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ABSTRACT

Hybrid Transactional and Analytical Processing (HTAP) systems
have recently gained popularity as they combine OLAP and OLTP
processing to reduce administrative and synchronization costs be-
tween dedicated systems. However, there is no precise characteri-
zation of the features that distinguish a good HTAP system from
a poor one. In this paper, we seek to solve this problem from the
perspectives of both performance and freshness. To simultaneously
capture the performance of both transactional and analytical pro-
cessing, we introduce a new concept called throughput frontier,
which visualizes both transactional and analytical throughput in a
single 2D graph. The throughput frontier can capture information
regarding the performance of each engine, the interference between
the two engines, and various system design decisions. To capture
how well an HTAP system supports real-time analytics, we define
a freshness metric which quantifies how recent is the snapshot of
the data seen by each analytical query. We also develop a practical
way to measure freshness in a real system. We design a new hybrid
benchmark called HATtrick which incorporates both throughput
frontier and freshness as metrics. Using the benchmark, we eva-
luate three representative HTAP systems under various data size
and system configurations and demonstrate how the metrics reveal
important system characteristics and performance information.
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1 INTRODUCTION

Modern enterprises often have both online transactional (OLTP) and
online analytical processing (OLAP) workloads, and they typically
serve these workloads using separate databases. Maintaining multi-
ple database instances, however, requires additional administrative
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effort and computational resources. In recent years, there is a grow-
ing demand for database systems that can serve both OLTP and
OLAP workloads with performance comparable to more specialized
systems. This approach, called Hybrid Transactional and Analytical
Processing (HTAP), is now an active area of research.

Interestingly, even after a hugefl urry of papers in the HTAP
field [4-6, 10, 11, 13, 15, 17, 18, 20-23, 32, 33, 37, 38, 43], there is no
clear definition of what makes an HTAP system good, beyond its
ability to support a wide range of mixed OLTP/OLAP workloads. As
a result, it is difficult to characterize and compare the performance
of HTAP systems. To address this limitation, we define a systematic
approach to characterize the behavior of HTAP systems.

We propose two methods that define and measure HTAP perfor-
mance. First, a method to characterize an HTAP system based on a
performance-centric definition. Second, a method to measure the
ability of an HTAP system to provide real-time analytics.

In practice, we rarely see pure OLTP or OLAP workloads; for
example, TPC-E [1] has a mix of both OLTP and OLAP queries.
Nevertheless, we build on these two extreme cases (pure OLTP
and OLAP) and call the space in between the HTAP spectrum.
Conceptually, for any point on the HTAP spectrum, a good HTAP
system does not favor the OLTP or OLAP component at the expense
of the other component. We capture the overall performance over
the HTAP spectrum with a new concept called throughput frontier.
This concept combines the performance of the OLTP and OLAP
workload components. By visualizing the throughput frontier in a
2D chart, we can understand the global performance behavior of
an HTAP system, as well as identify problematic areas.

A key concept in the HTAP domain is freshness. Loosely defined,
the freshness of an HTAP system is a measure of delay with which
updates to the database (from the OLTP component of the workload)
are made visible to the OLAP queries. A more precise definition
of freshness will be provided in Section 4.1. We also propose a
method to measure freshness in practice for any HTAP system. The
empirical value of freshness allows us to understand whether the
HTAP system is able to provide real or near-real time analytics.

We present a new benchmark called HATtrick, which we use
to validate the concept of throughput frontier and our proposed
method to measure freshness. The HATtrick benchmark employs a
family of systematically generated workloads. At one extreme is a
purely transactional workload, and at the other extreme is a purely
analytical workload. In between, the workload has a mix of transa-
ctional and analytical operations. For each workload, HATtrick
measures and extracts the performance and freshness of the HTAP
system at that "operating point". To run HATtrick, one executes a
range of workloads as specified by the benchmark parameters.

Finally, we run the HATtrick benchmark on a number of data-
base systems to understand their characteristics. Our results show
that the shape of the throughput frontier reveals essential informa-
tion about the ability of a database system to concurrently serve
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OLTP and OLAP workloads. Also, it provides information about the
way the system scales in different mixes of hybrid workloads and
how it shares its resources amongst the two workload components.
Moreover, our freshness measurement method reveals the ability
of the system to provide the latest updates to the analytical queries.
Results show that there is still room for improvement for database
systems to become more performant in the HTAP space.

In summary, this paper makes the following contributions: we
introduce the throughput frontier in Section 3. Then, we define
freshness and introduce a practical way to measure it in Section 4.
Then, we design a benchmark named HATtrick in Section 5 and
use it to evaluate and analyze three database systems in Section 6.
Collectively, we provide a more principled approach to characterize
and evaluate HTAP systems.

2 MOTIVATION

In this section, wefi rst present a classification of HTAP systems
based on their performance isolation and freshness properties. Then,
we describe existing work on benchmarking HTAP systems. We
then motivate the need for our proposed HATtrick benchmark.

2.1 Design challenges

Generally speaking, an HTAP system should achieve the following
two goals: (i) performance isolation — the transactional and analyti-
cal workloads should not interfere with each other, and (ii) freshness
— analytical queries should observe the latest transactions’ updates.

An HTAP database contains two workloads, an OLTP workload
and an OLAP workload, against the same physical database. For
simplicity, we refer to these two workloads as the T and the A
workloads. T workloads typically include a mix of read and write
transactions, each of which operates on a small subset of the data-
base and uses indexes to accelerate search. In contrast, A workloads
are mostly read-only and often involve scans, joins, and aggregates
of large subsets of the database.

An HTAP system achieves ideal performance isolation when
each of the T and A workloads achieves the performance as if it
was executed independently. This is a desirable behavior, since it
allows the two workloads to run without one blocking or affecting
the performance of the other. Therefore, the practical challenge is
to design a system that can share the resources between the two
workloads in a way that minimizes the interference between them.

Moreover, an HTAP system should allow every A query to read
the latest modifications of the T workload. These modifications
produce fresh data. We say that an HTAP system achieves perfect
freshness when there is no delay from the time the T workload
commits its changes to the time the A workload is able to process the
same data. The challenge is to provide freshness without negatively
impacting the performance of the T or the A workloads.

In the next section, we describe how different HTAP designs use
different solutions to achieve performance isolation and freshness.

2.2 Design classification

HTAP systems today follow many different designs. We classify
them based on their architectures into three categories: (i) shared
design, (ii) isolated design, and (iii) hybrid design. Then, we provide
some representative examples in each category.
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Shared design: Systems that belong to this category execute the
T and A workloads in a single engine. They maintain a single copy
of data and share resources between the two workloads (e.g., memo-
ry bandwidth, CPU cores, and shared caches). Examples of systems
that belong to this category include all the traditional relational
databases such as PostgreSQL [28, 39, 40], DB2 [16], and Oracle [24]
but also specialized in-memory databases such as SAP HANA [10,
37], Hyper [17, 23], and DB2 BLU [32]. Systems that follow the
shared design use various ways to provide isolation between the
two workloads. Creating snapshots of the main database is one way
to create “data replicas” and reduce the interference between reads
and writes. So, they use the copy-on-write (CoW) or multiversion
concurrency control (MVCC) mechanisms. Each of the systems
that we mention above use their snapshot isolation mechanism
to achieve fresh analytics. For example, in MVCC every analytical
query that arrives needs to traverse potentially lengthy version
chains [41] andfi nd the right snapshot.

Isolated design: Systems that belong to this category usually
provide compute isolation and dedicated resources to each work-
load. This is achieved by using different NUMA nodes for each
workload or even different machines. Also, two different copies of
the data are maintained, which have different representations. For
example, row-store format is used in the T engine and column-store
format is used for the A engine, which supports efficient data com-
pression for processing high volumes of data in-memory. Examples
of systems that belong to this category are BatchDB [21], TiDB [15],
SAP HANA SOE’s [13], F1 Lightning [43], Wildfire [6], Db2 event
store [11], Greenplum [20], PostgreSQL Streaming Replication [27],
and the fractured mirrors [8]. An advantage of the systems that
follow the isolated design is the mitigation of the interference be-
tween the two workloads since there is no sharing of resources. For
achieving fresh analytics, the systems above traditionally follow an
ETL process. Recent solutions aim to more frequently update the A
replica of the data and achieve higher freshness.

Hybrid design: This category combines characteristics from
the two previously mentioned designs. Systems that belong to this
category usually are in-memory databases which execute the two
workloads in a single machine with shared resources but maintain
two copies of data with different representations. Examples of sys-
tems that belong to this category are Microsoft SQL Server with
Hekaton [9, 19], Oracle dual-format DB [18], and SingleStore [38].
Maintaining two copies of the data is a way for these systems to
aim for performance isolation. To provide fresh analytics, every
analytical query before execution has to fetch the changes from the
transactional log or the tail of the T copy.

2.3 Current HTAP benchmarks

Existing popular HTAP benchmarks include CH-Benchmark([31],
HTAPBench [7], and Swarm64 [29]. We identify important limi-
tations in the current HTAP benchmarks. For each limitation dis-
cussed below we briefly discuss the strategy we will follow in
HATtrick, the benchmark proposed in this paper.

Unable to measure performance isolation. The current hybrid
benchmarks cannot identify whether a tested system is achieving
performance isolation between the T and the A workloads. HTAP-
Bench and Swarmé64 view one of the workloads as the primary,
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usually the T, and the other as a turbulence of the primary. Their
goal is to execute the secondary workload without affecting the tar-
get throughput of the primary workload. In HATtrick we view the T
and A workloads as equal. Our primary goal is to discover how good
the current HTAP systems are at achieving performance isolation
when both workloads are equal. The throughput frontier metric,
which we will discuss in detail in Section 3.1, shows how close
is a system at achieving performance isolation, how performance
scales, and the interference of the two workloads.
Unable to measure freshness. The second limitation of existing
benchmarks is that they cannot measure the freshness of an HTAP
system. CH-Benchmark is the only benchmark that identifies fresh-
ness as an important factor in system performance. They show how
the performance is affected by different freshness configurations
in the old version of the Hyper [17] database. However, they do
not provide any methodology for measuring the freshness of a
system. In HATtrick, we provide a method to measure freshness
applicable to all HTAP design categories discussed in Section 2.2.
Our method is simple and can be adopted by any HTAP benchmark
with minimal changes, we provide more details in Section 4.
Unable to identify design category. In Section 2.2 we categorize
HTAP systems based on their architectures. These categories have
also been discussed in other research works [12, 14, 25, 33] and
they are important to understand and improve an HTAP system.
None of the current hybrid benchmarks is able to discover the
category of a tested system. HATtrick can extract this information
and communicate it to the user in a friendly way. Our evaluation in
Section 6 will show how HATtrick discovers the correct category.
Complicated schemas. Existing benchmarks are created by com-
bining the schemas of TPC-C [3] and TPC-H [2]. The TPC schemas
are complex which makes their implementation not straightforward
to the users. In the world of OLAP, this has led to the creation of
the SSB [26] benchmark which is based on TPC-H but significantly
simplified. SSB follows the Kimball [35] definition of a data ware-
house, based on which the data model should have a star schema
and is widely used due to its simplicity. Compared to TPC-H, the
SSB schema allows more efficient table and column compression
and eliminates the restrictions in partitioning and indexing [36]. We
believe that HTAP systems can benefit from the above schema im-
provements. In our proposed benchmark we extend the SSB schema
to support a new T workload which is an adapted version of TPC-C.
We discuss the design of HATtrick in Section 5.
Hard to compare multiple HTAP systems. Although existing
benchmarks can be used to compare multiple HTAP systems, they
do not provide a systematic way for achieving it. We focus on
combining all the information needed to compare different HTAP
systems into a small set of metrics. We also provide a visualization
of the metrics to make the comparison process more intuitive.
Due to the above limitations, we believe that there is still space
for research in benchmarking HTAP systems and this work is a step
towardsfi lling this gap with the proposed HATtrick benchmark.

3 PERFORMANCE-CENTRIC DEFINITION OF
HTAP SYSTEMS

Although many HTAP systems with different designs exist, it is not
clear how their performance should be measured and compared
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Figure 1: An illustration of throughput frontier and diffe-
rent methods of creation.

with each other. In this section, we introduce the concept of the
throughput frontier and define the performance characteristics that
capture the key properties of an HTAP system.

3.1 Throughput frontier

The performance of an OLTP or OLAP system is typically characte-
rized by plotting throughput versus the number of clients. However,
characterizing HTAP performance is more complex.

We consider a hypothetical HTAP system that serves a mix
of T- and A-clients, each of which issues a constant stream of
requests. We model the performance of the system using a function
S. The input to S is a 2-tuple (r,a) € N2, where 7 and a are the
number of T- and A-clients, respectively. The performance of S
is a 2-tuple (xz,xq) € R2>o where x; and x, are the T- and A-
throughputs, respectively. We refer to the 2-tuple (x;, x;) as the
hybrid throughput of S.

Fortunately, we can make the simplifying assumption that S
is bounded. Then, the most interesting set of points for HTAP
performance characterization are those in the bound. Intuitively,
these points represent the maximum hybrid throughput that can
be achieved by the system across all configurations of clients. Of
course, real HTAP systems cannot be perfectly modeled as described
above. However, as our experiments demonstrate, it is possible
to estimate a reasonably smooth curve that denotes a system’s
maximum achievable hybrid throughput. For the remainder of this
paper, we refer to this curve as the throughput frontier.

Visualizing the throughput frontier is straightforward — it can
be represented by mapping the hybrid throughputs to 2D space.
Figure 1a shows an example of a throughput frontier created by ran-
domly sampling a large number of different workload mixes ((z,c)
pairs) and computing the corresponding hybrid throughputs. The x-
axis represents the T throughput measured in completed successful
transactions per second (tps). The y-axis represents the analytical
throughput measured in completed queries per second (qps). We
denote the maximum transactional and analytical throughput as X T
and X4, respectively. The throughput frontier is always bounded
by X7 in the x-axis and by X in the y-axis.

This sampling approach to create the throughput frontier can
be prohibitively time-consuming. A more systematic way of com-
puting the throughput frontier is illustrated in Figure 1b, called the
saturation method. Instead of randomly sampling different work-
load mixes, wefi x either the T or A clients while varying the number
of the other type of clients until the performance stops improving.
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Figure 2: Examples of our performance-centric definition: (a) Grid graph and (b, ¢, d) Throughput frontier.

The vertical and horizontal lines shown in thefi gure correspond
to series of measurements where the number of T (or A) clients
arefi xed and the number of A (or T) clients is varied. We call them
fixed-T and fixed-A lines respectively. We call the graph formed
from thefi xed-T andfi xed-A lines the grid graph (g).

Figure 2a shows a real example of a grid graph created for
PostgreSQL streaming replication (PostgreSQL-SR) with a 100 GB
dataset; more details of the workload and experiment will be pre-
sented in Sections 5 and 6. The real grid graphs do not include
pure vertical or horizontal lines. As it shows in Figure 2a, the real
fixed-T andfi xed-A lines are sloped and the distances between the
individual lines vary. The shape of thefi xed-T andfi xed-A lines
can explain the way the T and A components of a workload affect
each other when they run concurrently. We provide more details in
the interpretation of thefi xed-T andfi xed-A lines in Section 3.2.1.
Moreover, in Section 3.3, we will discuss the way Figure 2a was
created by introducing an efficient algorithm.

3.2 Interpretation of the throughput frontier

In this section, we discuss the information that can be extracted
from the throughput frontier and how this information can be used
to interpret the performance of an HTAP system. In general, the
throughput frontier quantifies the absolute T- and A-throughput,
and their relationship. It is useful for diagnosing performance issues.

To fully understand the performance of an HTAP system, we
must consider both the magnitude and the shape of its throughput
frontier. The magnitude of the throughput frontier (i.e., the distance
between each point on the frontier and the origin) represents the
absolute performance of the system across the entire HTAP work-
load spectrum. The throughput frontier magnitude is most useful
when comparing multiple HTAP systems. If the throughput frontier
region for some system A completely envelops that of another sys-
tem B, we can say that system A offers higher HTAP performance
than system B on the given workload. In contrast, it is also possible
for neither throughput frontier region to fully contain the other.
In this case, we recommend a deeper analysis, which takes into
account additional factors such as the expected workload mix, to
determine which system is more desirable. The remainder of this
section is dedicated to analysis of throughput frontier shape.

To enhance this discussion, we will use examples of throughput
frontiers derived from experiments on real systems. Figure 2b, Fig-
ure 2¢, and Figure 2d show the throughput frontiers of PostgreSQL-
SR, TiDB, and a commercial database which we anonymize as
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System-X. PostgreSQL-SR and System-X use the serializable isola-
tion level while TiDB guarantees snapshot isolated reads. A scaling
factor of 100 for the HATtrick benchmark was used for PostgreSQL-
SR, 10 for TiDB and 1 for System-X. The total raw data size is
roughly 80 GB for PostgreSQL-SR, 10 GB for TiDB, and 1 GB for
System-X, in all cases the datafi ts in main memory. More configu-
ration details will be presented in Section 6.

We now introduce two annotations to the throughput graph to
better understand the shape of the throughput frontier: the propor-
tional line and the bounding box. The proportional line (py), illus-
trated by the blue dashed line in Figure 2b and subsequentfi gures,
is the line drawn from the two extreme points of the throughput
frontier. It represents a relationship of linear dependence between
T- and A-throughput. The bounding box (by), illustrated by the
red dashed rectangle in Figure 2b and subsequentfi gures, is the
rectangle formed by the extreme points of the throughput frontier
(e, 0 < x < XT and 0 < y < X*4). The bounding box represents
independence between T- and A-throughput.

In subsequent paragraphs, we explain how the proportional
line and the bounding box aid in the analysis of the throughput
frontier. We consider three general throughput frontier patterns:
(i) a throughput frontier that is close to the proportional line, (ii)
a throughput frontier that is well above the proportional line and
close to the bounding box, and (iii) a throughput frontier that is well
below the proportional line and close to the axes. Note that a real
system may exhibit a throughput frontier with any combination of
patterns. Here, we separately consider each pattern only to build
intuition about the throughput frontier.

Close to the proportional line. As described earlier, the pro-
portional line represents a linear relationship between T- and A-
throughput. The proportional line is named as such to emphasize
the tradeoff between T- and A-throughput: in an HTAP system
whose throughput frontier remains close to the proportional line,
any increase in T-throughput is accompanied by a proportional de-
crease in A-throughput, and vice versa. HTAP systems that exhibit
this behavior are attractive for their predictable performance. An
example of a system and workload configuration that produces a
frontier with this pattern is TiDB with SF10, as shown in Figure 2c.

Above the proportional line, close to the bounding box. As
described earlier, the bounding box represents independence be-
tween T- and A-throughput. In an HTAP system whose throughput
frontier is well above the proportional line and close to the boun-
ding box, it may be possible to increase T-throughput with minimal
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impact on A-throughput, and vice versa. HTAP systems that ex-
hibit this behavior are attractive for their performance isolation.
An example of a system and workload configuration that produces
a frontier with this pattern is PostgreSQL-SR with SF100, as shown
in Figure 2b. Note that, by definition, the throughput frontier of
every HTAP system will always be within the bounding box.

Below the proportional line, close to the axes. Qualitatively,
the degree to which a throughput frontier is below the proportional
line and close to the axes represents the amount of negative interfe-
rence between the T- and A-portions of the workload. A throughput
frontier that is well below the proportional line is an indicator of
poor HTAP performance and may indicate contention for resources
in the system. Identification of this pattern may be useful in diag-
nosing performance issues. An example of a system and workload
configuration that produces a frontier with this pattern is System-X
with SF1, as shown in Figure 2d. Importantly, the size of the data-
base in this configuration is comparatively small, which results in
increased contention for data items. Wefi nd that HTAP systems
generally exhibit throughput frontiers below the proportional line
for small database sizes, more discussion in Section 6.

3.2.1 Grid graph. In addition to the throughput frontier, the grid
graph provides complementary information regarding workload
preference, through the slope of thefi xed-T andfi xed-A lines. Ideally,
if there is no workload interference, the grid would be comprised
of pure vertical and horizontal lines. This is rarely the case in real
systems, the lines tend to be slanted due to the interference between
the T and A workloads. The closer afi xed-T orfi xed-A line is to be
perpendicular to the axes the less the corresponding workload is
affected by the increase of the other workload. Figure 2a, shows the
grid graph of PostgreSQL-SR which corresponds to the throughput
frontier of Figure 2b. Thefi xed-T lines of thefi gure are closer to
vertical, are clearly placed and tend to have the same length which
reaches the X4. Thefi xed-A lines are not smooth since they have
fluctuations in the absolute numbers of the T-throughput but they
tend to have the same length which reaches the X”. This means
that the interference of the T and A workloads is minimized in
PostgreSQL-SR in this specific configuration and that PostgreSQL-
SR is not favoring a workload over the other.

We also get workload preference information from the throughput
frontier but the grid graph provides more resolution at operation
areas below the frontier that might be of interest in practice.

3.3 Calculation of throughput frontier

In Section 3.1, we introduced the saturation method for calculating
the throughput frontier (Figure 1b). Here, we describe in detail how
it works including the creation of thefi xed-T andfi xed-A lines.

First, wefi nd the number of transactional clients (7;,qx) that
maximize the transactional throughput XT. Tofi nd (Tmax), the
HTAP system executes the transactional workload with an increa-
sing number of clients, until the transactional throughput does not
further increase. The algorithm repeats the same steps tofi nd the
number of analytical clients (amqx) that maximize the analytical
throughput X4. Note that for any other different workload mix,
the DBMS cannot achieve a transactional or analytical throughput
higher than X7 or X4, respectively.
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The next step is to collect the data points that create thefi xed-T
andfi xed-A lines. Each line requires a series of measurements, in
which the number of T (or A) clients isfi xed and the number of A (or
T) clients is varied. In our evaluation we create sixfi xed-T and six
fixed-A lines, by equally diving the ranges [0, Tmax] and [0, &max]-
For each line, we collect six points. We found that this configuration
provides a good coverage of the space, but the number of points
per line collected as well as the spacing of the lines can be tuned to
provide better coverage. After all data is collected, we calculate the
throughput frontier. The throughput frontier is made up from the
highest point of eachfi xed-T andfi xed-A lines.

4 FRESHNESS OF HTAP SYSTEMS

In addition to the performance-centric definition, we need to high-
light the importance of an HTAP system to provide fresh analytics.
In this section, we introduce the concept of freshness score which
is used to describe the recency of the data read by an analytical
query. We also describe our method that can be used to measure
the freshness scores of queries in real database systems.

4.1 Theoretical definition of freshness

We consider again a hypothetical HTAP system that serves a mix
of T- and A-clients and each of them issues a constant stream of
requests. In this definition, we assume that both the clients and the
HTAP database have access to the same global clock. A transaction
is considered committed when the updates of the transaction are
applied to the database and are visible to the other transactions.
Each analytical query starts andfi nishes at a particular time based
on the global clock and reads a specific snapshot of the operational
data. An up-to-date version of the operational data includes all the
updates made by transactions that committed before the start of
the analytical query. In contrast, a stale version misses some of
such updates. We say an HTAP system provides fresh analytics if
every analytical query is executed on an up-to-date version of the
operational data. Else, it provides stale analytics.

T1 T2 T3 A1
lseen lﬁrst not l not l
seen seen
A
»
t01 t(:2 t<:3 t51 Time

Figure 3: Illustration of freshness for analytical queries.

We define freshness score of an analytical query Aq as a quantita-

fns
—ty
the first transaction not seen by Ag and 5, is the start time of the

tive measure qu = max(0, ti‘ ). tf;ns is the commit time of
q q

Agq. Both measures are based on the global clock. Given the defini-
tion, the smaller the measure is, the fresher the system will be. The
freshness score of A4 is zero when the query can see the updates
from transactions committed before the start of the query, which
means the snapshot is up-to-date. When the snapshot is outdated,
to calculate the freshness score we need tofi nd the time after which
the snapshot became stale. This time is equal to the commit time of
thefi rst transaction whose updates are not present in the version of
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the data in which Agq runs. Then, the freshness score of Agqis equal
to the difference between the start time of the query and thefirst
unseen transaction measured in time units, e.g., seconds. Figure 3
shows an example of transactions T1, T2, T3 and an analytical query
Al. Each t;; corresponds to the commit time of the transaction i
and the t;1 corresponds to the start time of the analytical query Al.
We assume A1l sees all the changes made by T1 but does not see
changes by T2 or T3. Therefore, T2 is thefi rst-not-seen transaction
and the freshness score of Al is qu =ts1 — tea.

Since the A-clients issue multiple requests, each A4 will have
a different freshness score. Thus, we define the freshness score of
an HTAP system as the aggregation of the freshness scores of all
analytical queries, denoted as fagg. agg can be any aggregation
function such as the average or 95% percentile. Freshness faug = 0
means that the HTAP system can always provide the most recent
version of the operational data to all the analytical queries. Fresh-
ness faug = p seconds means that on average the snapshot used by
the analytical queries is out-dated by p seconds.

4.2 Measuring freshness score

The theoretical definition of freshness defined in the previous sec-
tion can be challenging to measure in a practical system. In parti-
cular, we identify the following two challenges:

Challenge 1: No global clock. The theoretical definition of fresh-
ness score requires a global clock that is accessible from both clients
and the database. A practical system, however, does not have an
accurately synchronized clock across different nodes, making it
difficult to measure commit time or query start time.

Challenge 2: Hard to identifyfi rst not seen transaction. The
definition of freshness score requires identifying thefi rst transa-
ction that is not seen by each analytical query. This task is par-
ticularly difficult since by definition, the analytical query cannot
identify such a transaction. Extra bookkeeping information needs
to be kept to identify a not seen transaction.

We introduce the following new algorithm to approximate the
theoretical freshness score of a query and resolve the two challenges
above. The algorithm has minimal impact to the workload in terms
of modifications, and can be applied to general HTAP benchmarks.

To resolve thefi rst challenge, we decide to conduct all time mea-
surement on the client side. In particular, the commit time of each
transaction is the time when the transaction result is returned to a
client. The start time of an analytical query is the time when the
query is sent to the database. This solution avoids clock synchro-
nization across database nodes, and the freshness score is consistent
with what the client observes.

To solve the second challenge, we need tofi rst ensure that a client
knows which transactions each analytical query should observe,
and second be able to tell which transactions the analytical query
actually observed based on the returned result. We introduce a set
of lightweight tables FRESHNESS;, where j € [1,7] and r is the
number of transactional clients. For each transactional client j we
create one such table that acts as a synchronization point. We also
update the transactions and analytical queries in the workload such
that they update and read the corresponding table.

Each FRESHNESS; table contains only one integerfi eld, which
is the ID of the last transaction from transactional client j. Each

1815

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

transaction will execute extra logic to update the FRESHNESS; table
with its ID. Note that a transactional client submits transactions to
the database sequentially with increasing IDs. Therefore, at most
one transaction will be updating each FRESHNESS; table at any
given time and the ID in the table will monotonically increase. We
deliberately design the FRESHNESS; tables to be separate (one for
each client) instead of storing multiple rows in a single table in order
to reduce contention from having different clients updating their
IDs concurrently. Thus, the transactional latency is not affected by
the table locking protocol of each database.

To identify which transactions are observed by an analytical
query, we modify each query to read all FRESHNESS; tables and re-
turn the contents to the client. Specifically, we union the FRESHNESS;
tables and cross-join the result with the original query. If a query is
executed against a consistent snapshot, the returned IDs define the
transactions observed by the query — transactions with larger IDs
are not observed by the query. This way, we successfully identify
thefi rst-not-seen transaction and can calculate the freshness score.

Note that the algorithm described above works well when ana-
lytical queries are serializable or snapshot isolated, where reads
of data tables and freshness tables are consistent within a query.
If the queries are executed with lower isolation levels, one way
to measure freshness is to embed the FRESHNESS; information
into each tuple at the cost of higher overhead. All the systems
we measure run with at least snapshot isolation and therefore we
maintain FRESHNESS; as separate tables.

5 DESIGN OF HATTRICK BENCHMARK

We will now move to the design of our hybrid benchmark called
HATtrick which is an open source project 1. HATtrick complements
the throughput frontier, incorporates our freshness measurement
method, and can be used to effectively evaluate HTAP systems.

The HATtrick benchmark contains an analytical component and
a transactional component. The analytical component is based on
the Star-Schema Benchmark (SSB) [26]. We extend the SSB schema
to support a new transactional workload which is an adapted ver-
sion of the TPC-C [3] benchmark. This section discusses the schema,
the workload, and the implementation details of HATtrick.

5.1 The schema and data

Figure 4 shows the schema of the HATtrick benchmark, which
keeps all the SSB entities and relationships almost unmodified. We
update the CUSTOMER, SUPPLIER, and PART relations by adding
one new attribute to each of them. Also, we introduce a new rela-
tion called HISTORY and a series of relations called FRESHNESS;,
where j € [1,7] and 7 the number of transactional clients. The
purpose of adding the new attributes and the HISTORY relation is
to support the transactional workload component of HATtrick; the
FRESHNESS relations are used in the freshness measurement pro-
cess as described in Section 4.2. Each FRESHNESS table contains
only one integerfi eld, the TXNNUM.

Specifically, we add the attribute PAYMENTCNT in the CUS-
TOMER relation which is an integer that keeps track of the to-
tal number of payments each customer makes. Also, we add the
attribute YTID in the SUPPLIER relation which is a decimal that

!https://github.com/UWHustle/HATtrick
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Figure 4: The schema of HATtrick benchmark based on mo-
dified SSB. New attributes in HATtrick are in shade.

accumulates the year to date profits of each specific supplier. Both
these attributes are going to be used and updated in transactions
which are similar to the payment transaction in TPC-C benchmark.

The HISTORY relation consists of three attributes, the ORDERKEY
from the LINEORDER relation, the CUSTKEY from the CUSTOMER
relation, and the AMOUNT which is a new decimal attribute. An
insertion in the HISTORY relation simulates the process of keeping
historic information for a customer payment.

The last change is made in the PART relation where we added the
PRICE attribute which is a decimal that stores the cost of each part.
The PRICE attribute is used in every transaction that inserts new
orders in the LINEORDER relation when the EXTENDEDPRICE
and ORDERTOTALPRICE attributes are computed. We describe in
Section 5.2 how exactly these additions are used in each transaction.

HATtrick benchmark follows the scaling of the SSB benchmark
for the initial population of the database, Figure 4 shows more
details. After the initial population, the sizes of the CUSTOMER,
SUPPLIER, PART, and DATE relations remain unaffected by the T
workload. However, the transactions of HATtrick change the sizes
of the LINEORDER and HISTORY relations by adding new tuples.
The initial size of the HISTORY relation equals the number of the
unique ORDERKEYs in the LINEORDER relation, that number is
approximately the 25% of the size of LINEORDER relation. The size
of each FRESHNESS; relation isfi xed and equal to one.

5.2 Workload

There are two components in the HATtrick benchmark, the analyti-
cal and the transactional.

5.2.1 Transactions. The HATtrick benchmark defines three tran-
sactions modeled after the TPC-C benchmark. Specifically:

New order: This transaction enters a complete order with multiple
lineorders through a single database transaction. The new order is
inserted to the LINEORDER relation. Specifically, given a random
customer name C_NAME, part key P_PARTKEY, supplier name
S_NAME, and day of order D_DATE, the new order transaction
reads the CUSTOMER, PART, SUPPLIER, and DATE relations to
retrieve data. These data are used to create the new entries of

1816

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

the LINEORDER relation. For example, based on the P_PARTKEY,
a P_PRICE is retrieved which is used to compute the attributes
EXTENDEDPRICE and ORDERTOTALPRICE for that specific line-
order. It is worth mentioning that, the dates are sampled from the
fixed range of the DATE relation which is seven years of days from
1992 to 1998. Therefore, the new line-orders that are added through
the new order transaction do not insert new dates but they keep
sampling uniformly from thefi xed range.
Payment: An update transaction which simulates a customer’s
payment for an order that they already made. The transaction
updates the customer’s total number of paid orders and the year
to date balance of the order’s supplier which correspond to the
C_PAYMENTCNT and S_YTD attributes respectively. The transa-
ction commits after inserting the payment information to the HIS-
TORY relation. The customer is selected by customer name C_NAME
60% of the time and by the customer key C_CUSTKEY the rest of
the time.
Count orders: A read-only transaction which reports the total
number of orders for a given customer. The customer is selected by
C_NAME, so seeking on the secondary index of the CUSTOMER re-
lation is required. The total number of customer’s orders is retrieved
from the LINEORDER relation.

Each transaction generated by the T-client j, additionally to
its original workload updates the FRESHNESS relation with the
transaction’s ID.

5.2.2 Analytical queries. The analytical component of the HAT-
trick benchmark includes all the 13 queries of the SSB benchmark
modified to also return the data from the FRESHNESS; relations.
During the measurement period, the transactions add new orders
to the LINEORDER relation and thus, the analytical queries process
more rows as the time passes. The new entries added through the
New Order transaction follow the same specifications as defined in
the SSB benchmark.

5.3 Benchmark procedure

During operation an HTAP system evaluates transactional requests
and analytical requests simultaneously. Each client issues a trans-
action or a analytical query based on their type and waits for the
result before issuing the next. The number of clients is not restricted
but the ratio of T to A clients (T:A) is a benchmark parameter.

The T clients issue transactions with the following distribution:
48% New Order, 48% Payment and 4% Count Orders. Each client is
independent of other clients. The A clients’ queries are organized
in batches. An A batch contains all the 13 queries ordered randomly.
Once all the queries in the batch havefi nished execution, the A
client continues with a new batch of the 13 queries and a new
permutation of them. The A queries do not delay the transactions,
which could happen if a client runs both types of queries. With this
design, the tested database systems are free to delay the transactions
or the analytical queries in order to improve performance.

6 EXPERIMENTAL EVALUATION

In the evaluation, we experiment with different databases and con-
figurations. Specifically we study how performance and freshness
scores change for different database sizes, isolation levels, physical
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schemas, replication modes, and deployments (single node and dis-
tributed). We use PostgreSQL [28, 39, 40], PostgreSQL Streaming
Replication [27] (PostgreSQL-SR), an anonymized System-X, and
TiDB [15] for this part of the evaluation. Before we present the
experiments, we describe the experimental configuration and the
setup of each database system that we use.

6.1 Experimental configuration

System configuration. The single-node and multiple-node exper-
iments are performed on the same type of servers. Each server has
a 2.35Ghz AMD EPYC™ 7452 processor with 32 physical cores, a
512GB RAM, and an SSD disk and runs the Ubuntu 18.04 LTS.
Benchmark configuration. We experiment with three scale fac-
tors of the HATtrick benchmark, SF1, SF10, and SF100, that corre-
spond to raw data of sizes 570MB, 5.7GB, and 59GB respectively.
For all scaling factors and database systems that we tested, the data
alwaysfi ts in memory. The clients that submit the transactional
and the analytical requests run on the same machine in which the
tested database system is installed. For multi-node setup, the clients
of the benchmark run in one of the nodes (e.g., in PostgreSQL-SR,
the clients run on the same machine with the primary node).

The duration of each benchmark run consists of a warm-up pe-
riod and the measurement period. Each scaling factor has a different
warmup and measurement period duration. For example, for SF100
the warm-up duration is 5min and the real measurement phase is
10min. For SF10 the warm-up is 3min and the measurement phase
is 6min and for SF1 2min warm-up and 4min measurement phase.
The duration of each period for each scaling factor was selected
after conducting a small experiment, where we discover the appro-
priate time periods for each phase so the performance is stable. The
duration of the warmup and measurement periods remain the same
across systems when experimenting with the same scaling factors.
Before each benchmark run we reset the data to their initial state.

For each workload configuration (T:A client ratio) we repeat the
execution of the benchmark three times and report the average
results. For each workload configuration the benchmark reports
the T throughput in successful transactions per second (tps) and A
throughput infi nished queries per second (qps). We also compute
freshness score for each T:A client ratio. HATtrick benchmark
extracts also the average response time of each transaction type
and analytical query.

Evaluated systems configuration. The databases we use are
PostgreSQL 14, System-X, and TiDB 5.2.0. Due to legal restrictions,
we do not disclose the original name of System-X. In PostgreSQL
and PostgreSQL-SR, we created all possible B+ tree indexes on the
attributes used in the predicates of the transactional and analytical
requests. We used this configuration to accelerate both workloads
in PostgreSQL for all the experiments except for the one in which
different physical schemas are tested. In System-X and TiDB, we
created all needed B+ tree indexes for accelerating the transactional
requests. Both System-X and TiDB provide an additional column
based representation of the data to speed up the analytical requests.
Stored procedures were used to execute the transactional requests
and prepared statements to execute the analytical requests in Post-
greSQL, PostgreSQL-SR, and System-X. Prepared statements were
used to execute both the transactional and analytical requests in
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TiDB since stored procedures are not yet available. Finally, for all
databases we disabled the option of intra-query parallelism since it
leads to over-utilization of the resources when multiple analytical
requests are executed in the database.

Reported results. For each experimental configuration, we report
three plots that correspond to thefi xed-T lines, thefi xed-A lines,
and the throughput frontier, respectively. We generate thefi xed-T
andfi xed-A plots as described in Section 3.3. We then compute
the throughput frontier from thefi xed-T andfi xed-A data, also as
described in Section 3.3. Eachfi gure in this section was generated
with this method. In addition to the throughput frontier we also
compute the freshness scores as described in Section 4.2. We report
the 99th-percentile of the freshness scores for the T:A client ratio
points 20:80 (f2), 50:50 (f5) and 80:20 (f3) measured in seconds.

6.2 PostgreSQL

In this section we run the HATtrick benchmark in PostgreSQL 14
and show results for different scale factors, isolation levels, and
physical schemas. Our results show that there is a negative interfe-
rence between the T and A workloads in all the scale factors, isola-
tion levels, and schemas. This leads to a throughput frontier that is
either below or close to the proportional line. Finally, PostgreSQL is
able to provide a zero freshness score in all the experiments, which
is expected based on its architecture.
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Figure 5: PostgreSQL for different scaling factors.

System design. PostgreSQL is a relational database management
system (RDBMS) designed primarily for transactional processing.
However, like many other traditional databases, PostgreSQL can
also serve hybrid workloads. PostgreSQL uses multiversion con-
currency control (MVCC) in which readers never block writers,
and vice versa. In this set of experiments, we use the serializable
isolation level.

Varying scaling factors. Figures 5 shows the performance results
of HATtrick benchmark for PostgreSQL in three different scaling
factors. Thefi xed-T lines and thefi xed-A lines for SF1 have a non
smooth behavior. As the number offi xed T/A clients is increased,
the lines become more slanted. This shows that the increase of
the T(A) clients across thefi xed-A(fixed-T) lines affects negatively
the A(T) throughput. In general, the behavior of thefi xed-T and
fixed-A lines shows that as the number of the T and A clients
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increases, the two workloads are competing for compute resources
and data. We observe this behavior — throughput frontier below the
proportional line for SF1 — for all the tested databases of Section 6.
The small size of the database contributes more to this behavior
[30, 34, 42] since many transactions update the same rows which
due to locking leads to increased waiting times. The throughput
frontier for SF1 is always below the proportional line, suggesting
negative interference between the two workloads.

Moving to SF10, thefi xed-T andfi xed-A lines continue to have a
slanted behavior. However, the frontier is now moving closer to the
proportional line. This means that an increase in the T throughput
is accompanied by a proportional decrease in A throughput and
vice versa. Thus, the resource sharing between the two workloads
is more efficient than in SF1. Compared to SF1, we see a big drop
in the maximum A throughput due to the increase of the database
size which leads to bigger answer sizes. In terms of maximum T
output there is also a slight reduction compared to SF1.

In SF100, thefi xed-A lines are not significantly affected by the
increase of the T clients. In contrast, thefi xed-T lines are the ones
which are extremely affected by the increase of the A clients. Thus,
thefi xed-A lines tent to be parallel and to all have the same length,
while thefi xed-T lines have a slanted behavior. As a result, the
throughput frontier of SF100 is for the half part above or close to
the proportional line and for the rest part below the proportional
line. This indicates bad performance scaling and shows that the
database system is not able to efficiently serve the two workloads
in parallel because the T throughput is extremely affected by the
increase of the A clients. Again, there is a drop in the maximum A
throughput compared to SF10 which is related to the increase of the
database size. Interestingly, we observe a significant decrease of the
maximum T throughput compared to SF10. This is related to the
big number of B+ tree indexes that we use to accelerate both the T
and A parts of the workload. However, as the size of the database
increases, the size of the indexes increases too. Therefore, more time
is needed to traverse and update the indexes when the transactions
are executed, leading to a degradation of the T throughput.

The measured freshness score for all the ratio points and scale
factors is equal to zero. This is expected since PostgreSQL maintains
one copy of the data and the updates of the transactions are made
immediately available to the data snapshot used by the A queries.

The advantage of PostgreSQL is that analytical requests can run
concurrently with the transactional requests by using snapshot
isolation. However, the two workloads still need to compete for
resources, data structures, and data items, and this becomes worse
when the number of the T and A clients are both high.

Varying isolation levels. We now use PostgreSQL and experiment
with different isolation levels. We show how the throughput frontier
captures the behavior differences between isolation levels.

Figure 6a shows the throughput frontiers of PostgreSQL in se-
rializable and read committed isolation levels for SF10. The read
committed isolation level achieves higher T and A throughput in
almost all the parts of the throughput frontier. The throughput fron-
tier of the serializable isolation level achieves a better maximum
A throughput. This is because the PostgreSQL query optimizer
chooses different plans for the analytical queries in different isola-
tion levels. However, in all the other cases the serializable through-
put frontier is always below the read committed throughput frontier.
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This is an expected result and this experiment demonstrates how
throughput frontier reveals the behavior of a system in different
isolation levels. Another important observation is the position of
the two throughput frontiers relative to their proportional line —
both throughput frontiers are close to their proportional lines.
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Figure 6: Within system experiments for PostgreSQL.

Varying physical schemas. We now experiment with different
physical schemas in PostgreSQL. The throughput graphs helps
us understand the advantages and disadvantages of each physical
schema. The results coincide with what we expected to see.

Figure 6b shows the throughput graphs when the physical schema
of the database changes; the experiment is performed with seriali-
zable isolation level and SF10. The three different physical schemas
are the (1) no indexes, (2) with B+ tree indexes that accelerate only
the T workload (semi indexes) and (3) with all possible B+ tree
indexes that can accelerate the T and the A workload.

In terms of performance scaling, the physical schema with all
the possible B+ tree indexes achieves the best results since the
throughput frontier is almost always above the throughput frontiers
of the other physical schemas. Next in ranking is the physical
schema with the semi B+ tree indexes and the worst is the no
indexes physical schema. After conducting an analysis we conclude
that the different shapes in the throughput frontiers of the three
physical schemas are due to the different query plans the optimizer
creates for the analytical queries based on the available indexes.

In terms of maximum T throughput, the semi indexes schema
achieves better performance compared to the all indexes schema.
More indexes can affect the T throughput since they need to be
updated in every change that transactions make. However, for the
rest workload mixes the all indexes and the semi indexes schemas
achieve similar T throughputs.

The use of indexes seem to help not only the T workload but
also the A queries. PostgreSQL achieves the best results in both
workloads when it uses the all indexes physical schema and this is
demonstrated by the throughput frontier results.

In both experiments above (i.e., varying isolation levels and
varying physical schemas), we show how the throughput frontier
can be used for choosing among different database configurations.
Our method combines all the needed information in onefi gure for
multiple configurations, thus the users can understand the system’s
behavior easily and draw conclusions faster.

6.3 PostgreSQL streaming replication

In this section we use PostgreSQL 14 with streaming replication
(PostgreSQL-SR) and we run the HATtrick benchmark for different
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Figure 7: PostgreSQL-SR for different scaling factors.

scale factors and replication modes. The results show that as the
scale factor increases the throughput frontier moves above the pro-
portional line, indicating good performance scaling and shows that
the database system is able to concurrently serve the two workloads
efficiently. However, in all the scale factors we experienced stale
queries. Also, the experiments with different replication modes
show a trade-off between performance and the freshness scores.
System design. Streaming replication is the most common Post-
greSQL replication strategy in which a primary node replicates data
to the standby server(s). It is based on streaming WAL records to
the standby server(s) as they are generated without waiting for the
WAL le to befi lled. Thus, it allows the standby server(s) to stay
more up-to-date than with thefi le-based log shipping. The primary
node is usually used for transactional workloads while the standby
node(s) is read only.

By default PostgreSQL streaming replication is asynchronous,
which means that there is a small delay between committing a
transaction in the primary and the changes becoming visible in
the standby node(s). However, a user can set up different replica-
tion modes. One option is the strict synchronous replication in
which a transaction in the primary commits only after the updates
are replayed in the standby node(s). This mode can be chosen by
setting the synchronous_commit parameter of PostgreSQL-SR to
remote_apply. We call this mode RA. In this mode, one can use
PostgreSQL-SR to execute HTAP workloads and provide analytics
with freshness score equal to zero.

In ourfi rst part of the experiments we choose to relax the repli-

cation mode and set the synchronous_commit parameter to ON.
We call this mode ON. In ON mode, a transaction in the primary
node will commit only after the standby server(s) confirms that the
transaction record was safely written to the disk of the standby
server(s). The difference between the RA and ON mode is that in the
ON mode the transmission of the updates happens synchronously
but the actual replay of the updates is asynchronous. In RA mode
both steps happen synchronously by the commit time of the tran-
saction. Since the transaction updates in ON mode are replayed
asynchronously, we expect to see some stale queries.
Varying scaling factors. In this experiment, we set up PostgreSQL-
SR in two identical nodes — one is the primary and is responsible for
the transactional workload and the other is the standby responsible
for the analytical workload. We choose replication mode ON.
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Figure 7 shows the results for different scale factors. Thefi xed-T
andfi xed-A lines for all the scale factors are less slanted compared
to the PostgreSQL experiments of Section 6.2. This behavior is more
clear in the cases of SF10 and SF100 where the lines tend to be par-
allel and have the same length. This means that the T(A) workload
tend to be less affected by the increase of the A(T) clients. Thus,
as the scale factor increases the throughput frontier moves above
the proportional line and in SF100 is close to the bounding box.
These results show that PostgreSQL-SR is good at isolating the
performance of T and A workloads and can serve the two work-
loads efficiently. Interestingly, the results are representative of the
system’s architecture. The primary and standby nodes have isolated
resources and thus the interference of the T and A workloads is
expected to be limited compared to systems with shared resources.

As the scale factor increases we see a decrease in the maximum
A throughput. In terms of the maximum T throughput there is a sig-
nificant decrease in SF100 compared to SF1 and SF10. This is related
to the increased size of the indexes as discussed in Section 6.2.

In Figure 7 we report the freshness scores for all the scaling fac-
tors in the three T:A client ratios. However, we cannot compare the
absolute freshness score of a specific T:A ratio across the different
scale factors since they correspond to different number of clients.

In Figure 8b we show the CDFs of the freshness scores for the
three ratios in SF10. For the client ratio 20:80, almost 90% of the
executed queries return freshness score close to zero and the maxi-
mum freshness score seen is 1.1sec. Moving to the client ratio 50:50,
the results show that 75% of the executed queries return freshness
score close to zero and the maximum freshness score seen is 4.9sec.
Finally, the client ratio 80:20 execution reports almost 55% of the
queries with freshness score close to zero and the maximum value
seen is 4.2 sec. These results indicate that the freshness scores are
significantly affected by the number of the T clients. For example,
the ratio 80:20 has the lowest percentage of fresh queries (~ 55%).
This is reasonable since more transactional clients are perform-
ing more updates in the primary node which need to be send and
applied to the standby replica. As a result, the standby node can-
not keep up with the high rate of updates and thus, the analytical
queries are executed in more outdated snapshots.

Varying replication mode. Next we experiment with different
replication modes in PostgreSQL-SR and SF10. Results show that the
performance of a system can be affected by the provided freshness.

Figure 8a shows the throughput frontiers in SF10 for two dif-
ferent replication modes, ON and RA. Thefi gure includes also the
freshness scores for the three client ratios in each mode. In RA
mode every transaction in the primary server has to wait for the
updates to be applied in the standby node before committing. Thus,
the standby node remains always up-to-date and the freshness
scores are equal to zero for every query. On the contrary, in the
ON mode the replay of the data in the standby server happens
asynchronously and thus we see stale queries. Both the throughput
frontiers of the ON and RA modes are above their proportional
lines which means that the system in both modes can efficiently
isolate the performance of T and A workloads. In thefi rst half part
of the frontiers the RA is above the ON frontier and for the rest half
the ON frontier is above the RA. This means that in the RA mode
more analytical queries are executed and in the ON mode more
transactions. This is because the RA mode affects the latency of
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the transactions in the primary node and thus the T throughput is
lower. The fact that less transactions are executed in the RA mode,
leads also to a small increase in the A throughput.

In this experiment we see a trade-off between freshness and
performance. To achieve fresh analytical queries, T performance
is sacrificed. This trade-off can be easily understood by using our
throughput frontier graphs and freshness measurements. Using the
proposed metrics users can choose the appropriate configuration
based on their preferences and application requirements.
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Figure 8: Freshness results for PostgreSQL-SR.
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Figure 9: System-X for different scaling factors.

In this section we use System-X to run the HATtrick benchmark
for different scale factors. The results show that System-X can
guarantee freshness and as the size of the database increases, it
becomes more efficient in handling the two workloads concurrently.
System design. System-X is a memory optimized engine designed
to accelerate transactions. The experiments use the serializable iso-
lation level which is achieved by optimistic MVCC without locking.
The internal data structures are all latch-free and the threads are
executed without stalling or waiting. System-X provides clustered
column store indexes which can be also stored in memory and
used to accelerate the A workload. When System-X is used for
hybrid workloads, it can be configured to maintain two copies of
the data in memory with each copy having a different data rep-
resentation. Therefore, transactions can use the row store while
analytical queries the column store copy.
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Varying scaling factors. Figure 9 shows the results for different
scale factors. We identify similar patterns with the PostgreSQL
results in Figure 5. Both thefi xed-T andfi xed-A lines are slanted
which means that the T and A workloads are affecting negatively
each other in all the scale factors. However, in System-X and SF100
thefi xed-T lines are less affected by the increase of the A clients.
Thus, the frontier of SF100 is above or close to the proportional
line. Also, the column format of the data and the high efficiency
of data compression boost the performance of analytics in System-
X compared to PostgreSQL. In terms of maximum T throughput,
System-X is able to provide an almost stable performance in all
scaling factors since the transactional part does not need to "pay"
any cost for keeping the analytical data fresh.

Although System-X is lock and latch free and maintains two
copies of data, the throughput frontiers of SF1 and SF10 capture
competition for resources. It is important to mention that, transa-
ctions before committing in System-X need to pass a validation
phase in which they validate their reads. If a transaction X is in
validation phase and another transaction Y reads the changes X
made, then Y becomes dependent on X and it blocks until X com-
mits. When many T clients compete for modifying common data,
especially in smaller database sizes (e.g, SF1 and SF10), the blocked
transactions that are waiting to commit or abort are more nume-
rous. This affects the T throughput as well as the A throughput since
each analytical query must synchronize with transaction updates
that have not yet been merged with the column store copy.

It is important to mention that the frontier of System-X is repre-
sentative of the system’s design. System-X maintains two copy of
the data to boost the performance of each workload. However, both
workloads share the same resources and thus, the shape of the fron-
tier in SF100 is above or close to the proportional line. Compared
to the frontier of PostgreSQL for SF100 of Figure 5 the scaling of
System-X is better. This is expected since PostgreSQL has only one
copy of the data and it is in row format.

For all scale factors, the freshness scores for the three client ratios
are equal to zero. This is expected for System-X since based on its
design, the latest updates from the operational data are always
merged with the analytical data before the execution of a query.

6.5 TiDB

In this section we use TiDB and run HATtrick benchmark for diffe-
rent scale factos and deployment configurations (single node and
distributed nodes). Our results show that TiDB can always guara-
ntee fresh analytics. In terms of performance TiDB can serve effi-
ciently the T and A workloads as the size of the database increases.
System design. TiDB is a Raft based HTAP system with a dis-
tributed storage layer. The storage layer consists of a row-based
store called TiKV and a column-based store called TiFlash. The data
stored in TiKV is an ordered key-value map partitioned into many
Regions. Each Region has multiple replicas and a Raft consensus
algorithm is used to keep the replicas consistent within a Region.
The replicas of each region form a Raft group which is composed
of a leader and followers. Each Raft group has also a learner node
which asynchronously receives Raft logs from the leader of the
group and transform the row-format tuples to columnar format.
More specifically, the learner nodes receive a package of logs from
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Figure 10: Single node TiDB for different scaling factors.

the leader which they need to preprocess, decode into row-format
tuples, and transform to columnar format. This replication from
TiKV to TiFlash makes the fresh data available to the analytical
queries and keeps synchronized the two copies.

6.5.1 Single node. Although TiDB is a distributed database, we
chose the one server configuration for this experiment. We schedu-
le the transactions to access the TiKV storage and the analytical
queries to access the TiFlash storage. We choose for all the experi-
ments the default isolation level of TiDB which is the repeatable
read with snapshot isolated reads.
Varying scaling factors. Figure 10 shows the results of TiDB. We
identify similar behavior with System-X in thefi xed-T lines,fi xed-
A lines and the throughput frontier. In general as the size of the
database increases the frontier moves closer to the proportional line.
Similar to System-X, TiDB maintains two copies of data in different
formats. Although the T and A workloads are executed in different
copies, the two workloads share resources. Thus, the frontier for
SF100 has a shape above or close to the proportional line. In terms
of maximum A performance, we see a drop in the absolute value
which is related to the increase of the database size. The maximum T
throughput remains almost stable across the different scale factors.
In all the scaling factors the measured freshness scores equal
to zero. TiDB is designed to always merge the tail of the log with
the analytical data before the execution of an analytical query.
Therefore, the latest operational updates are always available to
the snapshot of the analytical queries.

6.5.2 Distributed nodes. In this experiment we deploy TiDB in
distributed mode. TiKV is deployed in three servers and TiFlash
in two servers. TiKV serves the transactional requests and TiFlash
the analytical requests. The results show that TiDB in distributed
deployment can always provide fresh analytics. Also, it achieves a
frontier above the proportional line for SF10 and SF100.
Varying scaling factors. Figure 11 shows the results of distributed
TiDB for the three scale factors. Thefi xed-T andfi xed-A lines have
similar behavior to PostgreSQL-SR in Figure 7. As the size of the
database increases the negative interference of the T and A work-
loads is minimized and the frontier moves above the proportional
line and close to the bounding box.

Compared to the results of Figure 10, TiDB in distributed de-
ployment achieves good performance scaling. The shape of the
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Figure 11: Distributed TiDB for different scaling factors.

frontier in the distributed deployment is representative of the sys-
tem’s architecture and shows that the system is close to achieving
performance isolation. In terms of maximum T throughput there
is a significant decrease compared to the one node TiDB which
is caused by the high CPU-overhead of the TCP/IP stack and the
limited network bandwidth. However, there is an increase in the
maximum A throughput in the distributed deployment which is
attributed to the more available resources in the TiFlash component.

6.6 Comparison across systems

In this section we compare all the HTAP systems evaluated above.
When comparing different HTAP systems, the process of compu-
ting the throughput frontier and freshness scores of each system
remains the same. For the comparison we follow a simple rule: If
the throughput frontier region of a system A completely envelops
that of another system B and system A has lower or same fresh-
ness scores compared to B, then system A is better. If not, then
we need to dig into more details and to also consider application
requirements. Including all the frontiers in onefi gure helps the
user to extract conclusions faster. Figure 12 shows the throughput
frontiers of PostgreSQL (one node), PostgreSQL-SR (two nodes),
System-X (one node), TiDB (one node), and TiDB-Dist (ten nodes)
running HATtrick with SF100. Also, we choose to include the fresh-
ness scores for the T:A=50:50 client ratio point for each system.
Note that systems in thisfi gure may use different number of nodes;
we use this example as a point of reference for users that will use
HATtrick to compare performance across systems.

From Figure 12, we see that the throughput frontier of System-X
envelops the throughput frontiers of all the other systems except for
the case of PostgreSQL which has higher value of T,;,45 throughput.
However, System-X has better A-throughput values and better
performance scaling compared to PostgreSQL since its frontier is
close to or above the proportional line. We can say that with the
workload under test, System-X has the best HTAP performance
compared to the other systems.

Between PostgreSQL and PostgreSQL-SR, atfi rst glance, it may
not be clear as to which system is better. PostgreSQL-SR has a
“higher” frontier and has better A-throughput values, but Post-
greSQL has better T-throughput values. Also, PostgreSQL-SR has
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better performance scaling since the frontier is above its propor-
tional line, while PostgreSQL’s frontier — mostly below its propor-
tional line — reveals that the T workload is highly affected by the
A workload. Furthermore, PostgreSQL-SR cannot always provide
fresh analytics while PostgreSQL does. Finally, PostgreSQL-SR uses
twice the amount of hardware resources. Deciding between Post-
greSQL and PostgreSQL-SR depends on the user’s preferences and
the application requirements. If the application requires fresh ana-
lytics then PostgreSQL is a better choice. However, if the freshness
requirements are not so strict then the application can benefit from
the better performance scaling of PostgreSQL-SR.

Finally, between TiDB and TiDB-Dist, TIDB-Dist has better per-
formance scaling and A-throughput values. However, TiDB has
better T-throughput values. This behavior is expected since TiDB-
Dist has distributed transactions. In overall, TiDB-Dist has better
HTAP performance compared to TiDB.

6.7 Discussion

To summarize, the HATtrick benchmark can reveal various aspects
of an HTAP system and it can also be used to compare different
HTAP systems. Specifically, HATtrick can discover information
related to absolute T and A throughput, performance scaling in
the hybrid workload, the interference of the T and A workloads,
and the freshness of the database system. HATtrick combines the
above information into a few simple metrics and presents them
in a user friendly way, making the process of comparing different
HTAP systems easier and more insightful.

We learned the following lessons when conducting this study.
First, many current HTAP systems can provide fresh analytics, but
this comes with a cost in the T or/and A performance. Second,
the results show that the T-throughput is usually severely affected
by the number of A-clients; in contrast, the A-throughput is less
affected by the number of T-clients. Finally, current HTAP systems
cannot achieve complete isolation between the T and A workloads.
Future HTAP systems could aim to achieve better isolation between
T and A workloads and minimize the impact on the freshness of
the analytical query results.

7 RELATED WORK

Recent work on benchmarking HTAP systems includes CH-Bench-
mark[31], HTAPBench [7] and Swarmé4-[29]. Their schema is a
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combination of the TPC-C and the TPC-H benchmarks. The transa-
ctions and the analytical requests remain almost unchanged as in
the original TPC-C and TPC-H benchmarks respectively.

CH-Benchmark uses the T and A performance along with the
CPU utilization as metrics of the benchmark. The authors use the
CH-Benchmark to discover how the freshness of the data, thefl exi-
bility in the transactions features or expressiveness, and the schedu-
ling of the two workloads affect the performance of the HTAP
system. They use Hyper [17] and SAP HANA [10, 37] for their
evaluation. The results show that fresh analytical queries can result
in a degradation of the system’s performance. On the contrary,
flexibility and scheduling can boost the T and A throughput.

The difference between HTAPBench and Swarm64 compared to
CH-Benchmark is that they view one of the workloads as a primary.
Usually the analytical workload is viewed as the disturbance of the
transactional workload. The users of the HTAPBench and Swarmé4
benchmarks specify a target throughput for the primary workload.
Then the benchmarks constantly increase the A queries as soon as
they do not affect the target throughput.

HTAPBench and Swarmé64 propose a method for generating both
new data and requests so that the A queries over recently updated
data are comparable across runs. One difference between HTAP-
Bench and Swarmé4 is the way the distances between timestamps
are computed. In HTAPBench the distances in the timestamps are
computed without the need for a training run. They use the fact that
the data interval in TPC-H isfi xed in all the scale factors. Thus, they
use the number of orders in this interval to compute the average
time distance between transactions. On the contrary, HTAPBench
requires a training run for generating a linear scaling for the times-
tamps which is then used during the initial data population phase
and execution phases.

8 CONCLUSION

In this paper, we introduce a systematic way to evaluate different
HTAP systems. We introduce two new metrics, the throughput
frontier and the freshness score. The throughput frontier is a 2D
graph that captures the overall performance of a database system
in the HTAP space. The freshness score quantifies the recency of
the data used by the analytical queries. We also propose a method
to measure the freshness score of every HTAP system. We validate
these metrics by designing a hybrid benchmark called HATtrick and
test it in three different HTAP databases. The results show that the
throughput frontier is able to show the performance scaling and the
interference of the T and A workloads. Moreover, the throughput
frontier can discover the design category of an HTAP system and
our method for measuring freshness captures the real freshness
each HTAP system provides.
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