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ABSTRACT

In the two decades following its initial release, SQLite has become
the most widely deployed database engine in existence. Today,
SQLite is found in nearly every smartphone, computer, web browser,
television, and automobile. Several factors are likely responsible for
its ubiquity, including its in-process design, standalone codebase,
extensive test suite, and cross-platform file format. While it sup-
ports complex analytical queries, SQLite is primarily designed for
fast online transaction processing (OLTP), employing row-oriented
execution and a B-tree storage format. However, fueled by the rise
of edge computing and data science, there is a growing need for
efficient in-process online analytical processing (OLAP). DuckDB,
a database engine nicknamed “the SQLite for analytics”, has re-
cently emerged to meet this demand. While DuckDB has shown
strong performance on OLAP benchmarks, it is unclear how SQLite
compares. Furthermore, we are aware of no work that attempts to
identify root causes for SQLite’s performance behavior on OLAP
workloads. In this paper, we discuss SQLite in the context of this
changing workload landscape. We describe how SQLite evolved
from its humble beginnings to the full-featured database engine it
is today. We evaluate the performance of modern SQLite on three
benchmarks, each representing a different flavor of in-process data
management, including transactional, analytical, and blob process-
ing. We delve into analytical data processing on SQLite, identifying
key bottlenecks and weighing potential solutions. As a result of our
optimizations, SQLite is now up to 4.2X faster on SSB. Finally, we
discuss the future of SQLite, envisioning how it will evolve to meet
new demands and challenges.
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1 INTRODUCTION

SQLite was initially released in August 2000 as a small library of data
management functions [29]. Originally packaged as an extension
to the Tcl programming language, SQLite was born out of the
frustration of debugging a database server running in a separate
process [53]. Unlike client-server database systems, which typically
occupy dedicated processes and communicate with applications via
shared memory primitives, SQLite is embedded in the process of
the host application [33]. Instead of communicating with a database
server across process boundaries, applications manage a SQLite
database by calling SQLite library functions.

In the decades that followed its initial release, SQLite grew to
become the most widely deployed database engine in existence [27].
SQLite is embedded in major web browsers, personal computers,
smart televisions, automotive media systems, and the PHP and
Python programming languages. Furthermore, SQLite is found in
every i0S and Android device, which currently number in the
billions. There are likely over one trillion SQLite databases in active
use. It is estimated that SQLite is one of the most widely deployed
software libraries of any type.

No single factor is likely responsible for SQLite’s popularity.
Instead, in addition to its fundamentally embeddable design, several
characteristics combine to make SQLite useful in a broad range of
scenarios. In particular, SQLite strives to be:

e Cross-platform. A SQLite database is stored in a single
file, which can be freely copied between 32-bit and 64-bit
machines and little-endian and big-endian architectures [30].
SQLite can run on any platform with an 8-bit byte, two’s
complement 32-bit and 64-bit integers, and a C compiler.
Due to its stability and portability, SQLite’s file format is a
US Library of Congress recommended storage format for the
preservation of digital content [1].

Compact and self-contained. The SQLite library is avail-
able as a single C file, consisting about 150 thousand lines
of source code [31]. With all features enabled, the compiled
library size can be less than 750 KiB [17]. SQLite has no exter-
nal dependencies and requires only a handful of C standard
library functions to operate. SQLite requires no installation
or configuration.

Reliable. There are over 600 lines of test code for every
line of code in SQLite [25]. Tests cover 100% of branches
in the library. The test suite is extremely diverse, including
fuzz tests, boundary value tests, regression tests, and tests
that simulate operating system crashes, power losses, I/O er-
rors, and out-of-memory errors. Due to its reliability, SQLite
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is often used in mission-critical applications such as flight
software [36].

e Fast. SQLite can support tens of thousands of transactions
per second. In some cases, SQLite reads and writes blob
data 35% faster and uses 20% less storage space than the
filesystem [16]. SQLite’s query planner produces efficient
plans for complex analytical queries [28].

While distinct in many ways, SQLite shares several characteris-
tics with traditional database systems designed for online transac-
tion processing (OLTP). SQLite uses a row-oriented storage format,
where all the columns of a given record are stored in a contiguous
memory region [23]. SQLite’s operators act on individual rows,
rather than batches of rows as in vectorized query execution [32].
Finally, SQLite provides full ACID guarantees: transactions are
atomic, consistent, isolated, and durable [34].

However, SQLite is used in scenarios that are well outside the
boundaries of conventional OLTP. Well-known uses of SQLite in-
clude processing data on embedded devices and the internet of
things, managing application state as an application file format,
serving website requests, analyzing large datasets, caching enter-
prise data, and transferring data from one system to another [19].
A previous study, which traced SQLite activity on mobile phones,
found that SQLite was used for a diverse range of tasks [39]. During
the study, the majority of operations performed by SQLite were
single-table scans and key-value lookups. However, the trace in-
cluded much more complex analytical queries that involved joins
between several tables. In addition, a small but significant portion
of the workloads consisted of OLTP operations.

Recently, the explosive growth of edge computing and interac-
tive data analysis has created a need for efficient in-process online
analytical processing (OLAP). Several database systems have al-
ready been created or adapted for OLAP, including MonetDB [37],
Oracle OLAP [10], and SAP HANA [11]. However, these efforts have
largely focused on client-server architectures. Despite this focus,
efficient OLAP is often desired in situations where a client-server
database system is unwieldy or even impossible to use.

In-process OLAP is an important component of edge computing.
In the internet of things, data analysis is increasingly being pushed
to the edge in order to reduce network traffic and server load [48]. In
addition, there are often privacy concerns associated with sending
sensitive data across a network. While OLAP database systems
are well-suited for the task of data analysis, edge devices may not
possess the energy or computational resources necessary to host a
client-server database system.

As another example, data scientists frequently perform in-process
OLAP to interactively explore a dataset prior to building a model.
Significant portions of data science workflows involve relational
algebraic operations, such as selection, projection, join, and aggrega-
tion. These operations can be concisely scripted using a dataframe
library such as pandas [52]. However, despite their ease of use,
dataframe libraries provide limited query optimization and often
materialize large intermediate results. Furthermore, datasets often
exceed the capacity of memory, which may force the data scientist
to implement hand-rolled buffer management and use inefficient
storage representations, such as CSV or JSON. An embeddable data-
base engine is better equipped to handle these workloads. For this
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reason, SQLite is already a popular tool in data science. Due to its
stability, portability, and space-efficiency, the SQLite database file
format is commonly used for sharing datasets. For example, SQLite
is one of the primary file formats used by the popular Kaggle data
science platform [38]. The Python sqlite3 module [15] is often
used to carry out SQL operations in data science notebooks. While
SQLite produces efficient query plans and handles datasets much
larger than memory, it is less optimized for analytics compared to
OLAP-specific database systems such as those mentioned above.

These areas are prime targets for a powerful, embeddable OLAP
database engine. DuckDB [47] recently emerged to meet this de-
mand. Nicknamed “the SQLite for analytics”, DuckDB is built from
the ground up for in-process OLAP, employing columnar storage,
parallel and vectorized query processing, and multi-version con-
currency control optimized for extract-transform-load (ETL) opera-
tions. While still in a pre-release development phase, DuckDB has
already produced competitive performance on OLAP benchmarks
[8]. We believe that DuckDB fills a much needed gap in embeddable
data processing.

While SQLite and DuckDB have both been evaluated separately,
a well-rounded comparison of the two systems is missing from
the literature. As described above, SQLite shares many design el-
ements with OLTP database systems, so one might expect it to
excel on OLTP benchmarks. However, SQLite aims to be as general-
purpose as possible, so competitive performance could reasonably
be expected on a variety of workloads. In contrast, DuckDB is
purpose-built for analytics, so one might expect it to outperform
SQLite on OLAP benchmarks.

In this paper, we provide experimental support for these expec-
tations and quantify their magnitude. For OLAP, we go one level
deeper—we identify specific characteristics of SQLite responsible
for its OLAP performance and then present optimizations that sub-
stantially increase its speed.

The key contributions of this paper are:

e We present a historical perspective of SQLite. We also
present a concise description of its architecture.

e We provide a thorough evaluation of SQLite on char-
acteristic workloads, using DuckDB as a baseline. Our
evaluation includes benchmarks that represent diverse fla-
vors of in-process data management.

e We optimize SQLite for analytical data processing. We
identify key bottlenecks in SQLite and discuss the advantages
and disadvantages of potential solutions. We integrate our
optimizations into SQLite, resulting in overall 4.2X speedup
on SSB.

o We identify several performance measures specific to
embeddable database engines, including library footprint
and blob processing performance.

e We provide a high-level description of potential fu-
ture directions for further performance improvement
in SQLite.

The rest of this paper is organized as follows. Section 2 provides
an architectural overview of SQLite and rationale for its design.
Section 3 discusses SQLite in the context of evolving workloads
and hardware. Section 4 evaluates SQLite and DuckDB on a variety
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Figure 1: Architecture of SQLite

of performance measures and presents our optimizations. Section 5
discusses future directions, and Section 6 concludes.

2 ARCHITECTURE

In this section, we present a brief overview of SQLite’s architec-
ture. We include this information to facilitate understanding of
subsequent sections and keep this paper self-contained. The finer
details of SQLite’s architecture can be found in the documentation
[20]. We also discuss some of the rationale behind core elements of
SQLite’s design.

2.1 Modules

SQLite follows a modular design. Its architecture consists of the
four groups of modules show in Figure 1. The core modules are
responsible for ingesting and executing SQL statements. The SQL
compiler modules translate a SQL statement into a bytecode pro-
gram that can be executed by the virtual machine. The backend
modules facilitate access database pages and interact with the oper-
ating system to persist data. SQLite also includes several accessory
modules, including a large suite of tests and utilities for memory
allocation, string operations, and random number generation. We
describe some of these modules in greater detail below.

2.1.1  SQL compiler modules. Conceptually, each SQL statement
can be thought of as an executable program. Extending the anal-
ogy further, SQLite’s tokenizer, parser and code generator act like
a compiler, translating SQL into executable code. The output of
the code generator is a bytecode program. An example bytecode
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Table 1: Bytecode program for SSB Q1.1.

Address Opcode P1 P2 P3 P4 P5
0 Init 1 23 0 00
1 Null 0 1 3 00
2 OpenRead 0 7 0 12 00
3  OpenRead 1 6 0 5 00
4 Rewind 0 19 0 00
5 Column 0 11 4 00
6 Lt 6 18 4 BINARY-8 54
7 Gt 7 18 4 BINARY-8 54
8 Column 0 8 4 00
9 Ge 8 18 4 BINARY-8 54

10 Column 0 5 9 00
11 SeekRowid 1 18 9 00
12 Column 1 4 4 00
13 Ne 10 18 4 BINARY-8 54
14 Column 0 9 5 00
15 Column 0 1 11 00
16 Multiply 11 5 4 00
17 AggStep1 0 4 1 sum(l) 01
18 Next 0 5 0 01
19 AggFinal 1 1 0 sum(l) 00
20  Copy 1 12 0 00
21 ResultRow 12 1 0 00
22 Halt 0 0 0 00
23 Transaction 0 6 0 01
24 Integer 1 6 0 00
25 Integer 7 0 00
26 Integer 25 8 0 00
27 Integer 1993 10 0 00
28 Goto 0 1 0 00

program, which was compiled from Star Schema Benchmark (SSB)
Q1.1, is shown in Table 1. A bytecode program consists of one or
more virtual instructions. Each virtual instruction includes a unique
opcode and several operands. These virtual instructions are the
basic building blocks of data processing in SQLite. While they can
be combined into complex programs, the instructions themselves
are rather low-level. For example, the Column instruction extracts
the P2th column from the current row and stores it in register P3.
The Lt instruction jumps to address P2 if the value in register P3 is
less than the value in register P1. A complete description of SQLite’s
virtual instruction set is available in the documentation [32].

2.1.2  Core modules. SQLite’s execution engine is structured as a
virtual machine. The virtual machine, also known as the virtual
database engine (VDBE), is the heart of SQLite. The VDBE is re-
sponsible for executing the logic of the bytecode program produced
by the code generator. The VDBE begins with the instruction at
address 0 and continues until it sees a Halt instruction, encounters
an error, or reaches the end of the bytecode program. The instruc-
tion logic is implemented as a large switch statement in the VDBE,
where each instruction is processed as a unique case. When the
VDBE exits, it frees any memory it may have allocated and closes
any cursors it may have opened. If an error was encountered, the



VDBE rolls back any pending changes to the database to leave it in
a clean state.

2.1.3  Backend modules. The VDBE interacts heavily with SQLite’s
backend, particularly the B-tree module. An SQLite database file
is essentially a collection of B-trees [23]. A B-tree is either a table
B-tree or an index B-tree. Table B-trees always use a 64-bit signed
integer key and store data in the leaves. Index B-trees use arbitrary
keys and store no data at all. Each table in the database schema is
represented by a table B-tree. The key of a table B-tree is the implicit
rowid column of the table. For INTEGER PRIMARY KEY tables, the
primary key column replaces the rowid as the B-tree key. Tables
declared with the specification WITHOUT ROWID are a special case;
these tables are stored entirely in index B-trees. The B-tree key for
a WITHOUT ROWID table is composed of the columns of the primary
key followed by all remaining columns of the table. There is one
index B-tree for each index in the database schema, unless that
index is already represented by a table B-tree, as in the case of
INTEGER PRIMARY KEY tables.

The page cache is responsible for providing pages of data re-
quested by B-tree module. The page cache is also responsible for
ensuring modified pages are flushed to stable storage safely and
efficiently. Finally, the OS interface is the gateway to the underlying
file system. SQLite uses an abstract object called the virtual file sys-
tem (VFS) to provide portability across operating systems. SQLite
comes with several existing VFSes for Unix and Windows operating
systems. A VFS can be created to support a new operating system
or extend the functionality of SQLite.

2.2 Transactions

SQLite is a transactional database engine. It provides the ACID guar-
antees of atomicity, consistency, isolation, and durability. SQLite
has two primary modes by which these guarantees are achieved:
rollback mode and write-ahead log mode.

2.2.1  Rollback mode. In rollback mode, SQLite begins a transaction
by acquiring a shared lock on the database file. After the shared
lock is acquired, pages may be read from the database at will. If the
transaction involves changes to the database, SQLite upgrades the
read lock to a reserved lock, which blocks other writers but allows
readers to continue. Before making any changes, SQLite also creates
a rollback journal file. For each page to be modified, SQLite writes
its original content to the rollback journal and keeps the updated
pages in user space. When SQLite is instructed to commit the trans-
action, it flushes the rollback journal to stable storage. Then, SQLite
acquires an exclusive lock on the database file, which blocks both
readers and writers, and applies its changes. The updated database
pages are then flushed to stable storage. The rollback journal is
then invalidated via one of several mechanisms, depending on the
Jjournal mode. In DELETE mode, SQLite deletes the rollback journal.
Because deleting a file is expensive on some systems, SQLite also
provides alternative journal modes. In TRUNCATE mode, the roll-
back journal is truncated instead of deleted. In PERSIST mode, the
header of the rollback journal is overwritten with zeros. The act
of invalidating the rollback journal effectively commits the trans-
action. Finally, SQLite releases the exclusive lock on the database
file.
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2.2.2  Write-ahead log mode. Conceptually, write-ahead log (WAL)
mode is an inversion of rollback mode. In rollback mode, SQLite
writes original pages to the rollback journal and modified pages to
the database file. In contrast, WAL mode maintains original pages
in the database file and appends modified pages to a separate WAL
file. In WAL mode, SQLite begins a transaction by recording the
location of the last valid commit record in the WAL, called the end
mark. When SQLite needs a page, it searches the WAL for the most
recent version of that page prior to the end mark. If the page is
not in the WAL, SQLite retrieves the page from the database file.
Changes are merely appended to the end of the WAL. A commit
that causes the WAL to grow beyond a specified size will trigger a
checkpoint, in which updated pages in the WAL are written back
to the database file. The WAL file is not deleted after a checkpoint;
instead, transactions overwrite the file, starting from the beginning.

There are two main advantages to WAL mode. First, WAL mode
offers increased concurrency as readers can continue operating
on the database while changes are being committed into the WAL.
While there can only be one writer at a time, readers can proceed
concurrently with the one writer. Second, WAL is often significantly
faster as it requires fewer writes to stable storage, and the writes
that do occur are more sequential.

However, WAL mode has notable disadvantages. To accelerate
searching the WAL, SQLite creates a WAL index in shared memory.
This improves the performance of read transactions, but the use
of shared memory requires that all readers must be on the same
machine. Thus, WAL mode does not work on a network filesystem.
It is not possible to change the page size after entering WAL mode.
In addition, WAL mode comes with the added complexity of check-
point operations and additional files to store the WAL and the WAL
index.

3 EVOLVING WORKLOADS AND HARDWARE

Far from its humble beginnings as a small library of data manage-
ment functions, SQLite is now the most used database engine in the
world. However, just as SQLite’s usage has grown, so too have the
demands that users place on SQLite; modern use-cases of SQLite
have developed significantly more complex needs than what can
be satisfied by a simple data storage platform. Many applications
utilize SQLite for its properties as a platform-independent storage
format, while others are more concerned with its robustness and
reliability guarantees [35]. These changing and growing needs are
not only a reflection of the constantly increasing complexity of
modern software, but also a reflection of hardware advancements
made since SQLite’s inception. In this section, we examine both
the changes in hardware and workloads to better understand how
SQLite fits in the modern landscape of database engines.

3.1 Hardware Advancements

While the improvement of computing hardware over time is well
understood, it is important to contextualize how quickly some
of these changes have come about. One of the earliest devices
to successfully run SQLite was a Palm Pilot, a personal digital
assistant powered by a Motorola MC68328, a 16MHz, single core
processor [40, 45]. While in this case it was an independent user that
deployed SQLite to their personal phone, the trend of SQLite being



Table 2: Hardware configurations used for evaluation.

Name Processor Processor speed Cores Memory Storage
Cloud server Intel Xeon Silver 4114 2.2GHz 10 192 GB ECC DDR4-2666 Intel DC S3500 480 GB 6G SATA SSD
Raspberry Pi ARM Cortex-A72 1.5 GHz 4 8 GB LPDDR4-3200 Micro-SD card

used in resource constrained environments would continue. Nokia
and Motorola were two of the earliest companies to adopt SQLite
into their mobile phones. Eventually, Google would follow as well,
integrating SQLite into its Android platform where it continues to
be used to this day [27, 36, 45].

However, mobile compute has fundamentally changed since the
early 2000s. For example, the Raspberry Pi 4 Model B, which we
use as part of our evaluation in section 4, was released in July 2019
as an inexpensive yet powerful single-board computer [12, 13]. The
Raspberry Pi 4 Model B uses an ARM Cortex-A72, a 1.5GHz 4-core
processor [14], which is a significant performance improvement
compared to the Motorola processor mentioned above. Furthermore,
the Raspberry Pi 4 Model B is powered by computing hardware that
supports single instruction, multiple data (SIMD) and hardware-
level parallelism. As illustrated by the dramatic differences between
the Motorola processor and the Raspberry Pi 4 Model B, the ca-
pabilities of mobile computing hardware have grown at a rapid
pace.

3.2 Workload Changes

In addition to the aforementioned hardware advancements, the
software that uses SQLite has evolved as well. We emphasize that,
fundamentally, SQLite is an OLTP-focused database engine that
is significantly optimized for use in resource constrained environ-
ments. However, SQLite is often used for workloads that are consid-
erably different than those for which it was originally designed. For
example, a month-long trace of SQLite usage on mobile phones ob-
served a broad range of workloads with varying query complexity
and read/write mix [39]. A large proportion of operations were sim-
ple key-value lookups, suggesting that SQLite is often used simply
as a key-value store. However, the trace included a significant tail
of complex OLAP queries. These queries involved multiple levels
of nesting or joins between 5 or more tables. In addition, about 25%
of all observed statements involved writes to the database. Many of
these writes were UPSERTS (insert or replace operations), providing
further evidence that SQLite is often used as a key-value store. The
trace also included a significant proportion of DELETES, which were
much more expensive than other statements, averaging about 4 ms
per statement. Several DELETE statements included predicates with
nested SELECT queries. This study suggests that usage of SQLite
is extremely varied. Furthermore, this study was limited to mobile
phone usage; we expect even greater workload diversity when con-
sidering the range of devices on which SQLite runs. Broadly, we
find that these observations represent the continually expanding
demands of real-world applications.
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3.3 SQLite in the Modern World

Advancements in computing hardware and application software
over time have placed SQLite in a unique position. While it con-
tinues to be the most widely used database engine in the world,
the drastic changes in both hardware capabilities and software
demands have exposed SQLite to a unique set of challenges.

The expansion of hardware capabilities calls for a deeper evalua-
tion into the underlying implementation of SQLite. Notably, SQLite
generally does not use multiple threads, which limits its ability
to take advantage of the available hardware parallelism. For sort-
ing large amounts of data, SQLite uses an optional multithreaded
external merge sort algorithm. For all other operations, SQLite per-
forms all work in the calling thread. This design minimizes resource
competition with other processes running on the device. However,
it is likely that certain workloads, particularly those that include
complex OLAP, would benefit from multithreading. Furthermore,
SQLite’s row-oriented storage format and execution engine are
suboptimal for many OLAP operations. In general, SQLite is con-
sidered not to be competitive with state-of-the-art OLAP-focused
database engines, especially in the context of its limitations. In
contrast, DuckDB [47] has poised itself as “the SQLite for analytics”
through a number of features modeled after SQLite, such as its
embeddable design, single-file database, and self-contained code.
However, DuckDB brings many state-of-the-art OLAP techniques
to the SQLite-like environment, such as a vectorized engine and
parallel query processing. Together, these features have enabled
DuckDB’s strong OLAP performance. We question which OLAP-
focused optimizations can be incorporated into SQLite without
sacrificing its portability, compactness, reliability, and efficiency on
diverse workloads.

4 EVALUATION AND OPTIMIZATION

In this section, we present an extensive performance evaluation of
SQLite. We employ three benchmarks, each of which simulates a dif-
ferent flavor of in-process data management, namely OLTP, OLAP,
and blob I/O. While these benchmarks do not cover all existing
use cases of embeddable database engines, they are representative
of the most common workloads. We identify key bottlenecks in
SQLite’s OLAP performance, discuss the tradeoffs of potential so-
lutions, and present the performance impact of our optimizations.
Finally, we discuss the “footprint” of SQLite: the amount of memory
and time it takes to compile, the size of the resulting binary, and
the space it requires to store benchmark datasets.

We use DuckDB [47] as a reference point for comparisons. DuckDB
is an embeddable database engine optimized for analytics. Similar
to the design of SQLite, DuckDB is built entirely from two files, a
header file and an implementation file, with no external dependen-
cies. DuckDB is embedded in the process of the host application
and manages a database stored in a single file. However, in contrast
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Figure 2: TATP throughput (logarithmic scale, higher is better).

to SQLite, DuckDB uses columnar data organization and vectorized
query execution. DuckDB also uses a variant of multi-version con-
currency control optimized for bulk operations. Our use of DuckDB
as a baseline is not to imply that one system is definitively better
than the other. Rather, we observe that there is a substantial set
of tasks on which it would be appropriate to use either SQLite or
DuckDB. We evaluate DuckDB alongside SQLite to provide a more
well-rounded picture of the performance of both systems.
The details of our experiments are the following.

e Hardware. We use two hardware configurations: a cloud
server, provisioned on CloudLab [9], with an Intel Xeon
Silver 4114 CPU; and a Raspberry Pi 4 Model B with an ARM
Cortex-A72 CPU [14]. More details are in Table 2.

e Versions. We used SQLite version 3.38.0 and DuckDB ver-
sion 0.3.2. These were the most recent available software
versions at the time this paper was written.

e Options. SQLite and DuckDB were built with gcc -03.
SQLite was built with all the recommended compile-time
options [22] except SQLITE_DEFAULT_WAL_SYNCHRONOUS to
maintain durability in WAL mode. We added the option
SQLITE_OMIT_LOAD_EXTENSION. DuckDB was restricted to
a single thread. Unless otherwise noted, both SQLite3 and
DuckDB were allowed 1 GB of memory. All other options
were left as default.

e Reporting. For each experiment, we plot the mean outcome
of three trials. We observed negligible variance among the
three trials. Each experiment is annotated with the mean
outcome rounded to one significant figure. Due to extreme
differences in performance, some plots use a logarithmic
scale.

4.1 Online transaction processing

To evaluate OLTP performance, we use the TATP benchmark [42].
TATP is designed to measure the performance of a database sys-
tem in a typical telecommunications application. The benchmark
consists of seven transaction types that are randomly generated
according to fixed probabilities; 80% are read-only, and 20% involve
updates, inserts, or deletes. TATP has been extensively used in re-
lated work and thoroughly compared to other benchmarks. Because
its transactions are relatively lightweight, TATP is better suited
for modeling a SQLite workload than the more complex TPC-C
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[49] and TPC-E [50] benchmarks, which are often used to evaluate
client-server OLTP database systems.

Our experiments follow the TATP specification. To measure the
effect of database size on performance, we vary the number of
records in the subscriber table and scale other tables proportion-
ally. We simulate a single TATP client in all experiments. Each
experimental trial consists of a 10 second warmup period followed
by a 60 second evaluation period. We report the throughput of each
system in transactions per second (TPS).

We evaluate three SQLite journal modes: DELETE, TRUNCATE,
and WAL. These journal modes are briefly introduced in section 2.
More detailed descriptions of SQLite’s journal modes are available
in the documentation [21]. We observed negligible performance
difference between DELETE and TRUNCATE modes, so we exclude
TRUNCATE results for brevity.

It is worth noting that TATP is outside DuckDB’s “comfort zone”.
DuckDB is designed for workloads consisting of mainly OLAP and
extract-transform-load (ETL) operations [47]. To support concur-
rent OLAP and ETL, DuckDB offers transactional guarantees via
multi-version concurrency control. However, DuckDB is optimized
for bulk updates, such as adding a column to a table or append-
ing a large batch of rows, rather than the fine-grained operations
typically present in OLTP workloads. Nevertheless, DuckDB’s per-
formance on TATP is an informative baseline for SQLite.

Results are shown in Figure 2. On both hardware configurations,
SQLite-WAL produces the highest throughput by a wide margin.
On the cloud server, SQLite-WAL reaches a throughput of 10 thou-
sand TPS, which is 10X faster than DuckDB for the small database
and 500X faster for the large database. On the Raspberry Pi, the
performance gap is smaller yet still significant. SQLite-WAL is 2X
faster for the small database and 60X faster for the large database.
SQLite-DELETE is slower than SQLite-WAL, but substantially faster
than DuckDB on the cloud server. On the Raspberry Pi, DuckDB
has a slight edge over SQLite-DELETE for small databases, but
SQLite-DELETE is faster for large databases. Both SQLite-WAL
and SQLite-DELETE produce generally consistent performance re-
gardless of database size, whereas DuckDB is adversely affected by
database size.

These results are generally consistent with our expectations.
SQLite’s transaction processing machinery, which has been finely
tuned over many years, produces strong performance on TATP.
Meanwhile, DuckDB, which is designed primarily for OLAP and
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Figure 3: SSB latency (logarithmic scale, lower is better).

ETL workloads, performs significantly worse. A resulting question
is whether this performance gap is due to implementation details
or more fundamental differences in system architecture. We leave
this question to future work.

4.2 Online analytical processing

We now transition to OLAP performance. We present the results
of our evaluation of SQLite and DuckDB, followed by an analy-
sis of SQLite’s performance bottlenecks. Finally, we discuss our
optimizations and their impact on performance.

4.2.1 Benchmarking. To evaluate OLAP performance, we use the
Star Schema Benchmark (SSB) [43]. SSB measures the performance
of a database system in a typical data warehousing application.
The benchmark uses a modified TPC-H [51] schema that consists
of large fact table and four smaller dimension tables. SSB queries
involve joins between the fact table and the dimension tables with
filters on dimension table attributes. SSB is widely used in OLAP
database system research.

Our experiments follow the SSB specification with minimal mod-
ification. Our only departure from the specification is that before
running the SSB queries, we scan each table with a SELECT * query,
ensuring that the buffer pool is populated. We use scale factor of
1 on the Raspberry Pi and scale factor 5 on the cloud server. Both
SQLite and DuckDB were allowed to gather statistics about the
data prior to measurement.

Results are shown in Figure 3. For all queries, DuckDB is sub-
stantially faster than SQLite. The widest performance margin is on
query flight 2, for which DuckDB is 30-50X faster, and the narrow-
est margin is on flight 1, for which DuckDB is 3-8X faster. SQLite’s
latency is highly variable across different query flights. On the

Raspberry Pi, SQLite’s fastest query is 10X faster than its slow-
est, whereas DuckDB’s fastest query is only about 3X faster than
its slowest. Interestingly, SQLite’s fastest queries are in flight 1,
whereas DuckDB’s fastest queries are in flight 3.

4.2.2  Performance profiling. To understand the fundamental rea-
sons for our observations, we profiled SQLite’s execution engine.
As described in section 2, SQLite’s query planner translates an
SQL query into a bytecode program, which is then executed by
the VDBE. The instructions that comprise the bytecode program
are the building blocks of data processing in SQLite. This design
naturally accommodates performance profiling. SQLite provides
the compile-time option VDBE_PROFILE, which enables utilities that
measure the number of CPU cycles the VDBE spends executing
each instruction in the bytecode program. We run SSB on SQLite
with this option turned on.

Profiling results are shown in Figure 4a. Surprisingly, only two in-
structions are responsible for the vast majority of cycles: SeekRowid
and Column. The SeekRowid instruction searches a B-tree index for
arow with a given row ID. For a table with INTEGER PRIMARY KEY,
the row ID is equivalent to the primary key. When running SSB,
SQLite uses the SeekRowid instruction to perform an index join be-
tween the fact table and a dimension table. The Column instruction
extracts a column from a given record. While the Column instruc-
tion consumes a substantial amount of cycles for each query, the
SeekRowid instruction is largely responsible for the dramatic differ-
ences in performance on query flight 1 and query flight 2. Based on
these results, we identified two key optimization targets: avoiding
unnecessary B-tree probes and streamlining value extraction.

4.2.3  Avoiding unnecessary B-tree probes. We first describe our ap-
proach to avoiding unnecessary B-tree probes during joins. SQLite
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Figure 4: SSB performance profiles.

SELECT SUM(lo_revenue), d_year, p_brandl
FROM lineorder, date, part, supplier
WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_category = 'MFGR#12'
AND s_region = 'AMERICA'
GROUP BY d_year, p_brandl
ORDER BY d_year, p_brandl;
(a) SQL

QUERY PLAN
SCAN lineorder

SEARCH part USING INTEGER PRIMARY KEY (rowid=?)‘
SEARCH date USING INTEGER PRIMARY KEY (rowid:?)‘
SEARCH supplier USING INTEGER PRIMARY KEY (rowid=?)\
USE TEMP B-TREE FOR GROUP BY‘

(b) Query plan pre-optimization

SCAN lineorder

BLOOM FILTER ON part (p_partkey=?)]

BLOOM FILTER ON supplier (s_suppkey=?)]

SEARCH part USING INTEGER PRIMARY KEY (rowid:?)\
SEARCH date USING INTEGER PRIMARY KEY (rowid:?)\
SEARCH supplier USING INTEGER PRIMARY KEY (rowid:?)\
USE TEMP B-TREE FOR GROUP BY‘

(c) Query plan post-optimization

Figure 5: SSB Q2.1.

uses nested loops to compute joins. However, the inner loops in the
join are typically accelerated with existing primary key indexes or
temporary indexes built on the fly. In the following discussion, we
use the term outer table to refer to the table that is scanned in the
outermost loop. We use the term inner table to refer to a table that
is searched, via scan or index, for tuples that join with those in the
outer table.

We use SSB Q2.1, shown in Figure 5a, as a working example.
For this query, SQLite produces the query plan shown in Figure 5b.

In this query plan, the outer table is the lineorder table, and the
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inner tables are the part, date, and supplier tables. For each tuple
in the lineorder table, SQLite probes the primary key index on the
part table for the joining tuple. If the restriction on p_category
is satisfied, SQLite then probes the primary key index on the date
table, followed by the primary key index on the supplier table,
for the joining tuples. If the restriction on s_region is satisfied,
SQLite adds the lo_revenue to the accumulator for the current
d_year and p_brand1. Note that SQLite probes the part table index
for every tuple in the lineorder table. Because the part table is
the largest dimension table, probes to its primary key index are
expensive. Furthermore, only 0.8% of the lineorder tuples satisfy
the restrictions on p_category and s_region. Other SSB joins are
even more selective on lineorder table. As a result, a large portion
of B-tree probes are for tuples that are ultimately excluded from
the final result.

These observations led us to consider two potential optimiza-
tions: hash joins and Bloom filters [3]. Hash joins are attractive for
their best-case linear time complexity. However, hash joins often
require a significant amount of memory and may spill to storage if
the available memory is exhausted. Moreover, adding a second join
algorithm to SQLite would considerably increase the complexity of
its query planner. In contrast, Bloom filters are memory-efficient
and require minimal modification to the query planner. Bloom fil-
ters have well-studied theoretical properties [3, 41, 54] and demon-
strated usefulness in constrained memory scenarios [2]. Bloom
filters are very powerful for selective star joins, such as those in
SSB. For these reasons, we integrated Bloom filters into SQLite’s
join algorithm.

We use Bloom filters to implement Lookahead Information Pass-
ing (LIP) [54], which was a key technique used in the Quickstep
system [44] to speed up the execution of equijoin queries. Similar
techniques have also been used in other commercial systems [4-7].
LIP optimizes a pipeline of join operators by creating Bloom filters
on all the inner (dimension) tables before the join processing starts,
and then passing the Bloom filters to the first join operation. A key
change is made to the join processing, which is to probe the Bloom
filters before carrying out the rest of the join. Applying the Bloom
filters early in the join pipeline dramatically reduces the number
of tuples that flow through the join pipeline, and thus improves
performance. In addition, LIP has the advantage of being robust
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Figure 6: SSB latency of optimized SQLite (logarithmic scale, lower is better).

to poor choices of join order. Our implementation differs slightly
from the approach described in the LIP paper [54] in that Bloom
filters are probed in a fixed order determined by the query optimizer
rather than an adaptive order influenced by hit and miss statistics.

To implement LIP in SQLite, we add two new virtual instructions
to the VDBE: FilterAdd and Filter. FilterAdd computes a hash
on an operand and sets the corresponding bit in the Bloom filter.
Using the same hash function, Filter computes a hash on an
operand and checks the corresponding bit in the Bloom filter. If the
bit is unset, the VDBE jumps to a specified address in the bytecode
program. The remaining LIP logic can be constructed from SQLite’s
existing virtual instructions: Bloom filters are initialized as blobs
via the Blob instruction, inner tables are scanned via the Next and
Rewind instructions, and expressions are evaluated via SQLite’s
expression operators. When compiling the bytecode program, the
query planner initially places each Bloom filter check immediately
before the corresponding search of the inner table. However, if
there are multiple Bloom filters, as may be the case when three or
more tables are joined, SQLite pushes all Bloom filter checks to the
beginning of the outer table loop. As a result, SQLite will check all
Bloom filters prior to searching the inner tables.

SQLite’s query planner uses a straightforward model to deter-
mine whether a Bloom filter should be constructed. For each inner
table, the query planner generates the above Bloom filter logic if
all of the following conditions are true:

(1) The number of rows in the table is known by the query
planner.

(2) The expected number of searches exceeds the number of
rows in the table.

(3) Some searches are expected to find zero rows.
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After the query planner has generated the bytecode instruc-
tions, the join proceeds in two phases: a build phase and a probe
phase. During the build phase, SQLite constructs each Bloom filter
by scanning the corresponding inner table, applying the relevant
restrictions, hashing the joining column of surviving tuples, and
setting the bits in the Bloom filter. SQLite also constructs any tem-
porary indexes requested by the query planner. During the probe
phase, SQLite scans the outer table. For each tuple in the outer
table, SQLite hashes each joining column and checks the bit in
the corresponding Bloom filter. If any of the bits are unset, SQLite
immediately advances to the next tuple in the outer table without
searching any of the inner tables. This design allows SQLite to
take advantage of the combined selectivity of several inner table
restrictions, substantially reducing the number of unnecessary B-
tree probes. Figure 5¢ shows the updated query plan for SSB Q2.1
after implementing LIP in SQLite. Note that the Bloom filter checks
occur prior to the searches of the inner tables.

The performance impact of our optimizations is shown in Fig-
ure 6. On the Raspberry Pi, SQLite is now 4.2X faster on SSB. Our
optimizations are particularly effective for query flight 2, result-
ing in 10X speedup. On the cloud server, we observed an overall
speedup of 2.7X and individual query speedups up to 7X. Impor-
tantly, our changes cause no appreciable performance degradation.
The performance profiles in Figure 4b further illustrate the ben-
efits of the Bloom filter (note the difference in scale compared
to Figure 4a). The VDBE spends substantially fewer CPU cycles
on the SeekRowid instruction, reflecting the reduction in B-tree
probes. The new Filter instruction, which probes a Bloom filter
for membership, incurs little overhead compared to SeekRowid in
Figure 4a.
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Figure 7: BLOB throughput (linear scale, higher is better).

4.2.4  Streamlining value extraction. We now discuss considera-
tions related to streamlining value extraction in SQLite. By value
extraction, we refer to the basic operation of obtaining the value
of a specific row and column in a table. To aid in understanding
SQLite’s approach to value extraction, we provide a brief overview
of how it stores and retrieves records. A more detailed description
is available in the documentation [23].

In contrast to most other database engines, SQLite uses flexible
typing. This entails that data of any type may be stored in any col-
umn of an SQLite table (except an INTEGER PRIMARY KEY column,
in which case the data must be integral). Furthermore, columns can
be declared without a data type; for example,

CREATE TABLE t (a, b, ¢);

is a valid statement in SQLite. Flexible typing is advantageous in
several situations [18]. For example, applications that use SQLite
as a key-value store can create a table with two columns, a key and
a value, and store any type of data in the value column. In addition,
flexible typing works well with dynamic programming languages
and semi-structured data formats such as JSON.

Whereas statically-typed database engines typically associate a
data type with each column, SQLite’s flexible typing system asso-
ciates a data type with each value. Accordingly, SQLite stores type
information alongside each value in the database. An SQLite record
is composed of two parts: a header and a body. The header contains
serial type codes that encode the data type of each column in the
record. The record body, which immediately follows the header,
contains the actual values.

To extract a value, SQLite must obtain a pointer to the encoded
value in the record body. SQLite begins this process by examining
a pointer to the header. The first integer in the header is the size
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of the header in bytes. SQLite records this size as the initial offset
from the beginning of the header. SQLite then walks through each
serial type code in the header, until it reaches the desired column.
For each serial type code, SQLite adds the size of the corresponding
value to the total offset. The resulting sum is the offset of the desired
value from the beginning of the header. Contrast this approach with
a typical columnar database engine, in which successive column
values are contiguous. In the columnar approach, value extraction
is significantly more streamlined.

We explored several alternative approaches to value extraction in
SQLite. However, we quickly encountered limitations surrounding
changes to SQLite’s database file format. The database file format
is extremely stable, cross-platform, and backwards compatible. As
noted earlier, the database file format is a US Library of Congress
recommended format for the preservation of digital content [1],
largely due to its stability, portability, and thorough documentation.
It is straightforward to imagine new data formats, such as column-
oriented, that would streamline value extraction. However, we were
unwilling to sacrifice the stability and portability of the database file
format for the added performance. We provide further discussion
surrounding these tradeoffs in section 5.

4.3 Blob manipulation

A considerable number of applications use SQLite simply as a blob
data store [19]. Such applications may prefer a custom data model
over the relational data model SQLite provides. However, they may
require stronger guarantees than those provided by direct calls
to the filesystem. In contrast to basic file manipulation functions
such as fwrite, SQLite offers attractive transactional guarantees.
Modifications to a SQLite database are ACID-compliant: atomic,



consistent, isolated, and durable. Furthermore, manipulating blob
data in SQLite can be faster and more space-efficient than using
the filesystem [16].

These observations motivated us to develop the BLOB bench-
mark, which simulates an application that uses a database engine to
manage raw blob data. The benchmark is straightforward. A table
is created in the database with a single row and a single column
of blob data with a given size. Then, a connection to the database
repeatedly either reads or writes the entire blob, based on specified
probabilities. After a warmup period of 10 seconds, we measure
the number of operations completed in 60 seconds. We report the
throughput in transactions per second (TPS).

In addition to SQLite (with journal modes WAL AND DELETE)
and DuckDB, we used the BLOB benchmark to evaluate filesys-
tem calls. For blob reads, we used fread, For blob writes, we used
fdatasync. While these functions provide lesser transactional guar-
antees than a database engine, they are an informative baseline for
the benchmark.

Results are shown in Figure 7. For 100 KB blobs, SQLite-WAL pro-
duces the highest throughput of the transactional methods. On the
cloud server, SQLite-WAL even has a slight edge over the filesystem
for small blobs. This is likely due to SQLite’s ability to serve read
requests from its cache, whereas the filesystem serves read requests
with calls to fread. SQLite-DELETE is slightly less than half as fast
as SQLite-WAL. Because SQLite-DELETE writes its changes to the
rollback journal and then to the database file, it incurs about twice
as many writes as SQLite-WAL, which appends its changes only
to the WAL (assuming no checkpoint is triggered by the transac-
tion). For 10 MB blobs, DuckDB produces the highest throughput of
the transactional methods. SQLite-WAL and SQLite-DELETE have
mostly similar performance for blobs of this size. The default limit
of the WAL is 1000 pages, which equates to about 4 MB. Because
the blob size is 10 MB, a single write causes the size of the WAL
to exceed this limit, which triggers an immediate checkpoint. As a
result, SQLite-WAL incurs two writes for each 10 MB blob update.
We observed increased throughput for greater WAL size limits,
but we omit these results for brevity. All methods, regardless of
hardware configuration and blob size, are strongly impacted by the
percentage of read requests in the workload. In Figure 7b, certain
DuckDB measurements are omitted because DuckDB encountered
an error and could not complete the benchmark.

4.4 Resource footprint

An important consideration for an embeddable database engine is
the footprint of its resource usage. In particular, SQLite strives to
maintain a small compiled library size. SQLite has a simple type
system with just a handful of data types [24]. It avoids the use of
template metaprogramming to generate code. SQLite also provides
many compile-time options that can be disabled to exclude certain
features from the library. Furthermore, SQLite strives to be efficient
in how it stores data. For example, integers are stored in 0, 1, 2, 3,4, 6,
or 8 bytes, depending on the magnitude of the value. Floating point
values with no fractional component may be stored as integers to
occupy less space.

We compiled SQLite and DuckDB on the cloud server, recording
the compilation time, the maximum memory usage, and the size of

the resulting library. We used GCC version 9.3.0 with either -0Os or
-03. Results are shown in Table 3. SQLite requires little time and
memory to compile. The resulting library is 900 KB when optimiz-
ing for size, and 1.5 MB when optimizing for speed. For applications
that require only basic SQLite functionality, it is possible to further
reduce the size of the SQLite library by disabling certain compile-
time options, but we did not experiment with alternative option
configurations. In contrast, compiling DuckDB requires 5-10 min-
utes and about 7.6 GB of memory, resulting in a library that is 32-37
MB in size. We note that pre-compiled libraries for both SQLite and
DuckDB are available for download, so in some cases it may be
unnecessary to build either library from source. However, applica-
tions that wish to embed DuckDB in their source code may find it
problematic to compile in resource-constrained environments.

While the SQLite library is substantially smaller and faster to
compile, DuckDB may require less space to store the same data.
DuckDB associates type information with entire columns, rather
than individual records as in SQLite, which eliminates the need for
record headers. Furthermore, DuckDB’s columnar storage format
allows efficient representation and compression of data. For exam-
ple, a Boolean value can be stored as a single bit in DuckDB. In
contrast, SQLite represents a Boolean value with a 1-byte integer.
In Table 4, we compare the space required by SQLite and DuckDB
to store some of the datasets used in this paper. The TATP dataset
contains 1 million subscriber records. The SSB dataset is scale factor
5. In addition, we report the time required to load an SSB dataset,
which is organized as a collection of CSV files, into the database.
Compared to DuckDB, SQLite requires 90% and 60% more space to
store TATP and SSB, respectively.

Interestingly, SQLite is almost 20% faster at loading the SSB
dataset from CSV. However, we were surprised by the time required
to load CSV data into either system. DuckDB only takes about 7
seconds to run all of SSB, but requires 100 seconds to load the data.
SQLite takes 51 seconds to run all of SSB, but requires 82 seconds
to load the data. Given the popularity of the CSV format in the data
science field, these results motivate further exploration into how
CSV loading can be accelerated.

Table 3: Library footprints.

System Library size CO.mp ile  Compile

time memory

SQLite (-0s) 900 KB 15s 340 MB
SQLite (-03) 1.5 MB 30s 380 MB
DuckDB (-0s) 32 MB 5m 7.7 GB
DuckDB (-03) 37 MB 10m  7.6GB

Table 4: Database footprints.

System  TATP size SSBsize SSB load time
SQLite 520 MB 2.8 GB 82s
DuckDB 270 MB 1.8 GB 100 s
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5 FUTURE DEVELOPMENT

The developers intend to provide support for SQLite through the
year 2050, and design decisions are made accordingly. SQLite’s
code and database file format are fully cross-platform, ensuring
that SQLite can run on any current or future platform with an 8-bit
byte, two’s complement 32-bit and 64-bit integers, and a C compiler.
Every machine-code branch in the SQLite library is tested with
multiple platforms and compilers, which makes the code robust for
future migrations. SQLite is also extensively documented and com-
mented, which helps new developers quickly understand SQLite’s
architecture. Finally, the developers work hard to evaluate new
programming trends based on merit rather than popularity [26].

While the performance gap has narrowed as a result of this
work, DuckDB is still considerably faster than SQLite on SSB. This
is somewhat expected; SQLite is a general-purpose database engine,
whereas DuckDB is designed from the ground up for efficient OLAP.
Although SQLite’s OLAP performance could be further improved
in future work, there are several constraints that potential modi-
fications to SQLite must satisfy. First, modifications should cause
no significant performance regression across the broad range of
workloads served by SQLite. Second, the benefit of an optimiza-
tion must be weighed against its impact on the size of the source
code and the compiled library. Finally, modifications should not
break SQLite’s backwards compatibility with previous versions and
cross-compatibility with different machine architectures. Although
SQLite’s performance is a key priority, it must be balanced with
these (sometimes competing) goals. We considered several means
of improving value extraction in SQLite, but no single solution
satisfied all the constraints above. For example, changing the data
format from row-oriented to column-oriented would streamline
value extraction, but it would also likely increase overhead for
OLTP workloads. Moreover, drastic changes to the data format are
at odds with SQLite’s goal of stability for the database file format.

An alternative approach to improving SQLite’s OLAP perfor-
mance is a separate, yet tightly connected query engine that evalu-
ates analytical queries on its own copy of the data, while SQLite
continues to serve transactional requests, ensuring that the ana-
lytical engine stays up to date with the freshest data. If the extra
space overhead is acceptable, the specialized analytical engine can
provide substantial OLAP performance gains. This design has been
successfully implemented in SQLite3/HE [46], a query accelera-
tion path for analytics in SQLite. SQLite3/HE achieves speedups
of over 100X on SSB with no degradation in OLTP performance.
However, the current implementation of SQLite3/HE does not per-
sist columnar data to storage and is designed to be used in a single
process. Future work may explore similar approaches without these
limitations.

SQLite’s continued development is aided by informative profil-
ing utilities and aggressive testing. In part, this paper can be viewed
as a case study on adapting a database engine to a type of workload
for which it was not originally and explicitly designed. Considering
a conventional OLTP database engine as a starting point, there
are several methods that are well-known to boost OLAP perfor-
mance, including columnar storage, compression, operators over

compressed data, vectorized execution, runtime code generation,
and small materialized aggregates. However, without first under-

standing the bottlenecks of the system, it is difficult to estimate the
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magnitude of each method’s benefit. As a result, it is unclear which
method should be prioritized. For example, one might reasonably
predict that SQLite would benefit from vectorized execution, which
DuckDB uses to reduce the overhead of runtime query interpreta-
tion. However, our profiling analysis revealed that SQLite spends
little time in query interpretation relative to B-tree probes and value
extraction, and thus vectorization is unlikely to have an appreciable
impact. As this work progressed, we grew to appreciate the ease
of profiling SQLite’s execution engine. Its architecture enabled us
to pinpoint which virtual instructions were responsible for slow-
ing down performance. We could then target our optimizations
accordingly. Furthermore, SQLite’s extensive test suite allowed us
to quickly integrate our optimizations into a release build with little
worry of breaking other components of the library. SQLite includes
over 600 lines of test code for every one line of library code, and
its tests cover 100% of machine code branches in the library [25].
Although SQLite cannot claim to be bug-free, its aggressive testing
drastically reduces the chance of a bug appearing, which generally
enables the developers to rapidly implement new features with
high confidence.

6 CONCLUSION

The widespread deployment of SQLite is likely a result of its cross-
platform code and file format, compact and self-contained library,
extensive testing, and low overhead. While SQLite is a general-
purpose database engine, it is primarily designed for efficient OLTP.
Recognizing the potential for performance gains on in-process
OLAP workloads, DuckDB recently emerged as an embeddable
database engine specialized for analytics. In this paper, we pre-
sented a thorough evaluation of SQLite and DuckDB on a diverse
set of benchmarks. Our analysis uncovered specific bottlenecks
responsible for slowing SQLite’s OLAP performance. We discussed
the tradeoffs and feasibility of potential solutions. Our selected op-
timizations, which have been integrated into the current version of
SQLite, resulted in up to 4.2X speedup on SSB. We also evaluated ad-
ditional considerations important to embeddable database engines,
including the resource footprint of the library. Finally, we discussed
future directions that could further improve SQLite’s performance
without sacrificing its portability, compactness, and reliability.
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