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Abstract—In designing query processing primitives, a crucial
design choice is the method for data transfer between two
operators in a query plan. As we were considering this critical
design mechanism for an in-memory database system that we
are building, we quickly realized that (surprisingly) there isn’t a
clear definition of this concept. Papers are full of ad hoc use of
terms like pipelining and blocking, but these terms are not crisply
defined, making it hard to fully understand the results attributed
to these concepts. To address this limitation, we introduce a
clear terminology for how to think about data transfer between
operators in a query pipeline. We argue that there isn’t a clear
definition of pipelining and blocking, and that there is a full
spectrum of techniques based on a simple concept called unit-of-
transfer. Next, we develop an analytical model for inter-operator
communication, and highlight the key parameters that impact
performance (for in-memory database settings). Armed with this
model, we then apply it to the system we are designing and
highlight the insights that we gathered from this exercise. We
find that the gap between the traditional ‘“pipelining” and “non-
pipelining” methods of query processing, w.r.t. key factors such
as performance and memory footprint is quite narrow, and thus
system designers should likely rethink the notion of “pipelining”
vs. “blocking” for in-memory database systems.

1. INTRODUCTION

A fundamental consideration in analytic query processing
design is the mechanism for communicating data between
operators, such as a select operator feeding to an aggregate
operator, or a select operator feeding to a probe operator to
evaluate a hash join. Typically the source operator is called the
producer and the destination is called the consumer. There are
two broad camps for intra-operator communication methods,
in both traditional disk-based and newer in-memory systems.
These two camps sharply distinguish themselves based on the
data transfer method between producers and consumer. These
camps are pipelining [44], [25] and blocking [23], [13].

Understanding the implication of choosing one method over
the other is non-trivial since there are varied definitions of what
comprises pipelining or blocking. For example, in [26], the
definition of pipeline leans towards “a tuple being processed
should be present in the register”. Vectorwise [44] departed
from the traditional tuple-at-a-time processing model and pro-
posed hyper-pipelining query execution [7] using batches (or
vectors) of tuples. On the other hand, disk-based systems [15],
[19], [38] define pipelining as “tuples should be successively
processed without having to be sent to the disk in between”.

From these examples, we observe that the line between
pipelining and blocking is fuzzy and it depends on the batch
size of data transfer. The first key contribution of this paper
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Fig. 1: Unit of Transfer (UoT).

is to highlight that there is no crisp definition of pipelining
or blocking and that is a key source of confusion. It is hard
to understand results either for or against these mechanisms
without a crisp definition. In this paper we introduce the
term unit-of-transfer (UoT) to clarify these mechanisms. This
simple concept is graphically depicted in Figure 1.

With this terminology we can see that the granularity
of inter-operator transfer mechanisms is really a spectrum;
different systems are designed to support different UoT values.
At one end of the spectrum, a tuple can be the UoT [25],
whereas at the other end of the spectrum, the whole table
(or the whole file or the whole intermediate result) can be
the UoT [13]. Many systems such as MonetDB [23] and
Quickstep [36], which produce batches of tuples as output,
fall somewhere in between the two extremes.

We point out an immediate benefit of introducing the notion
of UoT - it implicitly addresses the confusion about where
data should reside in the memory hierarchy for the data
transfer mechanism to be called ‘pipelining’ or otherwise. For
instance, if the UoT is small, chances are that it resides in
registers, or if the UoT is too big to fit in the memory, it
may be forced to persistent storage. Disk-based systems try to
avoid expensive disk I/O operations. Their UoT is a batch of
tuples that is main-memory resident.

Next, with a new clear terminology of UoT for data transfer
mechanisms, we propose a model to study the implication of
changing UoT for in-memory systems. Here, we enumerate
key factors that are crucial to the model and their interaction.
The factors are parallelism, block size, storage format, query
structure, and hardware characteristics. A combination of these
factors jointly impacts the performance of a query when there
is no I/0 bottleneck. The collective space of combinations for
these dimensions is very large, and prior work has largely
looked at individual dimensions and studied their impact on
overall query execution.

The analytical model helps understand the impact of these
factors on query performance. It also presents system designers
and practitioners with a tool to analyze the impact of UoT and
other dimensions on (analytic) query processing performance.
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Then, as a case in point, we apply the proposed model
to a specific system, Quickstep (the system background is
described in Section III), and study the impact of the UoT
on performance.

We speculate that the UoT model can be used as a common
language to describe the previous works more clearly. Inter-
operator data movement involves several implementation de-
tails. In this paper, we discuss these details in the context of
the Quickstep system [36], but these insights likely also apply
in other settings/systems. Our key observations are:

« We observe that the performance of queries depends on
many dimensions like parallelism, block size, storage
format, query plan structure and hardware characteristics
like prefetching.

« We compare the memory requirements of query execution
with changing UoT and observe that for TPC-H queries,
the average memory overhead can be less than 4% of the
base table.

o For smaller block sizes, using a smaller UoT results in
higher performance compared to using a bigger UoT.
As block sizes increase, the UoT does not have much
impact. The latter observation is perhaps surprising given
the amount of attention pipelined query processing has
received.

Our paper is organized as follows: In Sections II and
IIT we cover essential background and discuss related work.
We discuss the dimensions associated with this study in
Section IV, and present our analytical model in Section V. We
compare memory footprints of strategies with different UoTs
in Section VI. In Section VII, we present our experimental
evaluations, and Section VIII contains our concluding remarks.

II. BACKGROUND AND RELATED WORK

In this section we describe the basics of data transfer
mechanisms for query processing, which we then use to set
the discussion for the rest of the paper.

Data-transfer mechanisms: Since most related works
in this area use the word ‘pipeline’, we will first describe
a ‘pipeline’ so that we can refer to previous work using their
own terminology. However, we emphasize that a pipeline is
simply one of the many possible data transfer mechanisms.

A minimal pipeline in a query plan consists of two op-
erators: A producer operator and a consumer operator. The
output of the producer operator can be passed (or streamed)
to the consumer operator, even when the work for the producer
operator has not finished. An example of a simple pipeline is a
query plan with a logical select operator feeding into a logical
hash-based join operator. Here, a (physical) select operation
(on the probe side) feeds into a “probe” operation.

Deeper pipelines may consist of more than two operators,
such that any two adjacent operators can form a producer and
a consumer pair. Data from the original producer operator can
be passed all the way to the last operator in the pipeline. An
example of a deep pipeline is a left-deep plan for a multi-way
hash join query plan, with all hash tables on the build side
being resident in memory.
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There are two key aspects about pipelining, or in general
data transfer mechanisms: Materialization (or the lack of)
and eager execution of consumer operator on the output
of a producer operator. Different systems may vary in the
representation that is used for the temporary data, which is the
output of a producer operator. Systems such as MonetDB [23]
and Quickstep that employ a block-style query processing
model fully materialize the output. Vectorwise [44] has a
compact representation of the intermediate output and does
not fully materialize the output.

Data-centric systems such as Hyper [25] and LegoBase [28]
generate compiled code for the full pipeline. Compared to
block-based systems, like Quickstep, they do not need an ex-
plicit representation for the temporary data (the code generator
picks the internal representation). One can think of the UoT
for such data-centric systems as a single tuple.

Prior Work: Pipelining in database systems has been
studied extensively. Wang et al. [40] proposed an iterator
model for pipelining in an in-memory database cluster. Their
key idea is to provide flexibility in the traditional iterator
through operations such as expand and shrink. Neumann [34]
proposed compilation techniques for query plans, which is
used by Hyper [25], [30]. As discussed earlier, query com-
pilation is one of the techniques for realizing pipelining
in a query plan. Vectorwise [44] pioneered the vectorized
query processing model through the hyper-pipelining query
execution [7]. Departing from the traditional tuple-at-a-time
processing model, Vectorwise used batches (or vectors) of
tuples. These batches, potentially amenable to using SIMD
instructions, help improve Vectorwise’s performance over its
predecessor MonetDB [23].

Kersten et al. in their work on query compilation and
vectorization [26] provide a summary of pipelining in many
systems, from systems as old as System-R [27] to modern
systems like Hekaton [17]. The authors describe two ap-
proaches to pipelining, namely the pull (next interface) and
push (producer/consumer interface) model. Quickstep uses the
push model of pipelining.

Menon et al. proposed Relaxed Operator Fusion model [32]
to bring together techniques like compilation, vectorization
and software prefetching in a single query processing engine
Peloton [2]. Funke et al. showed [18] how pipelined query
processing can work with query compilation and GPU accel-
erated database systems.

There is a large body of prior work on the effect of storage
formats and page layouts on query performance [8], [5], [21],
[20], [4]. We focus on using row and column store formats
for the comparison between various pipelining strategies.

Incorporating parallelism for query execution within a single
node database system has been an active area of study since
the prevalence of multi-core computing, which is exemplified
by many modern systems including [36], [30], [44], [1].

Liu and Rundensteiner [31] studied pipelined parallelism in
bushy plans and propose alternatives to aggressively leverage
pipeline processing. Their work focuses on optimizing query
plans in a distributed execution environment with limited
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memory per node. Our work differs from them in multiple
aspects: We focus on single node in-memory query execution
with large intra-operator parallelism. Further, we focus on
the query scheduler phase, which comes after the (optimized)
query plan has been generated by the optimizer.

Zhu et al. [42] proposed look ahead techniques to increase
the robustness of join query plans, allowing for efficient query
execution in many cases even when the join order may be
“sub-optimal.” Their key idea is to reduce the data movement
between a producer operator and a consumer operator in a join
pipeline by employing a sequence of bloom filters.

Pipelines in many TPC-H queries begin by filtering a large
table (e.g., the lineitem table). Researchers have looked at
sharing this large amount of work across multiple queries [22],
[43]. Scan sharing has shown significant improvements in
query performance, especially in the disk setting.

Many commercial systems including SQL Server [29],
Oracle [11], IBM DB2 [37], Snowflake [12] make use of
pipelining. SQL Server’s query progress estimation techniques
rely on pipelines within a query plan [29], [9].

Distributed systems (MapReduce [13], Dryad [24]) favor re-
liability over pipelining; thus, they materialize the intermediate
data during a job. Recently Bubble Execution [41] proposed
breaking a query execution plan in bubbles such that data can
be streamed within a bubble, while offering reliability.

III. QUICKSTEP BACKGROUND

In this section we provide a brief description of Quickstep
and its implementation of different data transfer mechanism
strategies. We introduce the system to facilitate the subsequent
discussion on various dimensions and the experimental results.

Quickstep aims for high performance for in-memory an-
alytic workloads on a single node. One of the techniques
used by Quickstep to get high performance is large intra-
operator parallelism. Quickstep uses a cost-based optimizer to
generate query plans. Joins in Quickstep use non-partitioned
hash-based implementation [6]. The operators in Quickstep
process a batch of input tuples, rather than one tuple at a time.
Prior work [7] has shown that the vectorized style processing
outperforms tuple-at-a-time processing technique.

Quickstep uses an abstraction called work orders, which
represents the relational operator logic that needs to be ex-
ecuted on a specified input. The work done for a query is
broken into a series of work orders. These work orders can
then be executed independently and in parallel.

There are two kinds of threads in Quickstep — worker and
scheduler. Worker threads execute work orders. Once assigned
a work order, the worker thread executes it until its completion.
A single scheduler thread coordinates the execution of work
orders, including work dispatch and progress monitoring.

A. Managing Storage in Quickstep

Quickstep supports a variety of storage formats such as row
and column store with an optional support for compression.
The data in a table is horizontally partitioned in small indepen-
dent storage blocks. The size of each storage block is fixed, yet
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configurable. The intermediate output of relational operators
(e.g. filter) is stored in temporary output blocks, which follow
a similar design as the storage blocks of the base tables.

Each relational operator work order has a unique set of
input, described based on the semantics of the operator. For
instance, a select work order’s input consists of a storage
block and a filter predicate. A probe join hash table work
order’s input is made up of a pointer to the hash table and a
probe input block. A work order execution involves reading the
input(s), applying the relational operator logic on the input(s),
and finally writing the output to a temporary block. (The
output of most operators is represented in the form of storage
block, except when the output itself is a data structure like
hash table; e.g., in the case of a build hash operator, or hash-
based aggregation operators.)

Quickstep maintains a thread-safe global pool of partially
filled temporary storage blocks. During a work order execu-
tion, a worker thread checks out a block from the pool, writes
the output of the work order to the block, and returns the block
to the pool at the end of the work order execution. Thus, a
block is used by at most one operator work order at any given
point in time. This approach has two benefits: 1) We maintain
locality of the output block when output is written to it, and
2) Reduced memory fragmentation due to the reuse of output
memory blocks.

B. Unit of Transfer (UoT)

As Quickstep is fundamentally built on a block-based stor-
age architecture, the UoT used in Quickstep is also defined
w.r.t. blocks. As described earlier, the output of a relational
operator work order is stored in temporary blocks. As soon
as a block is full, it may be deemed ready for data transfer,
subject to the UoT value. For a small UoT value, the scheduler
receives a signal as soon as an intermediate output block is
full, after which it dispatches a work order for the consumer
operator for execution. Partially filled blocks are scheduled for
data transfer at the end of the operator’s execution.

Interplay between block size and UoT: For a given block
size, we consider two extreme values for UoT. The smallest
UoT is a single block. As soon as a block is produced, we
transfer it to the consumer. The largest UoT is the entire
intermediate table, and in this case the system waits for the
entire table to be produced before making it available to the
consumer.

C. Data Transfer Mechanism and Scheduling

A scheduling strategy in Quickstep determines the sequence
in which work orders of a query are executed. As shown in
Figure 2, different values of UoTs generate different schedul-
ing strategies.

For smaller UoT values, a consumer operator work order is
scheduled as soon as it is available. At the higher end of the
spectrum of UoT values, a consumer operator work order is
not scheduled until all the corresponding producer work orders
have finished execution.
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Fig. 2: Interplay between scheduling strategies and UoT
values. A filter operator (¢) and a probe operator (P) for a
hash join are shown on the left. We compare two scenarios:
A low UoT value (with two blocks in a UoT) and a high
UoT value (with 4 blocks), while keeping the block size as
same. On the right are two schedules of work orders. As
the number of blocks in the UoT increases, the schedule
starts to look like traditional non-pipelining approach.

Pipeline in
query plan

The Quickstep scheduler allows development of sophisti-
cated scheduling policies [14], such as implementation of an
operator with an upper or lower limit on the number of con-
current consumer work orders under execution, or executing
operators under a specified memory budget.

IV. DISCUSSION ON DIMENSIONS

In this section we identify the dimensions that may have
an impact on the performance of data transfer mechanisms
for different values of UoTs. We classify these dimensions
into three categories: physical organization of data (storage
format and block size), execution environment (parallelism and
hardware characteristics), and structural aspects of query. We
describe these dimensions below.

A. Block Size

We first explain the concept of a block size. As the producer
operator processes the input, it materializes the output to a
temporary block. The block size in Quickstep for a given table
is fixed, and can be specified at the time of its creation.

We are interested in the impact of block size on the
performance of the data transfer mechanisms. Consider data
transfer between two operators: select operator — probe
hash table operator. A smaller output block size means that
the block can potentially fill quickly, resulting in more probe
work orders.

B. Storage Format

Data processing time is impacted by the way data is
organized. We look at two common storage formats: the row
store format and the column store format. In the column
store format, values for a given column are stored in a
contiguous memory region. Scanning a single column results
in a sequential memory access pattern, and generally good
cache behavior. In the row store format, all the columns of
a tuple are stored in a contiguous region. Thus, scanning a
particular column involves bringing unnecessary data (non-
referenced columns) into the caches. Selecting all the columns
in a row, however, is more efficient.
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Prior work has shown that column stores deliver better
query performance for analytical workloads [4], especially
for scan operators. Recent studies [36] have shown that the
performance gap between column stores and row stores is
not as high as shown in previous work. Therefore we explore
both storage formats. For our comparison, we assume that all
base tables are stored in the same storage format. For micro-
benchmarking in Quickstep, we note that the row store format
is used for temporary tables irrespective of the storage format
of the base tables.

C. Parallelism

We focus on two kinds of parallelisms in query processing:
a) Inter-operator: processing multiple operators at the same
time [23], [30], [36], [44], [11], [37], and b) Intra-operator:
parallel processing inside a single operator. Note that these two
kinds of parallelisms can co-exist in a system [44], [30], [36].
In this paper, we study the impact of intra-operator parallelism
on the relative performance of data transfer mechanisms with
different UoT values.

1) Degree of parallelism: The degree of parallelism (DOP)
of an operator refers to the number of concurrent threads
involved in executing work orders of that operator. The scala-
bility of an operator (using 7' threads) is its performance with
DOP as T relative to its performance when DOP is 1.

2) Intra-operator parallelism in Quickstep: The scheduler
of Quickstep, as discussed before, dispatches work orders
of relational operators to worker threads. Thus, the DOP of
an operator at a given instance is the number of its work
orders under execution. Since the number of work orders of an
operator can change over time, the corresponding DOP also
changes over time dynamically.

3) Interplay between DOP and UoT values: The UoT
value used in query processing can have an impact on the
DOP of the operators. Consider the example from Figure 2
which compares two UoT values while keeping the block size
constant. In the small UoT case, the available CPU resources
are shared among the filter and probe work orders. For the
higher UoT value, the CPU resources are used exclusively;
first by the filter work orders first and then by the probe work
orders. Thus, the DOP of the operators is lower for small
values of UoT.

4) Scalability: In theory, adding more CPU resources for an
operator execution should offer linear speedup. The assump-
tion being that each parallel work order operates at the same
speed and thus by executing more work orders concurrently,
the overall execution time reduces proportionally.

Linear speedups for operators (or for queries as a whole) are
not always possible. DeWitt and Gray [16] propose reasons for
less than ideal speedup for parallel databases such as startup
costs, interference from concurrent execution, and skew. We
can extend some of their ideas to in-memory systems. For
example interference can come from various sources such
as contention due to latches, and shared use of a common
bandwidth in a memory bus, or shared channels for data
movement across NUMA sockets.
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Fig. 3: Distribution of the time spent in each TPC-H (scale factor 50) query in operators.

For an operator that exhibits poor scalability, increasing its
DOP beyond a certain limit may degrade its performance.
Specifically, the execution time for each work order of the
operator may increase with a higher DOP value. Recall from
Section IV-C3, the DOP of a consumer operator is proportional
to the UoT value. Thus, smaller values of UoT are good for
the performance of operators with poor scalability.

D. Hardware Prefetching

Hardware prefetching is a technique used by modern pro-
cessors to proactively fetch data in caches by speculating its
access in the future. The prefetcher observes patterns of data
accesses from memory to caches and speculates the access of
a data element in advance. Prefetching hides the latency due
to a cache miss and potentially improves performance. There
are two kinds of prefetching: spatial and temporal, and in this
paper, we focus on spatial prefetching.

Next we describe why prefetching is important in our study.
Lower values of UoT generally results in a large number
of context switches for work order execution (cf. Figure 2).
Thus, having a lower value of UoT may affect the hardware
prefetcher’s ability to predict the data access patterns. There-
fore, we are specifically interested in the impact of hardware
prefetching at lower UoT values.

In addition to the hardware-based prefetching implementa-
tion there are software-based techniques for prefetching, which
can be used to improve the performance of relational opera-
tors [10], [32]. By focusing on hardware-based prefetching,
we can observe the impact of the hardware prefetcher without
modifying the implementation of the relational operators.

For our study, we run the queries with pipelining in two
scenarios: a) when hardware prefetching is enabled (this is
the default behavior of the hardware), b) when hardware
prefetching is disabled (by setting bit O and 1 in Model-
specific Register (MSR) at address Ox1A4) as per Intel’s
guidelines [39].

E. Query Plan Structure

Complex queries like the ones in TPC-H contain several
operators, and the impact of UoT values on overall query
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execution time is not immediately evident.

To analyze the impact of UoT values on the response time
of a query, we conduct an experiment to dissect the time
distribution of the execution of TPC-H queries. We focus on
the most dominant operator (where the most of the execution
time is spent) and the second most dominant operator for each
query. Note that for this analysis, we run the queries with a
high UoT value (the whole table) to avoid any overlap in time.
The intuition is that if there is only one operator in the query
where the majority of the query execution time is spent, small
UoT values may not play a big role in the overall execution
time of the query.

Figure 3a shows the results of this experiment for base
tables stored in a column store format. For some queries (Q1,
Q6, Q13, Q14, Q15, Q19, Q22) the dominant operator takes
up the majority of the query execution time (more than 50%).
We also note that the dominant operator for many of these
queries is a “leaf” operator (e.g. selection on a base table,
building a hash table on a base table, aggregation on a base
table). Therefore, depending on the structure of a specific
query, small UoT values may not provide significant advantage
in improving the query execution time.

Further, at times large data is pruned at the initial operators
e.g, due to a highly selective filter predicate or a join condition,
or due to application of sideways filters (e.g. LIP [42]). In such
cases, very little data is passed to the consumer operators, and
consequently, the impact of low UoT values is not significant.

V. ANALYTICAL MODEL

In this section we analytically model the performance
difference for varying UoT values. The model uses the di-
mensions introduced in the previous section including the
number of threads used for execution (parallelism), the UoT
values, memory/cache access times, and cache miss penalties
(hardware prefetching). Our model is targeted towards in-
memory environments, but it can be extended to other storage
device settings, as we show in Section V-C. The model and
analysis of memory usage differences is presented in the next
section.
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Notation Description

Ry, Cost of reading an UoT to memory hierarchy h from
a lower hierarchy h + 1

ARy, Amortized cost of reading an UoT sequentially to
memory hierarchy h from a lower hierarchy h + 1

Wh, Cost of writing an UoT to memory hierarchy A from
a higher level hierarchy

C Cost of an instruction cache miss

My, Cost of missing a UoT at memory hierarchy h

Ny Number of input UoTs for operator op

N, g;;t Number of output UoTs for operator op

T Number of threads in the system

B UoT size

TABLE I: Notations used for the analytical model

The key idea that we employ is to focus on operations that
result in a cost difference and to ignore common operations
that occur irrespective of the UoT values. Many operations
are common to query processing for all UoT values: e.g.,
the total cost of reading from an L1 cache line is the same
irrespective of the UoT value. As we are interested in the
relative comparison of performance between two different
values of UoT, we largely focus on the additional work that is
incurred when using one UoT value over another UoT value.

Additionally, we take into account the benefits of hardware
prefetching when reading multi-megabyte blocks as UoT in
a sequential access pattern; the amortized cost of reading a
UoT will be substantial smaller than the cost when each UoT
is read on its own without prefetching. As the UoT is read into
memory, access to the initial tuples likely incur an L3 cache
miss, but we assume that the prefetcher can quickly detect the
access pattern, and thus the miss penalty will decrease quickly.

We analyze a basic producer-consumer pair, in which the
producer is a select operator and the consumer is a probe
operator for a hash-based join operation. This producer-
consumer pair is commonly found in the query plans of
analytic workloads, such as TPC-H queries. For example, in
the query plans for Q07 and Q19 from the TPC-H benchmark,
selection is performed on the lineitem table and the output
is subsequently used to probe a join hash table, forming
the select—probe pair for data transfer. Table I contains
various parameters that we use to determine the costs for
different scheduling strategies.

For high UoT values which are comparable to the size of the
table, the output of the select operator is not immediately
consumed by the probe operator. The probe operator is
only initiated after the select operator is complete. Thus,
writing the output of the select operator to memory, and
reading the same UoTs as input to the probe operator is
additional work in the non-pipelining case. Moreover, an input
probe UoT is likely to be cold in the caches when it is read
for the probe.

Thus, for the case of high UoT values equal to the size of
the table, the extra work done can be quantified as:

Winem - N4t . + ARp3 - N

elect probe
Here, Wiyem - N4t , is the cost to write the output of the

select operator from cache to memory.

N[i:obe+p1 : “Mps
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Further, ARp3 - ;:}obe is the total cost of reading probe
UoTs sequentially from memory, expressed as the amortized
cost of reading a UoT sequentially many times.

For the last term, note that a probe work order has two
input components: probe input UoT and a hash table. As
the reads to a hash table are random, it disrupts the sequential
access pattern used to read the probe input UoTs. Therefore,
we account for the cost to read the probe input UoTs as
D1 - ;Zobe - Mp3, where p; is the probability that there is a
L3 cache miss when reading the probe input after the context
switch back from reading the hash table.

Next, we quantify the additional work done for the case of
small UoT values. In this case, the input for probe UoTs
(which is the output of select) is presumed to be resident
in processor caches. This assumption leads to the following
model:

(N;)eulfzct + ;?obe) 10+ p2-

+p/1 : (ML?) + RLB + Wmcm) .

;:'Lobe : (ML3 + RL3)

mn

probe
Notice that for low UoT values, every probe work order exe-
cution involves two context switches: First from the select
operation to the probe operation and another from the

probe operation to the select operation. Thus we account
for two instruction cache misses; one for each context switch,

which is represented by the term: (Nt ., rope) - 1C.
Now, we explain the term pa - N7, - M 3. It represents the

cache misses due to the disruption in sequential access pattern
of the select operation, and is caused by the intermittent
probe operations. The term po is the probability of an L3
cache miss for the select operator after the context switches
back from the probe operation. The term po - N;:fobc “Rps3
represents the time taken to move data from memory to cache
after encountering a cache miss.

Finally, the term p} - (Mr3 + Rr3 + Wiem) - N;?obe is
analogous to the L3 cache misses incurred when the probe
input block is read in the non-pipelining case. Here the
assumption that the probe inputs are resident in the L3 cache.
Thus, the probability of whether a probe input is read “hot”
or not is dependent on the size of UoT.

Due to factors such as reading in the relevant UoTs of
the hash table for a probe operation and multiple threads
sharing the L3 cache, each write operation that is incurred
when creating a probe input, and the subsequent probe
input read operation is not guaranteed to be served from the
L3 cache; this cost is exacerbated with larger values of UoT.
To account for this cost, the term p) is used to represent the
likelihood that the reads and writes incur L3 cache misses;
it is expressed as min(1,2B - T'/size(L3)). The term pj is
smaller for small UoTs, and it is 1 for high values of UoTs
and when T is high.

A. Quantifying the Difference

We now quantify the differences between the two extreme
values of UoTs. We first make a few observations to sim-
plify the analysis. As large UoT values are typically a few
megabytes, the instruction cache miss costs become negligible
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in this case. Thus, we can ignore the cost associated with
instruction cache misses. Second, we observe that N7,

Nout .. Thus, the ratio of costs of non-pipelining (informally
large UoT) and pipelining (informally low UoT) strategies is

as follows:
Wme m

~Nin +ARL3~Nin +p1'Nzi7:'rfobe'ML3

. probe probe _
P2 N7 e (Mrs+Rrs)+py-(MLz+Rrs+Wmem ) N7 oy,
This ratio can be simplified to:
ARp3 + Wem +p1 - Mr3 )

p2 - (Mps+ Rrs) + 01 - (Mrs+ Rrs + Winem)

Observe that ARr3 < Rrs3, while both costs, ARy3 and
Ry, are directly proportional to the size of UoT, B. We
consider the two representative cases of high and low UoTs
values to estimate the difference between the two strategies.

a) High UoT values: For high UoT values (size > ‘QL%' ),
p} is close to 1, and py will have a low value. Additionally,
the cost contribution of Mp3 is low in general, and W,em
becomes the dominant cost. We expect that p; - My, ~ Mps-
(p/l +p2); D2 'RLS +p/1 : (RLS +Wmem) ~ pll : (RLS +Wmem)’
which leads to p} - (Rr3 + Wiem) ~ ARL3 + Winem. Hence,
the ratio given in Equation 1 will be very close to 1. Thus, we
expect for high UoT values, the difference between the two
strategies to be negligible.

b) Low UoT values: Smaller UoT values result in a large
number of work orders, which can incur a large overhead
in storage management. Some examples of such overhead
include creation cost of several UoTs, maintaining references
for UoTs present in-memory, and synchronisation costs in the
data structures for storage management. So, in this scenario,
p2 will be close to 1, and p} will have a lower value, though
not negligible. The cost contributions from the terms ARy3,
p2 - M3, p1 - Mps, and p} - M3 will not be significant, and
we expect that Wiem = p2 - Rrs + p) - (Rrs + Winem)-
The ratio will be very close to 1; since the cost of W,ep, is
dominant, the cost of ps - Rr3 + p - (Rrs + Winem) can be
slightly lower than W, giving the execution with lower
UoT values a slight advantage.

B. Generalization to other pipelines

So far we have considered only the select — probe
operator pipeline. We focused on this particular pipeline
because it is found in many analytic queries. Some other
operators in a query plan are sort, sort-merge
join, sort-based aggregation, hash-based
aggregation and nested loops join!. Sort-based
operations are typically blocking and generally not amenable
to pipelining. Hash-based aggregation is similar to the
hash-probe scenario that we have discussed. For nested
loops join, the UoT values determine how often there are
cache misses due to context switches for the outer relation.
For the inner relation, nested loops join involves sequential
access pattern. In these other pipelines, we hypothesize that

"We could not experimentally validate our hypothesis as in TPC-H queries,
Quickstep optimizer does not produce plans with such operator pipelines
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Fig. 4: A left-deep query plan fragment showing a cascade
of selection and multiple probe operators

the performance for high UoT values and low UoT values
will be similar, as the cost of cache misses resulting from
context switches would be offset by the other access pattern
that is sequential.

C. Applying Model to Other Storage Settings

Our model can be easily applied to other settings, such
as storing data in a persistent store (such as SSD and hard
disk drives) with a in-memory buffer pool. We change the
parameters from Table I appropriately to fit the persistent store
setting. The terms p; and py are nearly 0, when the hash table
is nearly always kept in the buffer pool. Thus, the additional
cost incurred for large values of UoT is:

3 Nout

in
- N, robe T Wstore select

Rstore p

which could be in the order of seconds for thousands of UoTs.
The additional cost incurred for lower UoT values is:

.IC+ N, . IC

n
probe

Nout

select

Note that this value is substantially lower (order of nanosec-
onds or microseconds for thousands of blocks) than that in the
non-pipelining case. Thus, the analytical model is consistent
with the expected behavior for persistent store-based systems.

VI. MEMORY CHARACTERISTICS

We now discuss the memory footprint for different UoT
values. We first formulate the memory footprint of two extreme
UoT values — a high value which is equal the size of the input
table, and a low value. The choice of our UoT values mimic
what are traditionally known as “blocking” and “pipelining”
modes of query processing. Subsequently, we compare their
memory behavior against each other.

As an example, let us consider a cascade of selection and
multiple probe operators as shown in Figure 4. For low UoT
values, once we read a tuple, it is processed by the selection
operation first, and if selected, it is further processed by the
subsequent probe operators (subject to the join condition). This
pipeline necessitates the construction of all hash tables before
the execution of selection-probe operators.

We now consider a large UoT value which is equal to
the size of the selection operator’s output. For such a large
UoT value, the execution can be described as “one join at a
time”. The selection operation is completed first, followed by
building of the hash table and then the probe. Thus, only one
hash table needs to be created at any point of time. However
this case of execution materializes the result of the selection
(and successive probe operations).
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Strategy Memory footpri{lt
Hash table | Intermediate table
Low UoT value | >7 | [Hy] 0
High UoT value |H; [o(R)]

TABLE II: Memory footprint for low and high UoT values

Query Selectivity (%) | Projectivity (%) | Total (%)
03 539 13.1 7.0
07 30.4 18.3 5.6
10 24.7 13.1 32
19 2.1 13.1 0.3
Average | 27.8 14.4 4.0

TABLE III: Memory reduction with input table lineitem

We contrast the memory requirement for the leaf level join
tree in Table II. We denote the size of the i** join hash table
by |H;|. The size of the selection output is denoted by |o(R)|
where R is the input table.

We disregard the common elements contributing to the
memory footprint to determine the difference of memory
footprints such as current join hash tables, base tables, final
join output. Note that our analysis is done on the leaf level
join, however it can be extended to any intermediate join
easily. Therefore the memory overhead comparison for the
two strategies is as follows. For low UoT values: > ., |H;|,
and for high UoT values it is o(R).

A. Memory Overhead for high UoT values

We now dig deeper into the memory overhead caused by
having a large UoT value. The key relationship is between
the size of the base table and the size of the materialized
intermediate table. Typically a selection operation on a base
table causes reduction in memory in two ways. The first and
the obvious aspect is the selectivity of the filter predicate. We
define selectivity as s = N;/N, where N; is the number of
rows that pass the filter predicate and NV is the number of rows
in the input table. The other aspect is projectivity, which we
define as p = C5/C, where Cj is the total size of the columns
projected per tuple and C' is the total size of the columns in the
base table per tuple. We compute selectivity and projectivity
relative to the size of the input table.

B. Memory Overhead for low UoT values

As described earlier, the memory overhead for low UoT
values is the combined memory of the hash tables that can be
probed (except the current join).

Let us consider a single hash table. Typically hash tables
have fixed-sized buckets, say c bytes. Hash tables also have a
load factor, say f where f € (0,1]. If f is 0.5, the hash table
gets resized as soon as its memory occupancy reaches 50%.
Therefore, the memory footprint of each entry that is inserted
in the hash table is ¢/ f. If the input tuple has a size of w bytes,
and the input table’s size is M bytes, then the resulting hash
table size is (M/w) - (¢/f). For low UoT values, computing
the memory overhead involves summing the hash table sizes
for all the hash tables involved.
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Query Selectivity (%) | Projectivity (%) | Total (%)
03 48.6 8.7 4.2
04 38 10.9 0.4
05 15.2 5.8 0.9
08 30.4 11.6 35
10 38 5.8 0.2
21 48.7 2.9 1.4
Average | 25.1 7.6 1.8

TABLE IV: Memory reduction with input table orders

Now that we have established the memory overhead for
both low and high UoT values, a natural follow up question
is: Which UoT values result in lower memory overheads?
The answer is dependent on the query and its input tables
characteristics. On the one hand, we see many cases when a
lower UoT value results in a lower memory footprint compared
to using a higher UoT value, especially for queries in the
Star Schema Benchmark (SSB) [35] that have small join hash
tables. On the other hand, we show in the next section that
sometimes high UoT values can also result in significantly low
memory overheads.

C. Memory Analysis for TPC-H Queries

We report the selectivity and projectivity values for selected
TPC-H queries that contain a selection and probe pipeline of
operators when the base table is 1ineitem or orders (the
two largest tables in the TPC-H schema).

Table III and Table IV presents the selectivity, projectiv-
ity and overall memory footprint of selection operations in
selected TPC-H queries. A key takeaway from these tables is
that even though the selectivity is high, due to the projectivity,
the relative memory overhead of a select operation can be quite
low. In a star-schema or a snowflake-schema typically the fact
tables have large number of rows as well as a large number of
columns. If few columns are projected from the fact table dur-
ing a selection operation, then the relative memory overhead
can be low. Note that both selectivity and projectivity numbers
reported above are without any optimization, thus they are on
the higher side. In practice there are many techniques to reduce
both selectivity and projectivity, as discussed next.

Techniques to lower selectivity: Aggressive pruning tech-
niques like Lookahead Information Passing (LIP) filters [42],
can substantially bring down the selectivity, sometimes by
an order of magnitude or more. Query optimizers often push
down predicates, which can also reduce the selectivity.

Techniques to lower projectivity: One way to lower the
projectivity is to trade memory for computation. Consider the
expression 1_extendedprice * (1 - 1l_discount),
which is found in many TPC-H queries. A lazy evaluation of
this expression involves projecting 1_extendedprice and
1_discount attributes. However if the evaluation is folded
with the selection operation, we can project only one attribute,
which is the resultant expression.

To compare the memory overhead between low and high
UoT values, consider TPC-H QO7. This query has a selection
operation on 1ineitem followed by a cascade of three probe
operations. Of the three hash tables required in this data
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Parameter | Description

Processor 2 Intel Xeon Intel E5-2660 v3 2.60 GHz (Haswell EP)

Cores Per socket — 10 physical, 20 hyper-threading contexts

Memory 80 GB per NUMA socket, 160 GB total

Caches L3: 25 MB, L2: 256 KB, L1 (both instruction and data):
32 KB

oS Ubuntu 14.04.1 LTS

Data set TPC-H [3] data (and queries) for scale factor 50

Block sizes | 128 KB, which is half of the per-core private L2 cache
size, and 2 MB, which comfortably fits in L3 cache.

UoT values | Low UoT is the same as block size and high UoT is the
same as full table’s size.

TABLE V: Evaluation platform

transfer cascade, the second hash table is built on the entire
orders table, which is around 2.4 GB in Quickstep for a
scale factor of 100. The intermediate output of the selection
operation is 2.8 GB without any optimization and 224 MB
with bloom filter based pruning [42]. Thus, in some cases
the memory overhead caused by lower UoT values can be
substantially higher compared to the memory overhead caused
by higher UoT values.

VII. EXPERIMENTAL EVALUATION

We now apply the proposal in Section V and study the
query performance implication of UoT values. Our goal is
to understand the performance characteristics of queries for
different UoT values, and while doing so, to observe the
impact of the various dimensions discussed in Section IV.

A. Experimental Setup

Table V summarize our experimental setup. Note that we
use only a single NUMA socket in this study. We also
experimented with block size as 512 KB and observed similar
results as reported below. Unless specified, we report the
results for the column store format and 20 threads as Quickstep
workers. The buffer pool size in Quickstep is configured with
80% of the system’s memory (126 GB). We run each query
10 times and report the mean of the best three runs.

B. Results

First, we analyze the performance of singleton operators,
followed by a more complex pipeline of operators. Finally,
we study the execution time of entire queries.

1) Performance of Consumer Operators: Low UoT values
ensure that the consumer operator’s input is “hot” in caches.
Does the hotness of the input improve the performance of the
consumer operator? To investigate this issue we perform the
following experiment.

We focus on key deep operator chains (select—probe, as
shown in Figure 4) from the TPC-H queries.

Figure 5 plots the work order execution times for the first
consumer operator. We can observe that a low UoT value
generally benefits the performance of the probe operator. The
extent of improvement diminishes as we increase the block
size from 128 KB to 2 MB. This behavior is consistent with
the findings from the analytical model (cf. Section V).
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2) Performance of Operator Chains: Having looked at the
performance of the consumer operators, we zoom out to look
at the performance of the complete chain of operators.

Figure 6 shows the results for this experiment. For smaller
block sizes, low UoT outperforms high UoT values only in
some queries. These queries are the ones in which a low UoT
value has a superior operator performance (see Figure 5). At a
2 MB block size, the operator chains from all queries perform
equally well with both UoT values.

Notice that despite low UoT values having an edge for
individual consumer operator performance, the extent of im-
provement does not match in the operator chain performance.
This behavior is because typically a chain has other operators
(producers, which often dominate the overall execution time).

3) Overall Execution Time:: After analyzing the perfor-
mance of deep operator chains, we further zoom out to
the execution times of the full queries. Figure 7 shows the
results for query execution times for different UoT values.
We can observe that low UoT values perform slightly better
for smaller block sizes. As the block size increases, there
is little difference between the two alternatives. From these
experiments we can conclude that although having low UoT
values benefit individual operators, their impact on overall
query performance is insignificant.

An alert reader may have noticed that query performance
improves as the block size increases for both UoT values. This
behavior is due to Quickstep’s design which favors large multi-
megabyte blocks. For smaller blocks, the storage management
and work order scheduling overheads increase. However, that
this is an orthogonal issue and doesn’t affect our overall
observations, which is also supported by the fact that the
performance impact of block size variation is similar for both
ends of the spectrum of UoT values.

4) Effect of Storage Format: Next, we study the effect of
storage format of base tables on the performance of using low
UoT values. We use two configurations, each with block size
of 2 MB, and all tables either stored in a) column store format
or b) row store format. Note that in both configurations, the
temporary tables are stored in a row store format.

Performance comparison between pipelining strategies
with row store: Recall the trends we discussed for the
performances of consumer operator (Section VII-B1), operator
chain (Section VII-B2) and entire query (Section VII-B3) for
column store. We observe similar trends for the row store case.
In the interest of space we present only one graph for query
execution time using 2 MB block size in Figure 8.

When we compare Figure 8 (row store) with Figure 7b,
we make two observations. First, the query performance is
unaffected by the choice of the UoT value. Second, queries
perform better with tables stored in column store. One reason
why scans on row stores are slower than scans on column
store is that processing a tuple involves fetching unnecessary
data. In contrast, with column stores, we only process what
is necessary from an attribute, and avoid fetching unnecessary
data to the caches.
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5) Effect of Parallelism: Next, we study how intra-operator
parallelism impacts performance with the two UoT values that
we have considered. In this experiment we also report results
from running Quickstep with a block size of 512 KB.

We present results for TPC-H Q07 that shows the impact of
scalability on the performance of operators. We pick two probe
operators from query Q07, which are part of a single operator
chain. One has poor scalability, and the other has slightly better
scalability. The reasons for the poor scalability of the probe
operator are: a) It probes a large hash table b) The large hash
table also brings contention issues in the storage management
subsystem. We present the scalability of these probe operators
in Figure 9.

Next, we want to know how the choice of a UoT value
behaves with these operators? Figure 10a and Figure 10b
present the performance of these two operators.

First, let us analyze the operator with the better scalability
(whose input hash table is small). As the block size increases,
both UoT alternatives keep up with the larger probe load, and
the per task execution time increases as expected.

Now we discuss to the operator with poor scalability. Note
that as the block size increases from 128 KB to 512 KB,
the probe operator’s performance improves. As the block size
increases, the contention on the storage management reduces,
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Fig. 10: Effect of interaction of various dimensions on
scalability.

Block size Select Build Probe
Yes No Yes No Yes | No
128KB 0.06 | 0.08 | 2.0 1.9 0.8 | 0.8
512KB 0.2 0.3 8.5 7.6 22 109
2MB 1.1 1.5 38.0 | 32.7 | 39 | 3.1

TABLE VI: Average task execution times in millisecond
for the prefetching experiment. Yes (No) imply that the
hardware prefetcher was enabled (disabled).

and performance improves. As the block size increases from
512KB to 2 MB, contention is no longer a dominant factor,
and the task execution time increases because of the added
work in a larger block.

Why don’t we see similar behavior for low UoT values? It
is because by design, the degree of parallelism for low UoT
values is smaller (as explained in Section IV-C3, and thus it
is less prone to the contention discussed earlier.

Overall, when using low UoT values, the system is more
immune to scalability issues as compared to the high UoT
value alternative. Systems can have scalability issues due to
various external factors such as hardware interference, slow
network and internal factors such as skew, poor implementa-
tion of operators. (We also note that as future work it would
be interesting to explore if the probe operator’s scalability
changes when using different hash table structures.)

6) Effect of Hardware Prefetching: Next, we examine the
effect of prefetching when using a low UoT value. For this
experiment the tables are stored in row store format. We run
TPC-H queries with and without the hardware prefetcher. We
note that the total workload execution time is only slightly
(less than 10%) better when the prefetcher is enabled.

In the row store format, to scan even a single attribute, large
amounts of unnecessary data is read. As row store tuples are
fixed width?, the hardware prefetcher can detect the access
pattern of scanning a single attribute.

To understand the impact of hardware prefetching on in-
dividual operators, we pick three operations from QO7 and
compare their execution times with and without prefetching:
selection, building hash table for a join operation, and probing
a join hash table. Our results are presented in Table VI.

2Variable length attributes are stored in a separate region, with a pointer to
the region stored in the tuple.
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Fig. 11: TPC-H performance for MonetDB

Our observations are as follows: Prefetching generally ben-
efits the selection operator. This behavior is understandable as
selection has a sequential access pattern and the prefetcher can
recognize the strides in the memory accesses across tuples in
the row store format.

Prefetching worsens the performance of both the probe and
the build hash operator in many settings. For both operators,
there are two data streams — a sequential access pattern to read
the input and a random read (probe) or random write (build)
access pattern on the hash table. We suspect that due to a mix
of these two access patterns, prefetching does not benefit these
operators.

We ran the same experiment using a column store format,
and found little to no performance difference due to prefetch-
ing. We speculate that hardware prefetching does not make any
significant contribution to an already optimized access pattern
of column stores.

7) Experience with MonetDB: MonetDB [23] and Quick-
step share some similarities in terms of using a block-
style query processing strategy, and materializing the internal
state of operators. We evaluate MonetDB’s (version 11.41.11)
performance on TPC-H queries and show these results in
Figure 11.

Comparing the performance of MonetDB with Quickstep
(Figure 7b), we can see that in 15 queries, Quickstep performs
better than MonetDB. We acknowledge that such a compar-
ison comes with caveats. Quickstep’s query scheduler allows
easier implementation of various UoT values and scheduling
techniques. We are not aware of such a provision in MonetDB.
Additionally, Quickstep and MonetDB use different query
optimization techniques. For instance LIP filters [42] in Quick-
step reduce the data movement across operators significantly.

C. Summary of Experiments

In this section, we summarize our experimental findings
and connect them to the dimensions described in Section IV.
Recall that a key focus is to understand the relative perfor-
mance of the two UoT value alternatives at the extreme ends
of the spectrum. Our high level conclusion is that in the in-
memory setting, for systems using a block-based architecture,
the performance is similar for these two alternatives. We now
discuss the impact of individual dimensions.

Block size: We find that a larger block size bridges the
gap between the performance of the low UoT values and high
UoT values. A larger block size results in a lower degree of
parallelism for operators in a pipeline, and thus also aides
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those operators that suffer from poor scalability. However, very
large blocks may cause memory fragmentation. It may also
result in a low DOP, which could lead to CPU underutilization.

Parallelism: Parallelism can affect the performance of
the two UoT alternatives. We saw in Section VII-B5 that using
a low UoT value can be more resilient to performance issues
arising from poor scalability.

Storage Format: The performance gap between the two
UoT alternatives is largely unaffected by the choice of the
base table storage format, though some queries execute faster
when run on tables in the column store format. The benefit of
using column store format over row store format is the highest
for base tables (typically leaf operators in a query plan). As
the number of attributes in the tables reduce from the leaf
operators in a query plans to the root, the advantage of using
a column store starts to diminish.

Hardware Prefetching: Hardware prefetching improves
performance when using a low UoT value. This effect is
more prominent for data stored in a row store format than
in a column store format. We saw that prefetching improves
scan performance in a representative query. Prefetching had
an adverse effect on the probe and build hash operators.

As increasing L3 cache size becomes prohibitive due to
power constraints, hardware prefetching techniques are gaining
attraction [33]. Combined with the software-based prefetching
efforts [10], [32], hardware prefetching could provide greater
benefits in the future.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we observe that “pipelining and “blocking*
in query processing are not well defined terms in the literature.
We introduced the notion of UoT, which offers a clearer way to
think about the data transfer mechanism between operators in
a query processing pipeline. We propose an analytical model
which includes a number of dimensions that impact query
performance.

Our analytical model, as well as empirical evaluation for
the Quickstep database system shows that the traditional
“pipelining* and “non-pipelining* strategies are not very dif-
ferent w.r.t. query performance. Additionally, we looked at the
memory consumption during query processing with varying
UoT values. We found that the memory consumption of these
two strategies is similar in many cases, and sometimes a non-
pipelined execution strategy can have a lower memory over-
head when it employs a bloom-filter based pruning technique.

For future work, we plan to revisit the assumptions made
for “pipelining” in the context of new memory technologies
involving complex storage hierarchies.
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