
Large-Scale System Identification Using a
Randomized SVD

Han Wang, James Anderson

Abstract—Learning a dynamical system from input/output

data is a fundamental task in the control design pipeline.

In the partially observed setting there are two components

to identification: parameter estimation to learn the Markov

parameters, and system realization to obtain a state space

model. In both sub-problems it is implicitly assumed that

standard numerical algorithms such as the singular value de-

composition (SVD) can be easily and reliably computed. When

trying to fit a high-dimensional model to data, even computing

an SVD may be intractable. In this work we show that an

approximate matrix factorization obtained using randomized

methods can replace the standard SVD in the realization

algorithm while maintaining the finite-sample performance and

robustness guarantees of classical methods.

I. INTRODUCTION

We consider the problem of identifying a linear time-
invariant (LTI) system parameterized by the matrices A 2

Rn⇥n, B 2 Rn⇥m, C 2 Rp⇥n and D 2 Rp⇥m, that evolves
according to

xt+1 = Axt +But + wt

yt = Cxt +Dut + vt.
(1)

It is assumed that we have N < 1 observations of the
output signal {yit}Tt=0 and control signal {ui

t}
T
t=0, where T

denotes the length of the signal. The vectors xt 2 Rn, wt 2

Rn, and vt 2 Rp in (1) denote the system state, process
noise, and measurement noise at time t, respectively.

In the fully observed setting, estimates for (A,B) can be
obtained by solving ordinary least-squares (OLS) optimiza-
tion problems. A series of recent papers [1–5] have derived
non-asymptotic guarantees for ordinary least-squares (OLS)
estimators. In the case of partially observed systems, which
is conceptually more complicated than the fully observed
case, OLS optimization can be used to estimate the Markov
parameters associated with (1) from which the Ho-Kalman
algorithm [6] can be employed to estimate the system
parameters (A,B,C,D). The process of obtaining estimates
of the system matrices from the Markov parameters is
referred to as system realization which is the main focus of
this paper. Using this framework, the authors of [3, 7–11]
have derived non-asymptotic estimation error bounds for the
system parameters which decay at a rate O(1p

N
). Note that

Han Wang and James Anderson are with the Department of Elec-
trical Engineering, Columbia University in the City of New York
(e-mail: {hw2786, james.anderson}@columbia.edu). HW is
kindly supported by a Wei Family Foundation fellowship. JA is supported
by DOE through award DE-SC0022234 and NSF through CAREER ECCS-
2144634.

these papers make different assumptions about the stability,
system order, and the number of required trajectories to
excite the unknown system.

However, in contrast to the estimation error bounds,
the computational complexity of system identification has
received much less attention in the literature [12, 13].
Due to the fact that the OLS problem is convex, and
the computational bulk of the Ho-Kalman Algorithm is a
singular value decomposition (SVD), it is taken for granted
that system identification can be carried out at scale. As
mentioned in [12], with the increase of system dimension,
the computational and storage costs of general control algo-
rithms quickly become prohibitively large. This challenge
motivates us to design algorithms that mitigate the “curse
of dimensionality”. In this paper, we aim to design an
efficient and scalable system realization algorithm that can
be deployed in the big data regime.

From the view of computational complexity, the system
identification methods proposed in [3, 7, 10, 11] are not scal-
able since the size of the Hankel matrix increases quadrati-
cally with the length of output signal T and cubically with
the system state dimension n. The result is the singular
value decomposition used in the Ho-Kalman Algorithm
cannot be computed. This quadratic/cubic dependence on
the problem size greatly limits its application in large scale
system identification problems.

Motivated by the limits of the scalability of numerical
SVD computations, there has been a surge of work which
has focussed on providing approximate, but more easily
computable matrix factorizations. Thanks to advances in
our understanding of random matrix theory and high di-
mensional probability (in particular, concentration of mea-
sure), randomized methods have been shown to provide
an excellent balance between numerical implementation (in
terms of storage requirements and computational cost) and
accuracy of approximation (in theory and practice). Broadly
speaking this field is referred to as randomized numerical
linear algebra (RNLA), and we refer the reader to [14–16]
and the references therein for an overview of the field.

The intuition is that randomized methods can produce ef-
ficient, unbiased approximations of deterministic operations
while being numerically efficient to implement by exploiting
modern computational architectures such as parallelization
and streaming. The performance of the randomized SVD
(RSVD) has been studied in many works [14–17] and has
found applications in large-scale problems across machine

2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

978-1-6654-5196-3/$31.00 ©2022 AACC 2178

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on January 09,2023 at 11:55:17 UTC from IEEE Xplore. Restrictions apply.

learning, statistics, and signal processing.
The main contribution of this work is a stochastic Ho-

Kalman Algorithm, where the standard SVD (which consti-
tutes the main computational bottleneck of the algorithm) is
replaced with an RSVD algorithm, which trades off accuracy
and robustness for speed. We show that the stochastic Ho-
Kalman Algorithm achieves the same robustness guarantees
as its deterministic, non-asymptotic version in expectation.
However, it outperforms the deterministic algorithm in terms
of speed/computational complexity, which is measured by
the total number of required floating-point operations (flops)
[[18], §C.1.1]. Compared with O(pmn3) flops required
by the deterministic algorithm, the stochastic Ho-Kalman
Algorithm only requires O(pmn2 log n) flops.

II. PRELIMINARIES AND PROBLEM FORMULATION

Given a matrix A 2 Cm⇥n, where C is the set of complex
numbers, kAk denotes the spectral norm and kAkF denotes
the Frobenius norm, i.e., kAk = �1(A), where �1 is the
maximum singular value of A, and kAkF =

p
Trace(A⇤A),

where A⇤ denotes the Hermitian transpose of A. The mul-
tivariate normal distribution with mean µ and covariance
matrix ⌃ is denoted by N (µ,⌃) . A matrix is said to be
standard Gaussian if every entry is drawn independently
from N (0, 1).

A. Singular Value Decomposition

The singular value decomposition of the matrix A 2

Cm⇥n, factors it as A = U⌃V ⇤, where U 2 Cm⇥m and
V 2 Cn⇥n are orthonormal matrices, and ⌃ is an m ⇥ n
real diagonal matrix with entries �1,�2, · · · ,�n ordered
such that �1 � �2 � · · · � �n � 0. When A is real,
so are U and V . The truncated SVD of A is given by
Ur⌃rV >

r (r < min{m,n}), where the matrices Ur and Vr

contain only the first r columns of U and V , and ⌃r contains
only the first r singular values from ⌃. According to the
Eckart-Young theorem [19], the best rank-r approximation
to A in the spectral norm or Frobenius norm is given by

A[r] =
rX

i=1

�iuiv
>
i (2)

where ui and vi denote the ith column of U and V ,
respectively. More precisely,

minimize
rank(X)r

kA�Xk = �r+1, (3)

and a minimizer is given by X? = A[r]. The expression (3)
concisely sums up the scalability issue we are concerned
with: on the left hand side is non-convex optimization
problem with no polynomial-time solution; on the right
is a singular value which for large m and/or n cannot
be computed. In the sequel we shall see how randomized
methods use approximate factorizations to resolve these
issues.

B. System Identification

We consider the problem of identifying a linear system
model defined by (1) where ut

i.i.d.
⇠ N

�
0,�2

uIm
�
, wt

i.i.d.
⇠

N
�
0,�2

wIn
�
, and vt

i.i.d.
⇠ N

�
0,�2

vIp
�
. We further assume that

the initial state variable x0 = 0n (although the dimension, n,
in unknown a priori). Under these assumptions, we generate
N trajectories of length T . Data is recorded as

D
N
T =

��
yit, u

i
t

: 1 i N, 0 t T � 1

,

where i denotes ith trajectory and t denotes tth time-step in
each trajectory. With the data D

N
T , the system identification

problem can be solved in two steps:
1) Estimation: Given D

N
T , estimate the first T Markov

parameters of the system which are defined as

G =
⇥
D, CB, CAB, . . . , CAT�2B

⇤
2 Rm⇥Tp.

Ideally, the estimation algorithm will produce finite
sample bounds of the form kG� Ĝk ✏(N,T), where
Ĝ is the estimate of G.

2) Realization: Given an estimated Markov parameter
matrix Ĝ, produce state-space matrices (Â, B̂, Ĉ, D̂)
with guarantees of the form kA�Âk ✏A, kB�B̂k

✏B , etc. This is most commonly done using the Ho-
Kalman algorithm.

The input/output trajectory {yt, ut}
T�1
t=0 is referred to as a

rollout. There are two approaches to collecting data; single
[7, 2, 20, 3, 21] and multi-rollout [22, 10, 5, 8]. As this paper
focuses on the realization step, we can use either approach.

C. System realization via noise-free Markov matrix G

The Ho-Kalman Algorithm [6] produces a realization
from Ĝ. We first consider the noise-free setting. The main
idea of the Ho-Kalman Algorithm is to construct and fac-
torize a Hankel matrix derived from the G. Specifically, we
generate the Hankel matrix:

H =

2

666664

CB CAB . . . CAT2B
CAB CA2B . . . CAT2+1B
CA2B CA3B . . . CAT2+2B

...
...

...
...

CAT1�1B CAT1B . . . CAT1+T2�1B

3

777775
,

where T = T1 + T2 + 1. We use H
� (H+) to denote the

pT1⇥mT2 Hankel matrix created by deleting the last (first)
block column of H. We assume that

1) the system (1) is observable and controllable, and
2) n = rank(H) min{T1, T2}.

Under these assumptions, H and H
� are of rank n. We note

that H� can be factorized as

H
� =

2

6664

C
CA

...
CAT1�1

3

7775
⇥
B AB . . . AT2�1B

⇤
= OQ,

2179

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on January 09,2023 at 11:55:17 UTC from IEEE Xplore. Restrictions apply.

where O,Q denote the observability matrix and control-
lability matrix respectively. We can also factorize H

� by
computing its truncated SVD, i.e., H

� = U⌃nV T =
(U⌃n

1
2)(⌃n

1
2V T). Therefore, the factorization of H

� es-
tablishes O = U⌃

1
2
n , Q = ⌃

1
2
nV T . And doing so, we obtain

the system parameter C by taking the first p rows of U⌃n
1
2

and the system parameter B by taking the first m columns of
⌃n

1
2V. Then A matrix can be obtained by A = O†

H
+Q†,

where (·)† denotes the Moore-Penrose inverse. Note that
the state-space realization problem is a non-convex. There
are multiple solutions yielding the same system input/output
behavior and Markov matrix G: If (A,B,C,D) is a state-
space realization obtained from G, then for any non-singular
matrix S, (SAS�1, SB,CS�1, D) is also a valid realiza-
tion.

D. System realization via noisy Markov parameter G

In the setting with noise, the same algorithm is applied to
the estimated Markov matrix Ĝ instead of the true matrix
G. In this case the Ho-Kalman Algorithm will produce esti-
mates Â, B̂, Ĉ and D̂. The explicit algorithm is described in
Alg 1 (deterministic). It was shown in [7] that the robustness
of the Ho-kalman Algorithm provides an estimation error
bounded by O(1

N1/4), where N is the number of trajectories:

max
n
kÂ� S�1ASk, kB̂ � S�1Bk, kĈ � CSk

o

.
q
kG� Ĝk = O(

1

N1/4
).

(4)

This result can be improved to O(1p
N
) [3, 11, 9].

Note that the computational complexity of the Ho-Kalman
Algorithm in Alg. 1 (deterministic) is dominated by the cost
of computing the SVD (Step 7), which is O(pT1⇥mT2⇥n)
when using the Krylov method (see e.g. [23, 24]). Therefore,
we want to use a small T to reduce the computational
cost. However, to satisfy the second assumption that n =
rank(H) min{T1, T2}, where T1 + T2 + 1 = T, the
smallest T we can choose is 2n + 1 with T1 = T2 = n.
In summary, the lowest achievable computational cost for
SVD is O(n3). Such dependency on the system dimension
is prohibitive for large-scale systems (e.g. systems with
n = 100 as we show in Section V). Motivated by the
drawbacks of the existing method, we aim to answer the
following question:

• Is there a system realization method which can sig-
nificantly reduce the computational complexity without
sacrificing robustness guarantees?

The main result of this paper is to answer this question
in the affirmative: We design a stochastic version of the
Ho-Kalman algorithm that is computationally efficient and
produces competitive robustness guarantees.

1In the following analysis, we will use Ũ , ⌃̃, Ṽ , L̃ to denote the variables
used in the stochastic Ho-Kalman Algorithm.

Algorithm 1 Stochastic/Deterministic Ho-Kalman Algo-
rithm

1: Input: Length T , Estimated Markov parameters Ĝ,
system order n, (T1, T2) satisfying T1 + T2 + 1 = T

2: Outputs: State space realization Â, B̂, Ĉ, D̂
3: Generate a Hankel matrix Ĥ 2 RpT1⇥m(T1+1) from Ĝ
4: Ĥ� = Ĥ(:, 1 : mT2) . dim(Ĥ�) = pT1 ⇥mT2

5: Ĥ+ = Ĥ(:,m+ 1 : m(T2 + 1))
6: if Deterministic then

7: L̂ = Ĥ�
[n] . truncated SVD via (2)

8: Û , ⌃̂, V̂ = SVD(L̂)
9: else if Stochastic then

10: Û , ⌃̂, V̂ = RSVD(Ĥ�, n, l)1 . L̃ = Û ⌃̂V̂ ⇡ L̂
11: end if

12: Ô = Û ⌃̂1/2 . dim(Ô) = pT1 ⇥ n
13: Q̂ = ⌃̂1/2V̂ ⇤ . dim(Q̂) = n⇥mT2

14: Ĉ = Ô(1 : p, :), B̂ = Q̂(:, 1 : m)
15: Â = Ô†Ĥ+Q̂†, D̂ = Ĝ(:, 1 : m)
16: Return Â 2 Rn⇥n, B̂ 2 Rn⇥m, Ĉ 2 Rp⇥n, D̂ 2 Rp⇥m

III. RANDOMIZED SINGULAR VALUE DECOMPOSITION

The numerical computation of a singular value decom-
position can be implemented in many ways. The structure
of the matrix to be decomposed will likely play a role in
determining which is the most efficient algorithm. We do not
attempt to review methods here as the literature is vast. In
the system realization problem, the Ho-Kalman Algorithm
computes the SVD of H�, a dense truncated block Hankel
matrix. To the best of our knowledge there are no specialized
algorithms for this purpose. As such, we assume we are
dealing with a general dense low rank matrix.

The objective of the RSVD it to produce matrices U,⌃, V ,
such that for a given matrix A 2 Cm⇥n with rank(A) =
r < min{m,n}, and tolerance ✏ > 0, the bound2

kA� U⌃V ⇤
k ✏

is satisfied where U and V have orthornormal columns and
⌃ 2 Rk⇥k is diagonal with k < r.

Following [15], the RSVD of a matrix A with target rank
k is computed in two stages (full implementation details are
provided in Algorithm 2):

1) Find a matrix P 2 Rm⇥k with orthonormal columns
such that the range of P captures as much of the range
of A as possible. In other words, A ⇡ PP ⇤A.

2) Form the matrix M = P ⇤A 2 Rk⇥n and apply the
standard numerical linear algebra technique to compute
the SVD of P .

Step 1 is the range finding problem. This is where ran-
domization enters picture. Let !(i) be a standard Gaussian
vector, and compute y(i) = A!(i). This can be viewed as a
sample of Range(A). Repeating this process k times and

2The A matrix in this section is to demonstrate RSVD. It is not related
to the dynamic system in (1).

2180

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on January 09,2023 at 11:55:17 UTC from IEEE Xplore. Restrictions apply.

concatenating samples into matrices we have Y = A⌦,
an orthonormal basis for Y can then be computed using
standard techniques, we use an economy QR decomposition.
Again, we concatenate basis vectors qi into a matrix P .
Because k is selected to be small, this process is compu-
tationally tractable. When kA � PP ⇤Ak is small, PP ⇤A
is a good rank-k approximation of A. In step 2, standard
deterministic routines are called to compute the SVD of M .
These routines are considered tractable as the the matrix M
has dimension k ⇥m where k is ideally much less than r.
From the SVD of M , the matrices U,⌃, V can be easily
constructed (lines 7–8 of RSVD).

Algorithm 2 Randomized SVD: RSVD
1: Input: an m⇥ n matrix A, a target rank k,

an oversampling parameter l
2: Output: Approximate SVD s.t. A ⇡ USV T

3: ⌦ = randn(n, k + l)
4: P = orth(A⌦) . approx. basis for Range(A)
5: M = PTA . dim(M) = (k + l)⇥ n
6: [U, S, V] = svd(M)
7: U = PU
8: U = U(:, 1 : k), S = S(1 : k, 1 : k), V = V (:, 1 : k)
9: Return U 2 Rm⇥k, S 2 Rk⇥k, V 2 Rn⇥k

In practice, if the target rank is selected to be k, then one
should sample the range of A k+ l times where l is a small
integer.. In RSVD, ⌦ is chosen to be a standard Gaussian
matrix. Surprisingly, the computational bottleneck of RSVD is
the matrix-vector multiplication in computing A⌦ in step 4.
To reduce the computational cost of this step, we can choose
other types of random matrices such as the subsampled
random Fourier transform (SRFT) matrix which reduces the
flop count from O(mn(k+ l) to O(mn log(k+ l)) without
incurring much loss in accuracy (we extend our results to
this setting in Appendix A-B). It should be further noted
that the computation of A⌦ is trivially parallelizable.

The orth function called on line 4 of RSVD computes
an orthonormal basis for the range of its argument. This
can be done in many ways, here we use an economy QR
decomposition.

A. Power Scheme for slowly decaying spectra
When the input matrix A has a flat spectrum, RSVD tends

to struggle to find a good approximate basis. To improve
the accuracy a power iteration scheme is employed [23,
p. 332]. Loosely, the power iteration are based on the
observation that the singular vectors of A and (AA⇤)qA
are the same, while the singular values with magnitude
less than one will rapidly shrink. In other words, it can
reduce the effect of noise. More precisely, we apply RSVD
to the matrix W = (AA⇤)q A, and we have �j(W) =
�j(A)2q+1, j = 1, 2, · · · which shows that for �j < 1,
the power iteration will provide singular values that decay
more rapidly while the singular vectors remain unchanged.
This will provide a more accurate approximation, however

it will require 2q+1 times as many matrix vector multiplies.
The following theorem provides a bound on the accuracy of
the approximation that RSVD provides.

Theorem 1. [15] Suppose that A is a real m ⇥ n matrix
with singular values �1 � �2 � �3 � · · · . Choose a target
rank k � 2 and an oversampling parameter l � 2, where
k + l min{m,n}. Then RSVD called on W = (AA⇤)qA
with target rank k, and oversampling parameter l produces
an orthonormal approximate basis P which satisfies

Ek(A� PP ⇤A)k

"
1 +

r
k

l � 1
+

e
p
k + l

l
·

p
min{m,n}� k

1
2q+1

�k+1

where e is Euler’s number and E denotes expectation with
respect to the random matrix ⌦.

Note that �k+1 is the theoretically optimal value in the
deterministic setting. Thus the price of randomization is the
given by the contents of the square brackets with exponent

1
2q+1 .
RSVD is implemented based on the assumption that the tar-

get rank k is know a priori. In practice, we do not know the
true rank k in advance. Therefore, it is desirable to design an
algorithm that can find a matrix P with as few orthonormal
columns as possible such that k(I � PP ⇤)Ak " where
" denotes a given tolerance. The work in [15], based on
results from [25] describes an adaptive randomized ranger
finder that iteratively samples until the desired tolerance is
obtained.

IV. MAIN RESULTS

The stochastic Ho-Kalman algorithm we propose replaces
the deterministic singular value decomposition and trunca-
tion (lines 7–8, Algorithm 1) with a single approximate
randomized SVD (line 10, Algorithm 1) obtained using
RSVD. Proofs of all results are deferred to the appendix.
For the remainder of the paper, symbols with a tilde denote
that they were obtained from the stochastic Ho-Kalman
Algorithm, while symbols with a hat denote that they
were obtained from the deterministic Ho-Kalman Algorithm.
Finally, symbols with neither have been obtained from the
ground truth Markov matrix G. From [7], we have the
following perturbation bounds:

Lemma 2. [7] The matrices H, Ĥ and L, L̂ satisfy the
following perturbation bounds:

• max
n
kH+

� Ĥ+
k, kH�

� Ĥ�
k

o
 kH � Ĥk

p
min{T1, T2 + 1}kG� Ĝk.

• kL� L̂k 2kH�
� Ĥ�

k 2
p

min{T1, T2}kG� Ĝk.

We will now use Theorem 1 and Lemma 2 to provide
average and deviation bounds on the performance of the
stochastic Ho-Kalman algorithm.

Lemma 3. (Average perturbation bound) Denote l � 2
to be the oversampling parameter used in RSVD. Run the

2181

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on January 09,2023 at 11:55:17 UTC from IEEE Xplore. Restrictions apply.

Stochastic Ho-Kalman Algorithm with a standard Gaus-
sian matrix ⌦ 2 RmT2⇥(n+l) in line 3 of RSVD, where
n+l min{pT1,mT2}. Then L and L̃ satisfy the following
perturbation bound:

EkL� L̃k 2C2

⇣
2 +

r
n

l � 1
+

e
p
n+ l

l
C1

⌘
kG� Ĝk (5)

where

C1 =
p
min{pT1,mT2}� n, C2 =

p
min{T1, T2}.

Furthermore, if we exploit the power scheme with RSVD,
then the right-hand side of (5) can be improved to

4C2

⇣
1 +

1
2

r
n

l � 1
+

e
p
n+ l

2l
C1

⌘1/(2q+1)
kG� Ĝk. (6)

Proof. See appendix.

From (5), we have that the perturbation bound is de-
termined by the ratio between the target rank n and the
oversampling parameter l. The error is large if l is small.
In practice, it is sufficient to use l = 5 or l = 10. And
there is rarely any advantage to select l > 10 [15]. In
addition, from (6), we know that the bound will decrease
if we increase the power parameter q. The effect of l in
terms of running time and realization error is studied further
in Section V where we observe that the stochastic Ho-
Kalman algorithm is robust to the choice of l. In case the
average perturbation as characterized by Lemma 3 doesn’t
feel like a helpful quantity, a deterministic error bound is
also achievable:

Lemma 4. (Deviation bound) Let the assumptions of
Lemma 3 hold. Assume l � 4 and let C1 and C2 be defined
as in Lemma 3. Then we have

kL� L̃k 2C2

⇣
2 + 16

r
1 +

n

l � 1
+

8
p
n+ l

l + 1
C1

⌘
kG� Ĝk

(7)
with failure probability at most 3e�l. Moreover,

kL� L̃k C2

⇣
2 + 6

p
(n+ l)l log l + 3

p
n+ l C1

⌘
kG� Ĝk

(8)
with failure probability at most 3l�l.

Proof. See appendix.

Remark 1. Another way to implement the stochastic Ho-
Kalman Algorithm is to use a structured random matrix
like subsampled random Fourier transform, or SRFT to
compute the RSVD. In contrast with Gaussian matrices,
SRFTs have faster matrix-vector multiply profile. As a result
RSVD computation time decreases. We present the bounds for
SRFT random matrices in the appendix.

We are now ready to show the robustness of stochastic
Ho-Kalman algorithm (valid up to a unitary transformation).

Theorem 5. Suppose the system A,B,C,D is observ-
able and controllable. Let O,Q be order-n controllabil-
ity/observability matrices associated with G and Õ, Q̃ be
approximate order-n controllability/observability matrices

(computed by RSVD) associated with Ĝ. Suppose �min(L) >
0 and the following robustness condition is satisfied:

EkL� L̃k �min(L)/2.

Then, there exists a unitary matrix S 2 Rn⇥n such that,

EkC � C̃SkF EkO � ÕSkF E
q
5nkL� L̃k,

EkB � S⇤B̃kF EkQ� S⇤Q̃kF E
q
5nkL� L̃k,

and Ã, A satisfy

EkA� S
⇤
ÃSkF

 C3

0

@
s

EkL� L̃k
�min(L)

(kH+k+ kH+ � Ĥ
+k) + kH+ � Ĥ

+k

1

A ,

where C3 = 14
p
n

�min(L) .

Proof. See appendix.

As discussed in [7], kH+
� Ĥ+

k,EkL� L̂k are pertur-
bation terms that can be bounded in terms of kG � Ĝk

via Lemma 2 and Lemma 3. Theorem 5 shows that the
stochastic Ho-Kalman Algorithm has the same error bounds
as its deterministic counterpart, which says the estimation
errors for system matrix decrease as fast as O(1

N1/4). Our
analysis framework can be easily extended to achieve the
optimal error bounds O(1p

N
) mentioned in [21, 3, 11, 9].

V. NUMERICAL EXPERIMENTS

A. Stochastic versus deterministic Ho-Kalman Algorithm
We begin the comparison between the stochastic and

deterministic Ho-Kalman Algorithm on six randomly gen-
erated systems described by (1). Each entry of the system
matrix is generated through a uniform distribution over a
range of integers as follows: matrix A with random integers
from 1 to 5, and matrices B,C,D with random integers
from �2 to 2. The A matrix is re-scaled to make it Schur
stable3, i.e., |�max(A)| < 1. The standard deviations of the
process and measurement noises are �w = 1 and �v = 0.5.
The length of trajectory T is given in the second column
in Table I with T1 chosen to be the smallest integer not
less than T/2 and T2 = T � 1 � T1. The third column in
Table I denotes the matrix dimension of Ĥ� when we run
Algorithm 1.

We denote the true system as G(A,B,C,D) and the esti-
mated system returned by the stochastic/deterministic Ho-
Kalman algorithm as G̃(Ã, B̃, C̃, D̃)/Ĝ(Â, B̂, Ĉ, D̂). We
will use G, G̃, Ĝ at times to reduce notational clutter. The
realization error of the algorithm is measured by the normal-
ized H1 error: kG̃�GkG1

kGkH1

and kĜ�GkH1

kGkG1

. The running time
and the realization error of the deterministic and stochastic
algorithms4 are reported in Table I where the results for the

3There is no requirement that the systems we work with be stable.
However, we are using an H1-norm metric to judge the approximation
error, so such an assumption makes things more straight forward.

4We used the publicly available python package sklearn.utils.extmath.
randomized svd to compute the RSVD.

2182

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on January 09,2023 at 11:55:17 UTC from IEEE Xplore. Restrictions apply.

Eg (n,m, p, T) dim(Ĥ�)
Running Time [s] Realization Error

deterministic stochastic deterministic stochastic

1 (30,20,10,90) 450⇥ 880 0.1079 0.0156 7.64e-04 7.70e-04
2 (40,30,20,100) 2000⇥ 2970 5.7456 0.0897 6.67e-04 1.19e-03
3 (60,50,40,360) 7200⇥ 8950 227.0116 0.9323 8.27e-04 1.75e-03
4 (100,80,50,500) 12500⇥ 19920 922.8428 4.4581 6.53e-04 1.66e-03
5 (120,110,90,600) 27000⇥ 32890 Inf 17.6603 N/A 1.96e-03
6 (200,150,100,600) 30000⇥ 44850 Inf 52.1762 N/A 1.45e-03

Table I: Comparison between the stochastic and deterministic Ho-Kalman Algorithm. The running time is in seconds. The approximate SVD is computed
using RSVD with oversampling parameter l = 10. To benchmark the algorithm performance, a naive implementation of RSVD is used; we do not use
power iterations and do not make use of parallelization. Inf and N/A indicates that the deterministic algorithm fail to realize the system.

stochastic algorithm are average over 10 independent trials.
All experiments are done on a 2.6 GHz Intel Core i7 CPU.

The reported running time in the stochastic setting is
highly conservative: we did not parallelize the sampling
(i.e., constructing A⌦ in line 4 of Algorithm 2). Fur-
thermore, as noted earlier, standard Gaussian matrices are
theoretically “nice” to work with but structured random
matrices will offer superior running times. We observe that
the stochastic Ho-Kalman algorithm consistently leads to
a dramatic speed-up over the deterministic algorithm. The
larger the system dimension is, the larger the run time gap
is. Observe that the deterministic Ho-Kalman Algorithm
fails to provide a result in the 5thand 6th examples where
the system state dimensions are above 100. Meanwhile, the
stochastic algorithm runs successfully and takes a fraction
of the time the deterministic algorithm took to solve a 60
state realization problem.

B. Oversampling effects
To illustrate the influence of oversampling (parameter

l in RSVD), we run the stochastic Ho-Kalman Algorithm
on the 4th example (n = 100,m = 80, p = 50) in
Table I and vary the oversampling parameter l from 1 to
10. In this experiment we use a power iteration parameter
of q = 1. Running times (averaged over 10 runs) and
realization errors (averaged over 10 runs) are shown via a
boxplot in Figure 1a and graph in Figure 1b. In the box-
plot, the central red mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. Outliers are denoted by ”+”. We
observe that in Fig 1b, the realization error tends to be larger
when a small oversampling number is used, although the
change is slight. The observed behavior is consistent with
the theoretical analysis of Lemma 3. We can also observe
from Fig 1a that the computational time is insensitive to
the oversampling parameters, as such taking larger values
of l = 10 is advantageous.

C. Power iteration effect
Based on the results of the previous subsection, we fix

the oversampling parameter in RSVD as l = 10, and sweep
q from 1 to 4. The results are shown in Figures 1c and 1d.
We observe that the realization error decreases as the power
parameter q increases as indicated in Eq (6). In contrast

to the oversampling parameter l, the runtime demonstrably
increases with q at an empirically linear rate. This trend is
expected and analyzed in [15].

The power iteration method is most effective for problems
where the spectrum of the matrix being approximated decays
slowly. In the noise free setting, rank(H�) = n, where
n = 100 in this example. In contrast the dimensions of H�

are 12500⇥19920. When noise is introduced, H� becomes
full rank and the spectral decay depends on �w and �v . For
the values chosen, these results show that spectral decay
appears to be sharp enough that the power iterations do not
offer significant improvement in accuracy.

VI. CONCLUSION

We have introduced a scalable algorithm for system re-
alization based on introducing randomized numerical linear
algebra techniques into the Ho-Kalman algorithm. Theoret-
ically it has been shown that our algorithm provides non-
asymptotic performance guarantees that are competitive with
deterministic approaches. Besides, without any algorithm
optimization, we have shown that the stochastic algorithm
easily handles problem instances of a size significantly
beyond what classical deterministic algorithms can handle.

REFERENCES

[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Online least
squares estimation with self-normalized processes: An appli-
cation to bandit problems,” arXiv preprint arXiv:1102.2670,
2011.

[2] M. Simchowitz, H. Mania, S. Tu, M. I. Jordan, and B. Recht,
“Learning without mixing: Towards a sharp analysis of linear
system identification,” in Conference On Learning Theory.
PMLR, 2018, pp. 439–473.

[3] T. Sarkar, A. Rakhlin, and M. A. Dahleh, “Finite-time system
identification for partially observed lti systems of unknown
order,” arXiv preprint arXiv:1902.01848, 2019.

[4] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Finite
time identification in unstable linear systems,” Automatica,
vol. 96, pp. 342–353, 2018.

[5] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On
the sample complexity of the linear quadratic regulator,”
Foundations of Computational Mathematics, vol. 20, no. 4,
pp. 633–679, 2020.

[6] B. Ho and R. E. Kálmán, “Effective construction of lin-
ear state-variable models from input/output functions,” at-
Automatisierungstechnik, vol. 14, no. 1-12, pp. 545–548,
1966.

2183

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on January 09,2023 at 11:55:17 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9 10

4.4

4.6

4.8

5

5.2

5.4

(a) Running time of stochastic Ho-Kalman Al-
gorithm using RSVD with oversampling param-
eter l.

1 2 3 4 5 6 7 8 9 10

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2
10

-3

(b) Realization error of stochastic Ho-Kalman
Algorithm using RSVD with oversampling pa-
rameter l.

1 2 3 4

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

(c) Running time of stochastic Ho-Kalman Al-
gorithm with varying power parameter q. The
oversampling parameter l is 10.

1 2 3 4

0.8

1

1.2

1.4

1.6

1.8

10
-3

(d) Realization error of the stochastic Ho-
Kalman Algorithm with varying power param-
eter q. The oversampling parameter l is 10.

Figure 1: Oversampling and power iteration effect

[7] S. Oymak and N. Ozay, “Non-asymptotic identification of lti
systems from a single trajectory,” in 2019 American control
conference (ACC). IEEE, 2019, pp. 5655–5661.

[8] Y. Zheng and N. Li, “Non-asymptotic identification of linear
dynamical systems using multiple trajectories,” IEEE Control
Systems Letters, vol. 5, no. 5, pp. 1693–1698, 2020.

[9] H. Lee, “Improved rates for identification of partially
observed linear dynamical systems,” arXiv preprint
arXiv:2011.10006, 2020.

[10] Y. Sun, S. Oymak, and M. Fazel, “Finite sample system
identification: Optimal rates and the role of regularization,”
in Learning for Dynamics and Control. PMLR, 2020, pp.
16–25.

[11] A. Tsiamis and G. J. Pappas, “Finite sample analysis of
stochastic system identification,” in 2019 IEEE 58th Con-
ference on Decision and Control (CDC). IEEE, 2019, pp.
3648–3654.

[12] M. Sznaier, “Control oriented learning in the era of big data,”
IEEE Control Systems Letters, vol. 5, no. 6, pp. 1855–1867,
2020.

[13] H. Wang and J. Anderson, “Learning linear models us-
ing distributed iterative hessian sketching,” arXiv preprint
arXiv:2112.04101, 2021.

[14] S. Voronin and P.-G. Martinsson, “Rsvdpack: An imple-
mentation of randomized algorithms for computing the sin-
gular value, interpolative, and cur decompositions of ma-
trices on multi-core and gpu architectures,” arXiv preprint
arXiv:1502.05366, 2015.

[15] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding
structure with randomness: Probabilistic algorithms for con-
structing approximate matrix decompositions,” SIAM review,
vol. 53, no. 2, pp. 217–288, 2011.

[16] C. Musco and C. Musco, “Randomized block krylov methods
for stronger and faster approximate singular value decompo-
sition,” Advances in Neural Information Processing Systems,
vol. 28, pp. 1396–1404, 2015.

[17] X. Feng, W. Yu, and Y. Li, “Faster matrix completion using
randomized svd,” in 2018 IEEE 30th International Confer-
ence on Tools with Artificial Intelligence (ICTAI). IEEE,
2018, pp. 608–615.

[18] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimiza-
tion. Cambridge university press, 2004.

[19] C. Eckart and G. Young, “The approximation of one matrix
by another of lower rank,” Psychometrika, vol. 1, no. 3, pp.
211–218, 1936.

[20] M. Simchowitz, R. Boczar, and B. Recht, “Learning linear
dynamical systems with semi-parametric least squares,” in
Conference on Learning Theory. PMLR, 2019, pp. 2714–
2802.

[21] T. Sarkar and A. Rakhlin, “Near optimal finite time identifi-
cation of arbitrary linear dynamical systems,” in International
Conference on Machine Learning. PMLR, 2019, pp. 5610–
5618.

[22] S. Tu, R. Boczar, A. Packard, and B. Recht, “Non-asymptotic
analysis of robust control from coarse-grained identification,”
arXiv preprint arXiv:1707.04791, 2017.

2184

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on January 09,2023 at 11:55:17 UTC from IEEE Xplore. Restrictions apply.

[23] G. H. Golub and C. F. Van Loan, “Matrix computations. johns
hopkins studies in the mathematical sciences,” 1996.

[24] L. N. Trefethen and D. Bau III, Numerical linear algebra.
Siam, 1997, vol. 50.

[25] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, “A fast
randomized algorithm for the approximation of matrices,”
Applied and Computational Harmonic Analysis, vol. 25,
no. 3, pp. 335–366, 2008.

[26] ——, “A fast randomized algorithm for the approximation
of matrices,” Applied and Computational Harmonic Analysis,
vol. 25, no. 3, pp. 335–366, 2008.

[27] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and
B. Recht, “Low-rank solutions of linear matrix equations
via procrustes flow,” in International Conference on Machine
Learning. PMLR, 2016, pp. 964–973.

APPENDIX A
A. Proof of Lemma 3 and 4
Proof of Lemma 3. To prove (5), we first use the triangle
inequality to get the following bound:

EkL� L̃k kH� � Ĥ
�k+ EkĤ� � L̃k, (9)

where L = H
� and H

� is of rank n. Then we bound EkĤ��L̃k
by applying Theorem 1 to Ĥ

� with q = 0, giving:

EkĤ� � L̃k
⇣
1 +

r
n

l � 1
+

e
p
n+ l

l

p
min{pT1,mT2}� n

⌘
kĤ� � Ĥ

�
[n]k

⇣
1 +

r
n

l � 1
+

e
p
n+ l

l

p
min{pT1,mT2}� n

⌘
kĤ� �Hk.

The first inequality follows from L̃ = PP ⇤Ĥ�. The second
inequality is due to the fact that Ĥ�

[k] is the best rank-k
approximation of Ĥ�. Plugging the inequality above into (9)
and applying Lemma 2, we obtain the inequality (5).

Applying the bound in Theorem 1 to Ĥ� with a fixed
positive integer q > 0 gives us

EkĤ� � L̃k (10)

⇣
1 +

r
n

l � 1
+

e
p
n+ l

l

p
min{pT1,mT2}� n

⌘1/(2q+1)

⇥ kĤ� �Hk+ 11/(2q+1)kĤ� �Hk
(a)

2
⇣
1 +

1
2

r
n

l � 1
+

1
2
e
p
n+ l

l

p
min{pT1,mT2}� n

⌘1/(2q+1)

(11)

⇥ kĤ� �Hk

Inequality (a) holds because x1/(2q+1) is concave in x.
Applying Lemma 2, we prove the inequality (6).

Proof of Lemma 4. Follow the same steps as Lemma 3 and
use the bound given in Corollary 10.9 [15].

B. Perturbation bounds for Stochastic Ho-Kalman Algo-
rithm with SRFT Test Matrices

The subsampled random Fourier transform (SRFT) is an
n ⇥ ` matrix of the form ⌦ =

p
n
`DFR where D is an

n⇥n diagonal matrix whose entries are independent random
variables uniformly distributed on the complex unit circle,

F is the n ⇥ n unitary discrete Fourier transform (DFT),
whose entries take the values

fpq = n�1/2e�2⇡i(p�1)(q�1)/n for p, q = 1, 2, . . . , n,

and R is an n ⇥ ` matrix that samples ` coordinates from
n uniformly at random [15]. When ⌦ is a SRFT matrix,
we can calculate the matrix multiplication Y = A⌦ using
O(mn log(`)) flops by applying a subsampled FFT [26].

Lemma 6. (Deviation bound) Denote l � 2 to be the
oversampling parameter used in RSVD algorithm. Run
the Stochastic Ho-Kalman Algorithm with a SRFT matrix
⌦ 2 R

mT2⇥(n+l) in computing the RSVD step, where
4[
p
n+

p
8 log(nmT2)]2 log(n) l+n mT2. Then L, L̃

satisfy the following perturbation bound:

kL� L̃k (1 +

r
1 +

7mT2

l + n
)⇥ 2

p
min{T1, T2}kG� Ĝk

with failure probability at most O
�
n�1

�
.

Proof. We follow the same steps in proving Lemma 3 and
use the bound in Theorem 11.2 of [15] to finish the proof.

C. Proof of Theorem 5
To prove Theorem 5, we require two auxiliary lemmas.

Lemma 7. Suppose �min(L) � 2EkL� L̃k where �min(L)
is the smallest nonzero singular value (i.e. n-th largest
singular value) of L. Let rank n matrices L, L̃ have the
singular value decomposition U⌃V ⇤ and Ũ ⌃̃Ṽ ⇤. There
exists an n⇥ n unitary matrix S so that

EkU⌃1/2
� Ũ ⌃̃1/2Sk2F + EkV ⌃1/2

� Ṽ ⌃̃1/2Sk2F

 5nEkL� L̃k.
(12)

Proof. : Direct application of Theorem 5.14 of [27] guaran-
tees the existence of a unitary S such that

LHS =EkU⌃1/2
� Ũ ⌃̃1/2Sk2F + EkV ⌃1/2

� Ṽ ⌃̃1/2Sk2F

2

p
2� 1

EkL� L̃k2F
�min(L)

,

(13)
where LHS refers to the left hand side of (12). To proceed,
using E rank(L � L̃) 2n and by assumption �min(L) �
2EkL � L̃k �

p
2/nEkL � L̃kF , we find LHS p

2np
2�1

EkL� L̃kF
2np
2�1

EkL� L̃k 5nEkL� L̃k .

Lemma 8. Suppose �min(L) � 2 � 2EkL � L̃k. Then,
EkL̃k 2kLk and �min(EL̃) � �min(L)/2.

Proof. See Lemma 2.2 in [7].

Using these, we will prove the robustness of the stochastic
Ho-Kalman Algorithm, which is stated in Theorem 5. The
robustness will be up to a unitary transformation similar to
Lemma 7.

Proof. The proof of Theorem 5 is obtained by following the
proof of Theorem 5.3 in [7] and substitute L̃ for L̂.

2185

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on January 09,2023 at 11:55:17 UTC from IEEE Xplore. Restrictions apply.

