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Abstract—Federated learning is a framework for distributed
optimization that places emphasis on communication efficiency.
In particular, it follows a client-server broadcast model and is
appealing because of its ability to accommodate heterogene-
ity in client compute and storage resources, non-i.i.d. data
assumptions, and data privacy. Our contribution is to offer
a new federated learning algorithm, FedADMM, for solving
non-convex composite optimization problems with non-smooth
regularizers. We prove the convergence of FedADMM for the
case when not all clients are able to participate in a given
communication round under a very general sampling model.

I. INTRODUCTION

Federated learning (FL) [14, 19], a novel distributed
learning paradigm has attracted significant attention over
the past few years. Federated algorithms take a client/server
computation model and provide scope to train large-scale
machine learning models over an edge-based distributed
computing architecture. Models are trained collaboratively
under the coordination of a central server while storing
data locally on the edge/clients. Typically, clients (devices
and entities ranging from mobile phones to hospitals, to an
internet of things [21, 11]) are assumed to be heterogeneous;
each client is subject to its own constraints on available
computational and storage resources. By allowing data to
be stored client-side, the FL paradigm has many favorable
privacy properties.

In contrast to “traditional” distributed optimization, the
FL framework has its own unique challenges and character-
istics. First, communication becomes problematic when the
number of edge devices/clients is large, or the connection
between the central server and a device is slow, e.g., limited
bandwidth cellular networks. Second, datasets stored in each
client may be highly heterogeneous in that they are sampled
from different population distributions, or the amount of data
belonging to each client is unbalanced. Third, device/client

heterogeneity can severely hinder algorithm performance;
differences in hardware, software, and power (connectivity)
lead to varying computation speeds among clients, leading to
global performance being dominated by the slowest partic-
ipant. This is known as the “straggler” effect. Additionally,
the server may lose control over the clients when they
power down or lose connectivity. It is thus common for
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only a fraction of clients to participate in each round of the
training (optimization) process, and federated optimization
algorithms must accommodate this partial participation.

A wealth of algorithms have been developed to address
the aforementioned challenges. Notably, work in [19] pro-
posed the now popular FedAvg algorithm, where each client
performs multiple stochastic gradient descent (SGD) steps
before sending the model to the server for aggregation. Sub-
sequent efforts [14, 30, 33, 16, 25] provided theoretical anal-
ysis and further empirical performance evaluations. Since
the proposal of FedAvg, there has been a rich body of work
concentrating on developing federated optimization algo-
rithms, such as; FedProx [27], FedSplit [23], Scaffold [12],
FedLin [20], FedDyn [1], FedDR [32] and FedPD [38].

We consider a general unconstrained, composite optimiza-
tion models formulated as

1

n

nX

i=1

fi(x) + g(x). (1)

No convexity assumptions on fi are made and g can be
non-smooth. Of the previously mentioned federated algo-
rithms, we restrict our attention to FedDR and FedPD.
These algorithms are designed to alleviate the unrealistic
assumptions required by FedAvg in order to realize desirable
theoretical convergence rates. As described in [32], FedDR
combines the nonconvex Douglas-Rachford splitting (DRS)
algorithm [5] with a randomized block-coordinate strategy.
FedDR provably converges when only a subset of clients
participate in any given communication round. In contrast,
FedPD is a primal-dual algorithm which requires either full
participation or no participation by all clients at every round.
Unlike FedDR, FedPD cannot handle optimization problems
of the form of (1) for g 6⌘ 0.

The key observation of this paper is to note that the
updating rules of FedPD share a similar form to those of
the alternating direction method of multipliers (ADMM) [9],
but specifies how the local models are updated to satisfy the
flexibility need of FL. Motivated by the fact that ADMM is
the dual formulation of DRS [35, 7], we provide a new
algorithm called FedADMM. Specifically, our contributions
are:

1) By applying FedDR to the dual formulation of
problem (1), we propose a new algorithm called
FedADMM, which allows partial participation and
solves the federated composite optimization problems
as in [36].
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2) When g ⌘ 0 in problem (1), we find that FedADMM
reduces to FedPD but requires only partial participation.

3) We prove equivalence between FedDR and FedADMM
and provide a one-to-one and onto mapping between
the iterates of both algorithms.

4) We provide convergence guarantees for FedADMM
using the equivalence established in point 3.

Since FedADMM is the dual formulation of FedDR, it
inherits all the desirable properties from FedDR. First, it can
handle both statistical and system heterogeneity. Second, it
allows inexact evaluation of users’ proximal operators as in
FedProx and FedPD. Third, by considering g 6⌘ 0 in (1),
more general applications and problems with constraints can
be considered [36].

A. Related Work

ADMM and DRS: DRS was first proposed in [5]
in the context of providing numerical solutions to heat
conduction partial differential equations. Subsequently, it
found applications in the solution of convex optimization
problems [18, 28] and later non-convex problems [15, 31].
ADMM [10, 3] is a very popular iterative algorithm for
solving composite optimization problems. The equivalence
between DRS and ADMM has been subject of a lot of
work [8, 6, 35, 39]. It was first established for convex
problems where ADMM is equivalent to applying DRS
to the dual problem [8, 6]. Recently, these ideas were
extended in [31] to show equivalence in the non-convex
regime. Inspired by the fact that FedDR can be viewed as
a variant of nonconvex DRS applied to the FL framework,
we propose a new algorithm, FedADMM, and further extend
the equivalence of these two algorithms to the FL paradigm.

Federated Learning: FedAvg was first proposed in [19].
However, it works well only with a homogeneous set of
clients. It is difficult to analyze the convergence of FedAvg
for the heterogeneous setting unless additional assumptions
are made [16, 17, 13, 34]. The main reason for this is that
the algorithm suffers from client-drift [41] under objective
heterogeneity. To address the data and system heterogeneity,
FedProx [27] was proposed by adding an extra proximal
term [22] to the objective. However, this extra term might
degrade the training performance so that FedProx doesn’t
converge to the global or local stationery points unless
the step-size is carefully tuned. Another method called
Scaffold [12] uses control variates (or variance reduction) to
reduce client-drift at the cost of increased communication
incurred by sending extra variables to the server. Fed-
Split [23] applied the operator splitting schemes to remedy
the objective heterogeneity issues, while it only considered
the convex problems and required the full participation of
clients. As mentioned earlier, FedDR [32] was inspired from
DRS, and allowed partial participation. From the primal-
dual optimization perspective, FedPD [38] proposed a new
concept of participation, which restricted its potential appli-
cation to real problems. It is also worthwhile to mention that
FedDyn [1] is equivalent to FedPD [38] from [37] under the

full participation setting, but it allows partial participation.
Unlike [36], FedPD and FedDyn can’t solve non-smooth or
constrained problems. Finally, we refer readers to [11] for a
comprehensive understanding of the recent advances in FL.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider the canonical Federated learning optimiza-
tion problem defined as

min
x2Rd

(
F (x) = f(x) + g(x) ⌘

1

n

nX

i=1

fi(x) + g(x)

)
(2)

where n is the number of clients, fi denotes the loss
function associated to the i-th client. Each fi is nonconvex
and Lipschitz differentiable (see Assumptions 2.1 and 2.2
below), and g is a proper, closed, and convex function and
is not necessarily smooth. For example, g could be any `p
norm or an indicator function.

Assumption 1. F (x) is bounded below, i.e.,

inf
x2Rd

F (x) > �1 and dom(F ) 6= ;.

Assumption 2. (Lipschitz differentiability) Each fi(·) in (2)
has L-Lipschitz gradient, i.e.,

krfi(x)�rfi(y)k  Lkx� yk

for all i 2 [n] and x, y 2 Rd
.

The notation [n] above defines the set {1, 2, . . . , n}. All
norms are `2- norms. We will frequently make use of
the proximal operator [22]. Although typically defined for
convex functions, we make no such assumptions.

Definition 1. (Proximal operator) Given an L-Lipschitz

(possibly nonconvex and nonsmooth) function f , then the

proximal mapping Rd
! (�1,1] is defined as

prox⌘f (x) = argmin
y

⇢
f(y) +

1

2⌘
kx� yk2

�
. (3)

with parameter ⌘ > 0.

If f is nonconvex but L-Lipschitz, prox⌘f (x) is still well-
defined with 0 < ⌘ < 1/L.

Definition 2. (Conjugate function) Let f : Rd
! R. The

function f⇤ : Rd
! R defined as

f⇤(y) , sup
x2dom f

�
yTx� f(x)

�

is called the conjugate function of f .

The conjugate function is is the piecewise supremum of
a set of affine functions, hence it is closed and convex even
when f is not.

Definition 3. ("-stationarity) A vector x is said to be an

"-stationery solution to (2) if

E
h
krF (x)k2

i
 "2,

where expectation is taken with respect to all random

variables in the respective algorithm.
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III. DOUGLAS-RACHFORD ALGORITHM

A. Douglas-Rachford Splitting

Douglas-Rachford Splitting (DRS) [5] is an iterative split-
ting algorithm for solving the optimization problems that can
be written as

minimizex2Rd f(x) + g(x). (4)

Although originally used for solving convex problems, it has
been shown to work well on certain non-convex problems
with additional structure. DRS solves problem (4) by pro-
ducing a series of iterates (yk, zk, xk) for k = 1, 2, . . . given
by 8

><

>:

yk = prox⌘f (xk)

zk = prox⌘g (2yk � xk)

xk+1 = xk + ↵ (zk � yk)

(5)

where ↵ is a relaxation parameter. When ↵ = 1, (5) is the
classical Douglas-Rachford splitting and when ↵ = 2, (5)
is a related splitting algorithm called Peaceman-Rachford
splitting [24].

If f in problem (4) can be decomposed as f(x) =
1
n

Pn
i=1 fi(x), then (5) can be modified so as to run in

parallel if we include a global averaging step. The resulting
algorithm is given below:

8
>>>>>><

>>>>>>:

yk+1
i = yki + ↵

�
x̄k

� xk
i

�
, 8i 2 [n]

xk+1
i = prox⌘fi

�
yk+1
i

�
, 8i 2 [n]

x̂k+1
i = 2xk+1

i � yk+1
i , 8i 2 [n]

x̃k+1 = 1
n

Pn
i=1 x̂

k+1
i ,

x̄k+1 = prox⌘g
�
x̃k+1

�
.

(6)

A full derivation is provided in [32]. Equation (6) is called
full parallel Douglas-Rachford splitting (DRS).

B. FedDR

Implicit in the full parallel DRS (6), is the fact that all
users are required to participate in every iteration. Instead
of requiring all users i 2 [n] to participate as in (6), work
in [32] proposed an inexact randomized block-coordinate
DRS algorithm, called FedDR. Here, a subset Sk of clients
is sampled from a “proper” sampling scheme Ŝ (See Def-
inition 4 below for details) at each iteration. Each client,
i 2 Sk performs a local update (i.e., executes the first
three steps in (6)), then sends its local model to server for
aggregation. Each client i /2 Sk does noting. The complete
FedDR algorithm is shown in Algorithm 1.

Convergence to an ✏-stationary point of FedDR is guar-
anteed when the sampling scheme Ŝ is proper and Assump-
tion 1 and 2 hold [32].

Definition 4. Let p = (p1, p2, · · · , pn), where pi = P(i 2
Ŝ). If pi > 0 for all i 2 [n], we call the sampling scheme

Ŝ proper, i.e., every client has a nonzero probability to be

selected.

Assumption 3. All partial participation algorithms in this

paper use a proper sampling scheme.

Algorithm 1 FL with Randomized DR (FedDR) [32]

1: Initialize x0, ⌘,↵ > 0,K, and tolerances ✏i,0 � 0.
2: Initialize the server with x̄0 = x0 and x̃0 = x0

Initialize each client i 2 [n] with y0i = x0, x0
i ⇡

proxnfi
�
y0i
�
, and x̂0

i = 2x0
i � y0i .

3: for k = 0, . . . ,K do
4: Randomly sample Sk ✓ [n] with size S.
5: ⇤ User side
6: for each user i 2 Sk do
7: receive x̄k from the server.
8: choose ✏i,k+1 � 0 and update
9: yk+1

i = yki + ↵
�
x̄k

� xk
i

�
,

10: xk+1
i ⇡ prox⌘fi

�
yk+1
i

�
,

11: x̂k+1
i = 2xk+1

i � yk+1
i .

12: send �x̂k
i = x̂k+1

i � x̂k
i back to the server .

13: end for
14: ⇤ Server side
15: aggregation x̃k+1 = x̃k + 1

n

P
i2Sk

�x̂k
i

16: update x̄k+1 = prox⌘g
�
x̃k+1

�

17: end for

From the analysis in [26], this assumption includes a
lot of sampling schemes such as non-overlapping uniform
and doubly uniform sampling as special cases. The intuition
behind proper sampling is to ensure that on average every
client has a chance to be selected at every iteration.

In FedDR there are three variables that get updated: x̄k, xk
i

and yki . The variable x̄k denotes the consensus/average
variable to minimize the global model F , xk

i denotes the
local variable associated to fi, while yki measures the
distance between the global variable x̄k and local model
xk
i . To account for the limitations on computation resources

for local users, FedDR allows the inexact calculation of the
proximal step, i.e.,

xk+1
i ⇡ prox⌘fi

�
yk+1
i

�
()

kxk+1
i � prox⌘fi

�
yk+1
i

�
k  ✏i,k+1.

Thus ⇡ defines an ✏-close solution. After local clients i 2 Sk

update their model and send them back to the server, the
server aggregates the updates to update the global model by
executing steps 16 and 17 in Algorithm 1.

IV. FROM FEDDR TO FEDADMM

Our first contribution is to derive the FedADMM algo-
rithm from FedDR.

A. An equivalent formulation

We begin by rewriting problem (2) as the equivalent
constrained problem:

min
x2Rnd,x̄

(
F (x) =

1

n

nX

i=1

fi(xi) + g(x̄)

)

s.t. Indx = 1x̄

(7)
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where x =
⇥
xT
1 , x

T
2 , · · · , x

T
n

⇤T
2 Rnd, Id is the d⇥d identity

matrix, and 1 = [Id · · · Id]T . Here x̄ should be interpreted
as the global consensus variable.

Forming the Lagrangian of (7) and using the definition of
the conjugate function, the dual formulation of (7) is

max
z2Rnd

�
F ⇤(z) = �f⇤(�Indz)� g⇤(1T z)

 
(8)

where z =
⇥
zT1 , z

T
2 , · · · , z

T
n

⇤T
2 Rnd is the vector of dual

variables. Problem (8) is clearly equivalent to

min
z1,z2,··· ,zn

(
1

n

nX

i=1

f⇤
i (�zi) + g⇤

 
nX

i

zi

!)
. (9)

Before proceeding to develop an algorithm for solving (9),
we first rewrite the full parallel DRS algorithm 6. Changing
the execution order of (6) and choosing ↵ = 1 give
8
>>>>>><

>>>>>>:

x̂k
i = 2xk

i � yki , 8i 2 [n]

x̃k = 1
n

Pn
i=1 x̂

k
i , 8i 2 [n]

x̄k = prox⌘g
�
x̃k
�
,

xk+1
i = prox⌘fi

�
yki + x̄k

� xk
i

�
, 8i 2 [n]

yk+1
i = yki + x̄k

� xk
i , 8i 2 [n].

(10)

Introducing the change of variables wk
i = xk

i � yki , we have
the following parallel DR algorithm

8
>>>>>><

>>>>>>:

x̂k
i = xk

i + wk
i , 8i 2 [n]

x̃k = 1
n

Pn
i=1 x̂

k
i , 8i 2 [n]

x̄k = prox⌘g
�
x̃k
�
,

xk+1
i = prox⌘fi

�
x̄k

� wk
i

�
, 8i 2 [n].

wk+1
i = wk

i + xk+1
i � x̄k, 8i 2 [n]

(11)

Remark 1. Note that (6),(10) and (11) are essentially the

same parallel algorithm under a change of execution order

and variables.

B. FedDR-II

From section III, we observe that the only difference
between full parallel DRS and FedDR is that FedDR only
requires a subset of clients to update their variables, while
full parallel DRS requires full participation. Similarly, by
only considering partial participation in (11), we introduce
the intermediate FedDR-II algorithm. We now describe each
step of a single epoch of FedDR-II:

1) Initialization: Given an initial vector x0
2 dom(F )

and tolerances ✏i,0 � 0. Initialize the server with x̄0 =
x0. Initialize all users i 2 [n] with w0

i = 0 and x0
i = x0.

2) The k-th iteration: (k � 0) Sample a proper subset
Sk ✓ [n] so that Sk represents the subset of active
clients.

3) Client update (Local): For each client i 2 Sk, update
x̂k
i = xk

i + wk
i . Clients i /2 Sk do nothing, i.e.

8
<

:

x̂k
i = x̂k�1

i

xk
i = xk�1

i

wk
i = wk�1

i

4) Communication: Each user i 2 Sk sends only x̂k
i to

the server.
5) Server update: The server aggregates x̃k =

1
n

Pn
i=1 x̂

k
i , and then compute x̄k = prox⌘g

�
x̃k
�
.

6) Communication (Broadcast): Each user i 2 Sk re-
ceives x̄k from the server.

7) Client update (Local): For each user i 2 Sk, given
✏i,k+1 � 0, it updates

⇢
xk+1
i ⇡ prox⌘fi

�
x̄k

� wk
i

�

wk+1
i = wk

i + xk+1
i � x̄k.

Each user i /2 Sk does nothing, i.e.
⇢

wk+1
i = wk

i

xk+1
i = xk

i

Remark 2. FedDR and FedDR-II are equivalent because

they are partial participation versions of (6) and (11)
respectively.

C. Solving the dual problem using FedDR-II

In this subsection, we use FedDR-II to solve the dual
problem (9), introducing a new algorithm called FedADMM.
We call this algorithm FedADMM because it is derived from
applying FedDR-II to the dual problem (9). Let us define
the augmented Lagrangian functions associated to (7) as

Li(xi, x̄
k, zi) = fi (xi) + g(x̄k)+ (12)

⌦
zki , xi � x̄k

↵
+

⌘

2

��xi � x̄k
��2 .

where ⌘ denotes penalty parameter. Finally, we define
�x̂k

i = x̂k+1
i � x̂k

i . With everything defined, FedADMM
is presented in Algorithm 2 below.

Algorithm 2 Federated ADMM Algorithm (FedADMM)

1: Initialize x0, ⌘ > 0,K, and tolerances ✏i,0(i 2 [n]).
2: Initialize the server with x̄0 = x0

3: Initialize all clients with z0i = 0 and x0
i = x̂0

i = x0.
4: for k = 0, . . . ,K do
5: Randomly sample Sk ✓ [n] with size S.
6: ⇤ Client side
7: for each client i 2 Sk do
8: receive x̄k from the server.
9: xk+1

i ⇡ argmin
xi

Li

�
xi, x̄k, zki

�

10: zk+1
i = zki + ⌘

�
xk+1
i � x̄k

�
}Dual updates

11: x̂k+1
i = xk+1

i + 1
⌘ z

k+1
i

12: send �x̂k
i = x̂k+1

i � x̂k
i back to the server

13: end for
14: ⇤ Server side
15: aggregation x̃k+1 = x̃k + 1

n

P
i2Sk

�x̂k
i

16: update x̄k+1 = proxg/⌘
�
x̃k+1

�

17: end for

When g ⌘ 0, the server-side steps 15-16 of FedADMM
reduce to the single step:

x̄k+1 = x̃k+1 = x̃k +
1

n

X

i2Sk

�x̂k
i =

1

n

nX

i=1

x̂k+1
i .
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In this case, the updating rules of FedADMM are essentially
the same as FedPD in [38]. Both compute the local model
xk+1
i by first minimizing (12), followed by updating the dual

variable �k+1
i , and then aggregating x̂k+1

i to achieve the
global model x̄k+1. However, FedADMM allows for partial
participation (only chooses a subset of clients to update)
while FedPD requires all clients to update at each commu-
nication round, making it less practical and applicable in
real world scenarios.

Note that FedADMM can handle the case where g 6⌘ 0
whereas FedPD didn’t consider this more general formula-
tion. Just like step 11 (approximately evaluating prox⌘fi )
in FedDR, FedADMM obtains the new local model xk+1

i
by inexactly solving (12). Note that we do not specify how
to (approximately) solve the proximal steps or Langrangian
minimization step in (either) algorithm. Various oracles are
specified in [38].

V. ANALYSIS

We now present the main theoretical results of the paper.
Namely, an equivalence between FedDR and FedADMM.
We leverage the FedDR convergence results [32] to show
that FedADMM converges under partial participation.

We say that two iterative optimization algorithms are
“equivalent” if they produce sequences (xk)k�0 and (yk)k�0

such that there exists a unique linear mapping between the
two sequences. More general equivalence classes are defined
and studied in [40].
Theorem 1. (Equivalence between FedDR and
FedADMM) Let (xk

i , z
k
i , x̄

k)k�0 be a sequence generated by

FedADMM with penalty parameter ⌘, and (ski , u
k
i , û

k
i , v̄

k)
a sequence generated by FedDR with parameter

1
⌘ . Then

FedADMM and FedDR are equivalent.

Proof. For each triplet (xk
i , z

k
i , x̄

k) at the k-th iteration of
FedADMM with stepsize ⌘, define
8
>>><

>>>:

ski = xk
i � zki /⌘

uk
i = xk

i

ûk
i = xk

i + zki /⌘

v̄k = x̄k

and

8
>>><

>>>:

sk+1
i = xk+1

i � zk+1
i /⌘

uk+1
i = xk+1

i

ûk+1
i = xk+1

i + zk+1
i /⌘

v̄k+1 = x̄k+1

Then (ski , u
k
i , û

k
i , v̄

k) and (sk+1
i , uk+1

i , ûk+1
i , v̄k+1) satisfy

the updating rule of FedDR
8
>>><

>>>:

sk+1
i = ski + (v̄k � uk

i ), 8i 2 Sk,

uk+1
i = proxrfi

�
sk+1
i

�
, 8i 2 Sk,

ûk+1
i = 2uk+1

i � sk+1
i , 8i 2 Sk,

v̄k+1 = proxrg
�
1
n

Pn
i=1 û

k+1
i

�
,

where r = 1/⌘ and when i /2 Sk
8
><

>:

sk+1
i = ski ,

uk+1
i = uk

i ,

ûk+1
i = ûk

i

where the same sampling realizations Sk are used at each
iteration for both algorithms.

We have

ski + (v̄k � uk
i ) = xk

i � zki /⌘ + (x̄k
� xk

i )

= xk+1
i � zki /⌘ + x̄k

� xk+1
i

(a)
= xk+1

i � zk+1
i /⌘ = sk+1

i .

where (a) is due to the dual updates (line 10) in FedADMM
algorithm. Moreover,

uk+1
i = xk+1

i = argmin
xi

Li

�
xi, x̄

k, zki
�

= proxrfi(x̄
k
� zki /⌘)

(b)
= proxrfi(s

k+1
i )

where (b) uses the fact that

x̄k
� zki /⌘ = ski + (v̄k � uk

i ) = sk+1
i .

Finally, note that

ûk+1
i = 2uk+1

i � sk+1
i = xk+1

i + zk+1
i /⌘,

which gives

v̄k+1 = x̄k+1 (c)
= proxrg

 
nX

i=1

✓
xk+1
i +

1

⌘
zk+1
i

◆!

= proxrg

 
1

n

nX

i=1

ûk+1
i

!

where (c) comes from the FedADMM updating rule (line
11-16 in Alg 2).

Since we have proved the equivalence of FedDR and
FedADMM for arbitrary (nonconvex) problems, FedADMM
will directly inherit the convergence properties of FedDR,
specifically at rate O( 1k ). The explicit convergence rate of
FedADMM is characterized in the following theorem which
is a direct application of Theorem 3.1 in [32].

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold and

�1, �2, �3, �4 > 0 are constants. Let
�
xk
i , z

k
i , x̂

k
i , x̄

k
�
k�0

be

generated by Alg 2 (FedADMM) using penalty parameter ⌘
that satisfies

⌘ >
4L (1 + 2�4)p

9� 16�4 (1 + 4�4)� 1
.

Then when g ⌘ 0, the following holds
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E
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i
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⇥
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⇤
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�
C2✏
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2
i,k+1

�

where ⌘̂ = 1/⌘, �, ⇢1, and ⇢2 are defined as

8
>>>>>><

>>>>>>:

� =
p̂[2�(L⌘̂+1)�2L2⌘̂2�4�4(1+L2⌘̂2)]

2⌘̂(1+�1)(1+L2⌘̂2) > 0
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(1+⌘̂2L2)
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and the constants are

C1 =
2(1 + ⌘̂L)2 (1 + �2)

⌘̂2�
, C2 = ⇢1C1,

C3 = ⇢2C1 +
(1 + ⌘̂L)2 (1 + �2)

⌘̂2�2
.

and p̂ = min {pi : i 2 [n]} > 0 in Assumption 3.

Corollary 1. If the accuracy sequence ✏i,k (for all i 2 [n]
and k > 0) at Step 8 in Alg 2 satisfies

1
n

Pn
i=1

PK+1
k=0 ✏2i,k 

D for a given constant D > 0 and all K � 0. Then,

FedADMM needs

K =

$
C1

⇥
F
�
x0
�
� F ?

⇤
+ (C2 + C3)D

"2

%
⌘ O

�
"�2
�

iterations to achieve
1

K+1

PK
k=0 E

h��rf
�
x̃k
���2
i

 "2,

where x̃K
is randomly selected from {x̄0, x̄1, · · · , x̄K

}. In

other words, after K = O("�2) iterations, x̃K
is an "-

stationary solution of problem (2) when g ⌘ 0.

Remark 3. Our convergence analysis can be easily ex-

tended to g 6⌘ 0, as long as we change the suboptimal

condition into the gradient mapping as in [32]. To make
1
n

Pn
i=1

PK+1
k=0 ✏2i,k  D hold, interested readers could refer

to Remark 3.1 in [32].

Remark 4. Although FedADMM is a partial participation

version of FedPD when g ⌘ 0, its communication complexity

is still O("�2), which matches the lower bound (up to

constant factors) in [38].

VI. NUMERICAL SIMULATIONS

To demonstrate the equivalence of FedDR and
FedADMM, we conduct simulations on both synthetic and
real datasets. It is worthwhile to mention that our goal is
to show the equivalence of the algorithms and the effect
of partial participation, not to compare their performance
with other algorithms. Performance profiling of FedPD and
FedDR can be found in [32, 38]. We have not attempted to
optimize any hyper-parameters. All the experiments are run
on a Lambda machine with CPU(AMD Threadripper Pro
3975wx) and GPU(RTX A6000). The code is available at
https://github.com/jd-anderson/Federated.
Datasets: We first generate synthetic non-iid datasets by
following the same setup as in [29] and denote them
as synthetic-(↵,�). Here ↵ controls how much local
models differ from each other and � controls how much the
local data at each device differs from that of other devices.
We run the experiments by using the unbalanced datasets:
synthetic-(0, 0), synthetic-(0.5, 0.5) and
synthetic-(1, 1). We then compare FedADMM with
FedDR on the FEMNIST data set [4]. FEMNIST is a more
complex 62-class Federated Extended MNIST dataset. It
consists of handwritten characters including: numbers 1-10,
26 upper-and lower-case letters A-Z and a-z from different
writers and is also separated by the writers, therefore the
dataset is non-iid.

Models and Hyper-parameters: For all the synthetic
datasets, we use the model described in [32]: a neural
network with a single hidden layer. The network architecture
is 60 ⇥ 32 ⇥ 10 corresponding to input layer⇥ hidden

layer ⇥ output layer size. For FEMNIST data, we use
the same model as [4], which consists of 2 convolutional
layers and two fully connected layers, with 62 neurons in
the output layer matching the number of classes in the
FEMNIST dataset. For all the experiments, we use ⌘ = 1
(in FedADMM) and ↵ = 1 (in FedDR). As in [38], we
choose stochastic gradient descent as a local solver with
300 local iterations to solve step 11 in FedDR and step
9 in FedADMM. The mini-batch size in calculating the
stochastic gradient is 2 and the learning rate is 0.01. We
stress that we do not attempt to optimize these parameters.
Implementation: We use the uniform sampling scheme to
select the clients in each round. We set the number of active
clients in each round as 10 out of 30 in Fig 2 and test the
algorithms with 10 out of 20 users in Fig 1. We also compare
the performance of FedADMM using different participation
numbers in Fig 3. To provide a fair comparison, we use the
same random seeds across all algorithms.

After running multiple experiments on different datasets
and models, from figure 1 and 2 we observe that the training
accuracy and loss of FedDR and FedADMM coincide at
each iteration, which verifies our analysis in section V.

VII. CONCLUSION
We have developed a new federated learning algorithm,

FedADMM, for finding stationary points in non-convex
composite optimization problems. Current work is focused
on incorporating convex constraints into the algorithm and
applying it to non-localizable model predictive control prob-
lems where communication efficiency is necessary [2].
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