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ABSTRACT

Failures in 5G mobile networks are becoming the norm with the
ongoing global rollout. If left unattended, they affect mobile user ex-
periences and the proper functioning of applications. In this work,
we describe SEED, which offers a novel SIM-based solution to 5G fail-
ure diagnosis and handling. SEED infers failure causes by exploiting
current standardized 5G error codes and decision-tree/online learn-
ing algorithms. It further takes corresponding multi-tier reset/redo
actions (reset protocol operations, refresh outdated configurations,
reload profiles, etc.) once the failure cause is inferred. SEED takes
the operator’s perspective in its design for fast deployment. SEED
design works within the 5G standard framework and does not re-
quire changes on the device firmware or infrastructure hardware.
Our evaluation has confirmed the viability of SEED.
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1 INTRODUCTION

Failures in the 5G mobile network have become the norm, rather
than exceptions. As the system scale grows bigger and small cells
are deployed, users and their smartphone applications perceive
failures on a regular basis. In this work, we study the diagnosis and
treatment of network failures on both control and data planes in
the 5G protocol stack. As a showcase study, our analysis on public
5G traces reveals that, 2832 failure cases are uncovered from 24k
control/data-plane management procedures. Other prior studies
[35] also confirmed the prevalence of failures in 5G. If left unat-
tended, such failures may incur long disruptions for 5G-based Inter-
net access and impede the proper functioning of 5G applications.
Existing solutions to 5G failures take the modem-based scheme [3]
or the OS-centric approach [12] at the device. They use the timeout-
based detection with multiple timers, and take the sequential retry
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(i.e., level-by-level from transport, to 5G protocols, to radio module)
approach to failure recovery. Consequently, such detection and
reaction schemes are ill-suited for the complex 5G failure cases and
result in prolonged service disruptions ranging from tens of seconds
to tens of minutes. The fundamental problem is that, 5G failures
are highly diversified; they arise in the wide spectrum of control-
and data-plane managements, and data packet delivery. Without
cooperation from the infrastructure and the device to facilitate fine-
grained diagnosis, neither approach learns the error causes, but
takes the blind, sequential retry scheme to failure management.

In this work, we present SEED, a novel solution to 5G failure
diagnosis and treatment. SEED offers the SIM-based, pure software
solution. It provides fine-grained failure detection and recovery at
runtime by leveraging information from both the device and the 5G
network. It exploits the currently available SIM-network communi-
cation channel, which is conventionally used for mutual authen-
tication and add-on services [51], for a novel usage: collaborative
failure diagnosis. SEED thus leverages the 5G standardized messages
to infer failure causes, and devises domain-specific decision-tree
and online learning algorithms to enhance failure cause inference.
It further uses multi-tiered reset/redo (e.g., reset protocol message
operations, refresh the outdated configurations, reload the profiles)
for differentiated failure treatments. In contrast to complex failure
recovery mechanisms (e.g., rollover, logging and checkpointing,
state consistency management), SEED uses simple, yet effective re-
sets to handle all three categories of control-plane, data-plane, and
data delivery failures. Moreover, SEED leverages the existing sig-
naling messages defined by the 5G standards to enable real-time
failure diagnosis and handling. Consequently, the signaling with
diagnosis information could still be transmitted even when the data
session is not established or broken upon failures. Our empirical
evaluations over the testbed have confirmed that, SEED can reduce
the disruption time from 12.4~476.0s by the current modem/OS-
based schemes to 0.4~8.0s, a factor 0.6xX~792x of reduction. The
incurred extra battery usage at the device is about 1.2%.

The design of SEED takes the mobile operator’s view, who we
believe is in the best position for fast deployment and paced in sync
with the ongoing 5G global rollout. The design modules of SEED
running at the SIM applet, as well as added operations at the carrier
app, can be readily installed when a subscriber activates her/his
5G smartphone; this is already the common practice today. SEED
offers two modes with and without root privilege. The SIM and
carrier app updates can leverage the current practice via the OTA
channel for software upgrade. The infrastructure-side design of
SEED is also divided into phases for ease of incremental deployment.
Operators could deploy SEED with software updates at their core
network to enable diagnosis messages and perform online learning.
Furthermore, SEED does not pose new security threats. Everything is
under the operator’s control. Normal users cannot access/modify its
operations. Finally, SEED works within the 5G framework and does
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Figure 1: 5G device/infrastructure components

not require changing the current device firmware or infrastructure
hardware. It is also applicable to 4G LTE.

2 BACKGROUND

5G cellular network primer In 5G, mobile devices rely on
two key modules to access the network, the SIM/eSIM! and the
modem. The SIM stores critical subscriber information, including
user identities, configurations, and security keys, etc. The modem
loads the needed information from the SIM to register the device to
the network. To this end, the SIM runs its various programs (called
applets) to handle profile transmissions and authentication.

For data transfer, the mobile device proceeds with three stages
as shown in Figure 1. First, the modem sets up the control plane
via 5G signaling messages, including identity exchange, mutual
authentication between the SIM and the network, location update,
etc. Second, the modem and the infrastructure exchange signaling
messages for the data-plane setup?®. This step completes data-plane
configurations including device IP address, and DNS server, etc.
Finally, the device starts data packet delivery for its applications.

Cellular network failures Failures have become the norm
rather than an exception in real-world 5G usage. Recent studies
show that, 30% of 5G devices experience failures during an 8-month
measurement [35]. Various failures are also reported by users each
day [21, 22]. From the technology perspective, 5G is using small
cells in the mmWave bands with smaller single-cell coverage, thus
triggering more frequent handovers [62]. Therefore, 5G may incur
more failure events with the increased frequency to sync up the
control-plane state, security update, and data sessions.

Failures in 5G are consequently becoming diversified. In gen-
eral, three types of failures arise at different stages of data transfer.
Control-plane management failures arise during the control signal-
ing operations, including setup, tracking area update, or teardown
procedures. Data-plane management failures affect the data session
setup, modification, or release procedures. Data delivery failures
incur packet delivery stall with established data-plane sessions due
to various causes (e.g., DNS errors, port blocking, etc).

These failures happen at both device and network sides. The
device may use outdated configurations, resulting in connectivity
failure [56]. The network could suffer from congestion, thus unable
to respond to requests in time [67]. Every component (hardware,
cellular stack, OS, etc.) could be the source of failure [35], given
the diversity and complexity of devices and infrastructure in both
hardware and software.

Cellular failure diagnosis & handling In principle, failures

need to be diagnosed with their root causes and handled with
differentiated actions. Given the limited capability to control the

!In this paper, we use SIM to denote both SIM and eSIM for a slight abuse of notation.
This is called bearer setup in 5G standards [1].
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device behavior from the infrastructure, current failure diagnosis
and handling are usually performed on the device side. There are
two popular approaches at the modem and the OS, respectively.

The modem implements the 5G-specific protocol stack in the
firmware. It thus handles control/data-plane management failures [3].
It identifies the failed procedures based on standardized protocol
messages and their finite state machines, and decides whether to
abort the connection or trigger retransmissions. For example, if
the modem fails to receive any response from the network for Reg-
istration Request, it will wait for T3511 (10s by default) and then
retry. After five such attempts, the modem waits for the longer
timer T3502 (12mins by default) and proceeds to retry. The timeout
varies for different procedures.

In the OS-based solution, OS implements more detection and
reaction mechanisms. The popular Android uses new mechanisms
of “timeout based probe and restart” for data delivery failures [12].
It monitors the network statistics, and periodically sends DNS and
HTTPS requests for failure detection. Android failure detection can
be categorized into three classes: connection issue to a preset URL?,
TCP failure*, and consecutive DNS timeouts®. Android first queries
the current connection list from the modem, and handles all such
failures with the same progressive approach of “sequential retry”:
clean up and restart all current TCP connections, re-register to the
network, and restart the modem. Android sets a three-minute timer
between each action if the previous action did not recover the data
connection successfully.

3 LIMITATIONS OF CURRENT SOLUTIONS

Despite the current solutions at the device, 5G users still regularly
perceive data service related failures, even with a strong radio sig-
nal bar at the smartphone [43]. We thus seek to first understand
how failures exhibit in practice given the deployed failure mecha-
nisms through a trace analysis. We then assess the existing modem
and Android failure handling. Our results show that both solutions
only perform coarse-grained diagnoses and cannot handle diversi-
fied failures well. Existing modem schemes incur repeated failures
and long disruptions, and Android suffers from prolonged failure
detection and false positives.

3.1 Failures in the Real World

In this work, we focus on failures related to the 5G protocol stack.
The network failures induced by other components, such as inter-
net outages, erroneous application implementations, or OS firewall
settings (e.g., user-determined network restrictions for apps), are
out of scope. We first analyze control/data-plane management fail-
ures in 5G. The 5G standard provides failure causes to indicate
failure reasons for control/data-plane management [3], which in-
herit from LTE with 5G context. We perform our trace analysis on
the publicly available, 6.7TB 5G/4G datasets collected from 2015-
Q3 to 2021-Q4. These public datasets include 4.7 million signaling
messages collected by 30+ device models using open-source tools
of MobileInsight [36] and MI-LAB [42]. The traces contain 8 mobile
carriers from the US and China. We found 2832 failure cases from

3 Android captive portal domain: connectivitycheck.gstatic.como.

4TCP failure rate exceeds 80%, or over ten outbound packets but no inbound packets
during the last minute.

SFive consecutive DNS timeouts within 30 minutes.
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Class Failure Causes

UE identity cannot be derived by the network (15.2%)
Control | No Suitable Cells In tracking area (12.6%)

Plane PLMN not allowed (10.3%)

(56.2%) No EPS bearer context activated (7.5%)

Message type not compatible with the protocol state (2.8%)

Requested service option not subscribed (7.9%)
Data Invalid mandatory information (5.9%)

Plane User authentication failed (4.7%)

(43.8%) Request rejected, unspecified (2.6%)
Insufficient resources (1.9%)

Table 1: Top 5 failure causes in control/data plane

24k control/data-plane management procedures; this gives a non-
trivial, over 10% failure ratio per control/data-plane management
lifespan. Table 1 shows the top 5 failure causes in the control and
data plane management. We elaborate on them next.

For control plane management, 3 out of 5 most frequent failures
are due to infrastructure-device status synchronization. The infras-
tructure fails to derive the updated device identity (15.2%), releases
previous data bearer context (7.5%), or sends mismatched signaling
(2.8%). One common reason for the unsynchronized status is that,
when the device moves to a new tracking area after handover, the
infrastructure fails to sync up states with the previous tracking
area. With state mismatch, the device suffers from long disruptions
during reattaching with outdated identities and contexts.

For data plane management, the top 2 failures are due to con-
figurations (requested service option not subscribed, and invalid
mandatory information). Although the configurations could be
proactively checked from the network side, the operational failures
cannot be completely eliminated in practice. The configurations
could be outdated on the device and result in data plane failure.
When such failures happen, the infrastructure only provides failure
causes without the correct, up-to-date configurations. The device
thus fails to recover, and repeated failures arise. In addition to those
failures from outdated configurations, diverse failures are exhibited,
including security check (user authentication failed), insufficient
resources, etc. Failures caused by expired subscriptions can only
be recovered with user actions such as reactivating the data plan.
Reject messages may also include unspecified causes that are seen
at the infrastructure or devices.

During data delivery, the three most common failures incur data
stall in 5G cellular networks: TCP, UDP, and DNS [35, 48, 62]. The
TCP anomaly is observed in operational 5G networks [48]. The UDP
port blocking is also widely reported by users under 5G deployment
[54]. For DNS failures, public DNS services such as Google DNS typ-
ically do not apply to cellular networks. Carriers usually configure
users’ DNS with their local DNS resolvers (LDNS), which is less sta-
ble due to user mobility and congestion [50]. Although operators’
DNS servers may work correctly during the device registration,
they may experience outages thereafter. Neither Android nor i0S
provides default DNS configuration for backup, which makes de-
vices difficult to recover from carrier DNS failures [7]. Users have
reported DNS failure instances among operators [15, 53].

3.2 Limitations of Modem Scheme

The current modem-based solution handles both control- and data-
plane management failures. However, it does not perform fine-
grained diagnosis or take precise actions for different failures. Note
that it could have obtained the standardized failure causes from the
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signaling messages, but did not leverage them for fine-grained diag-
nosis. The modem either aborts the connection and retracts to idle,
or triggers retransmission upon timeout. Our analysis shows that,
the modem might keep on resending the signaling message with
outdated status, which causes repeated control-plane management
failures until the modem reboots. When outdated configurations
further trigger data plane management failures, the modem cannot
update them. Repeated failures are observed thereafter.

Empirical Validation We measure the disruption time with the
existing modem handling scheme using traces in §3.1. As shown
in Figure 2, 50% of control-plane setup failures cause more than
12.4s of disruptions. Only 19% of failures could be recovered within
2s. The modem tries to reattach when various timers are triggered
after 10s. However, the timeout prolongs the disruption, and only
27% of failures are recovered within 10s. Repeated failures happen
when the modem retries with previous data-plane configurations.
For example, when the access point name (APN) is outdated, 5G
data plane setup fails. The modem activates reattachment, but still
uses the previous APN during the data-plane setup, making the
device fail for the same reason repeatedly. The frequent, repeated
failures prolong the disruption. Only 9% of data plane management
failures could be recovered within 10s. Half of the failures need
about 8 minutes to be recovered.

With limited information from the network side, current modems
cannot ensure fine-grained failure diagnosis and recovery. Further-
more, modem-based solutions may suffer from three problems when
collaborating with the network: First, multiple parties (operators,
modem vendors, etc.) need to follow the same protocol for collab-
orations, requiring a long time to be standardized and deployed;
Second, operators may not want to leak their network-side informa-
tion to third parties (e.g., modem vendors); Third, the security for
modem-network collaboration requires extra infrastructure support
(e.g., public key infrastructure) and increases deployment cost.

3.3 Android: Insufficient Diag & Handling

Android further monitors failures of the data delivery stage. How-
ever, it suffers from limited detection schemes and long detection
latency. First, Android does not check for those failures related to
UDP, which is widely used in WebRTC, QUIC, etc., for 5G IoT and
real-time applications. Second, Android provides a timer-based fail-
ure detection without distinguishing application requirements, thus
resulting in prolonged disruption for all applications. For example,
while video streaming apps could tolerate seconds of disruptions
with a large buffer, 5G AR/VR apps fail to function properly with
100ms disruption [38].
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Solutions

Failure Detection
& Diagnosis?

Failure Recovery (No-user-action Required)

Config-related

Non-config-related

Failure Recovery
(User-action Required)

Modem-based

Only device-side

Not support

Timer-based retry

Not support

OS-based Only device-side Not support Layer-by-layer retry Not support
App-based Only device-side Not support Transport reconnection Not support
Infra-based Only infra-side Infra-side config updates | Waiting for device retry User Notification

SEED Both infra & device-side | Both-side config updates Multi-tier reset User Notification

Table 2: Comparison of different solutions for 5G failure diagnosis and handling
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Figure 3: Android failure detection latency
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Android takes the sequential retry approach upon detecting fail-
ures via timeout. Retry is an effective solution that is also suggested
by operators [16, 55]. However, This level-by-level retry actions by
Android yield long time intervals between two actions. While the
OS-based solution could effectively check the device-side firewall,
user-determined app data restrictions, etc., the limited device-side
information cannot make it elude those failures from the cellular
network. Without fine-grained failure diagnosis, sequential retry
incurs prolonged application disruption or even no recovery. For
example, if the TCP failure is caused by underlying control/data
plane failures, refreshing TCP connections cannot help.

Empirical Validation We assess Android detection for TCP,
UDP, and DNS failures on the latest Android 12. We connect the de-
vice with Magma cellular testbed [39]. After the device successfully
acquires the data service, we block TCP, UDP, and DNS queries,
respectively, at the core network. During experiments, we play
the same background Youtube video and visit websites from the
browser every 5 seconds to simulate daily usage scenarios. We
measure the failure detection latency from the time when failure
happens to the instant Android reports data stall.

Figure 3 plots the latency distribution for different failure detec-
tions. For TCP failures, Android takes 1.8 minutes on average to
report data stall. We note DNS and UDP failures are not well dealt
with in Android. Results show that 50% of DNS failures cannot
be detected within 8.7 minutes. For UDP failures, Android could
only detect it if the failure leads to consecutive DNS timeouts; it
takes 8 minutes on average. Otherwise, UDP failures could not be
detected. Furthermore, we test Android when connections to the
preset URL are blocked; this simulates failures due to server issues.
Android still reports data stall alerts, which causes false positives. It
further triggers recovery actions and disrupts existing connections.
The interval between level-by-level reset actions is 3.5 minutes on
average, which results in long disruptions.

In summary, both schemes take the device-based approach and
suffer from several downsides. First, the restricted device-side in-
formation limits the fine-grained failure diagnosis and recovery
schemes. Both modem and OS based solutions incur prolonged
disruptions upon failures with their timeout-based detection. Sec-
ond, neither exploits available error causes carried by 5G messages.
Specifically, the modem could leverage the embedded failure causes
carried by the reject signaling messages for diagnosis. However,
it did not. Android maps part of standardized failure causes with
DataFailCause [13], but did not use them in failure diagnosis and

recovery. Third, failure handling is simplistic. The sequential retry
(i.e., level-by-level recovery) leads to long disruptions. The naive
retry by modem does not infer the causes, thus unable to fix fail-
ures due to outdated configurations. Simple retry further aggravates
congestion upon failures of cell/core overload.

3.4 Solution Space

In addition to the modem-based and OS-based solutions, there ex-
ist some application-based proposals. MobileInsight [36] provides
an in-device failure detection through continuous monitoring of
the diag port messages. Commercial tools such as NetMotion [44]
leverage a mobile application to report high-level metrics (e.g.,
device types, network performance, etc.) to pre-deployed servers
for failure analysis. Although the application could detect failures,
the recovery is limited. Applications without root can only take
the transport-layer reconnection action, which cannot recover cel-
lular stack failures. Even if the app owns root access, similar to
modem/OS-based solutions, simple retries can only recover fail-
ures from temporary infrastructure-device status unsynchroniza-
tion, but not failures caused by outdated configurations. Moreover,
for failures that require user actions to recover (e.g., expired data
plan subscription, identity authentication failures, etc.), the device
cannot obtain enough hints about failures to take proper actions.
Furthermore, existing SIM add-on services (e.g., [51]) could only
monitor the SIM hardware health (say, read/write cycles), cell signal
strengths, etc., but cannot diagnose complex protocol failures. In
conclusion, the device-side solutions cannot acquire the network-
side information for fine-grained failure diagnosis and handling.

While the device-side approach has limitations, the second so-
lution option is an infrastructure-based scheme. This choice also
has several limitations in both failure detection and reaction. First,
the infrastructure may not have access to higher-layer information
(e.g., transport and app layers), thus unable to infer high-layer fail-
ures accurately. Second, monitoring data traffic over high-speed 5G
may incur significant processing overhead. Third, the infrastruc-
ture cannot differentiate which case happens in the absence of data
traffic: whether misconfiguration blocks the device’s traffic, or the
device is idle without data to transfer. While the infra-based solution
could send failure notifications through other channels (e.g., email),
it lacks device control for failure reactions. Although the infras-
tructure could acquire standardized causes for control/data-plane
management failures, or even pinpoint the root cause (outdated
configurations, customized policies, etc.), it can only update infra-
side configurations for failure recovery but cannot notify devices
at runtime with corresponding action commands (e.g., update SIM
configurations). We summarize the existing solutions to 5G failure
diagnosis and handling in Table 2.

The third option is to let the device and the infrastructure col-
laborate in failure diagnosis and reactions. The device can detect
high-layer failures reliably and take direct low-level reset actions
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Figure 4: SEED diagram

via modem. The infrastructure can directly correct misconfigura-
tions and use crowdsourcing among devices to infer failure causes.
However, a naive approach in this option also suffers from three lim-
itations. First, the device and infrastructure might not communicate
failure-related messages upon failures. Second, exposing failures
may compromise system security. Third, the solution may not work
within the 5G framework.

4 SEED: SIM-BASED FAILURE DIAGNOSIS

4.1 Case for SIM-based Solution

We make a case for a SIM-based solution that addresses all the above
limitations. First, the SIM and the network can communicate via sig-
naling messages over signaling channels, rather than data packets.
The channel subsists even when the data session is not established
or broken. Second, SIM is produced by operators and trusted by
the in-network devices. In-SIM keys could further protect the SIM-
network communication without extra certificates. Therefore, SIM
bridges the network and devices as a trusted agent. Adversaries
cannot access the SIM info without the in-SIM keys. Third, SIM
is applicable to nearly all cellular-connected devices. New func-
tions could be deployed in the form of a SIM applet. They can
be upgraded with the over-the-air (OTA) mechanisms on existing
SIM/eSIM. Last, the SIM-based scheme offers a purely software-
based solution without changing 5G standards, device firmware, or
infrastructure hardware.

4.2 SEED Overview

We thus design SEED, a SIM-based solution to 5G failure diagnosis
and handling. SEED offers a software-based scheme deployable by
5G mobile carriers. It offers lightweight, fine-grained failure de-
tection and recovery at runtime with SIM’s constrained hardware
capability. SEED leverages 5G standardized messages to infer fail-
ure causes inside the SIM. It further uses multi-tiered resets/redos
for differentiated failure handling. In contrast to complex failure
recovery (e.g., rollover, logging and checkpointing, recovery from
crashes), SEED uses simple, yet effective resets to handle all three
types of control-plane, data-plane, and data delivery failures.

Figure 4 shows the overall system diagram of SEED. First, SIM
receives failure reports from applications (1a) and the network (1b).
Failure reports include failure clues such as network-side diagnosis,
instructions with updated configurations, and device-side failure
details (no connection, DNS/UDP failure, etc.). With such clues,
SIM performs local diagnosis, makes handling decisions, and trig-
gers recovery actions at the device (2a) or the network (2b). SEED
addresses three issues in its SIM-based design:

e How does SIM pinpoint failures at low overhead? We
ensure the solution is viable on resource-constrained SIM hardware.
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To this end, SEED combines standardized failure causes with the up-
to-date configurations from the infrastructure, as well as OS/App
failure reports from the device. SEED further performs fine-grained
failure diagnosis with limited SIM processing and storage.

o How does SIM handle diverse failures that arise at different
stages? We develop simple and fast failure recovery via multi-tier
reset. SIM could perform profile reloads, configuration updates and
failure notifications on commercial off-the-shelf devices without
root access. It further supports faster control/data plane resets with
root privilege.

e How does SIM collaborate with the infrastructure when the
data plane is broken? The SIM obtains information from the
infrastructure for fine-grained diagnosis and handling. We leverage
existing signaling messages to transmit diagnosis information, thus
ensuring runtime SIM-network information exchange upon failures
of control/data-plane management or data delivery.

4.3 Lightweight SIM Diagnosis

We now introduce how the SIM performs fine-grained failure diag-
nosis with both-side information. For control-plane and data-plane
management failures, the SIM receives the standardized 5G failure
causes from the infrastructure, and leverages them for diagnosis.
The SIM further enables apps to report data delivery failures for
fast detection and diagnosis.

4.3.1 Failures in control/data-plane management. The 5G standard-
ized failure causes provide a good source for SIM diagnosis. 5G
defines 80+ failure codes, which are embedded in signaling mes-
sages. Most of the messages containing failure codes are the “reject”
messages from the network or the device, such as Authentication
Reject, PDU Session Modification Reject, etc. The messages that em-
bed standardized causes have been widely deployed in practice [19].

SEED achieves lightweight and fine-grained SIM diagnosis with
such standardized causes. When the infrastructure composes the
reject or receives device reject messages, it extracts the embedded
standardized cause and sends the cause code to the SIM (more de-
tails in §4.5). The SIM applet stores all standardized cause codes
and looks up the received cause to quickly detect and pinpoint the
failure. Although the SIM’s storage is limited (32~128KB), it is suf-
ficient to hold all cause codes for in-SIM analysis. The causes could
be categorized into control-plane management and data-plane man-
agement. Control-plane management causes include failures related
to UE identification, subscription options, network congestion, au-
thentication, invalid messages, etc. Data-plane management causes
include configuration failures and protocol errors. Standardized
causes are already supported at the infrastructure and do not need
extra modules or algorithms, thus resulting in marginal overhead.

SEED further exploits SIM capability to prevent repeated failures.
If the failure cause is related to outdated configurations, simple
retries cannot succeed but result in repeated failures. Therefore,
when the infrastructure initializes the reject due to outdated device
configurations, it sends the up-to-date configuration together with
the cause code to the SIM. We list the failure causes related to
outdated configurations in Appendix A. Upon receiving these cause
codes, the SIM parses the configurations based on the cause code
and stores them for next-step handling (§4.4).
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4.3.2  Failures in data delivery. For packet delivery failures, current
user applications cannot diagnose them with limited low-layer
information from the mobile OS. Emerging 5G applications are
disruption-sensitive and require quick recovery. SEED thus enables
these applications to report failures for fast diagnosis. Applications
could call the failure report API if they need fast failure handling.
The API carries three parameters (failure type, traffic direction,
address). The failure types support the three most common failures
discussed in §3.1: DNS, TCP, and UDP. The application indicates
the failed traffic direction, including uplink, downlink, or both. The
address contains the IP and port for TCP/UDP failures. These fields
are used by the 5G Traffic Flow Template (TFT) to regulate the
traffic and activate IP/port blocking with incorrect configurations.
The domain names are embedded in the address field for DNS
failures. The report enables disruption-sensitive apps to bypass
long Android detection and speed up the diagnosis. SIM further
leverages existing APIs to acquire the Android data stall notification.
Whenever receiving the App/OS failure reports, SIM leverages the
reported information for fast failure handling in §4.4. Note that SEED
does not explicitly diagnose and handle instantaneous, underlying
radio link failures. However, such physical-layer issues may affect
control/data-plane management and data delivery, which will be
observed at higher layers and handled by SEED.

4.4 SIM-Based Failure Handling

With the diagnosis result, we address the next issue of reacting to
diverse failures that arise at different stages. Different from the blind
retry by the modem and Android, SEED handles diverse failures
via the multi-tier reset mechanism directly, facilitated by both-side
information to pinpoint the failure, thus leading to fast failure
recovery. We first list the multi-tier reset actions taken by the SIM.
We then elaborate on how the SIM decides which action to take
accordingly.

4.4.1 Handling with Multi-tier Reset. SEED leverages the SIM to ini-
tiate multi-tier reset actions. This is nontrivial, since the SIM does
not directly control those cellular connections. SEED explores the
limited interfaces supported by current 5G devices, and designates
two modes with different device privileges. Without root privi-
lege, SEED-U uses the multi-tier reset to reload the failed module
directly. When root privilege is available, SEED-R further improves
the recovery speed.

Multi-tier reset without root access  SEED-U takes multi-tier
reset actions for failure handling at three levels as shown in Fig-
ure 5(A). At the hardware level, reset enforces the modem to clear
its cached contexts, preventing it from being stuck in prolonged
attempts with invalid caches. The SIM triggers profile reloading at
the modem to sync its SIM profiles (A1). Different from the naive
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Figure 6: Reset data plane without reattachment

retry scheme in the current modem/OS, the SIM also retrieves the
latest configurations from the infrastructure to handle outdated
configurations. The SIM updates the control-plane configurations
(A2) (e.g., PLMN list) to reduce excessive search time. The mis-
matched control-plane states/identities (shown in Table 1) are also
refreshed in the reset. SEED-U leverages the proactive commands
between the SIM and the modem to realize these two actions [23].
The proactive command is usually used to provide carrier services
such as OTA updates, which has been supported by current smart-
phones without root privilege. To our knowledge, SEED-U is the
first to leverage it for failure handling. SEED-U could further update
the acquired data-plane configurations from the SIM (A3), such as
DNNs or APNs, leveraging the Android carrier app [14]. All such
actions do not require root privilege at smartphones.

Boost multi-tier reset with root privilege With root privi-
lege, SEED-R further improves granularity and speed for diagnosis.
5G/4G devices provide AT commands [4] as another interface for
fine-grained modem control but require root privilege. When the
carrier app detects that root access is permitted, it will notify the
SIM through APDU to enable the SEED-R mode. Figure 5(B) shows
the multi-tier reset with root privilege. Upon hardware failures, SIM
restarts the modem (B1). It recovers the modem from being stuck in
internal errors. For control-plane failures, SEED-R directly controls
the modem for control-plane reattach (B2), which improves the
recovery speed without prolonged search procedures.

SIM further collaborates with the infrastructure for data-plane
resets (B3). Resetting only the data session speeds up the handling.
However, 5G gNB releases the last radio bearer once the last data
session is released, thus causing the control-plane reattach. SEED
designs the fast data plane reset in Figure 6 without resetting the
control plane. Upon receiving failure reports about the initial data
session, the SIM triggers the modem to set up another data session
with DNN “DIAG”. The reattach will not happen when “DATA” ses-
sion is released as “DIAG” session and corresponding 5G gNB radio
bearer still exist. Finally, the device reconnects “DATA” session and
releases the “DIAG” session. The network could also modify the ex-
isting “DATA” bearer rather than reset it, if only configurations (e.g.,
TFT) need to be updated. All the session setup/release/modification
signalings are standardized in 5G [3]. SEED leverages them to handle
data delivery failures without disrupting the existing, established
data plane.

4.4.2 Deciding on Reset Actions. Resetting different modules re-
quire different latencies. To speed up failure handling, the SIM uses
the diagnosis results and the current mode to perform targeted
reset action without layer-by-layer retry.

Table 3 shows the SIM handling decisions without root (SEED-U)
and with root privilege (SEED-R). For control-plane management
failures not caused by outdated configurations, SEED-U reloads the
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Diagnosis Class

Failure Handling w/o Root (SEED-U)

Failure Handling w/ Root (SEED-R)

Control-plane Causes SIM Profile Reload (A1) Reset Modem (B1)
Control-plane Causes w/ Config Parameter Update & Profile Reload (A2 & A1) | Control-Plane Reattachment with Update (B2)
Data-plane Causes SIM Profile Reload (A1) Data-plane Reset (B3)

Data-plane Causes w/ Config

Configuration Update (A3)

Data-plane Modification (B3)

Data Delivery Failures Reported by App/OS

Configuration Update (A3)

Data-plane Reset / Modification (B3)

Table 3: Failure handling decisions with diagnosis results

SIM profile to reattach (A1). With root privilege, SEED-R performs
modem reset using AT commands (B2). When outdated configura-
tions incur failures, SEED-U updates the control-plane parameters
and reloads SIM profiles for registration (A2 & A1). With root priv-
ilege, SEED-R updates the configurations and triggers reattach on
modem for fast handling (B2). As 20% of control-plane management
failures could be recovered within 2s (§3.2), SEED sets a 2s timer be-
fore triggering hardware and control plane reset. The short timeout
enables speedy recovery upon such failures.

When data-plane management failures arise, with SEED-U, the
SIM triggers the SIM profile reloading. The data plane will be reset
after the control-plane reattach. With root access, SEED-R triggers
data-plane reset for faster failure handling (B3). When the SIM
acquires data-plane configurations (DNN, PDN type, etc.) from the
infrastructure, the SIM further triggers configuration updates (A3)
with SEED-U or data-plane modification (B3) with SEED-R.

SIM may receive applications/OS reports for data delivery fail-
ures. If it received causes on control/data-plane management fail-
ures within the last 5s, there could be an ongoing handling. The
SIM does not trigger handling to avoid conflict. Otherwise, the SIM
triggers the configuration updates in the carrier app (A3) to reset
data connection without root. SEED’s rate-limit design does not
perform the same reset action consecutively and frequently; the
signaling messages are thus not overwhelming. With root access,
the SIM sends the failure report collected from App/OS (§4.3.2) to
the infrastructure with real-time SIM-Infra collaboration (details in
§4.5). The infrastructure checks if the failure type, direction, and
address conflict with user policies, or if DNS failure happens. It
then modifies the data session with updated user polocies when
conflict arises for TCP/UDP, or configures a new DNS server in the
followup reset (B3).

4.5 Real-Time SIM-Network Collaboration

We next address the issue of enabling SIM-infra interaction when
the data plane is broken, without changing modem/gNB firmware
or modifying standardized messages. Note that SIM needs to ac-
quire the information of failure causes and updated configurations
from the infrastructure. SIM also notifies the infrastructure for
data-plane resets. Although SIM OTA provides a channel for SIM-
Infrastructure communication [51, 52], it relies on data service (e.g.,
TCP/UDP) and cannot work during connection setup. Moreover,
upon data delivery failures, packets may not be delivered and SIM
OTA is unavailable.

SEED leverages standard-compliant control-plane signaling mes-
sages. The infrastructure embeds the failure-related info in Authen-
tication Request signaling messages. SIM embeds failure diagnosis
results in PDU Session Establishment Request to trigger data-plane
resets. SEED design is compatible with 5G commodity devices with-
out modem or gNB firmware modifications. These messages are
available in the presence of failures. Hence, the infrastructure and
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Figure 7: Collaboration with standard-complied signaling
messages (a) Network to SIM (b) SIM to Network

the SIM could perform real-time interactions for failure diagnosis
and handling, even when the data bearer is not up or broken.

How Does Infrastructure Deliver Info to SIM? In SEED, the
network leverages the 5G Authentication Request message used for
mutual authentication to send diagnosis info. In this message, the
network generates a 16-byte RAND and a 16-byte AUTH, which
the modem will forward to the SIM for authentication [30]. SEED
reserves a RAND value (FF...FF) as the Diagnosis Flag (DFlag). As
shown in Figure 7(a), the 5G network embeds the diagnosis info in
the AUTH field and sets the RAND as DFlag. When the SIM sees
the reserved DFlag, it does not verify the key but parses the AUTH,
which is encrypted and integrity protected with a counter using the
pre-shared in-SIM key. SIM returns synchronization failure as the
ACK upon successfully receiving the diagnosis. If the sync failure is
not responded, the modem may label the network as untrusted. The
network then resends a normal Authentication Request. The 16B
AUTH sulffices to hold the cause code and most updated configura-
tions. The network could embed more information with multiple
transmission rounds. Note that, the network can send Auth Request
at any time with a NAS signaling connection [3]. Although the
control plane is not fully established (with successful completion
of both authentication and configurations), the network could still
transmit Auth Request to the SIM, thus enabling collaboration in
the presence of control/data-plane failures.

How Does SIM Transfer Info to Infrastructure? Data de-
livery failures may block packet transfer with data plane set up.
SEED embeds the failure report collected by SIM in the PDU Session
Establishment Request to report data delivery failures, as shown in
Figure 7(b). After control-plane setup, the device requests the data
bearer with a corresponding Data Network Name (DNN) in 5G [3].
Standards support sending DNNs for multiple data sessions, which
enables SEED to report failures anytime after control plane setup
with a new request. SEED leverages the undefined field to embed the
diagnosis information in the DNN field [2], which is also encrypted
and integrity protected using the in-SIM key. The 100B DNN size is
sufficient for the current report; our experiments further validate
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that, a longer report triggering multiple consecutive requests can
be fragmented into several DNNs. SEED triggers the modem to send
the request with a special diagnosis DNN starting with “DIAG”.
After the network gets the DNN and parses the report, it validates
the failure with current user settings, responds with a reject as ACK,
and modifies the current data session configs or follows Figure 6
for the reset.

The real-time SIM-Infrastructure collaboration is compatible
with 5G devices. The gNB/modem firmware remains unchanged.
Carriers could update the SIM via OTA for new applet logic. The
network-side functions could be extended with a new core module
handling diagnosis messages, which current cloud-based core net-
work implementations could quickly deploy [17, 39]. SEED only re-
quires a small amount of extra signaling messages for collaboration
with marginal overhead at the device and the network. Note that,
the real-time collaboration cannot work if the radio access is bro-
ken. The radio link issues and recoveries are well studied [6, 47, 49].
The real-time collaboration in SEED is designed to supply commu-
nication channels, in the presence of failures on control/data-plane
management and data delivery.

5 ENHANCED FAILURE MANAGEMENT
5.1 Insufficient Standardized Causes

Standardized causes provide a good source for failure diagnosis.
However, they are insufficient for devices in three aspects. First, they
cannot cover all control/data plane failures. Failures from operators’
customized policies, such as the supported device list [60], do not
fit into any standardized causes. Second, the data delivery failure
could happen due to gNB/core congestion. Without knowing it, the
reset may further increase the loads. Third, the failure’s root cause
could be unspecified without a recovery action. The coarse-grained
information is insufficient for failure recovery.

Therefore, the SIM needs more information for failure diagnosis.
Thus, we leverage the infrastructure assistance for SIM diagnosis
to cover diverse failures (§5.2). We further show how SEED auto-
matically handles failures with an unknown root cause (§5.3).

5.2 Infra-Assisted SIM Diagnosis

We first introduce infrastructure assistance for the diagnosis. This
component leverages the deployed metrics in the infrastructure,
which avoids redundant processing and is scalable for massive
devices. We then elaborate on how SIM diagnoses failures with
information from the infrastructure.

Infrastructure Assistance The infrastructure classifies failures
with a decision tree as shown in Figure 8. It then sends the corre-
sponding assistance information to the SIM with real-time collabo-
ration (§4.5). The assistance information includes four types: failure
causes, suggested configurations, suggested reset actions, and con-
gestion warnings. SEED acquires them from the existing monitoring
and management functions in current 5G infrastructure [31, 40] to
assist failure diagnosis without complex processing.

The infrastructure classifies the failures into two types: passive
and active. The passive type includes failures not initialized by the
infrastructure, such as device response timeout, device reject, or
SIM-reported data delivery failure. Standardized causes are sent
to the SIM as §4. For customized failures, it sends suggested reset
actions for SIM handling. It further notifies the SIM with cell/core
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congestion. The active type includes network-initialized rejects.
In addition to standardized failures, the infrastructure provides
customized causes with suggested actions to cover failures from
customized policies. For causes without suggested actions, we pro-
pose an online learning algorithm to handle them (§5.3).

SIM Diagnosis  SIM receives the four types of assistance info and
performs the following actions accordingly. The SIM applet stores
all supported failure causes and assistance info parsing functions.
They follow a similar decision tree scheme at the network side and
could be deployed with limited SIM processing and storage. SIM
handles standardized failures and refreshes configurations as in §4.4.
The SIM performs the suggested reset action for customized failures,
enabling operators to deploy handling for new failures. When the
SIM receives the congestion warning, it does not trigger the reset
but waits for a timer embedded in the message. SIM parses the
assistance information from the infrastructure, and handle diverse
standardized and customized failures accordingly with the multi-
tier reset. It further notifies users of failures requiring user actions
to recover (e.g., reactivating the data plan).

However, there are still failures causes without corresponding
handling. The infrastructure may map unstandardized causes to
policies or modules but do not have any clues for the device han-
dling. We further design an online learning algorithm to handle
failures without a known handling action. We elaborate on it next.

5.3 SIM Handling with Online Learning

While the root cause is unclear, previous devices’ successful han-
dling probably works for new devices facing the same failure. Al-
though failures may appear from different functions in one mod-
ule, the multi-tier action directly resets the whole module and has
similar effectiveness for various devices. SEED proposes an online
learning algorithm to crowdsource the handling history from SIMs,
and picks out suggested actions when the same failure happens in
the future. The infrastructure and SIMs keep evolving and automat-
ically train the model for failures with unknown handling.

Algorithm 1: Collaborative Online Learning
1 def SIM-RecvUnknownFailure(cause):

2 for action « [B3, A3, B2, A2, B1, A1] do

3 if DoRecovery(action) == success then
4 SIMRecord[cause][action] « +1

5 break

6 if SendTolnfra(SIMRecord) == success then
7 | SIMRecord = dict[][]

8 def Infra-Crowdsource(SIMRecord):

9 for cause, action < SIMRecord do
10 NetRecord|cause][action] «
+SIMRecord|cause][action]

11 def Infra-SendUnknownFailure(cause):

12 if cause € NetRecord then
13 sgstAction = argmax(NetRecord[cause])
. 1
14 if rand() < T+e-Irisize(NetRecord[causel)) then
15 SendtoSIM(cause, sgstAction)
16 return

17 | SgndtoSIM(cause, null)




SEED: A SIM-Based Solution to 5G Failures

SIGCOMM 22, August 22-26, 2022, Amsterdam, Netherlands

[ Low-overhead infrastructure assistance ]

[ Passive (failures not initialized by network) ]

With device response

Data delivery failure
reported by SIM

[Without device response (timeout) ]

[ Standardized cause ]

[ Active (failures initialized by network) ]

[ Unstandardized cause ]

[ No config ] [ Config needed ] W/ suggested acﬁon] [W/o suggested action]
Send hardware Send cause code | | Trigger data-plane reset (4.3) | | Send cause code [ [Send cause code w/| Send cause w/ online

reset request to SIM (5.2) to SIM (4.3) 'warn congestion (5.2)

to SIM (4.3)

Send suggested
actions to SIM (5.2)

config to SIM (4.3) learning (5.3)

Figure 8: Low-overhead infrastructure assistance classifies failures and sends assistance information to the SIM

The online learning algorithm (Algorithm 1) includes the SIM
side (line 1-7) and infrastructure side (line 8-17). When the infras-
tructure does not know the handling action for a failure, it generates
a customized code to identify the failure, such as the conflicting
policies or modules. The cause code is sent to the SIM through SIM-
Network collaboration (§4.5). SIM tries all the supported retries
and resets sequentially from the data plane to the hardware (line
2). It records the successful handling that resolves the issue and
notifies the infrastructure with OTA (line 3-7). The infrastructure
crowdsources SIM records and updates the network-side record
(line 8-10). It then sends out suggested action for part of later de-
vices controlled by a learning rate Ir. Otherwise, the infrastructure
does not suggest any actions, ensuring that the model is trained and
evolving (line 14). If the suggested handling failed, the SIM takes the
same action as receiving unknown failure and tries all the supported
actions sequentially. In our online learning procedure, the SIM only
stores customized error codes and corresponding actions. The data
volume is small enough to be held within the limited SIM storage.
With the collaboration between SIMs and the infrastructure, online
learning provides automatic failure handling for unknown causes.
The decision model also evolves gradually without heavy training,
which is lightweight and scalable for massive devices.

6 IMPLEMENTATIONS

Figure 9 shows the implementation of SEED. The operator owns
controls for all SEED components in practice, including the infras-
tructure module, SIM applet, and the carrier app.

Solution prototype We develop a SIM applet on Javacard-based
eSIM [66], which is compatible with most mobile OS (e.g., Android,
i0S, etc.). The applet contains 1244 lines of Java with two modules.
The diagnostic module receives the infrastructure assistance infor-
mation through the modem with APDU interface [23], and app/OS
failure report through the carrier app with TelephonyManager
API [10]. The decision module uses SEED-U mode by default for the
multi-tier reset. For SEED-U mode, the decision module sends proac-
tive commands through APDU to the modem for profile reloading
and control-plane configuration updates, and updates data-plane
configurations with the carrier app. SIM is notified by the carrier
app when root privilege is available. It then enables SEED-R mode
and sends AT commands listed in Appendix B to the carrier app
for faster failure handling.

We extend the Magma 5G NSA core [39] with a plugin to assist
SIM diagnosis with 1035 lines of C++. The diagnosis assistance
module hooks the reject generation functions to acquire the stan-
dardized failures. It acquires the latest configurations from the
orchestrator API [41] and extra information such as RAN/core load
from Magma NMS [40]. We extend the orchestrator API to receive
SIM recovery records and forward them to the assistance module for
online learning (§5.3). The real-time collaboration module reuses
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4
[Recovery Action Module] App

Diagnostic
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Figure 9: SEED implementation components
the Auth Request functions and hooks the PDU establishment han-
dling function. The information is encrypted with 128-EEA2 and
integrity protected with 128-EIA2 using the pre-shared in-SIM key
to prevent information leakage and malicious requests.

We develop a carrier app with Android UICC Privilege API [14]
to update carrier configurations, and receive data stall notifications,
etc. It contains two modules with 842 lines of Java. The failure report
service receives app reports with Android Service [9] and OS reports
with Connectivity Diagnostics API [11]. For unrooted devices, the
recovery action module updates configurations with UICC Privilege
APL If it detects root privilege with Runtime API [8], it notifies the
SIM to enable SEED-R mode for it to trigger AT commands.

Deploying SEED in practice The operators have access to all
components that SEED involves, including the core, SIM, and the
carrier app. Therefore, SEED is a viable solution that can be deployed
by operators alone, without any help from modem or phone ven-
dors. Besides, SEED extends the current standard without changing
any existing protocols. Deploying SEED thus does not affect any
operating 5G functions.

Incremental deployment Operators can gradually deploy SEED,
as a partial implementation already diagnoses some failures. They
can first deploy infra and SIM Applet modules to support diagnosis
and handling of control/data-plane failures. These modules can
cover 63% of failure cases in the traces. The first stage is easy to
deploy: all necessary info for the network module can be extracted
from core signalings while the SIM applet could be updated through
readily-available OTA channel. The operators can then update the
carrier app to include failure report service and action module. The
carrier app has been widely deployed by operators [59, 61]. With
the enhanced failure handling added, all considered failures in this
paper can be diagnosed and handled.

7 EVALUATION

We evaluate how SEED diagnoses and handles failures. We first
evaluate the overall performance on the testbed with failures in our
datasets. We also compare the application performance between
SEED and existing failure handling schemes. We then assess SEED
overhead, diagnosis time, and recovery speed for multi-tier reset
with and without root privilege.

Experimental Setup We implement the diagnosis assistant
module with 5G-compliant Magma Core [39] on an Ubuntu 18.04
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Figure 10: Experimental testbed Table 4: Disruption (s) percentile
with legacy handling and SEED

setup

server with i7-9700K 8-core CPU and use USRP B210 as the RF
frontend (Figure 10). Our testbed utilizes the 5G-NSA. The long
timers are shared between SA and NSA and dominate the disruption
time during failures. Moreover, most of SA failure cause codes have
inherited NSA error codes. Although SA splits its core functions into
different components, the signaling processing and transmission
times between SA and NSA incur negligible difference for SEED. The
results thus also reflect SEED performance for SA deployment. We
deploy the SEED applet on a Javacard-based eSIM [66] with 180KB
EEPROM and 8KB RAM. We assess the performance on Google
Pixel 5 with Qualcomm Snapdragon 765G running Android 12.
This work does not raise any ethical issues.

7.1 Overall Performance

7.1.1  Comparison of failure diagnosis and handling. We first ex-
amine SEED overall performance. To compare it with the current
modem-based solution, we utilize the dataset in §3.1 to evaluate
how many control/data plane management failures SEED could han-
dle. We extract failure traces from the dataset and reproduce failures
on the testbed to assess SEED handling. For data delivery failures,
we compare the current Android scheme and SEED handling.

For control-plane management failures, 89.4% of failures in the
dataset could be handled by SEED. The remaining cases are due
to identity authentication failures from unauthorized subscribers.
Table 4 compares the disruption time with existing device failure
handling and SEED. Without root privilege, SEED-U could reduce
the median disruption time by a factor of 0.6x (12.4—38.0s). SEED-R
further speeds up the recovery and reduces the 90th percentile
disruption by 20X (1024.0—48.6s). The waiting timer (2s in testing)
in SEED before triggering control-plane failure handling ensures
that the transient failure will not be delayed by reset. With the
timer, SEED control-plane handling only causes longer disruption
for 5% (SEED-U) and 2% (SEED-R) failures.

For data-plane management failures, SEED handles 95.5% of the
cases in the dataset with its configuration update and fast data-
plane reset. Other cases are from expired subscribers and require
reactivation of their data plans. The failure handling without root
privilege could recover 90% of cases with <1s disruption. With the
root privilege, half of the failure cases could be recovered within
0.6s, which reduces the disruption time by 792Xx. SEED prevents the
long disruptions incurred by repeated, blind retries at devices.

We further evaluate how well SEED handles data delivery fail-
ures. Our experiments show that, if data delivery failures are in-
duced by widely reported incorrect network-side configurations
(e.g., TCP/UDP blocking, etc.), Android or modems’ naive retry
schemes cannot recover from them. Current application-level tools
(e.g., NetMotion [44]) also rely on the ongoing data connection

Table 5: Average app disruption (s) with legacy (Leg.)
failure handling, SEED-U (S.U) and SEED-R (S.R)

and cannot report the failure under traffic blocking. In contrast,
we validate that SEED successfully transmits failure reports, which
can trigger network-side policy checking and updating for failure
recovery. For failures that could be recovered from reconnections
(outdated gateway status in mobility, etc.), we compare the choices
of Android sequential retries and SEED multi-tier reset. The Android
timers between recovery actions are set to the recommended con-
figuration values (21s/6s/16s) in [35]. Despite with shorter timers,
Android still incurs more than 31.2s disruptions for 50% of cases.
In contrast, SEED fast data-plane reset and modification handle all
cases in the experiments, and recover the data connection within
0.4s for 50% of cases and 0.7s for 90% of cases.

7.1.2  Reducing Application Disruption. We further examine the
failure impact on various applications with current device handling
schemes and SEED. In the experiment, we assess both the SEED-U
and SEED-R modes. We measure the average app disruption time on
five types of latency-sensitive applications, including video (with
YouTube [64]), live streaming (with Twitch [57]), Web browsing
(with Chrome [18]), navigation app (with Google Maps [28]), and
an edge AR application developed by us. The video app has its long
buffering time (~30s) while the live streaming possesses a shorter
buffer (~3s). The Web browser visits the social network site, and
the navigation app periodically uploads its location for the latest
traffic information. The AR app keeps sending the camera view to
the edge and retrieves real-time recognition results without a video
buffer. We collect traffic traces of five applications and develop
a background daemon to emulate the corresponding app’s traffic
pattern and send failure reports for the application.

SEED reduces failure recovery time for all five applications, as
shown in Table 5. The fast failure report scheme and multi-tier
reset allow the video app to tolerate all data-plane management
and data-delivery failures in experiments. SEED reduces disrup-
tions by up to 67X (68.3—1.0s) for control-plane failures. For live
streaming with a short buffer, SEED reduces the average control-
plane failure time to 4.3s (SEED-U) and 3.5s (SEED-R). For data
delivery failure, SEED-R could still handle such cases and mask
user-perceived disruptions. For Web browsing, SEED reduces dis-
ruptions from 80.3~200.8s to 0.3~6.8s for various failures. SEED also
reduces the navigation app disruptions from 78.3~199.9s to 0.2~5.0s
(SEED-U) or 0~4.1s (SEED-R). The AR app is the most disruption-
sensitive app. Although Android is reconfigured with a shorter
action timer, its limited detection scheme takes more than 1 minute
to detect the data stall failure and recovers after 108.2s disruptions
on average. In contrast, SEED takes the fast data-plane reset ap-
proach, and recovers the AR service within 1.3s (SEED-U) and 0.4s
(SEED-R) on average.
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Figure 11: Diagnosis overhead on network/device side

7.2 Micro-Benchmarks

7.2.1 Lightweight Failure Diagnosis. We next examine the SEED
scalability at the network and the overhead at the device. Our ex-
periments confirm that, SEED is scalable to large device population,
and lightweight with low overhead at devices. For the network,
we use the magma RAN/UE emulator to emulate loads in the core.
We emulate 200 devices performing attach/detach procedures ran-
domly and trigger failure events with different frequencies. Fig-
ure 11a shows the average CPU utilization with the default magma
core with and without SEED. SEED incurs only 4.7% extra CPU pro-
cessing, in the stress test of artificially injecting 100 failures per
second. SEED scales with decision-tree-based failure diagnosis with-
out heavy processing. The number of extra signaling messages
(Auth Request/Failure or PDU Session Estb Request/Reject) from
the real-time collaboration is marginal compared with the normal
control/data plane procedures.

We further gauge the overhead at the device side. The SEED
diagnosis is based on SIM’s built-in processor and RAM, which is
more energy efficient compared with the phone’s CPU. By default,
we measure the device battery consumption without background
application traffic. We then run a stress test that triggers the SIM
diagnosis once per second to quantify its energy overhead. As
shown in Figure 11b, SEED consumes an extra 1.2% (5.4%—6.6%)
of the total battery in 30 minutes. Given that the failure frequency
in our test is much higher than in reality, the SIM diagnosis incurs
negligible overhead. We further compare SEED with the device-side
cellular diagnosis application Mobilelnsight [36]. Mobilelnsight
relies on the message decoded from the diag port for analytics and
consumes an extra 8.5% (5.4%—13.9%) of the total battery in 30
minutes. SEED thus performs lightweight diagnosis at the device.

7.2.2  Real-time SIM-Network Collaboration. SEED enables the real-
time collaboration with standard-compliant signaling messages.
Figure 12 shows the total latency of network-to-device (downlink)
and device-to-network (uplink) directions. For the downlink, when
the network detects the failure, it first prepares the message with
extra information and encodes it into the Authentication Request,
which takes 12.8ms on average. The transmission takes 41.2ms
on average from the message sent out to the ACK received. On
the device side, SEED provides APIs for App/OS failure report to
speed up the failure detection. The preparation includes information
reporting, SIM encoding, and message generation, which takes
35.9ms on average. Then the transmission takes 46.3ms on average
to notify the network side for further actions. Compared with the
Android failure detection, which needs 1.8 minutes to detect the
failure, SEED speeds up the failure detection stage with fast SIM-
Infra collaboration.
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7.2.3  Multi-tier Reset. With diagnosis information from both sides,
SEED performs the multi-tier reset for fast recovery. Compared with
the legacy level-by-level sequential retry, SEED directly resets the
corresponding module, eliminating long waiting interval between
actions. For baseline, we use Android sequential retry with the
recommended intervals (21s/6s/16s) between four actions in [35].
Although these intervals are much shorter than the Android default
3-min interval, it still causes a long time to trigger handling actions.

As shown in Figure 13, the legacy scheme takes 42.5s on average
to reset the hardware. Without root access, SEED takes 5.9s on
average for hardware reset. SEED further speeds up the hardware
reset with root privilege leveraging AT commands, which takes
3.3s and reduces 92% waiting time. For control-plane reset, the
legacy scheme takes 27.8s. The SIM parameter updates (A2) need
to be combined with reloading to trigger the control-plane reset
and take 6.1s. With root privilege, the control-plane reattachment
takes 2.6s for control-plane reset. The legacy scheme does not reset
the data plane but all TCP connections, which still needs 21.4s to
trigger the failure handling. SEED triggers the carrier app to update
configurations for the data-plane reset (A3) and designs fast data
plane reset/modification with root privilege (B3), which takes 0.88s
and 0.42s, respectively. SEED multi-tier reset shows a fast failure
handling without long level-by-level retries.

7.24  Online Learning. The current public datasets do not provide
the infrastructure-side failure traces. We validate the effectiveness
of the online learning algorithm by triggering failures at our testbed.
In our experiments, 6 phones of different models (Google, Xiaomi,
etc.) are connected to the testbed network. On the network side, we
choose 4 control-plane and 4 data-plane functions and manually
trigger failures for each function 50 times to generate unstandard-
ized failures. The network customizes failure codes based on the
failed function and performs online learning for future recovery
suggestions. Our results show that the crowd-sourced SIM records
correctly classify all failures into control or data plane failures and
recommend corresponding reset actions, which shows the effec-
tiveness of the online learning algorithm.

7.3 Security Analysis

Our analysis shows that SEED does not degrade the legacy SIM
security. The applet could only be installed with the carrier’s key;
adversaries cannot modify or replace it. Only the operators could
update the SIM configurations, or perform reset from the SIM.
The SIM-infra communication is encrypted and integrity protected
with the pre-shared in-SIM key with the message counter, which
uses the same crypto algorithms as the 5G signaling. The new ap-
plet interface within the assistance information is protected with
cellular-grade security. The in-SIM key is hard to be compromised
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by attackers, thus the information is hard to be faked and skip the
SIM checking. The applet leverages existing channels provided by
the mobile OS to communicate with the modem/carrier app, which
does not induce new loopholes. At the device, only the applica-
tion matching SIM-embedded signatures could acquire the carrier
privilege. The carrier app ensures SIM security by isolating direct
communication between user apps and SIM. The carrier app further
checks and filters the failure report inputs to ensure security.

8 RELATED WORK

Mobile failure diagnosis has been an active topic for years. It is an
important area, as a correct diagnosis result helps optimize device
performance [20, 33, 34, 37, 65] or fixes RAN/core [5, 46]. Unfortu-
nately, such diagnosis typically relies on the one-side information,
either at the device [36, 62, 63] or inside the network [27, 45]. The
lack of panoramic view makes diagnosis slow and error-prone. On
the other hand, our failure diagnosis combines the information
from both sides with a novel SIM-based solution that enables col-
laboration between the device and the network. To the best of our
knowledge, SEED is the first work that proposes SIM-based failure
diagnosis. Current commercial diagnosis tools such as NetMotion
[44] collect both-side information, but only monitor the high-level
metrics (e.g., network performance, connection drop rate, etc.) with-
out failure diagnosis in the cellular stack. The collaboration between
the network and the device also halts once the data connection is
broken upon failures [52]. In contrast, SEED diagnoses cellular fail-
ures and performs runtime handling even if the data connection is
broken or not fully established.

Prior efforts focus on other issues and cannot achieve failure
handling with decent speed and accuracy. [35] measures cellular re-
liability and optimizes the existing Android error handling scheme;
it lacks fine-grained failure diagnosis and handling. Meanwhile,
network-side diagnosis [46] can barely help the devices recover
from failures. Our work bridges the network and the device, and
achieves runtime, fine-grained failure handling. Unlike conven-
tional data center network failure diagnosis [24, 68] that utilizes
active probing [29] or trace monitoring [32], our design leverages
the 5G standardized failure causes with readily accessible metrics
for diagnosis and handling, thus keeping the solution light-weight
and scalable.

9 DISCUSSION

SEED focuses on failure diagnosis and treatment for the 5G proto-
col stack, but does not explicitly diagnose and handle underlying
radio link issues or application-level failures. Such physical-layer
or app-level issues may affect control/data-plane management and
data delivery. The resulting failures will be implicitly detected and
handled by SEED. SEED can be further extended to support radio
condition diagnosis with runtime modem measurements and gNB
information on dynamic radio signals.

SEED leverages the undefined fields of the 5G signaling messages
within the 3GPP standards, thus being compatible with current
mobile OSes and radio access networks. SEED still requires changing
the SIM applet and the core network. For SIM/eSIM, operators could
update the applet through OTA. The eSIM uses a programmable
chip to store SIM profiles from different operators. eSIM supports
the SIM’s applet format, and SEED applet could be directly applied.

Jinghao Zhao, Zhaowei Tan, Yifei Xu, Zhehui Zhang, Songwu Lu

For the network side, operators with the cloud-based core network
implementations could deploy SEED with software updates at the
core. A new module can be added to handle diagnosis messages and
perform online learning. SEED only introduces a small amount of
extra signaling, thus unlikely to trigger anomaly detection deployed
by operators. If false alarm is triggered, operators may readjust the
related filter rules for diagnosis messages.

The SEED-R mode requires root access to send the AT commands.
The current standard has supported the SIM to trigger AT com-
mands directly at the modem with proactive commands [23]. It
has been deployed on some IoT modems [58], but not on current
5G smartphone modems yet. If the modem enables the interface,
SEED becomes a rootless solution. With the current modems, if the
OS provides APIs for the carrier app to initialize AT commands
without root, SEED could also become rootless.

SEED can be adapted to diagnose new 5G functionalities. One
upcoming feature is network slicing [25, 26], where failure could
arise to a given slice. Although this increases the complexity of
detection and handling, SEED enables fine-grained diagnosis and
handling. Therefore, it could reset or modify the failed network
slice without affecting other functioning slices.

10 CONCLUSIONS

The global rollout of 5G mobile systems is underway. Similar to
every large-scale networked system, failures become the norm,
rather than exceptions, in 5G. This has been confirmed by recent
empirical studies [35, 62]. As 5G is going to higher radio spectrum
and the cell size is getting smaller, frequent handovers further
aggravate the chances for failures. If left unattended, such failures
will affect the normal operations of 5G applications, particularly
those emerging ones (e.g., AR/VR/MR), due to prolonged network
disruptions. The current solutions do not diagnose the error causes
and use the blind, sequential retry approach to failure handling.

In this work, we describe the design, implementation, and evalu-
ation of SEED, a novel SIM-based solution to 5G failure diagnosis
and handling. SEED leverages the available error codes carried by
standardized 5G signaling messages for root cause inference. It
further enhances the diagnosis with a simple, domain-specific ma-
chine learning algorithm. SEED takes adaptive, multi-tier reset/redo
actions (reset protocol operations, refresh outdated configurations,
reload profiles, etc.) once the failure cause is inferred. Our evalua-
tion has confirmed the viability of SEED.

For fast adoption and deployment, we take the operator’s view
in the design of SEED. As the global 5G rollout is ongoing, we
believe the operator is in the best position for 5G failure manage-
ment solutions. The components of SEED can be readily installed
to 5G subscribers when they activate their devices with the carrier.
The software updates can be easily completed with the current
operators’ practice. We are working with a prime US operator for
assessment and early trials. In the broader context, we believe 5G
failure management needs more activities from the research com-
munity; this work describes our initial effort along this direction.
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A STANDARDIZED FAILURE CAUSES

RELATED TO CONFIGURATION ISSUES

Control plane management failures with the required configura-
tions from the infrastructure:

#26-Non-5G authentication unacceptable: Supported RAT
#27-N1 mode not allowed: Supported RAT

#31-Redirection to EPC required: Supported RAT

#62-No network slices available: Sugested S-NSSAI
#72-Non-3GPP access to 5GCN not allowed: supported RAT
#91-DNN not supported or not subscribed in the slice: Suggested
DNN

#95-Semantically incorrect message: Invalid/missed config

e #96-Invalid mandatory information: Invalid/missed config
e #100-Conditional IE error: Invalid/missed config

Jinghao Zhao, Zhaowei Tan, Yifei Xu, Zhehui Zhang, Songwu Lu

Data plane management failures with the required configura-
tions from the infrastructure:

#27-Missing or unknown DNN: Suggested DNN

#28-Unknown PDU session type: Suggested session type
#33-Requested service option not subscribed: Suggested DNN
#39-Reactivation requested: Suggested DNN

#41-Semantic error in the TFT operation: Suggested TFT
#42-Syntactical error in the TFT operation: Suggested TFT

#43 -Invalid PDU session identity: Activated PDU session
#44-Semantic errors in packet filter(s): Suggested packet filter
#45-Syntactical error in packet filter(s): Suggested packet filter
#54 -PDU session does not exist: Activated PDU session
#59-Unsupported 5QI value: Suggested 5QI

#68-Not supported SSC mode: Suggested packet filter
#70-Missing or unknown DNN in a slice: Suggested DNN
#83-Semantic error in the QoS operation: Suggested packet filter
#84-Syntactical error in the QoS operation: Suggested packet
filter

#95-Semantically incorrect message: Invalid/missed config

e #96-Invalid mandatory information: Invalid/missed config

e #100-Conditional IE error: Invalid/missed config

B AT COMMANDS LIST FOR FAST FAILURE
HANDLING

Modem reset: AT+CFUN

PLMN selecion: AT+COPS

Control-plane reattachment: AT+CGATT
Data session setting: AT+ CGDCONT
Data plane reset: AT+CGACT


https://www.youtube.com/
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