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Abstract— We present an analytical design and experimental
verification of trajectory tracking control of a 7-DOF robot
manipulator, which achieves convergence of all tracking errors
to the origin within a finite terminal time. A key feature of
this control strategy is that this terminal convergence time
is explicitly prescribed by the control designer, and is thus
independent of the initial conditions of the tracking errors.
In order to achieve this beneficial property of the proposed
controller, a scaling of the state by a function of time that grows
unbounded towards the terminal time is employed. Through
Lyapunov analysis, we first demonstrate that the proposed
controller achieves regulation of all tracking errors within the
prescribed time as well as the uniform boundedness of the
joint torques, even in the presence of a matched, non-vanishing
disturbance. Then, through both simulation and experiment,
we demonstrate that the proposed controller is capable of
converging to the desired trajectory within the prescribed time,
despite large initial conditions of the tracking errors and a
sinusoidal disturbance being applied in each joint.

I. INTRODUCTION
In many applications where robot manipulators are uti-

lized, the convergence time of the underlying controller plays
a crucial role. In many tasks, there are strict requirements on
the maximum duration of convergence, and thus a failure
to achieve convergence by the required time could lead
to the inability of the robot manipulator to perform its
task. Convergence time also plays a role in the planning
and reliability of robot manipulators. When multiple robot
manipulators are used cooperatively, such as in an assembly
line in industrial applications, having reliable estimates of
the completion time of each individual task is crucial in
order to effectively plan the operation of each manipulator.
A considerable amount of research has been devoted towards
the development of control methods for robot manipulators
which are capable of guaranteeing an upper bound on the
convergence time (potentially dependent on initial condi-
tions), achieving convergence to zero within a finite period
of time.

The literature on finite-time convergence methods con-
cerning robot manipulators can be broadly organized into
3 distinct categories, finite-time methods [1]–[3], fixed-
time methods [4]–[7], and prescribed-time methods [8]–[16].
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Finite-time methods are characterized by a finite convergence
time that is bounded by the norm of the initial condition,
as well as a function of the controller parameters. Thus,
in order to complete a larger set of tasks, with different
initial conditions and maximum allowable operation times,
separate controller parameters must be determined for each
task. Fixed-time methods are characterized by a finite conver-
gence time that is bounded by a function of the controller
parameters which is independent of the initial conditions.
Thus, the process for tuning the controller parameters for
a specific task is considerably simplified, as one no longer
needs to consider the maximum expected initial conditions
of the task. However, it is important to note that the upper
bound of the convergence time is typically conservative and
may not be able to be arbitrarily set.

Prescribed-time methods are characterized by a finite con-
vergence time that is explicitly prescribed as a controller pa-
rameter. This desirable property of prescribed-time methods
enables the same set of controller parameters to be utilized
for a wide variety of tasks with different required completion
times. Due to this desirable property, the development of
prescribed-time methods has become an active research topic
in recent years. One of the first examples of a prescribed-time
method was introduced by Song et al. [8], in which a scaling
of the state of a normal-form nonlinear system by a function
of time that grows unbounded towards the terminal time was
employed. By stabilizing the system in the scaled represen-
tation, regulation in prescribed finite time is achieved for
the original state, along with a smooth, uniformly bounded
control input and the rejection of a matched non-vanishing
disturbance. Another important class of prescribed-time con-
trollers for robot manipulators, which was first introduced by
Becerra et al. [10] and improved upon by Obregón-Flores
et al. [11], utilizes time base generators, which are state
trajectories designed such that the system state smoothly
converges to zero at the prescribed terminal time. A key
feature of this control method is the explicit use of the
initial conditions in the controller structure as a feedforward
term, along with a sliding-mode control scheme to correct
for a uniformly bounded matched uncertainty. Notably, this
scheme exhibits prescribed-time convergence in the ideal
case of no matched uncertainty, and finite-time convergence
when uncertainties are present. In a separate approach, Cao et
al. [14] utilizes a scaling system transformation technique to
transform the Euler-Lagrange system considered into a new
set of variables, in which the boundedness of the variables
ensures that both partial and full state constraints will not
be violated. In addition, this transformation also ensures
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that for any time greater than the prescribed convergence
time, the remaining tracking errors will be less than a
prescribed value. This approach is notable in that the scaling
transformation utilized does not approach infinity as the
terminal time is approached, and thus numerical difficulties
caused by an unbounded gain are avoided in this method.
However, a potential drawback to using this method is that
the controller does not allow for separate control gains for
each joint, meaning that aggressive torques are likely applied
to certain joints of the robot manipulator when there is a
large difference in inertia between joints, which is typically
the case for high-DOF robot manipulators.

In this effort, we reformulate the prescribed-time controller
initially developed by Song et al. [8] in order to handle
the case of trajectory tracking with a robot manipulator.
This formulation yields convergence of the tracking errors
to the origin within the prescribed terminal time, even in
the presence of model uncertainties and a non-vanishing
matched disturbance. Furthermore, through the experimental
verification of this prescribed-time control strategy on Bax-
ter, a 7-DOF redundant robot manipulator, we demonstrate
convergence of the tracking errors to a small neighborhood
of zero by the prescribed terminal time, despite a significant
initial angular position tracking error of 20 degrees on
each joint, as well as a sinusoidal torque disturbance of
0.1 sin 5t applied to each joint. Thus the prescribed-time
control strategy studied here is both theoretically sound and
effective in practice.

Notations: In the following, we use the common defi-
nitions of class K and KL given in [17]. |·| refers to the
Euclidean norm, the matrix norm is defined accordingly, for
M ∈ M`(R)(` ∈ N∗), as |M | = sup

|x|≤1
|Mx| and the spatial

norm is defined as follows:

‖f‖[a,b] = sup
t∈[a,b]

∣∣f(t)
∣∣

II. MATHEMATICAL MODELING

The redundant manipulator, which is being studied here,
has 7-DOF as shown in Figure 1. The Euler-Lagrange
formulation leads to a set of 7 coupled nonlinear second-
order ordinary differential equations:

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) +D(t) = τ (1)

where, q, q̇, q̈ ∈ R7 are angles, angular velocities and angular
accelerations of joints, respectively, and τ ∈ R7 indicates the
vector of joints’ driving torques. Also, M(q) ∈ R7×7 is a
symmetric mass-inertia matrix, C(q, q̇) ∈ R7×7 is a matrix of
Coriolis coefficients, G(q) ∈ R7 is a vector of gravitational
loading, F (q̇) ∈ R7 represents a vector of frictional torques,
and D(t) ∈ R7 is a vector of disturbance torques with an
unknown bound applied to the system.

Our verified coupled nonlinear dynamic model of the
robot [18]–[31] is used as the basis of the prescribed-
time approach. In order to formulate a controller that is
robust to modeling uncertainty, the values of the mass
matrix, gravity vector, and frictional torques derived from
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Fig. 1. The joints’ configuration: (a) sagittal view; (b) top view

this dynamic model are treated as estimates, and are denoted
as M̂(q), Ĝ(q), F̂ (q̇), respectively. We make the following
assumptions concerning the difference between our dynamic
model and the true dynamics of Baxter:

Assumption 1. The true and estimated values of the mass
matrix, Coriolis matrix, gravity vector, frictional torques, and
the disturbance torques satisfy the following inequalities:∣∣∣M−1(q)M̂(q)− I

∣∣∣ ≤ c1 (2)∣∣∣M−1(q)C(q, q̇)q̇
∣∣∣ ≤ c2|q̇|2 (3)∣∣∣M−1(q)(Ĝ(q)−G(q))
∣∣∣ ≤ c3 (4)∣∣∣M−1(q)(F̂ (q̇)− F (q̇))
∣∣∣ ≤ c4|q̇| (5)∣∣∣M−1(q)D(t)
∣∣∣ ≤ c5∣∣D(t)

∣∣ (6)

Assumption 2. The true mass matrix M(q), and the esti-
mated mass matrix M̂(q) are symmetric and positive definite.

Furthermore, we make the following assumption regarding
the reference joint trajectories:

Assumption 3. The desired joint trajectories are designed
such that qr(t), q̇r(t), and q̈r(t) ∈ R7 exist and are uniformly
bounded for all t ∈ [0, T ], where T > 0 is the prescribed
terminal time.

III. PRESCRIBED-TIME TRACKING FOR ROBOT
MANIPULATORS

We consider the following trajectory tracking system:

Ė =

[
ε̇

M−1(τ − Cq̇ −G− F −D)− q̈r

]
(7)

ε = q − qr (8)

E = [ε, ε̇]T (9)

where E ∈ R14 is the state error vector, and ε ∈ R7 is the
vector of joint angular position tracking errors.

In order to regulate this system in prescribed-time, we
first introduce the following monotonically increasing scaling
function, as well as it’s inverse:

µ1(t) =
T

T − t
, t ∈ [0, T ) (10)

ν1(t) = µ(t)−11 =
T − t
T

, t ∈ [0, T ) (11)
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where T > 0 is the prescribed terminal time, with the
properties µ(0) = 1, µ(T ) = +∞, ν(0) = 1 and ν(T ) = 0.
To achieve prescribed-time regulation of the tracking errors,
we introduce the following change of coordinates:

w(t) = µ(t)ε(t) (12)
z(t) = ẇ(t) + αw(t) (13)

where
µ(t) = µ1(t)2 (14)

and α > 0. This change of coordinates results in the
following forward and inverse scaling transforms:

Z = µ

[
I 0

(α+ µ1
2
T )I I

]
E = P (µ1)E (15)

E = ν1

[
ν1I 0

(−ν1α− 2
T )I ν1I

]
Z = Q(ν1)Z (16)

Z = [w, z]T (17)

where I ∈ R7×7 is the identity matrix, P (µ1) ∈ R7×7 is
the forward scaling transform, Q(ν1) ∈ R7×7 is the inverse
scaling transform, and Z ∈ R14 is the scaled state error
vector. By taking the time derivative of (15) and substituting
the inverse transformation (16), the dynamics of the scaled
state error vector are obtained:

ẇ = z − αw (18)

ż = µ

[
ε̈−

(
α2ν21 + αν1

4

T
+

2

T 2

)
w +

(
ν1

4

T
+ αν21

)
z

]
(19)

where

ε̈ = M−1(τ − Cq̇ −G− F −D)− q̈r (20)

Before presenting the design of the prescribed-time control
law, it is first necessary to present several definitions concern-
ing notions of stability within a finite prescribed interval of
time.

Definition 1 (FT-ISS [8]). The system ẋ = f(x, t, d) (of
arbitrary dimensions of x and d) is said to be fixed-time input-
to-state stable in time T (FT-ISS) if there exists a class KL
function β and a class K function γ, such that, for all t ∈
[0, T ): ∣∣x(t)

∣∣ ≤ β (|x0|, µ1(t)− 1
)

+ γ
(
‖d‖[0,t]

)
(21)

Definition 2 (FT-ISS+C [8]). The system ẋ = f(x, t, d) (of
arbitrary dimensions of x and d) is said to be fixed-time input-
to-state stable in time T and convergent to zero (FT-ISS+C)
if there exists class KL functions β and βf , and a class K
function γ, such that, for all t ∈ [0, T ):∣∣x(t)

∣∣ ≤ βf (β (|x0|, µ1(t)− 1
)

+ γ
(
‖d‖[0,t]

)
, µ1(t)− 1

)
(22)

As the function µ1(t)− 1 starts at zero and grows mono-

tonically to infinity as t → T , a system that is FT-ISS is
also ISS, with the additional property that in the absence of
a disturbance d, it is fixed-time globally asymptotically stable
in time T . Additionally, a system that is FT-ISS+C is also
FT-ISS, with the additional property that the state converges
to zero even in the presence of a disturbance.

Now, we present the design of the prescribed-time control
law.

Theorem 1. Under Assumptions 1-3, consider the system (7)
with the controller:

τ(t) = −M̂(q)
[
(k + θ + ηψ(q̇)2)z(t) + q̈r(t)

]
+Ĝ(q)+F̂ (q̇)

(23)
where

ψ(q̇) = |q̇|2 + |q̇|+ 1 (24)

If the controller gains are chosen such that ρ, k, η > 0,

ρkα2 >
1

4λ2M
, (25)

and

θ ≥ 1

λM

(
α+

4

T

)
+ ρ

(
α2 + α

4

T
+

2

T 2

)2

(26)

where

λM = min
q∈[0,2π)

λmin

(
M−1(q)M̂(q) + M̂(q)M−1(q)

2

)
(27)

then the closed loop system (7) with (23) is FT-ISS+C and
the joint torques τ remain bounded over [0, T ).

IV. LYAPUNOV ANALYSIS

For the purpose of the Lyapunov analysis, we propose the
following Lyapunov function:

V =
1

2
|z|2 (28)

Taking the derivative of this function yields:

V̇ = µzT
[
−M−1M̂(k + θ + ηψ2)z + (M−1M̂ − I)q̈r

+M−1
(
Ĝ−G+ F̂ − F − Cq̇ −D

)
−
(
α2ν21 + αν1

4

T
+

2

T 2

)
w +

(
4

T
ν1 + αν21

)
z
]
(29)

First, we seek to obtain an upper bound for the 1st term
of V̇ . Utilizing the positive definite symmetric property of
the mass matrices as stated in Assumption 2:

zTM−1M̂z = zT

(
M−1M̂ + M̂M−1

2

)
z ≥ λM |z|2

(30)
where λM is first defined in (27).

Next, we examine the 2nd and 3rd terms of V̇ . Through the
application of Assumptions 1 and 3, the following inequality
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can be obtained:

(M−1M̂−I)q̈r+M−1
(
Ĝ−G+ F̂ − F − Cq̇ −D

)
≤ ψd

(31)
where

d(t) = max
{
c1‖q̈r‖[0,t] + c3 + c5‖D‖[0,t], c2, c4

}
(32)

Applying (30) and (31) to (29), along with Young’s
inequality yields the following inequality:

V̇ ≤ −µλM |z|2(k + θ + ηψ2) + µηλMψ
2|z|2

+
µ

4ηλM
d2 + µρλM |z|2

(
α2ν21 + αν1

4

T
+

2

T 2

)
+

µ

4ρλM
|w|2 + µ|z|2

(
4

T
ν1 + αν21

)
(33)

Through the application of (26), this inequality can be
further reduced:

V̇ ≤ −2µλMkV +
µ

4ηλM
d2 +

µ

4ρλM
|w|2 (34)

In order to proceed with the Lyapunov analysis, it is
necessary to introduce a technical lemma from the work of
Song et al. [8].

Lemma 1. If a continuously differentiable function V :
[0, T )→ [0,+∞) satisfies:

V̇ (t) ≤ −2kµ(t)V (t) +
µ(t)

4λ
d(t)2 (35)

for positive constants k, λ, where µ(t) is defined in (10),
then:

V (t) ≤ ξ(t)2kV (0) +
‖d‖[0,t]

8kλ
, ∀t ∈ [0, T ) (36)

where ξ is the monotonically decreasing function:

ξ(t) = eT (1−µ1(t)) (37)

with the properties that ξ(0) = 1 and ξ(T ) = 0.

Through the application of this lemma to (34), it can be
seen that:∣∣z(t)∣∣ ≤ ξ(t)λMk|z0|+

1

2λM
√
k

(
‖w‖[0,t]√

ρ
+
‖d‖[0,t]√

η

)
(38)

and thus the z-system is FT-ISS w.r.t. the w-input with a
gain of 1

2λM

√
kρ

and is also FT-ISS w.r.t the d-input. In order
to obtain the behavior of the w-system, one can rearrange
(13) to obtain ẇ(t) = −αw(t) + z(t). From this point, it is
straightforward to obtain a bound on w:∣∣w(t)

∣∣ ≤ |w0|e−αt +
1

α
‖z‖[0,t] (39)

and thus the w-system is ISS w.r.t the z-input with a gain
of 1

α . Thus by the small-gain theorem, if condition (25) is
satisfied, then the combined system Z is ISS w.r.t. d and thus
there exist constants Γ, δ, γ > 0 such that:∣∣Z(t)

∣∣ ≤ Γ|Z0|e−δt + γ‖d‖[0,t] (40)

Through the substitution of the scaling transformation (15)
into the right side of (40), followed by the substitution of the
resulting inequality into the right side of the inverse scaling
transformation (16), the following inequality is obtained:∣∣E(t)

∣∣ ≤ ν1(t)
[
Γ̆|E0|e−δt + γ̆‖d‖[0,t]

]
(41)

where

Γ̆ = Γ
∣∣P (1)

∣∣ max
ν1∈[0,1]

∣∣Q(ν1)
∣∣ (42)

γ̆ = γ max
ν1∈[0,1]

∣∣Q(ν1)
∣∣ (43)

Due to the fact that ν1(T ) = 0, this inequality establishes
that the closed loop system (7) with (23) is FT-ISS+C. Due to
the boundedness of Z(t) established in (40), the boundedness
of E(t) established in (41), and the boundedness of qr, q̇r,
and q̈r established in Assumption 3, the uniform bounded-
ness of the input τ is established from (23).

V. REMARKS ON PRESCRIBED-TIME CONTROL LAW

Through the substitution of the scaling transform (15) to
the control law (23), it is possible to obtain an expression
for the control law in terms of the joint angular position and
velocity errors ε, ε̇ rather than the scaled state z:

τ = −µ2
1M̂

[
(k + θ + ηψ2)

((
α+ µ1

2

T

)
ε+ ε̇

)
+ q̈r

]
+Ĝ+ F̂ (44)

From this representation, the role of the controller param-
eters k, θ, η, and α can be observed. k + θ is a scaled
PD gain, and thus is the primary driver of the error signal
to zero, η is the gain of the nonlinear damping term ψ,
which aims to attenuate the effects of uncertainties on the
control law, and α is a weighting factor which determines
the ratio between the proportional and derivative gains of the
control law. Thus, implementing the proposed prescribed-
time control law control law requires the tuning of just 3
parameters (treating k + θ as 1 parameter), whose effect
on the control law is readily observed. Furthermore, due to
the direct dependence of the control law on the prescribed
final time T , these 3 controller parameters need only be
determined once for a given robot manipulator, regardless
of the specific tasks the manipulator needs to perform. Thus,
the proposed control law can be readily applied to a wide
variety of tasks with different convergence time constraints.

A potential barrier to the practical application of this
proposed method is the consequences of employing an
unbounded gain µ1(t). While the proposed control law
guarantees boundedness of the control torques τ(t) even
in the presence of non-vanishing uncertainties, problems
may still arise due to measurement noise, numerical issues
when multiplying large gains with small errors, and a finite
controller frequency. In order to combat these practical
issues, one effective strategy that can be employed is gain
clipping. Using this strategy, we define a constant ζ ∈ (0, 1)
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and redefine µ1(t) in (44) as:

µ1(t) =
T

T −min{t, ζT}
(45)

This redefinition of (10) upper bounds the scaling gain
µ1 by the value 1

1−ζ , ensuring that the controller gains do
not grow past the point where the previously mentioned
issues begin to noticeably affect the closed-loop system.
A consequence of this modification is that the regulation
of the tracking errors is to a small neighborhood of zero,
rather than exactly zero as when utilizing an unbounded
gain. Employing a ζ that is sufficiently large can ensure that
this neighborhood is negligible, achieving performance that
is qualitatively similar to that of utilizing an unbounded gain.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In order to assess the performance of the proposed
prescribed-time approach, we perform both a simulation
using ODE methods on Baxter’s dynamic equation (1), as
well as an experiment. In both the simulation and experiment,
Baxter must track a trajectory designed for a pick and place
task in [24], while under the influence of a torque disturbance
of D(t) = 0.1 sin(5t) applied to each joint. In addition, this
task is purposely started from a large initial angular position
error of 20 degrees for each joint. Thus, this simulation and
experiment demonstrates the ability of the proposed method
to converge from a large initial condition to the desired
trajectory within the prescribed finite time, while rejecting
a large torque disturbance. The controller parameters used
in both the simulation and experiment are T = 6, k+θ = 5,
η = 0.005, α = 2, and ζ = 0.4.

(a) (b)

(c) (d)

Fig. 2. The experimental (blue line), simulated (green line), and desired
(red dashed line) joint trajectories of Baxter: (a) Joint 1, (b) Joint 3, (c)
Joint 6, (d) Joint 7

The experimental, simulated, and desired joint trajectories
for several select joints can be seen in Figure 2. Despite the
large initial joint tracking errors, as well as the large sinu-
soidal disturbance applied to the system, negligible tracking
errors are achieved after around 2.5 seconds of operation.

(a) (b)

Fig. 3. The simulated (a) and experimental (b) joint tracking errors of
select joints of Baxter (Joints 1, 3, 6 and 7).

Throughout the procedure, oscillations in the joint angular
positions can not be observed from this figure, indicating that
the nonlinear-damping method employed was effective at ab-
sorbing the effect of the sinusoidal disturbance. Furthermore,
minimal overshoot is observed during the 1st 2.5 seconds of
operation, indicating that the proposed control law is acting
neither too aggressively or too leniently in the beginning
of the task. Observing Figure 3, it is possible to see the
convergence behavior of the proposed method in more detail.
After 2.5 seconds of operation, roughly coinciding to the time
of ζT = 2.4 seconds where the gain multiplier µ1 stops
increasing, the majority of the tracking errors have already
been significantly attenuated. From 2.5 seconds onward, the
residual tracking errors, mostly resulting from the sinusoidal
torque disturbance, are attenuated to an acceptably small
value of less than 0.2 degrees.

(a) (b)

(c) (d)

Fig. 4. The experimental (blue line) and simulated (red dashed line) joint
torque input signals of Baxter: (a) Joint 1, (b) Joint 3, (c) Joint 6, (d) Joint
7

The experimental and simulated joint toque input signals
for several select joints can be seen in Figure 4. It is
important to note that these torques are significantly lower
than the maximum torque output of Baxter’s joints, which
are 50 Nm for joints 1-4, and 15 Nm for joints 5-7. Thus, the
prescribed-time approach is able to correct for a large initial
error without producing excessive joint torques. Additionally,
the simulated torques remain smooth throughout the proce-
dure and do not display chattering, which can negatively
affect the lifespan of the actuators used to control the robot
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manipulator.

VII. CONCLUSION

In this research effort, we formulated and experimentally
verified the prescribed-time trajectory tracking control of a
7-DOF robot manipulator. In order to ensure regulation of
the tracking errors by the prescribed final time, we employed
a scaling of the state by a function of time that grows un-
bounded towards the terminal time. Through Lyapunov anal-
ysis, we demonstrated that the proposed controller achieves
regulation of all tracking errors within the prescribed time
with a torque that is uniformly bounded, even in the presence
of a matched non-vanishing disturbance. Through inspection
of the control law, we demonstrated that the choice of
parameters for the proposed control law is intuitive and
straightforward, and that the controller could be implemented
in a practical system with minimal modifications. Then,
through both simulation and experiment, we demonstrated
that the proposed controller is capable of converging to the
desired trajectory within the prescribed time, despite large
initial conditions of the tracking errors and a sinusoidal
disturbance being applied in each joint.

ACKNOWLEDGMENT

This article is based upon work supported by the National
Science Foundation under Award #1823951-1823983. The
views and opinions of authors expressed herein do not nec-
essarily state or reflect those of the United States Government
or any agency thereof.

REFERENCES

[1] Y. Hong, Y. Xu, and J. Huang, “Finite-time control for robot manip-
ulators,” Systems & control letters, vol. 46, no. 4, pp. 243–253, 2002.

[2] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-
time control for robotic manipulators with terminal sliding mode,”
Automatica, vol. 41, no. 11, pp. 1957–1964, 2005.

[3] D. Zhao, S. Li, Q. Zhu, and F. Gao, “Robust finite-time control
approach for robotic manipulators,” IET control theory & applications,
vol. 4, no. 1, pp. 1–15, 2010.

[4] Y. Wang, M. Chen, and Y. Song, “Robust fixed-time inverse dynamic
control for uncertain robot manipulator system,” Complexity, vol.
2021, 2021.

[5] Y. Su, C. Zheng, and P. Mercorelli, “Robust approximate fixed-
time tracking control for uncertain robot manipulators,” Mechanical
Systems and Signal Processing, vol. 135, p. 106379, 2020.

[6] X. Jin, “Adaptive fixed-time control for mimo nonlinear systems with
asymmetric output constraints using universal barrier functions,” IEEE
Transactions on Automatic Control, vol. 64, no. 7, pp. 3046–3053,
2018.

[7] L. Zhang, Y. Wang, Y. Hou, and H. Li, “Fixed-time sliding mode
control for uncertain robot manipulators,” IEEE Access, vol. 7, pp.
149 750–149 763, 2019.

[8] Y. Song, Y. Wang, J. Holloway, and M. Krstic, “Time-varying feedback
for regulation of normal-form nonlinear systems in prescribed finite
time,” Automatica, vol. 83, pp. 243–251, 2017.

[9] Y. Song, Y. Wang, and M. Krstic, “Time-varying feedback for stabi-
lization in prescribed finite time,” International Journal of Robust and
Nonlinear Control, vol. 29, no. 3, pp. 618–633, 2019.

[10] H. M. Becerra, C. R. Vázquez, G. Arechavaleta, and J. Delfin,
“Predefined-time convergence control for high-order integrator sys-
tems using time base generators,” IEEE Transactions on Control
Systems Technology, vol. 26, no. 5, pp. 1866–1873, 2017.

[11] J. Obregón-Flores, G. Arechavaleta, H. M. Becerra, and A. Morales-
Dı́az, “Predefined-time robust hierarchical inverse dynamics on torque-
controlled redundant manipulators,” IEEE Transactions on Robotics,
vol. 37, no. 3, pp. 962–978, 2021.

[12] A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, E. Jimenez-Rodriguez,
and A. G. Loukianov, “Predefined-time robust stabilization of robotic
manipulators,” IEEE/ASME Transactions on Mechatronics, vol. 24,
no. 3, pp. 1033–1040, 2019.

[13] J. D. Sánchez-Torres, A. J. Muñoz-Vázquez, M. Defoort, E. Jiménez-
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