 -1 0% 0% 1e10 -2 -6% -5% |-2%| -2% -1% 0% 1w 0% 1%
25 2.0 T Domtt sony, [heedian] 4.1 —& Default config. [Median]
d ~@- VIP config. [Median] _ —%- VIP config. [Median]
| / 18 B 0 4.0
20 4% g
% 16 i S39
215 £ E™
=) = 2]
< £ g o k=]
E S 14 =38
2109 - s o
& ~ 37
A12 E g3
057 —&— Default config. [Median] \ Il |
& VIP config. [Median] 0 ol L=y L L b & 361 | | | ——
0 05 10 15|20| 25 30 35 40 45 50 0 05 10 15|20 25 30 35 40 45 50 0 05 10 15]20] 25 30 35 40 45 50
Zipf Zipf Zipf
(a) Fetch operation throughput (b) Displacement (c) Retired instructions
00 7% -25%-30%)-11 -5 3% 20 -2 Ou 1u 0% -10% -18%-135|-4o| 2% -1 0% -1 1o 1% 0% -10% 210 -3% [-1n| 1w 0% 0% -1 1% 1%
= —& Default config. [Median] —& Default config. [Median] —Z Default config. [Median]
& VIP config. [Median] —& VIP config. [Median] & VIP config. [Median]
b 3 51
£y 3 43
= = 2
v 173 ‘—‘10
0] £ 10
E g0 2
— o~ E
- - o
3 -
*
T P ~————a——a—e—a ———————a—p
0 05 10 15[20|25 30 35 40 45 50 0 05 10 15|20] 25 30 35 40 45 50 0 05 10 15 (20| 25 30 35 40 45 50
Zipf Zipf Zipf

(d) L1 cache misses

(e) L2 cache misses

(f) L3 cache misses

Figure 4: Relative performance of the VIP vs the Default configurations as the skew in popularity increases. One billion fetch
requests are issued to a hash table with 10M keys (load factor 0.6) for varying levels of skew from zipf = 0 to zipf = 5. Each
reported data point is the median over 10 runs with different random seeds. Percentages indicated at the top of each plot is the
difference between median metrics of the VIP vs the Default configuration. The gain in fetch operation throughput varies with
skew, and we obtain 53% increase in throughput for medium skew (zipf = 2.0). Lesser number of cache misses and instructions
executed contribute to the gain obtained from the VIP configuration. Further observations are discussed in §4.2.2.

Overall, we note that since the hot set of the VIP configuration
is smaller than the Default, we encounter lower cache misses at
all levels of cache. This contributes to the gain in performance we
obtain from the VIP configuration.

Another important observation we make is that the metric dis-
placement indicates the goodness of the hash table configuration.
The VIP configuration has lower displacement than the Default in
all cases (the VIP configuration has the lowest possible displace-
ment for a given data set, hash table size, hash function, and request
skew; see §5.2.3). We use this metric in building the mechanisms
for sensing and dynamically switching-on/off learning (§5.2.3).

4.3 Impact of Increasing the Load Factor

4.3.1 Workload. In this experiment, we increase the load factor
while holding the size of the hash table constant. Similar to §4.2.1,
we run one billion fetch operations on a hash table with 224 buck-
ets while varying the load factor from 0.5 to 1.5 in steps of 0.25
(this is achieved by increasing initialSize from 223 to 3 - 223). Each
configuration is run with 10 distinct random seeds and we compare
the median statistics over the 10 runs.

4.3.2 Results. Fig. 5 shows the median gain obtained as we increase
the load factor — we obtain 1.6x, 2.6x, and 1.8x higher throughput
from the VIP configuration at low (zipf = 1), medium (zipf = 2),
and high skew (zipf = 3) respectively at load factor 1.5. In all
cases, the gain from the VIP configuration increases as the load
factor increases, which is expected as the likelihood of collisions

1982

Medium
Skew
(zipf=2)
¢

Low
skew
(zipf=1)

A

High
Skew
(zipf=3)
L]

Skew
s

Load
Factor

+21% | +25% +5%

+30% +56% +20%

+40% +77% +36%

+50% | +148% | +68%

% Increase in Fetch ops/s

+58% | +160% | +80%

T T T
1.0 125 15

Load Factor

T
0.75

0.5

Figure 5: Roofline gain in throughput from the VIP vs the
Default configuration as the load factor increases. Keeping
the number of buckets fixed at 224, we increase the load fac-
tor from 0.5 to 1.5. The performance gain obtained from the
VIP configuration increases with the load factor, and can be
as high as 160% (2.6x) for medium skew at load factor 1.5.

is higher when more keys are present in the hash table. We find
that the performance metrics of the VIP configuration are mostly
stable (refer to Table 2) indicating a stable hot set size, while the
performance of the Default configuration becomes steadily worse
as the effective hot set grows larger with the load factor.

5 ADAPTING TO POPULARITY ON-THE-FLY

In this section, we first highlight the challenges of learning in-the-
loop (§5.1) which motivated the lightweight mechanisms we built
for VIP hashing. We then describe how we learn, adapt, sense, and
dynamically control the overhead on the fly (§5.2-5.3).

Table 2: Relative Metrics of VIP vs Default configuration as
we increase the load factor (If) at zipf = 2. The trends for
low and high skew are similar.

i Throughput | Avg. Disp- L3 L1
(fetch ops/s) | -lacement Misses Misses
05 235M vs 1.0 vs 1.03 378M vs 380M vs
2| 188M (+25%) (-3%) 385M (-1.8%) | 412M (-8%)
1 236M vs 1.0 vs 1.17 376M vs 380M vs
134M (+77%) (15%) | 387M (-2.6%) | 436M (-13%)
15 236M vs 1.0 vs 1.62 382M vs 382M vs
| 90M (+160%) (-38%) | 392M (-2.6%) | 458M (-17%)

5.1 Learning In-the-Loop is Costly

Hash tables execute a tight loop of instructions — compute the hash
function, access keys in the bucket, and perform required operations
to process the request. Adding any amount of additional computa-
tion or storage to this loop can degrade performance considerably.
To demonstrate this behavior, we conduct a simple experiment of
adding a 1-byte requests counter per key in the hash table, such
that the entries become 17 bytes long (8 byte key and value, and 1
byte counter).

We use Wiscer to compare the performance of the vanilla imple-
mentation of hash table (16 byte entries) to the implementation with
request counters (17 byte entries). We issue 500M fetch requests to a
hash table with 1M entries (load factor 0.95 = 10°/22°) for different
levels of skew in the popularity distribution (zipf = 0 to 5 in steps
of 1). The remaining configuration options of Wiscer are set to the
defaults (refer to Table 1). Fig. 6 shows the relative performance of
the two hash table implementations at different levels of skew in
the workload. There is a significant loss in throughput ranging from
11-66% due to increase in cache misses and instructions executed.

Counting requests is a fundamental requirement for learning the
popularity distribution. However, this experiment shows that even
adding a small amount of additional memory can hurt performance
significantly. Thus, the challenge here is to work with a restricted
“budget” when learning in-the-loop, to balance the gains against
the overhead of learning.

5.2 VIP Hashing

From §5.1, we know that using additional memory and computation
can really hurt the performance of hash tables. In this section, we
describe how VIP hashing overcomes these challenges by using
lightweight mechanisms for learning and adapting to the popularity
distribution (§5.2.2), while controlling the overhead by sensing and
dynamically switching-on/off learning as necessary (§5.2.3). We
first give an overview of VIP hashing (§5.2.1) followed by describing
the mechanisms used in detail (§5.2.2-3).

5.2.1 Overview. Fig. 7 shows the VIP hashing method. At any given
time, there are three possible modes that the hash table implemen-
tation can be in - learn+adapt, sense, and default (or vanilla). In the
learn+adapt mode, the hash table learns the popularity distribution
and rearranges keys to move closer to the VIP configuration. This
mode is costly in terms of both computation and storage, and we
control how much we run this mode by configuring the parame-
ter NL. The learn+adapt mode is run at the start, and subsequent

1983

=
5]
©

B Vanilla implementation (16 byte entries)
3@ Counting Requests (17 byte entries)

-13%

=
=)
™

Fetch ops/s (log scale)

=
=)
]

I-66“/n

0 1.0 2.0 3.0

Zipf

4.0 5.0

(a) Loss in performance when adding a 1-byte counter per key in
the hash table. Both hash tables are identical (in Default configu-
ration) except for the size of the entries (16 vs 17 bytes).

Fetch ops/s
Instructions +22%
L1 misses

L2 misses

+28%

L3 misses

Displacement

'
0.2 04 0.6 0.8 1.0 1.2
Ratio to Vanilla Implementation

0.0 14

(b) Relative metrics for zipf = 0. Instructions executed and
cache misses increase after adding the 1-byte counter.

Figure 6: The effect of adding a 1-byte requests counter per
key in the hash table. 500M fetch operations are issued to a
hash table with 1M keys at load factor 0.95. Performance can
take a significant hit - we observe a 66% loss in fetch opera-
tion throughput at zipf = 0. This experiment demonstrates
the sensitivity of hash tables to effects of caching and com-
putation, which makes learning on the fly challenging.

triggers of this mode happen only if the popularity distribution
changes, which is determined during the sense mode.

The sense mode is triggered after the learn+adapt mode to mea-
sure some statistics (yp) that characterize the popularity distribu-
tion. These statistics require a total of 24 bytes of memory for the
whole hash table (irrespective of the size) and a few additional arith-
metic operations in the loop. Since the memory and computation
footprint of this mode is low, it does not add much overhead to the
execution. The sense mode is run for Ng requests at a time, and is
triggered periodically (every Np requests) to characterize the pop-
ularity distribution at the time (yc). Comparing the statistics (yp
and yc) helps determine if the popularity distribution has changed,
and informs the decision of whether to switch on learning.

The default mode is the vanilla implementation of chained hash-
ing (§2.1) with 16 byte entries. There is no additional overhead of
storage or computation. This mode is run most of the time (Np >
NL, Ng), so the performance is close to the vanilla implementation
of hash table in the worst case.

In the following sections, we discuss the mechanisms we use
for the learn+adapt (§5.2.2) and sense (§5.2.3) modes. We discuss
our choice of parameters (Ni,, Ng, Np, etc.) in §5.3, that allow us to
balance the performance gains against the overhead of learning.

2. Sense the

8. Trigger learning

1. Learn the . 3. Switch off 4. Sense the current 5. Learn and adapt if popularity ! B
popularity popularity learning for the distribution, learn distribution has changed. Update only if popularity
distribution glsmbunon for next N, parameters Y . parameters YJ3 . r)/B 7. Periodically sense dlllsmbL:j“O" has
and adapt for LS rquestsl.. requests. Runin Compare to Y. i~ < the popularity changed.
N, requests. earn basetine default mode. ~o A distribution. ~
O parameters “JB. A I\\ ‘ il Y o N
I
I I 7\ RN YB Yes [Mearn+ | YB €s
N (N Sense
1 1 YB e . | Adapt !
Y BV P
— e ___
Learn +
Adapt Sense | Default | --- Sense Default Sense
No ° No
I
— NL NS ND 6. Run in default '}/C
mode otherwise.)
T=0

Requests

Figure 7: Overview of VIP Hashing. At any time, the hash table is in one of the three modes — learn+adapt, sense, or default.
The amount of time spent on learn+adapt mode is controlled through the parameter Ny, to cap the overhead of executing on
the fly. The popularity distribution is sensed periodically and learning is triggered only when a change is detected.

Algorithm 1 Learning and Adapting on-the-fly

1: procedure FETCHADAPTIVE(requests)
2 ht « getHashTable()
3 /* Requests are counted in a separate data structure®/
4 req_cnt_ht < getRequestsCountingHashTable()
5: for r in requests do
6 hash < murmurHash(r.key)
7 ht_entry <« ht[hash]
8 req_entry « req_cnt_ht[hash]
9 /* Keep track of entry with minimum requests */
10: min_req_ht_entry = ht_entry
11: min_req_entry = req_entry
12: while ht_entry and ht_entry.key # r.key do
13: if req_entry.count < min_req_entry.count then
14: min_req_ht_entry = ht_entry
15: min_req_entry = req_entry
16: ht_entry = ht_entry.next()
17: req_entry = req_entry.next()
18: if ht_entry == null then
19: r.found = false
20: continue
21: r.found = true
22: r.value = ht_entry.value
23: req_entry.count = req_entry.count +1
24: if req_entry.count > min_req_entry.count then
25: /* Swap this entry with the min requests entry */
26: swap(ht_entry, min_req_ht_entry)
27: swap(req_entry, min_req_entry)
28: /* Reclaim cache space by clearing req_cnt_ht */
29: clearCache(req_cnt_ht)
5.2.2 Learning & Adapting. Algorithm 1 describes how we learn

the popularity distribution and adapt to the skew on the fly. The
popularity of a key is estimated as the proportion of requests made
to the key (§2.2). Thus, learning the popularity distribution requires
counting requests, which we know is challenging from the experi-
ments in §5.1.

1984

To overcome the challenge of counting requests in-the-loop, we
perform two optimizations. First, we count requests in a separate
data structure that mimics the hash table in arrangement (for ev-
ery entry in the hash table, there is a corresponding entry in the
request counting hash table). Although this temporarily requires
more memory (about 50-60% increase in memory usage depend-
ing on the load factor) than maintaining a counter per key in the
hash table, the cost is incurred only during the learn+adapt mode.
Second, at the end of the learn+adapt mode, we clear the requests
counting hash table (req_cnt_ht) from the cache by issuing cache
flush instructions (_mm_clflushopt on Intel CPUs [5]), which
mitigates the cache pollution caused by the requests counting data
structure used during the learn+adapt mode.

To attain the VIP configuration, we need to sort the keys in de-
scending order of popularity in the bucket chains. Given that the
proportion of requests made to a key is an estimate of popularity,
we use Algorithm 1 to stochastically sort the keys in descending
order of requests received on the fly. When performing a fetch
operation, we keep track of the entry with minimum requests
(min_req_ht_entry) encountered in the path to the entry being
fetched. If the entry being fetched has received more requests, then
it is swapped with the min_req_ht_entry and it moves forward in
the chain. We propose the following theorem which is formally
proved in Appendix A:

THEOREM 5.1. Let there be a bucket chain withn keysK1, K> ... Ky
which have popularity p1 > pa... > pn > 0. Let the keys be in a
random order in the chain. Then, by applying Algorithm 1, the keys
will converge to the sorted order of popularity as number of fetch
requests N — co.

There are two noteworthy properties of Algorithm 1. First, the
VIPs move to the front quickly, as they can skip over multiple entries
in a single fetch request. This algorithm is, in essence, similar to
selection sort as we are moving the entry with minimum requests
to the end of the (sub-)chain being accessed. An alternative would
be to compare only adjacent keys (bubble sort), which empirically
requires more requests for a VIP to move to the front.

Second, the cost of swapping is amortized, as there is at most
one swap performed per fetch operation. This approach is faster
compared to performing a full sort on every request, or sorting
at the end after counting requests for some time (we will have to
access all the buckets in order to perform a full sort, which will
block operation, incur cache misses, and pollute the cache).

5.2.3 Sensing & Dynamically Switch-on/off Learning. Algorithm 2
describes how we sense some key statistics of the popularity dis-
tribution, which enable us to dynamically switch-on learning only
when the distribution has changed (Algorithm 3). While there are
multiple ways to quantify the difference between two probability
mass functions (pmfs) [37, 38, 42], we choose a lightweight statistic
to compare distributions — average displacement. In §4.2.2, we saw
that displacement encountered indicates the “goodness" of the hash
table configuration. Every popularity distribution imposes a pmf
over the displacement encountered on a request, which is a derived
random variable. Formally stated:

AxioMm 1. Let Ky, Ky, ..., Ky be N keys in the hash table with
popularity p1, p2,pN (2 pi = 1) at displacement dy, da, ..., dN
(d; < N). Let D be the random variable of the displacement encoun-
tered on a successful fetch request. Then,

N
P(D=d)= ZP:’ 14,=d
i=1
i.e, the probability that displacement d is encountered on a fetch

request is the probability that any of the keys with displacement d
were fetched. The average displacement is calculated as

N

up =E[D] =) i-P(D=i)

i=1

We make the following observation:

Axiom 2. The VIP configuration minimizes E[D] over all possi-
ble arrangements of keys in the hash table for a fixed load factor,
popularity distribution, and hash function.

The VIP configuration orders keys by popularity, thus giving
more “weight” to lower values of D which minimizes the average
displacement. It is straightforward to see that for a given hash table
configuration, two popularity distributions with different average
displacement will not be identical (although the opposite is not
true). Thus, a change in average displacement reflects a shift in the
popularity distribution.

The parameters we learn from sensing are y = ({ip, wp) = (u, w)
(Algorithm 2), where fip is the estimated average displacement, and
wp is the width of the confidence interval around jip obtained using
Gaussian tail bounds (§2.2). Average displacement is estimated as

Ns
2. D;
i=1

= Ns
which is the sample mean® of displacement encountered D; (1 <
i < Ng) over Ng fetch requests in the sense mode. Similarly, we
also estimate sample variance &g (§2.2).

Note that instead of sampling, we could also use the request counting data structure
(req_cnt_ht in §5.2.2). However, this would incur cache misses and also pollute the
cache affecting performance (§5.1).

1985

Algorithm 2 Sensing

1: procedure FETCHSENSING(requests)
2 ht « getHashTable()
3 /* Metrics to track */

4 disp < 0 > cumulative displacement
5: disp_sq < 0 > cumulative disp. square
6 count < 0 > number of requests
7 c=0.95 > confidence level of the interval
8 for r in requests do
9: hash « murmurHash(r.key)

10: ht_entry <« ht[hash]

11: de—1

12: while ht_entry and ht_entry— key # r.key do

13: ht_entry = ht_entry.next()

14: d=d+1

15: if ht_entry == null then

16: r.found = false

17: continue

18: r.found = true

19: r.value = ht_entry.value

20: count = count +1

21: disp =disp+d

22: disp_sq =disp_sq+dxd

23: /* Estimating mean u, variance v, and C.I. width w*/

24: u =disp/count

25: v =disp_sq/(count — 1) — disp?/(count * (count — 1))

26: w= \/—Z.U.log(l —c)/count > Gaussian tail bound

27: Yy = (u, w)

28: return y

Algorithm 3 Dynamically Switch-on/off Learning

1: procedure HAsDISTRIBUTIONCHANGED(YB, yC)
2 (uB, wB) = vB

3 (uc, we) = ye

4: if lup — uc| > (wp + wc) then

5 return true

6 else

7

return false

We further characterize the pmf by building a confidence interval
using Gaussian tail bounds (§2.2). The width (wp) of the interval
at confidence level ¢ (c = 0.95 in our experiments) is calculated as

Wp = m

Ns
Note that 6p is estimated variance from a sample of Ng observa-
tions, and (fip — pp) only approximately Gaussian according to
CLT (§2.2). Thus, the width wp obtained by applying Gaussian tail
bounds is a heuristic.

We switch-on learning (Algorithm 3) only if we detect a sig-
nificant change in the average displacement. Given two sets of
parameters yg = (up, wg) and yc = (uc, we) where up and uc are
estimated means, we check if the confidence intervals are disjoint.
If so, then heuristically with a probability c¢? = (0.95)% = 0.9, we
can be sure that the real means are not equal and the distributions
have diverged. Thus, we detect changes in popularity distribution
in a non-intrusive manner by computing lightweight statistics.

5.3 Parameters

The parameters N1, Ng, and N determine how long the hash table
runs in learn+adapt, sense, and default modes respectively. Our
goal is to choose these parameters such that the gains of learning
are balanced against the overhead.

Our choice of parameters is general, made using theoretical and
empirical evidence that is independent of the popularity distribu-
tion. Thus, our techniques (§5.2) apply to any distribution with
skew irrespective of its specific properties. Note that it is possible
to further tune the parameters and the techniques with additional
knowledge such as total number of requests, patterns in the work-
loads, family of distribution, etc.

5.3.1 Allocating the budget for learning — N; vs Np. Learning in-
the-loop is costly. In our experiments, we find that the learn+adapt
mode can be as much as 4x slower than the vanilla implementation
in the worst case (under no skew for different hash table sizes from
1M to 100M keys). If a total of (N1 + Np) requests are issued, the
loss in throughput due to the learn+adapt mode would be:

< (1_ Np.t+ Np.t)

Np.t+ Np 4.t

assuming that the vanilla implementation takes time ¢ on an
average to process each request. We cap the overhead of learning
to at most 5% by choosing Np = 60 - Ny, in our experiments (i.e,
learn+adapt mode is run for at most 1/e1 of the total requests). More
generally, the cap on overhead is (1 — /0 + x)), where k depends
on the experimental configuration (k = 4 on our hardware). Thus,
we cap the overhead of learning by fixing a budget for M /x,.

1— Tvanilla

Tvip

5.3.2 Choosing N| — how much to learn? The learn+adapt mode is
run for N, requests at a time. Our goal is to capture the popularity
distribution while learning for a finite number of requests. From
previous work [16], we know that it takes ©(N) i.i.d. samples to
learn a probability mass function over N items (with error € = 1 in
KL divergence compared to the true pmf). When the cardinality of
the hash table is not known/can vary, we choose Ny = 1.5 - (htsize),
i.e, 1.5 times the number of buckets in the hash table. Since we
maintain a load factor of at most 1.5 at all times, the number of keys
in the hash table N < 1.5 - htsize, which satisfies our requirements.

5.3.3 Parameters for sensing — N ¢ and c. We sense the distribution
for Ng requests at a time to estimate the average displacement jip
and build an interval with confidence c. Since the load factor is low
and the longest chain length is likely to be low as well (except in
pathological cases), we have found that choosing Ng to be a large
number (1000) has been sufficient in our experiments. We build a
¢ = 95% confidence interval that gives us a heuristic probability
of ¢ = (0.95)> = 0.9 when we detect a shift in the popularity
distribution. By increasing (decreasing) the confidence level, we
can be less (more) sensitive to changes in popularity.

6 APPLICATIONS
6.1 PK-FK Hash Joins

Hash tables are frequently used in database systems for processing
join queries. In this section, we describe how VIP hashing can
improve the performance of primary key-foreign key (PK-FK) hash
joins in the presence of skew.

1986

0.9% Em Build
20000 =7 [Learn+Materialize
1 Probe+Materialize
W 15000 A
E -18.7%
[«
£ 10000 4
£
5000 A - 225% -12.8%
Default VIP Default IP Default VP Default VIP
zipf=0 zipf=1 zipf=2 zipf=3

Figure 8: Performance of PK-FK canonical hash join on ta-
bles R and S (JR| : |S| = 1 : 16) using the default and VIP
hash table implementations. For medium skew, we observe
a 22.5% reduction in median (over 10 random seeds) total ex-
ecution time.

Table 3: Relative metrics for default and VIP hash join at
zipf =2, |R| : |S] =1: 16.

Metric Default VIP Diff

Time 3.4s 2.6s -22.5%
Avg. Displacement 1.23 1.0003 | -18.7%
L3 Misses 75.5M 75.3M | -0.3%
L2 Misses 1279M | 124.6M | -2.6%
L1 Misses 161.2M | 155.7M | -3.4%
Instructions 8.5B 8.2B -3.5%

6.1.1 Experimental Setup. Motivated by past research [11, 13, 27],
we consider the canonical PK-FK join query on tables R and S
(IRl < |S[) with 8-byte integer attributes (16-byte tuples). Skew
can arise in PK-FK relations [11, 13] when some keys occur more
frequently than others in the outer relation S. We use Wiscer to
instantiate R and S using the sequential key pattern for primary
keys in R, and varying the level of skew in the outer relation S
from uniform (zip f = 0) to high (zipf = 3) for 10 distinct random
seeds. We compare the performance of the canonical hash join
algorithm [11, 27] implemented using the default and VIP hash
tables, while materializing pointers to output tuple pairs. We assume
that the tuples in S are i.i.d, i.e, the popularity distribution is static.
We explore effects of dynamic popularity distribution in §6.2.

6.1.2 Default vs VIP Hash Join. Fig. 8 shows the relative execution
time of the default vs VIP hash join implementations. The cardi-
nalities of R and S are 12M and 192M respectively (|R| : |S| =1 :
16) [11, 13], and the load factor is 1.4 (= 12 - 109/22%). For medium
skew in the outer relation, the average displacement encountered
by the default hash join implementation is 1.23 (Table 3)2.

For the case of canonical hash join query, the learning budget
of the VIP hash table implementation can be calculated in advance
while maintaining Ny : Np = 1 : 60 (§5.3) since we almost al-
ways know the cardinalities of the relations from system catalogs.
Learning is triggered at the beginning of the probe phase with a

2Note that the average displacement is low for the default configuration in this case,
since the keys are sequential. Holding the load factor constant, randomly generated
keys result in a median (over 10 random seeds) average displacement of 1.48.

35
30 +1% +0.4% [Default
/3 vip
2.5
-19.8%
2.0 I

15
1.0
0.5
0.0

Total Execution Time (s)

0.5

1.0

15
Zipf

Figure 9: Execution time of TPC-H query 9 (scale factor

= 1) on DuckDB. VIP hashing speeds up PK-FK hash join

probes, and results in 20% reduction in median (over 10 ran-

dom seeds) end-to-end query execution time at zipf = 1 and

zipf = 1.5.
18Iy _ 16:IR| _

budget of Np = min(|R|,) = =57~ = 0.26 - |R| lookups from
the outer relation. Learning takes about 3% of the total execution
time, ranging from 70-600ms depending on the level of skew. Note
that the average displacement of the VIP hash join implementation
is very close to 1 (Table 3) indicating that the learning mechanism
efficiently captures the popularity distribution, and reduces cache
misses and instructions executed.

To show the impact of varying the learning budget, we repeated
the experiment for lower and higher cardinality ratios. For a ratio
of 1 : 4, we have a learning budget of % = 0.07 - |R| requests
and the overall reduction in execution time is 18.6%. On the other
hand, a cardinality ratio of 1 : 64 allows a learning budget of |R|
= min(|R|, 64(;|1R|) and results in 25.8% reduction in execution time.
Thus, the available learning budget impacts the gain in performance.

6.1.3 Application to Skewed TPC-H. We focus our attention on
TPC-H query 9 [8], which is the most expensive TPC-H query
involving multiple PK-FK joins. We implemented VIP hashing in
DuckDB [31], an in-memory vectorized DBMS, to speed up PK-FK
hash joins in single-threaded mode. Fig. 9 shows the median execu-
tion time of VIP hash join relative to the default, tested on skewed
TPC-H data [26] at varying levels of skew for 10 different random
seeds. VIP hash join reduces the end-to-end query execution time
by 20% at zipf = 1 and zipf = 1.5, while the increase in execution
time at lower skew is negligible. The remaining TPC-H queries
spend < 1% of the total execution time in skewed PK-FK hash joins,
and consequently the impact of VIP hashing is negligible.

6.2 Point Queries

Another common use of hash tables is for in-memory indexing in
database systems [1, 22] and in key-value stores [4, 23] for pro-
cessing point queries. In this section, we evaluate VIP hashing
against a range of workloads generated using Wiscer that highlight
the robustness of our techniques for learning in-the-loop under
different conditions. In all the experiments, we assume no prior
knowledge of the characteristics of the request distribution. The
first two workloads (§6.2.1-§6.2.2) involve fetch operations, and the
last two (§6.2.3-§6.2.4) perform insert and delete operations.

We run these workloads on a hash table with 1M entries (load
factor 0.95 = 10°/22%) in the Default configuration. Each of these
workloads issue 500M operations to the hash table at low skew
(zipf = 1) unless specified otherwise. The performance gain under

1987

medium skew (zipf = 1.5) is higher, and those results are included
in the extended version of the paper [26]. The remaining configura-
tion options of Wiscer are set to the defaults (Table 1). We compare
the performance of VIP hashing to the default hash table in Fig. 10.

6.2.1 Static Popularity. In this workload, the popularity of keys
in the hash table remains the same throughout. For the case of
uniform popularity distribution (zipf = 0), the loss in throughput
is 2% (Fig. 10a) which is within our budget of 5% (§5.3.1), whereas
for low skew (zipf = 1), we obtain a net gain of 22% (Fig. 10b).
Since the popularity distribution is static, the learn+adapt mode is
triggered only at the start of the experiment for 1.5 - htsize requests.
The periodic runs of the sense mode do not detect a change in
popularity and the learn+adapt mode is not triggered again, thus
minimizing the overhead of learning.

6.2.2 Popularity Churn. In this workload, the popularity distribu-
tion shifts over time — we simulate a medium (25%) and high (50%)
rate of shift every 100M (about 3s) and 10M (< 1s) requests respec-
tively. Fig. 10c shows the behavior of VIP hashing under medium
churn - 3 out of the 4 times when the popularity shifted, there was
a substantial change in average displacement (accompanied by a
decrease in performance) which was detected in the sense mode,
and learning was triggered only when necessary. For the case of
high churn (Fig. 10d), popularity shift occurs 50 times during the
experiment, and every run of the sense mode detects a change in
distribution and learning is triggered. We obtain a net increase
of 19% and 12% in throughput for the case of medium and high
churn respectively. Thus, VIP hashing is able to sense changes in
distribution and re-learn on the fly.

6.2.3 Steady State. Next, we create a workload with 98% fetch, 1%
insert, and 1% delete requests. The cardinality of the hash table
doesn’t change substantially during the experiment, as the number
of insert and delete operations are balanced. The keys are inserted
(deleted) in random positions of the popularity order. We observe
that as new keys (which are less popular with high probability)
are inserted at the front of the chains, the hash table arrangement
steadily becomes worse and the performance of VIP hashing ap-
proaches the default. A change in average displacement is sensed
every time and learning is triggered, which bounces back the per-
formance of VIP hashing. We observe a 5.4% gain in throughput.

6.2.4 Read Mostly. In this workload, we issue 98% fetch requests
and 2% insert requests. New keys are inserted in arbitrary positions
in the popularity order. Similar to §6.2.3, we observe that the per-
formance steadily becomes worse as new keys are inserted at the
front of the bucket chains. Inserting new keys increase the load
factor, which degrades the throughput of the default implementa-
tion as well. Rehashing is triggered when the load factor exceeds
1.5 (happens every 75 - htsize requests), which bounces back the
performance for both the default and VIP hashing implementations.
The periodicity at which sensing is triggered (every 90 - htsize re-
quests) increases every time rehashing is performed, as we update
the parameters Ns and Ny, according to the size of the hash table
(htsize). Given that the change in the distribution is substantial,
every run of the sense mode detects a change in popularity and
triggers learning. Overall, we obtain a gain of 1% in throughput.

25

Periodic Sensing

2.0 1
154

1.04 —s— Default

Learni
s T AZ:S;E? —e— VIP Hashing

0 50 100

Throughput (ops/s)

150 200 250 300 350 400 450 500

Number of requests (million)
(a) Static popularity (§6.2.1) with zipf = 0 (uniform distribution).
Since there is no skew in popularity, no performance gain can be
obtained from VIP hashing. Learning adds overhead to VIP hashing
(4x slower), and is only triggered at the start for (1.5 - 2%°) requests
(0.3s). Subsequent sensing of the popularity distribution does not de-
tect any change, and learning is not triggered. Total loss in through-
put is 1.9%, which is within our allocated budget.

le7

Periodic Sensing

Popularity
Distribution| [
&] shift

Learning +
2 Adapting —a+— Default
—+— VIP Hashing
A A
o & J &L L) =Y id &L
150 200 250 300 350 400 450 500
Number of requests (million)

Throughput (ops/s)

T g =»y
0 50 100

(c) Medium churn rate (§6.2.2) with zipf = 1. Popularity distribu-
tion shifts every 100M requests by 25% (top 21 out of 1M keys are
replaced by less popular keys). Distribution shift increases average
displacement and can reduce performance (notice drop in perfor-
mance of VIP hashing at 200M requests). Sensing triggers learning
whenever it detects a significant increase in average displacement.
Throughput increases by 18.9% overall.

le?

e Periodic Sensing

@ 4

o5

=9

)

53

=1

=

g Learning + |

= 2

2 2 Adapting - HE 3 —=+— Default

g [] 1y 4l —s— VIP Hashing
i) | [3 T T T T T T T T T T

50 100 150 200 250 300 350 400 450 500

Number of requests (million)

(e) Steady state (§6.2.3) with zipf = 1. 98% fetch requests, 1% insert
requests, and 1% delete requests. With new keys being inserted (at
the front of the buckets) and existing keys being deleted, the hash
table arrangement steadily becomes worse. Learning is triggered pe-
riodically which bounces back the performance. An overall gain of
5.4% is observed.

le7

—_ Periodic Sensing

2 4

2 f'l_ e

Eﬁ' T I T T T T I T IT T IR IT
=2}

§ 2 I —s— Default
A i]AZZL‘E‘;i —+— VIP Hashing

0 50 100 150 200 250 300 350
Number of requests (million)

400 450 500

(b) Static popularity (§6.2.1) with zipf = 1 (low skew). Learning is
only triggered at the start and is 3x slower than the default (0.13s vs
0.05s respectively). Sensing does not detect any changes to the popu-
larity distribution, so learning is not triggered again. The overhead
of learning is offset by the gain in performance from the VIP con-
figuration. We observe an overall increase in throughput of 21.8%.

le7
) Periodic Sensing
2 44
@
=}
)
5 3
% !
g} Learni.ng+ | Popularity M i 2| [L]
8 21 Adapting Distribution 1y —+— Default
H [§] shifts [[] :
=l i / —e— VIP Hashing
| sasg

0 50 100 150 200 250 300 350
Number of requests (million)

400 450 500

(d) High churn rate (§6.2.2) with zipf = 1. Popularity distribution
shifts every 10M requests by 50% (top 750 out of 1M keys are re-
placed by less popular keys). The benefit of learning dimishes as
the popularity order becomes shuffled. Periodic sensing triggers
learning every time, as frequent distribution shifts cause significant
change in average displacement. Overall, 11.8% increase in through-
put is observed.

le7
’\U} 4 Periodic Sensing
2
e
o 31
5
2
=
B
< Rehashing N T —+— Default
] rlj Learning + .
g, W { Adapting == VIP Hashing
0 50 100 150 200 250 300 350 400 450 500

Number of requests (million)

(f) Ready mostly workload (§6.2.4) with zipf = 1. We issue 98% fetch
requests and 2% insert requests. Rehashing is triggered when the
load factor reaches 1.5, which happens every 75 - htsize requests.
When rehashing occurs, we double the periodicity of sensing (Ns)
and the duration of learning (Ny), i.e., learning is triggered less fre-
quently for longer duration. We observe a gain of 1% in throughput.

Figure 10: Comparing the performance of VIP hashing to the default (vanilla) implementation of hash table when subjected
to identical workloads. Requests are issued in batches of 1M to a hash table with 1M keys (load factor 0.95 = 10°/2%0) at the
start in Default configuration. Workload 10a has uniform popularity distribution (zipf = 0) and workloads 10b-10f are run
with low skew (zipf = 1). The loss in throughput? is 2% in the worst case, while we obtain a gain in performance ranging from

1% to 22% depending on the workload.

2 The small periodic dips in throughput in both VIP hashing and the default implementation are due to monitoring activity performed by the Cloudlab environment [21] and are unrelated to our workloads.

1988

7 RELATED WORK

Hash tables are well studied data structures in literature. Two major
categories of hash tables are chained hashing [36] where collisions
are resolved by chaining (§2.1), and open addressing [40] where
collisions are resolved by searching for alternate positions in an
array. Richter et al. [32] study different hash table implementations
spanning both the categories, hash functions, workload patterns,
etc. while highlighting the variability in the performance of hash
tables based on a host of factors. Similar to our work, they consider
the problem of hashing 8-byte integer keys and values.

Multiple open source hash tables [3, 12, 35] use both categories
of implementations. For instance, Google’s flat hash table [12] uses
open addressing, while the bytell (byte linked list) hash table [35]
uses chaining to resolve collisions. When it comes to data systems,
DBMS such as SQLite3 [7] and PostgreSQL [33], as well as key-value
stores such as Redis [29] and Memcached [23] use data structures
that involve chaining of entries. Thus, we find that chained hash
tables are a popular choice commonly used in practice.

Skew in popularity is a well studied phenomenon. Multiple stud-
ies involving production workloads have found fetch requests to
follow a power-law behavior [10, 15], which is often captured us-
ing the zipfian distribution [13, 20, 44]. For instance, the request
distribution in the core workloads of YCSB [19] is zipfian by default.
Alongside skew in popularity, previous work [10] also discusses
effects such as churn in popular keys in real world workloads. This
is a key feature captured by Wiscer (§3), which is not present in any
of the existing workload generators to the best of our knowledge.

Broadly speaking, caching algorithms such as LRU-k [30] and
MRU [18] attempt to capture the current popularity distribution.
Key-value stores designed for disk-based settings, such as Anna [44]
and Faster [17] incorporate techniques to keep hot data in memory
for better performance. Recent work by Herodotou et al. [25] uses
machine learning (ML) to automatically move data between differ-
ent storage tiers in clusters. A recurring trend to note here is that
the complexity of these schemes depend on the “budget” available,
ranging from simple LRU approach used even in processor caches,
to a more complex approach involving ML in large-scale clusters.

The budget available for learning with hash tables is extremely
limited (Fig. 6). In the seminal paper on learned indexes [28], the au-
thors propose learning a hash function from the keys such that col-
lisions can be avoided altogether. However, recent work on learned
hash functions [34] shows that this approach encounters two ma-
jor limitations — cache sensitivity, and model complexity. While
larger models are necessary to accurately capture arbitrary key
distributions, the computation times become prohibitively high
(50x higher [34]) due to increased cache misses from accessing the
model parameters. The high cache sensitivity and low latency re-
quirements of hash tables preclude the use of costly ML techniques.

A noteworthy aspect of the VIP hashing method is that learning
is performed online, i.e., the hash table does not pause operation at
any time. In contrast, recent work [24, 34] involves learning from
the data offline before populating the hash table. Adapting to chang-
ing key distributions remains a challenge with these approaches,
as their fallback mechanism is reverting to the default hash table
implementation [24] or relearning [28, 34], both of which require
costly rehashing that pauses execution.

1989

8 CONCLUSIONS & FUTURE WORK

The sensitivity of hash tables to effects of caching makes learning
on the fly very challenging (§5.1, [34]). In this paper, we describe
the VIP hashing method for adapting to the skew in popularity of
data on the fly. VIP hashing is comprised of four lightweight mech-
anisms — learning, adapting, sensing, and dynamically switching-
on/off learning - that execute in a fully online fashion. Our choice of
parameters (§5.3) carefully balances the gains against the overhead
of executing online. We evaluate VIP hashing using an extensive
set of workloads (Fig. 8, 10) that demonstrate the ability to learn
on the fly, while being robust to changes caused by insert/delete
operations, shifting distributions, etc. In our experiments, the gain
in performance obtained was 22% in the best case.

Possible future work could involve studying other low latency
data structures such as bloom filters [14], to see how cache locality
can be improved by adapting to the data. Learning tasks involving
such cache sensitive data structures will necessitate controlling the
overhead, potentially using our approach of budgeted learning and
non-intrusive sensing.

ACKNOWLEDGMENTS

This research was supported in part by a grant from the Microsoft
Jim Gray Systems Lab, by the National Science Foundation under
grant OAC-1835446, and by CRISP, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program.

A PROOF OF THEOREM 1

Theorem 1 (§5.2.2) states that given keys K1, K», ..., K} in a bucket
with probability p; > ps > .. > pp, such that the keys are in a
random order initially. Then by applying Algorithm 1, the keys will
converge to the sorted order of popularity as the number of fetch
requests N — oco.

From the frequentist definition of probability, we can be sure
that a more popular key will receive more requests compared to a
less popular key as N — oo. This will hold pairwise for all the keys
K1, Ka, ..., Ky in the bucket, which motivates the following claim.

LEMMA A.1. Let{K;} be keys in a bucket with probability {p;}, i €
[N]. Let K1 be the most popular key in the bucket, i.e., p1 > p; Vj €
{2,..,N}. Let the initial order of keys be random. Then, by running
Algorithm 1, Ky will be at the front of the chain as N — oo.

Proor. Suppose K is at displacement d > 1 and has received
n requests. Let there be keys K7, .., K/,_, in front of K that have
received requests ny, .., ng_1 respectively. From Lemma 2, we have

lim n>n;, Yie[(d-1)]
N—oo

Thus, K; would have received more requests than all the keys in
front of it as N — oo. From Algorithm 1, on the last request that
K received, it should have been swapped with a key with lower
number of requests ahead of it. This contradicts our assumption
that K7 is at position d > 1. O

Thus, the most popular key in the chain will be in the front as
number of requests approaches infinity. By recursively applying
Lemma 3 to the remaining keys in the bucket, we can prove that
the keys will be in the sorted order of popularity as N — oo.

REFERENCES

(1]

[2

—

(3]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20

[21

MariaDB 2013. MariaDB Storage Index Types. MariaDB. Retrieved June 23, 2022
from https://mariadb.com/kb/en/storage-engine-index-types/

Intel Corporation 2017. Intel Xeon Silver 4114 processor. Intel Corporation.
Retrieved June 23, 2022 from https://intel.ly/3fDidSb

Intel Corporation 2020. Intel TBB hash map. Intel Corporation. Retrieved June 23,
2022 from https://oneapi-src.github.io/oneTBB/main/tbb_userguide/concurrent_
hash_map.html

Redis Ltd. 2022. Data types in Redis. Redis Ltd. Retrieved June 23, 2022 from
https://redis.io/topics/data-types

Intel Corporation 2022. Intel Intrinsics. Intel Corporation. Retrieved April 22,
2022 from https://intel.ly/3nxA416

Intel Corporation 2022. Intel performance monitoring events. Intel Corporation.
Retrieved June 2, 2022 from https://perfmon-events.intel.com/

SQLite 2022. SQLite hash table implementation. SQLite. Retrieved June 23, 2022
from https://sqlite.org/src/file/src/hash.c

TPC 2022. TPC-H Benchmark (Version 3). TPC. Retrieved June 23, 2022 from
http://www.tpc.org/tpch/

Austin Appleby. 2016. MurmurHash3. Retrieved June 23, 2022 from https:
//github.com/aappleby/smhasher/wiki/MurmurHash3

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-Scale Key-Value Store. Sigmetrics Performance
Evaluation Review - SIGMETRICS (2012). https://doi.org/10.1145/2318857.2254766
Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ozsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In
2013 IEEE 29th International Conference on Data Engineering. https://doi.org/10.
1109/ICDE.2013.6544839

Sam Benzaquen, Alkis Evlogimenos, Matt Kulukundis, and Roman Perepelitsa.
2018. Swiss Tables and absl:Hash. Google. Retrieved June 23, 2022 from
https://abseil.io/blog/20180927- swisstables

Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and Evaluation of
Main Memory Hash Join Algorithms for Multi-Core CPUs. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data. https:
//doi.org/10.1145/1989323.1989328

B. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM (1970). https://doi.org/10.1145/362686.362692

L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. 1999. Web caching
and Zipf-like distributions: evidence and implications. In IEEE INFOCOM °99.
https://doi.org/10.1109/INFCOM.1999.749260

Clément L. Canonne. 2020. A short note on learning discrete distributions. arXiv:
Statistics Theory (2020). https://doi.org/10.48550/ARXIV.2002.11457

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store
with In-Place Updates. In 2018 ACM SIGMOD International Conference on Man-
agement of Data. https://doi.org/10.1145/3183713.3196898

H. Chou and D. DeWitt. 2005. An Evaluation of Buffer Management Strategies
for Relational Database Systems. Algorithmica (2005). https://doi.org/10.5555/
1286760.1286772

Brian F. Cooper. 2010. YCSB Core Workloads. Retrieved November 29, 2020 from
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC 2010). https://doi.org/10.
1145/1807128.1807152

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). https://doi.org/10.5555/3358807.3358809

1990

[22

[23

[24

[25

IS
S

[27

(28]

[29

[30

[31]

(32]

(33]

=
)

Erik Freseth. 2019. Hash join in MySQL 8. MySQL. Retrieved November 13, 2019
from https://mysqlserverteam.com/hash-join-in-mysql-8

Holmes He. 2021. Understanding the Memcached source code. Retrieved January
1, 2021 from https://holmeshe.me/understanding-memcached-source-code-V
Brian Hentschel, Utku Sirin, and Stratos Idreos. 2022. Entropy-Learned Hashing:
Constant Time Hashing with Controllable Uniformity. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD °22). https:
//doi.org/10.1145/3514221.3517894

Herodotos Herodotou and Elena Kakoulli. 2019. Automating distributed tiered
storage management in cluster computing. Proc. of the VLDB Endowment (2019).
https://doi.org/10.14778/3357377.3357381

Aarati Kakaraparthy, Jignesh M. Patel, Brian P. Kroth, and Kwanghyun Park.
2022. VIP Hashing — Adapting to Skew in Popularity of Data on the Fly (extended
version). https://doi.org/10.48550/ARXIV.2206.12380

Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka. 2009. Application
of hash to data base machine and its architecture. New Generation Computing
(2009). https://doi.org/10.1007/BF03037022

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The
Case for Learned Index Structures. In Proceedings of the 2018 International Con-
ference on Management of Data (SIGMOD °18). https://doi.org/10.1145/3183713.
3196909

Kousik Nath. 2017. A little internal on Redis hash table implementation. Retrieved
June 23, 2022 from https://bit.ly/3pfVvIm

Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K
Page Replacement Algorithm for Database Disk Buffering. In Proceedings of the
1993 International Conference on Management of Data (SIGMOD ’93). https:
//doi.org/10.1145/170035.170081

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD °19). https://doi.org/10.1145/3299869.3320212

Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional
Analysis of Hashing Methods and Its Implications on Query Processing. Proceed-
ings of the VLDB Endowment (2015). https://doi.org/10.14778/2850583.2850585
Egor Rogov. 2019. Indexes in PostgreSQL. Retrieved March 19, 2019 from https:
//bitly/3c7L52A

Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, and Tim Kraska. 2021.
When Are Learned Models Better Than Hash Functions? CoRR abs/2107.01464
(2021). https://arxiv.org/abs/2107.01464

Malte Skarupke. 2018. Bytell hash map. Retrieved June 16, 2018 from https:
//bit.ly/3fBENX6

Wikipedia. 2022. Hash table. Wikimedia Foundation, Ltd. Retrieved June 23,
2022 from https://en.wikipedia.org/wiki/Hash_table

Wikipedia. 2022. Hellinger’s distance. Wikimedia Foundation, Inc. Retrieved
May 24, 2022 from https://en.wikipedia.org/wiki/Hellinger_distance
Wikipedia. 2022. Kullback-Leibler divergence. Wikimedia Foundation, Ltd.
Retrieved June 19, 2022 from https://en.wikipedia.org/wiki/Kullback-Leibler_
divergence

Wikipedia. 2022. Lindeberg-Levy CLT. Wikimedia Foundation, Inc. Retrieved June
10, 2022 from https://en.wikipedia.org/wiki/Central_limit_theorem#Classical
CLT

Wikipedia. 2022. Open addressing. Wikimedia Foundation, Ltd. Retrieved April
17, 2022 from https://en.wikipedia.org/wiki/Open_addressing

Wikipedia. 2022. Power Law. Wikimedia Foundation, Ltd. Retrieved June 3, 2022
from https://en.wikipedia.org/wiki/Power_law

Wikipedia. 2022. Z-test. Wikimedia Foundation, Inc. Retrieved April 18, 2022
from https://en.wikipedia.org/wiki/Z-test

Wikipedia. 2022. Zipf’s law. Wikimedia Foundation, Ltd. Retrieved June 19,
2022 from https://en.wikipedia.org/wiki/Zipf’s_law

Chenggang Wu, Vikram Sreekanti, and Joseph Hellerstein. 2019. Autoscaling
tiered cloud storage in Anna. Proceedings of the VLDB Endowment (2019). https:
//doi.org/10.14778/3311880.3311881

https://mariadb.com/kb/en/storage-engine-index-types/
https://intel.ly/3fDidSb
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/concurrent_hash_map.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/concurrent_hash_map.html
https://redis.io/topics/data-types
https://intel.ly/3nxA416
https://perfmon-events.intel.com/
https://sqlite.org/src/file/src/hash.c
http://www.tpc.org/tpch/
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://doi.org/10.1145/2318857.2254766
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1109/ICDE.2013.6544839
https://abseil.io/blog/20180927-swisstables
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/INFCOM.1999.749260
https://doi.org/10.48550/ARXIV.2002.11457
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.5555/1286760.1286772
https://doi.org/10.5555/1286760.1286772
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.5555/3358807.3358809
https://mysqlserverteam.com/hash-join-in-mysql-8
https://holmeshe.me/understanding-memcached-source-code-V
https://doi.org/10.1145/3514221.3517894
https://doi.org/10.1145/3514221.3517894
https://doi.org/10.14778/3357377.3357381
https://doi.org/10.48550/ARXIV.2206.12380
https://doi.org/10.1007/BF03037022
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://bit.ly/3pfVvTm
https://doi.org/10.1145/170035.170081
https://doi.org/10.1145/170035.170081
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.14778/2850583.2850585
https://bit.ly/3c7L52A
https://bit.ly/3c7L52A
https://arxiv.org/abs/2107.01464
https://bit.ly/3fB8NX6
https://bit.ly/3fB8NX6
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Hellinger_distance
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Central_limit_theorem#Classical_CLT
https://en.wikipedia.org/wiki/Central_limit_theorem#Classical_CLT
https://en.wikipedia.org/wiki/Open_addressing
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Z-test
https://en.wikipedia.org/wiki/Zipf's_law
https://doi.org/10.14778/3311880.3311881
https://doi.org/10.14778/3311880.3311881

