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Abstract—In designing query processing primitives, a crucial
design choice is the method for data transfer between two
operators in a query plan. As we were considering this critical
design mechanism for an in-memory database system that we
are building, we quickly realized that (surprisingly) there isn’t a
clear definition of this concept. Papers are full of ad hoc use of
terms like pipelining and blocking, but these terms are not crisply
defined, making it hard to fully understand the results attributed
to these concepts. To address this limitation, we introduce a
clear terminology for how to think about data transfer between
operators in a query pipeline. We argue that there isn’t a clear
definition of pipelining and blocking, and that there is a full
spectrum of techniques based on a simple concept called unit-of-
transfer. Next, we develop an analytical model for inter-operator
communication, and highlight the key parameters that impact
performance (for in-memory database settings). Armed with this
model, we then apply it to the system we are designing and
highlight the insights that we gathered from this exercise. We
find that the gap between the traditional “pipelining” and “non-
pipelining” methods of query processing, w.r.t. key factors such
as performance and memory footprint is quite narrow, and thus
system designers should likely rethink the notion of “pipelining”
vs. “blocking” for in-memory database systems.

I. INTRODUCTION

A fundamental consideration in analytic query processing

design is the mechanism for communicating data between

operators, such as a select operator feeding to an aggregate

operator, or a select operator feeding to a probe operator to

evaluate a hash join. Typically the source operator is called the

producer and the destination is called the consumer. There are

two broad camps for intra-operator communication methods,

in both traditional disk-based and newer in-memory systems.

These two camps sharply distinguish themselves based on the

data transfer method between producers and consumer. These

camps are pipelining [44], [25] and blocking [23], [13].

Understanding the implication of choosing one method over

the other is non-trivial since there are varied definitions of what

comprises pipelining or blocking. For example, in [26], the

definition of pipeline leans towards “a tuple being processed

should be present in the register”. Vectorwise [44] departed

from the traditional tuple-at-a-time processing model and pro-

posed hyper-pipelining query execution [7] using batches (or

vectors) of tuples. On the other hand, disk-based systems [15],

[19], [38] define pipelining as “tuples should be successively

processed without having to be sent to the disk in between”.

From these examples, we observe that the line between

pipelining and blocking is fuzzy and it depends on the batch

size of data transfer. The first key contribution of this paper
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Fig. 1: Unit of Transfer (UoT).

is to highlight that there is no crisp definition of pipelining

or blocking and that is a key source of confusion. It is hard

to understand results either for or against these mechanisms

without a crisp definition. In this paper we introduce the

term unit-of-transfer (UoT) to clarify these mechanisms. This

simple concept is graphically depicted in Figure 1.

With this terminology we can see that the granularity

of inter-operator transfer mechanisms is really a spectrum;

different systems are designed to support different UoT values.

At one end of the spectrum, a tuple can be the UoT [25],

whereas at the other end of the spectrum, the whole table

(or the whole file or the whole intermediate result) can be

the UoT [13]. Many systems such as MonetDB [23] and

Quickstep [36], which produce batches of tuples as output,

fall somewhere in between the two extremes.

We point out an immediate benefit of introducing the notion

of UoT – it implicitly addresses the confusion about where

data should reside in the memory hierarchy for the data

transfer mechanism to be called ‘pipelining’ or otherwise. For

instance, if the UoT is small, chances are that it resides in

registers, or if the UoT is too big to fit in the memory, it

may be forced to persistent storage. Disk-based systems try to

avoid expensive disk I/O operations. Their UoT is a batch of

tuples that is main-memory resident.

Next, with a new clear terminology of UoT for data transfer

mechanisms, we propose a model to study the implication of

changing UoT for in-memory systems. Here, we enumerate

key factors that are crucial to the model and their interaction.

The factors are parallelism, block size, storage format, query

structure, and hardware characteristics. A combination of these

factors jointly impacts the performance of a query when there

is no I/O bottleneck. The collective space of combinations for

these dimensions is very large, and prior work has largely

looked at individual dimensions and studied their impact on

overall query execution.

The analytical model helps understand the impact of these

factors on query performance. It also presents system designers

and practitioners with a tool to analyze the impact of UoT and

other dimensions on (analytic) query processing performance.
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Then, as a case in point, we apply the proposed model

to a specific system, Quickstep (the system background is

described in Section III), and study the impact of the UoT

on performance.

We speculate that the UoT model can be used as a common

language to describe the previous works more clearly. Inter-

operator data movement involves several implementation de-

tails. In this paper, we discuss these details in the context of

the Quickstep system [36], but these insights likely also apply

in other settings/systems. Our key observations are:

• We observe that the performance of queries depends on

many dimensions like parallelism, block size, storage

format, query plan structure and hardware characteristics

like prefetching.

• We compare the memory requirements of query execution

with changing UoT and observe that for TPC-H queries,

the average memory overhead can be less than 4% of the

base table.

• For smaller block sizes, using a smaller UoT results in

higher performance compared to using a bigger UoT.

As block sizes increase, the UoT does not have much

impact. The latter observation is perhaps surprising given

the amount of attention pipelined query processing has

received.

Our paper is organized as follows: In Sections II and

III we cover essential background and discuss related work.

We discuss the dimensions associated with this study in

Section IV, and present our analytical model in Section V. We

compare memory footprints of strategies with different UoTs

in Section VI. In Section VII, we present our experimental

evaluations, and Section VIII contains our concluding remarks.

II. BACKGROUND AND RELATED WORK

In this section we describe the basics of data transfer

mechanisms for query processing, which we then use to set

the discussion for the rest of the paper.

Data-transfer mechanisms: Since most related works

in this area use the word ‘pipeline’, we will first describe

a ‘pipeline’ so that we can refer to previous work using their

own terminology. However, we emphasize that a pipeline is

simply one of the many possible data transfer mechanisms.

A minimal pipeline in a query plan consists of two op-

erators: A producer operator and a consumer operator. The

output of the producer operator can be passed (or streamed)

to the consumer operator, even when the work for the producer

operator has not finished. An example of a simple pipeline is a

query plan with a logical select operator feeding into a logical

hash-based join operator. Here, a (physical) select operation

(on the probe side) feeds into a “probe” operation.

Deeper pipelines may consist of more than two operators,

such that any two adjacent operators can form a producer and

a consumer pair. Data from the original producer operator can

be passed all the way to the last operator in the pipeline. An

example of a deep pipeline is a left-deep plan for a multi-way

hash join query plan, with all hash tables on the build side

being resident in memory.

There are two key aspects about pipelining, or in general

data transfer mechanisms: Materialization (or the lack of)

and eager execution of consumer operator on the output

of a producer operator. Different systems may vary in the

representation that is used for the temporary data, which is the

output of a producer operator. Systems such as MonetDB [23]

and Quickstep that employ a block-style query processing

model fully materialize the output. Vectorwise [44] has a

compact representation of the intermediate output and does

not fully materialize the output.

Data-centric systems such as Hyper [25] and LegoBase [28]

generate compiled code for the full pipeline. Compared to

block-based systems, like Quickstep, they do not need an ex-

plicit representation for the temporary data (the code generator

picks the internal representation). One can think of the UoT

for such data-centric systems as a single tuple.

Prior Work: Pipelining in database systems has been

studied extensively. Wang et al. [40] proposed an iterator

model for pipelining in an in-memory database cluster. Their

key idea is to provide flexibility in the traditional iterator

through operations such as expand and shrink. Neumann [34]

proposed compilation techniques for query plans, which is

used by Hyper [25], [30]. As discussed earlier, query com-

pilation is one of the techniques for realizing pipelining

in a query plan. Vectorwise [44] pioneered the vectorized

query processing model through the hyper-pipelining query

execution [7]. Departing from the traditional tuple-at-a-time

processing model, Vectorwise used batches (or vectors) of

tuples. These batches, potentially amenable to using SIMD

instructions, help improve Vectorwise’s performance over its

predecessor MonetDB [23].

Kersten et al. in their work on query compilation and

vectorization [26] provide a summary of pipelining in many

systems, from systems as old as System-R [27] to modern

systems like Hekaton [17]. The authors describe two ap-

proaches to pipelining, namely the pull (next interface) and

push (producer/consumer interface) model. Quickstep uses the

push model of pipelining.

Menon et al. proposed Relaxed Operator Fusion model [32]

to bring together techniques like compilation, vectorization

and software prefetching in a single query processing engine

Peloton [2]. Funke et al. showed [18] how pipelined query

processing can work with query compilation and GPU accel-

erated database systems.

There is a large body of prior work on the effect of storage

formats and page layouts on query performance [8], [5], [21],

[20], [4]. We focus on using row and column store formats

for the comparison between various pipelining strategies.

Incorporating parallelism for query execution within a single

node database system has been an active area of study since

the prevalence of multi-core computing, which is exemplified

by many modern systems including [36], [30], [44], [1].

Liu and Rundensteiner [31] studied pipelined parallelism in

bushy plans and propose alternatives to aggressively leverage

pipeline processing. Their work focuses on optimizing query

plans in a distributed execution environment with limited
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memory per node. Our work differs from them in multiple

aspects: We focus on single node in-memory query execution

with large intra-operator parallelism. Further, we focus on

the query scheduler phase, which comes after the (optimized)

query plan has been generated by the optimizer.

Zhu et al. [42] proposed look ahead techniques to increase

the robustness of join query plans, allowing for efficient query

execution in many cases even when the join order may be

“sub-optimal.” Their key idea is to reduce the data movement

between a producer operator and a consumer operator in a join

pipeline by employing a sequence of bloom filters.

Pipelines in many TPC-H queries begin by filtering a large

table (e.g., the lineitem table). Researchers have looked at

sharing this large amount of work across multiple queries [22],

[43]. Scan sharing has shown significant improvements in

query performance, especially in the disk setting.

Many commercial systems including SQL Server [29],

Oracle [11], IBM DB2 [37], Snowflake [12] make use of

pipelining. SQL Server’s query progress estimation techniques

rely on pipelines within a query plan [29], [9].

Distributed systems (MapReduce [13], Dryad [24]) favor re-

liability over pipelining; thus, they materialize the intermediate

data during a job. Recently Bubble Execution [41] proposed

breaking a query execution plan in bubbles such that data can

be streamed within a bubble, while offering reliability.

III. QUICKSTEP BACKGROUND

In this section we provide a brief description of Quickstep

and its implementation of different data transfer mechanism

strategies. We introduce the system to facilitate the subsequent

discussion on various dimensions and the experimental results.

Quickstep aims for high performance for in-memory an-

alytic workloads on a single node. One of the techniques

used by Quickstep to get high performance is large intra-

operator parallelism. Quickstep uses a cost-based optimizer to

generate query plans. Joins in Quickstep use non-partitioned

hash-based implementation [6]. The operators in Quickstep

process a batch of input tuples, rather than one tuple at a time.

Prior work [7] has shown that the vectorized style processing

outperforms tuple-at-a-time processing technique.

Quickstep uses an abstraction called work orders, which

represents the relational operator logic that needs to be ex-

ecuted on a specified input. The work done for a query is

broken into a series of work orders. These work orders can

then be executed independently and in parallel.

There are two kinds of threads in Quickstep – worker and

scheduler. Worker threads execute work orders. Once assigned

a work order, the worker thread executes it until its completion.

A single scheduler thread coordinates the execution of work

orders, including work dispatch and progress monitoring.

A. Managing Storage in Quickstep

Quickstep supports a variety of storage formats such as row

and column store with an optional support for compression.

The data in a table is horizontally partitioned in small indepen-

dent storage blocks. The size of each storage block is fixed, yet

configurable. The intermediate output of relational operators

(e.g. filter) is stored in temporary output blocks, which follow

a similar design as the storage blocks of the base tables.

Each relational operator work order has a unique set of

input, described based on the semantics of the operator. For

instance, a select work order’s input consists of a storage

block and a filter predicate. A probe join hash table work

order’s input is made up of a pointer to the hash table and a

probe input block. A work order execution involves reading the

input(s), applying the relational operator logic on the input(s),

and finally writing the output to a temporary block. (The

output of most operators is represented in the form of storage

block, except when the output itself is a data structure like

hash table; e.g., in the case of a build hash operator, or hash-

based aggregation operators.)

Quickstep maintains a thread-safe global pool of partially

filled temporary storage blocks. During a work order execu-

tion, a worker thread checks out a block from the pool, writes

the output of the work order to the block, and returns the block

to the pool at the end of the work order execution. Thus, a

block is used by at most one operator work order at any given

point in time. This approach has two benefits: 1) We maintain

locality of the output block when output is written to it, and

2) Reduced memory fragmentation due to the reuse of output

memory blocks.

B. Unit of Transfer (UoT)

As Quickstep is fundamentally built on a block-based stor-

age architecture, the UoT used in Quickstep is also defined

w.r.t. blocks. As described earlier, the output of a relational

operator work order is stored in temporary blocks. As soon

as a block is full, it may be deemed ready for data transfer,

subject to the UoT value. For a small UoT value, the scheduler

receives a signal as soon as an intermediate output block is

full, after which it dispatches a work order for the consumer

operator for execution. Partially filled blocks are scheduled for

data transfer at the end of the operator’s execution.

Interplay between block size and UoT: For a given block

size, we consider two extreme values for UoT. The smallest

UoT is a single block. As soon as a block is produced, we

transfer it to the consumer. The largest UoT is the entire

intermediate table, and in this case the system waits for the

entire table to be produced before making it available to the

consumer.

C. Data Transfer Mechanism and Scheduling

A scheduling strategy in Quickstep determines the sequence

in which work orders of a query are executed. As shown in

Figure 2, different values of UoTs generate different schedul-

ing strategies.

For smaller UoT values, a consumer operator work order is

scheduled as soon as it is available. At the higher end of the

spectrum of UoT values, a consumer operator work order is

not scheduled until all the corresponding producer work orders

have finished execution.
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Fig. 2: Interplay between scheduling strategies and UoT

values. A filter operator (σ) and a probe operator (P) for a

hash join are shown on the left. We compare two scenarios:

A low UoT value (with two blocks in a UoT) and a high

UoT value (with 4 blocks), while keeping the block size as

same. On the right are two schedules of work orders. As

the number of blocks in the UoT increases, the schedule

starts to look like traditional non-pipelining approach.

The Quickstep scheduler allows development of sophisti-

cated scheduling policies [14], such as implementation of an

operator with an upper or lower limit on the number of con-

current consumer work orders under execution, or executing

operators under a specified memory budget.

IV. DISCUSSION ON DIMENSIONS

In this section we identify the dimensions that may have

an impact on the performance of data transfer mechanisms

for different values of UoTs. We classify these dimensions

into three categories: physical organization of data (storage

format and block size), execution environment (parallelism and

hardware characteristics), and structural aspects of query. We

describe these dimensions below.

A. Block Size

We first explain the concept of a block size. As the producer

operator processes the input, it materializes the output to a

temporary block. The block size in Quickstep for a given table

is fixed, and can be specified at the time of its creation.

We are interested in the impact of block size on the

performance of the data transfer mechanisms. Consider data

transfer between two operators: select operator → probe

hash table operator. A smaller output block size means that

the block can potentially fill quickly, resulting in more probe

work orders.

B. Storage Format

Data processing time is impacted by the way data is

organized. We look at two common storage formats: the row

store format and the column store format. In the column

store format, values for a given column are stored in a

contiguous memory region. Scanning a single column results

in a sequential memory access pattern, and generally good

cache behavior. In the row store format, all the columns of

a tuple are stored in a contiguous region. Thus, scanning a

particular column involves bringing unnecessary data (non-

referenced columns) into the caches. Selecting all the columns

in a row, however, is more efficient.

Prior work has shown that column stores deliver better

query performance for analytical workloads [4], especially

for scan operators. Recent studies [36] have shown that the

performance gap between column stores and row stores is

not as high as shown in previous work. Therefore we explore

both storage formats. For our comparison, we assume that all

base tables are stored in the same storage format. For micro-

benchmarking in Quickstep, we note that the row store format

is used for temporary tables irrespective of the storage format

of the base tables.

C. Parallelism

We focus on two kinds of parallelisms in query processing:

a) Inter-operator: processing multiple operators at the same

time [23], [30], [36], [44], [11], [37], and b) Intra-operator:

parallel processing inside a single operator. Note that these two

kinds of parallelisms can co-exist in a system [44], [30], [36].

In this paper, we study the impact of intra-operator parallelism

on the relative performance of data transfer mechanisms with

different UoT values.

1) Degree of parallelism: The degree of parallelism (DOP)

of an operator refers to the number of concurrent threads

involved in executing work orders of that operator. The scala-

bility of an operator (using T threads) is its performance with

DOP as T relative to its performance when DOP is 1.

2) Intra-operator parallelism in Quickstep: The scheduler

of Quickstep, as discussed before, dispatches work orders

of relational operators to worker threads. Thus, the DOP of

an operator at a given instance is the number of its work

orders under execution. Since the number of work orders of an

operator can change over time, the corresponding DOP also

changes over time dynamically.

3) Interplay between DOP and UoT values: The UoT

value used in query processing can have an impact on the

DOP of the operators. Consider the example from Figure 2

which compares two UoT values while keeping the block size

constant. In the small UoT case, the available CPU resources

are shared among the filter and probe work orders. For the

higher UoT value, the CPU resources are used exclusively;

first by the filter work orders first and then by the probe work

orders. Thus, the DOP of the operators is lower for small

values of UoT.

4) Scalability: In theory, adding more CPU resources for an

operator execution should offer linear speedup. The assump-

tion being that each parallel work order operates at the same

speed and thus by executing more work orders concurrently,

the overall execution time reduces proportionally.

Linear speedups for operators (or for queries as a whole) are

not always possible. DeWitt and Gray [16] propose reasons for

less than ideal speedup for parallel databases such as startup

costs, interference from concurrent execution, and skew. We

can extend some of their ideas to in-memory systems. For

example interference can come from various sources such

as contention due to latches, and shared use of a common

bandwidth in a memory bus, or shared channels for data

movement across NUMA sockets.
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(a) Column store (b) Row store

Fig. 3: Distribution of the time spent in each TPC-H (scale factor 50) query in operators.

For an operator that exhibits poor scalability, increasing its

DOP beyond a certain limit may degrade its performance.

Specifically, the execution time for each work order of the

operator may increase with a higher DOP value. Recall from

Section IV-C3, the DOP of a consumer operator is proportional

to the UoT value. Thus, smaller values of UoT are good for

the performance of operators with poor scalability.

D. Hardware Prefetching

Hardware prefetching is a technique used by modern pro-

cessors to proactively fetch data in caches by speculating its

access in the future. The prefetcher observes patterns of data

accesses from memory to caches and speculates the access of

a data element in advance. Prefetching hides the latency due

to a cache miss and potentially improves performance. There

are two kinds of prefetching: spatial and temporal, and in this

paper, we focus on spatial prefetching.

Next we describe why prefetching is important in our study.

Lower values of UoT generally results in a large number

of context switches for work order execution (cf. Figure 2).

Thus, having a lower value of UoT may affect the hardware

prefetcher’s ability to predict the data access patterns. There-

fore, we are specifically interested in the impact of hardware

prefetching at lower UoT values.

In addition to the hardware-based prefetching implementa-

tion there are software-based techniques for prefetching, which

can be used to improve the performance of relational opera-

tors [10], [32]. By focusing on hardware-based prefetching,

we can observe the impact of the hardware prefetcher without

modifying the implementation of the relational operators.

For our study, we run the queries with pipelining in two

scenarios: a) when hardware prefetching is enabled (this is

the default behavior of the hardware), b) when hardware

prefetching is disabled (by setting bit 0 and 1 in Model-

specific Register (MSR) at address 0x1A4) as per Intel’s

guidelines [39].

E. Query Plan Structure

Complex queries like the ones in TPC-H contain several

operators, and the impact of UoT values on overall query

execution time is not immediately evident.

To analyze the impact of UoT values on the response time

of a query, we conduct an experiment to dissect the time

distribution of the execution of TPC-H queries. We focus on

the most dominant operator (where the most of the execution

time is spent) and the second most dominant operator for each

query. Note that for this analysis, we run the queries with a

high UoT value (the whole table) to avoid any overlap in time.

The intuition is that if there is only one operator in the query

where the majority of the query execution time is spent, small

UoT values may not play a big role in the overall execution

time of the query.

Figure 3a shows the results of this experiment for base

tables stored in a column store format. For some queries (Q1,

Q6, Q13, Q14, Q15, Q19, Q22) the dominant operator takes

up the majority of the query execution time (more than 50%).

We also note that the dominant operator for many of these

queries is a “leaf” operator (e.g. selection on a base table,

building a hash table on a base table, aggregation on a base

table). Therefore, depending on the structure of a specific

query, small UoT values may not provide significant advantage

in improving the query execution time.

Further, at times large data is pruned at the initial operators

e.g, due to a highly selective filter predicate or a join condition,

or due to application of sideways filters (e.g. LIP [42]). In such

cases, very little data is passed to the consumer operators, and

consequently, the impact of low UoT values is not significant.

V. ANALYTICAL MODEL

In this section we analytically model the performance

difference for varying UoT values. The model uses the di-

mensions introduced in the previous section including the

number of threads used for execution (parallelism), the UoT

values, memory/cache access times, and cache miss penalties

(hardware prefetching). Our model is targeted towards in-

memory environments, but it can be extended to other storage

device settings, as we show in Section V-C. The model and

analysis of memory usage differences is presented in the next

section.
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Notation Description

Rh Cost of reading an UoT to memory hierarchy h from
a lower hierarchy h + 1

ARh Amortized cost of reading an UoT sequentially to
memory hierarchy h from a lower hierarchy h + 1

Wh Cost of writing an UoT to memory hierarchy h from
a higher level hierarchy

IC Cost of an instruction cache miss

Mh Cost of missing a UoT at memory hierarchy h

N in
op Number of input UoTs for operator op

Nout
op Number of output UoTs for operator op

T Number of threads in the system

B UoT size

TABLE I: Notations used for the analytical model

The key idea that we employ is to focus on operations that

result in a cost difference and to ignore common operations

that occur irrespective of the UoT values. Many operations

are common to query processing for all UoT values: e.g.,

the total cost of reading from an L1 cache line is the same

irrespective of the UoT value. As we are interested in the

relative comparison of performance between two different

values of UoT, we largely focus on the additional work that is

incurred when using one UoT value over another UoT value.

Additionally, we take into account the benefits of hardware

prefetching when reading multi-megabyte blocks as UoT in

a sequential access pattern; the amortized cost of reading a

UoT will be substantial smaller than the cost when each UoT

is read on its own without prefetching. As the UoT is read into

memory, access to the initial tuples likely incur an L3 cache

miss, but we assume that the prefetcher can quickly detect the

access pattern, and thus the miss penalty will decrease quickly.

We analyze a basic producer-consumer pair, in which the

producer is a select operator and the consumer is a probe

operator for a hash-based join operation. This producer-

consumer pair is commonly found in the query plans of

analytic workloads, such as TPC-H queries. For example, in

the query plans for Q07 and Q19 from the TPC-H benchmark,

selection is performed on the lineitem table and the output

is subsequently used to probe a join hash table, forming

the select→probe pair for data transfer. Table I contains

various parameters that we use to determine the costs for

different scheduling strategies.

For high UoT values which are comparable to the size of the

table, the output of the select operator is not immediately

consumed by the probe operator. The probe operator is

only initiated after the select operator is complete. Thus,

writing the output of the select operator to memory, and

reading the same UoTs as input to the probe operator is

additional work in the non-pipelining case. Moreover, an input

probe UoT is likely to be cold in the caches when it is read

for the probe.

Thus, for the case of high UoT values equal to the size of

the table, the extra work done can be quantified as:

Wmem ·Nout
select +ARL3 ·N

in
probe + p1 ·N

in
probe ·ML3

Here, Wmem ·Nout
select is the cost to write the output of the

select operator from cache to memory.

Further, ARL3 ·N
in
probe is the total cost of reading probe

UoTs sequentially from memory, expressed as the amortized

cost of reading a UoT sequentially many times.

For the last term, note that a probe work order has two

input components: probe input UoT and a hash table. As

the reads to a hash table are random, it disrupts the sequential

access pattern used to read the probe input UoTs. Therefore,

we account for the cost to read the probe input UoTs as

p1 · N
in
probe ·ML3, where p1 is the probability that there is a

L3 cache miss when reading the probe input after the context

switch back from reading the hash table.

Next, we quantify the additional work done for the case of

small UoT values. In this case, the input for probe UoTs

(which is the output of select) is presumed to be resident

in processor caches. This assumption leads to the following

model:

(Nout
select +N in

probe) · IC + p2 ·N
in
probe · (ML3 +RL3)

+ p′1 · (ML3 +RL3 +Wmem) ·N in
probe

Notice that for low UoT values, every probe work order exe-

cution involves two context switches: First from the select

operation to the probe operation and another from the

probe operation to the select operation. Thus we account

for two instruction cache misses; one for each context switch,

which is represented by the term: (Nout
select +N in

probe) · IC.

Now, we explain the term p2 ·N
in
probe ·ML3. It represents the

cache misses due to the disruption in sequential access pattern

of the select operation, and is caused by the intermittent

probe operations. The term p2 is the probability of an L3

cache miss for the select operator after the context switches

back from the probe operation. The term p2 · N
in
probe · RL3

represents the time taken to move data from memory to cache

after encountering a cache miss.

Finally, the term p′1 · (ML3 + RL3 + Wmem) · N in
probe is

analogous to the L3 cache misses incurred when the probe

input block is read in the non-pipelining case. Here the

assumption that the probe inputs are resident in the L3 cache.

Thus, the probability of whether a probe input is read “hot”

or not is dependent on the size of UoT.

Due to factors such as reading in the relevant UoTs of

the hash table for a probe operation and multiple threads

sharing the L3 cache, each write operation that is incurred

when creating a probe input, and the subsequent probe

input read operation is not guaranteed to be served from the

L3 cache; this cost is exacerbated with larger values of UoT.

To account for this cost, the term p′1 is used to represent the

likelihood that the reads and writes incur L3 cache misses;

it is expressed as min(1, 2B · T/size(L3)). The term p′1 is

smaller for small UoTs, and it is 1 for high values of UoTs

and when T is high.

A. Quantifying the Difference

We now quantify the differences between the two extreme

values of UoTs. We first make a few observations to sim-

plify the analysis. As large UoT values are typically a few

megabytes, the instruction cache miss costs become negligible
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in this case. Thus, we can ignore the cost associated with

instruction cache misses. Second, we observe that N in
probe =

Nout
select. Thus, the ratio of costs of non-pipelining (informally

large UoT) and pipelining (informally low UoT) strategies is

as follows:

Wmem·Nin
probe+ARL3·N

in
probe+p1·N

in
probe·ML3

p2·Nin
probe

·(ML3+RL3)+p′

1
·(ML3+RL3+Wmem)·Nin

probe

This ratio can be simplified to:

ARL3 +Wmem + p1 ·ML3

p2 · (ML3 +RL3) + p′1 · (ML3 +RL3 +Wmem)
(1)

Observe that ARL3 ≪ RL3, while both costs, ARL3 and

RL3, are directly proportional to the size of UoT, B. We

consider the two representative cases of high and low UoTs

values to estimate the difference between the two strategies.

a) High UoT values: For high UoT values (size > |L3|
2·T ),

p′1 is close to 1, and p2 will have a low value. Additionally,

the cost contribution of ML3 is low in general, and Wmem

becomes the dominant cost. We expect that p1 ·ML3
≈ ML3 ·

(p′1+p2); p2 ·RL3+p′1 ·(RL3+Wmem) ≈ p′1 ·(RL3+Wmem),
which leads to p′1 · (RL3+Wmem) ≈ ARL3+Wmem. Hence,

the ratio given in Equation 1 will be very close to 1. Thus, we

expect for high UoT values, the difference between the two

strategies to be negligible.

b) Low UoT values: Smaller UoT values result in a large

number of work orders, which can incur a large overhead

in storage management. Some examples of such overhead

include creation cost of several UoTs, maintaining references

for UoTs present in-memory, and synchronisation costs in the

data structures for storage management. So, in this scenario,

p2 will be close to 1, and p′1 will have a lower value, though

not negligible. The cost contributions from the terms ARL3,

p2 ·ML3, p1 ·ML3, and p′1 ·ML3 will not be significant, and

we expect that Wmem ≈ p2 · RL3 + p′1 · (RL3 + Wmem).
The ratio will be very close to 1; since the cost of Wmem is

dominant, the cost of p2 · RL3 + p′1 · (RL3 +Wmem) can be

slightly lower than Wmem, giving the execution with lower

UoT values a slight advantage.

B. Generalization to other pipelines

So far we have considered only the select → probe

operator pipeline. We focused on this particular pipeline

because it is found in many analytic queries. Some other

operators in a query plan are sort, sort-merge

join, sort-based aggregation, hash-based

aggregation and nested loops join1. Sort-based

operations are typically blocking and generally not amenable

to pipelining. Hash-based aggregation is similar to the

hash-probe scenario that we have discussed. For nested

loops join, the UoT values determine how often there are

cache misses due to context switches for the outer relation.

For the inner relation, nested loops join involves sequential

access pattern. In these other pipelines, we hypothesize that

1We could not experimentally validate our hypothesis as in TPC-H queries,
Quickstep optimizer does not produce plans with such operator pipelines

Fig. 4: A left-deep query plan fragment showing a cascade

of selection and multiple probe operators

the performance for high UoT values and low UoT values

will be similar, as the cost of cache misses resulting from

context switches would be offset by the other access pattern

that is sequential.

C. Applying Model to Other Storage Settings

Our model can be easily applied to other settings, such

as storing data in a persistent store (such as SSD and hard

disk drives) with a in-memory buffer pool. We change the

parameters from Table I appropriately to fit the persistent store

setting. The terms p1 and p2 are nearly 0, when the hash table

is nearly always kept in the buffer pool. Thus, the additional

cost incurred for large values of UoT is:

Rstore ·N
in
probe + wstore ·N

out
select

which could be in the order of seconds for thousands of UoTs.

The additional cost incurred for lower UoT values is:

Nout
select · IC +N in

probe · IC

Note that this value is substantially lower (order of nanosec-

onds or microseconds for thousands of blocks) than that in the

non-pipelining case. Thus, the analytical model is consistent

with the expected behavior for persistent store-based systems.

VI. MEMORY CHARACTERISTICS

We now discuss the memory footprint for different UoT

values. We first formulate the memory footprint of two extreme

UoT values – a high value which is equal the size of the input

table, and a low value. The choice of our UoT values mimic

what are traditionally known as “blocking” and “pipelining”

modes of query processing. Subsequently, we compare their

memory behavior against each other.

As an example, let us consider a cascade of selection and

multiple probe operators as shown in Figure 4. For low UoT

values, once we read a tuple, it is processed by the selection

operation first, and if selected, it is further processed by the

subsequent probe operators (subject to the join condition). This

pipeline necessitates the construction of all hash tables before

the execution of selection-probe operators.

We now consider a large UoT value which is equal to

the size of the selection operator’s output. For such a large

UoT value, the execution can be described as “one join at a

time”. The selection operation is completed first, followed by

building of the hash table and then the probe. Thus, only one

hash table needs to be created at any point of time. However

this case of execution materializes the result of the selection

(and successive probe operations).
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Strategy
Memory footprint

Hash table Intermediate table

Low UoT value
∑n

i=1
|Hi| 0

High UoT value |H1| |σ(R)|

TABLE II: Memory footprint for low and high UoT values

Query Selectivity (%) Projectivity (%) Total (%)

03 53.9 13.1 7.0

07 30.4 18.3 5.6

10 24.7 13.1 3.2

19 2.1 13.1 0.3

Average 27.8 14.4 4.0

TABLE III: Memory reduction with input table lineitem

We contrast the memory requirement for the leaf level join

tree in Table II. We denote the size of the ith join hash table

by |Hi|. The size of the selection output is denoted by |σ(R)|
where R is the input table.

We disregard the common elements contributing to the

memory footprint to determine the difference of memory

footprints such as current join hash tables, base tables, final

join output. Note that our analysis is done on the leaf level

join, however it can be extended to any intermediate join

easily. Therefore the memory overhead comparison for the

two strategies is as follows. For low UoT values:
∑n

i=2 |Hi|,
and for high UoT values it is σ(R).

A. Memory Overhead for high UoT values

We now dig deeper into the memory overhead caused by

having a large UoT value. The key relationship is between

the size of the base table and the size of the materialized

intermediate table. Typically a selection operation on a base

table causes reduction in memory in two ways. The first and

the obvious aspect is the selectivity of the filter predicate. We

define selectivity as s = Ns/N , where Ns is the number of

rows that pass the filter predicate and N is the number of rows

in the input table. The other aspect is projectivity, which we

define as p = Cs/C, where Cs is the total size of the columns

projected per tuple and C is the total size of the columns in the

base table per tuple. We compute selectivity and projectivity

relative to the size of the input table.

B. Memory Overhead for low UoT values

As described earlier, the memory overhead for low UoT

values is the combined memory of the hash tables that can be

probed (except the current join).

Let us consider a single hash table. Typically hash tables

have fixed-sized buckets, say c bytes. Hash tables also have a

load factor, say f where f ∈ (0, 1]. If f is 0.5, the hash table

gets resized as soon as its memory occupancy reaches 50%.

Therefore, the memory footprint of each entry that is inserted

in the hash table is c/f . If the input tuple has a size of w bytes,

and the input table’s size is M bytes, then the resulting hash

table size is (M/w) · (c/f). For low UoT values, computing

the memory overhead involves summing the hash table sizes

for all the hash tables involved.

Query Selectivity (%) Projectivity (%) Total (%)

03 48.6 8.7 4.2

04 3.8 10.9 0.4

05 15.2 5.8 0.9

08 30.4 11.6 3.5

10 3.8 5.8 0.2

21 48.7 2.9 1.4

Average 25.1 7.6 1.8

TABLE IV: Memory reduction with input table orders

Now that we have established the memory overhead for

both low and high UoT values, a natural follow up question

is: Which UoT values result in lower memory overheads?

The answer is dependent on the query and its input tables

characteristics. On the one hand, we see many cases when a

lower UoT value results in a lower memory footprint compared

to using a higher UoT value, especially for queries in the

Star Schema Benchmark (SSB) [35] that have small join hash

tables. On the other hand, we show in the next section that

sometimes high UoT values can also result in significantly low

memory overheads.

C. Memory Analysis for TPC-H Queries

We report the selectivity and projectivity values for selected

TPC-H queries that contain a selection and probe pipeline of

operators when the base table is lineitem or orders (the

two largest tables in the TPC-H schema).

Table III and Table IV presents the selectivity, projectiv-

ity and overall memory footprint of selection operations in

selected TPC-H queries. A key takeaway from these tables is

that even though the selectivity is high, due to the projectivity,

the relative memory overhead of a select operation can be quite

low. In a star-schema or a snowflake-schema typically the fact

tables have large number of rows as well as a large number of

columns. If few columns are projected from the fact table dur-

ing a selection operation, then the relative memory overhead

can be low. Note that both selectivity and projectivity numbers

reported above are without any optimization, thus they are on

the higher side. In practice there are many techniques to reduce

both selectivity and projectivity, as discussed next.

Techniques to lower selectivity: Aggressive pruning tech-

niques like Lookahead Information Passing (LIP) filters [42],

can substantially bring down the selectivity, sometimes by

an order of magnitude or more. Query optimizers often push

down predicates, which can also reduce the selectivity.

Techniques to lower projectivity: One way to lower the

projectivity is to trade memory for computation. Consider the

expression l_extendedprice * (1 - l_discount),

which is found in many TPC-H queries. A lazy evaluation of

this expression involves projecting l_extendedprice and

l_discount attributes. However if the evaluation is folded

with the selection operation, we can project only one attribute,

which is the resultant expression.

To compare the memory overhead between low and high

UoT values, consider TPC-H Q07. This query has a selection

operation on lineitem followed by a cascade of three probe

operations. Of the three hash tables required in this data
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Parameter Description

Processor 2 Intel Xeon Intel E5-2660 v3 2.60 GHz (Haswell EP)

Cores Per socket – 10 physical, 20 hyper-threading contexts

Memory 80 GB per NUMA socket, 160 GB total

Caches L3: 25 MB, L2: 256 KB, L1 (both instruction and data):
32 KB

OS Ubuntu 14.04.1 LTS

Data set TPC-H [3] data (and queries) for scale factor 50

Block sizes 128 KB, which is half of the per-core private L2 cache
size, and 2 MB, which comfortably fits in L3 cache.

UoT values Low UoT is the same as block size and high UoT is the
same as full table’s size.

TABLE V: Evaluation platform

transfer cascade, the second hash table is built on the entire

orders table, which is around 2.4 GB in Quickstep for a

scale factor of 100. The intermediate output of the selection

operation is 2.8 GB without any optimization and 224 MB

with bloom filter based pruning [42]. Thus, in some cases

the memory overhead caused by lower UoT values can be

substantially higher compared to the memory overhead caused

by higher UoT values.

VII. EXPERIMENTAL EVALUATION

We now apply the proposal in Section V and study the

query performance implication of UoT values. Our goal is

to understand the performance characteristics of queries for

different UoT values, and while doing so, to observe the

impact of the various dimensions discussed in Section IV.

A. Experimental Setup

Table V summarize our experimental setup. Note that we

use only a single NUMA socket in this study. We also

experimented with block size as 512 KB and observed similar

results as reported below. Unless specified, we report the

results for the column store format and 20 threads as Quickstep

workers. The buffer pool size in Quickstep is configured with

80% of the system’s memory (126 GB). We run each query

10 times and report the mean of the best three runs.

B. Results

First, we analyze the performance of singleton operators,

followed by a more complex pipeline of operators. Finally,

we study the execution time of entire queries.

1) Performance of Consumer Operators: Low UoT values

ensure that the consumer operator’s input is “hot” in caches.

Does the hotness of the input improve the performance of the

consumer operator? To investigate this issue we perform the

following experiment.

We focus on key deep operator chains (select→probe, as

shown in Figure 4) from the TPC-H queries.

Figure 5 plots the work order execution times for the first

consumer operator. We can observe that a low UoT value

generally benefits the performance of the probe operator. The

extent of improvement diminishes as we increase the block

size from 128 KB to 2 MB. This behavior is consistent with

the findings from the analytical model (cf. Section V).

2) Performance of Operator Chains: Having looked at the

performance of the consumer operators, we zoom out to look

at the performance of the complete chain of operators.

Figure 6 shows the results for this experiment. For smaller

block sizes, low UoT outperforms high UoT values only in

some queries. These queries are the ones in which a low UoT

value has a superior operator performance (see Figure 5). At a

2 MB block size, the operator chains from all queries perform

equally well with both UoT values.

Notice that despite low UoT values having an edge for

individual consumer operator performance, the extent of im-

provement does not match in the operator chain performance.

This behavior is because typically a chain has other operators

(producers, which often dominate the overall execution time).

3) Overall Execution Time:: After analyzing the perfor-

mance of deep operator chains, we further zoom out to

the execution times of the full queries. Figure 7 shows the

results for query execution times for different UoT values.

We can observe that low UoT values perform slightly better

for smaller block sizes. As the block size increases, there

is little difference between the two alternatives. From these

experiments we can conclude that although having low UoT

values benefit individual operators, their impact on overall

query performance is insignificant.

An alert reader may have noticed that query performance

improves as the block size increases for both UoT values. This

behavior is due to Quickstep’s design which favors large multi-

megabyte blocks. For smaller blocks, the storage management

and work order scheduling overheads increase. However, that

this is an orthogonal issue and doesn’t affect our overall

observations, which is also supported by the fact that the

performance impact of block size variation is similar for both

ends of the spectrum of UoT values.

4) Effect of Storage Format: Next, we study the effect of

storage format of base tables on the performance of using low

UoT values. We use two configurations, each with block size

of 2 MB, and all tables either stored in a) column store format

or b) row store format. Note that in both configurations, the

temporary tables are stored in a row store format.

Performance comparison between pipelining strategies

with row store: Recall the trends we discussed for the

performances of consumer operator (Section VII-B1), operator

chain (Section VII-B2) and entire query (Section VII-B3) for

column store. We observe similar trends for the row store case.

In the interest of space we present only one graph for query

execution time using 2 MB block size in Figure 8.

When we compare Figure 8 (row store) with Figure 7b,

we make two observations. First, the query performance is

unaffected by the choice of the UoT value. Second, queries

perform better with tables stored in column store. One reason

why scans on row stores are slower than scans on column

store is that processing a tuple involves fetching unnecessary

data. In contrast, with column stores, we only process what

is necessary from an attribute, and avoid fetching unnecessary

data to the caches.
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(a) Block size 128 KB (b) Block size 2 MB

Fig. 5: Per-task execution times of the probe hash operator when it is the first consumer operator in a pipeline

(a) Block size 128 KB
(b) Block size 2 MB

Fig. 6: Execution times of operator pipelines

(a) Block size 128 KB (b) Block size 2 MB

Fig. 7: Execution times of queries.
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Fig. 8: Execution times of TPC-H queries for the row store

format and a block size of 2 MB

Fig. 9: Scalability of two probe operators with different

hash table sizes from TPC-H Q7. Ideal scalability included.

5) Effect of Parallelism: Next, we study how intra-operator

parallelism impacts performance with the two UoT values that

we have considered. In this experiment we also report results

from running Quickstep with a block size of 512 KB.

We present results for TPC-H Q07 that shows the impact of

scalability on the performance of operators. We pick two probe

operators from query Q07, which are part of a single operator

chain. One has poor scalability, and the other has slightly better

scalability. The reasons for the poor scalability of the probe

operator are: a) It probes a large hash table b) The large hash

table also brings contention issues in the storage management

subsystem. We present the scalability of these probe operators

in Figure 9.

Next, we want to know how the choice of a UoT value

behaves with these operators? Figure 10a and Figure 10b

present the performance of these two operators.

First, let us analyze the operator with the better scalability

(whose input hash table is small). As the block size increases,

both UoT alternatives keep up with the larger probe load, and

the per task execution time increases as expected.

Now we discuss to the operator with poor scalability. Note

that as the block size increases from 128 KB to 512 KB,

the probe operator’s performance improves. As the block size

increases, the contention on the storage management reduces,

(a) Performance (per-task exe-
cution time) of the probe oper-
ator with better scalability

(b) Performance (per-task exe-
cution time) of the probe oper-
ator with poor scalability

Fig. 10: Effect of interaction of various dimensions on

scalability.

Block size
Select Build Probe

Yes No Yes No Yes No

128KB 0.06 0.08 2.0 1.9 0.8 0.8

512KB 0.2 0.3 8.5 7.6 2.2 0.9

2MB 1.1 1.5 38.0 32.7 3.9 3.1

TABLE VI: Average task execution times in millisecond

for the prefetching experiment. Yes (No) imply that the

hardware prefetcher was enabled (disabled).

and performance improves. As the block size increases from

512KB to 2 MB, contention is no longer a dominant factor,

and the task execution time increases because of the added

work in a larger block.

Why don’t we see similar behavior for low UoT values? It

is because by design, the degree of parallelism for low UoT

values is smaller (as explained in Section IV-C3, and thus it

is less prone to the contention discussed earlier.

Overall, when using low UoT values, the system is more

immune to scalability issues as compared to the high UoT

value alternative. Systems can have scalability issues due to

various external factors such as hardware interference, slow

network and internal factors such as skew, poor implementa-

tion of operators. (We also note that as future work it would

be interesting to explore if the probe operator’s scalability

changes when using different hash table structures.)

6) Effect of Hardware Prefetching: Next, we examine the

effect of prefetching when using a low UoT value. For this

experiment the tables are stored in row store format. We run

TPC-H queries with and without the hardware prefetcher. We

note that the total workload execution time is only slightly

(less than 10%) better when the prefetcher is enabled.

In the row store format, to scan even a single attribute, large

amounts of unnecessary data is read. As row store tuples are

fixed width2, the hardware prefetcher can detect the access

pattern of scanning a single attribute.

To understand the impact of hardware prefetching on in-

dividual operators, we pick three operations from Q07 and

compare their execution times with and without prefetching:

selection, building hash table for a join operation, and probing

a join hash table. Our results are presented in Table VI.

2Variable length attributes are stored in a separate region, with a pointer to
the region stored in the tuple.
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Fig. 11: TPC-H performance for MonetDB

Our observations are as follows: Prefetching generally ben-

efits the selection operator. This behavior is understandable as

selection has a sequential access pattern and the prefetcher can

recognize the strides in the memory accesses across tuples in

the row store format.

Prefetching worsens the performance of both the probe and

the build hash operator in many settings. For both operators,

there are two data streams – a sequential access pattern to read

the input and a random read (probe) or random write (build)

access pattern on the hash table. We suspect that due to a mix

of these two access patterns, prefetching does not benefit these

operators.

We ran the same experiment using a column store format,

and found little to no performance difference due to prefetch-

ing. We speculate that hardware prefetching does not make any

significant contribution to an already optimized access pattern

of column stores.

7) Experience with MonetDB: MonetDB [23] and Quick-

step share some similarities in terms of using a block-

style query processing strategy, and materializing the internal

state of operators. We evaluate MonetDB’s (version 11.41.11)

performance on TPC-H queries and show these results in

Figure 11.

Comparing the performance of MonetDB with Quickstep

(Figure 7b), we can see that in 15 queries, Quickstep performs

better than MonetDB. We acknowledge that such a compar-

ison comes with caveats. Quickstep’s query scheduler allows

easier implementation of various UoT values and scheduling

techniques. We are not aware of such a provision in MonetDB.

Additionally, Quickstep and MonetDB use different query

optimization techniques. For instance LIP filters [42] in Quick-

step reduce the data movement across operators significantly.

C. Summary of Experiments

In this section, we summarize our experimental findings

and connect them to the dimensions described in Section IV.

Recall that a key focus is to understand the relative perfor-

mance of the two UoT value alternatives at the extreme ends

of the spectrum. Our high level conclusion is that in the in-

memory setting, for systems using a block-based architecture,

the performance is similar for these two alternatives. We now

discuss the impact of individual dimensions.

Block size: We find that a larger block size bridges the

gap between the performance of the low UoT values and high

UoT values. A larger block size results in a lower degree of

parallelism for operators in a pipeline, and thus also aides

those operators that suffer from poor scalability. However, very

large blocks may cause memory fragmentation. It may also

result in a low DOP, which could lead to CPU underutilization.

Parallelism: Parallelism can affect the performance of

the two UoT alternatives. We saw in Section VII-B5 that using

a low UoT value can be more resilient to performance issues

arising from poor scalability.

Storage Format: The performance gap between the two

UoT alternatives is largely unaffected by the choice of the

base table storage format, though some queries execute faster

when run on tables in the column store format. The benefit of

using column store format over row store format is the highest

for base tables (typically leaf operators in a query plan). As

the number of attributes in the tables reduce from the leaf

operators in a query plans to the root, the advantage of using

a column store starts to diminish.

Hardware Prefetching: Hardware prefetching improves

performance when using a low UoT value. This effect is

more prominent for data stored in a row store format than

in a column store format. We saw that prefetching improves

scan performance in a representative query. Prefetching had

an adverse effect on the probe and build hash operators.

As increasing L3 cache size becomes prohibitive due to

power constraints, hardware prefetching techniques are gaining

attraction [33]. Combined with the software-based prefetching

efforts [10], [32], hardware prefetching could provide greater

benefits in the future.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we observe that “pipelining“ and “blocking“

in query processing are not well defined terms in the literature.

We introduced the notion of UoT, which offers a clearer way to

think about the data transfer mechanism between operators in

a query processing pipeline. We propose an analytical model

which includes a number of dimensions that impact query

performance.

Our analytical model, as well as empirical evaluation for

the Quickstep database system shows that the traditional

“pipelining“ and “non-pipelining“ strategies are not very dif-

ferent w.r.t. query performance. Additionally, we looked at the

memory consumption during query processing with varying

UoT values. We found that the memory consumption of these

two strategies is similar in many cases, and sometimes a non-

pipelined execution strategy can have a lower memory over-

head when it employs a bloom-filter based pruning technique.

For future work, we plan to revisit the assumptions made

for “pipelining” in the context of new memory technologies

involving complex storage hierarchies.
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