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THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC
TRACE FOR THE SPHERE SPECTRUM

ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

ABSTRACT. Let p € Z be an odd prime. We show that the fiber sequence for
the cyclotomic trace of the sphere spectrum S admits an “eigensplitting” that
generalizes known splittings on K-theory and T'C. We identify the summands
in the fiber as the covers of Zp-Anderson duals of summands in the K(1)-
localized algebraic K-theory of Z. Analogous results hold for the ring Z where
we prove that the K (1)-localized fiber sequence is self-dual for Z,-Anderson
duality, with the duality permuting the summands by ¢ — p — 4 (indexed mod
p — 1). We explain an intrinsic characterization of the summand we call Z in
the splitting TC(Z);)\ ~ jV X3’V Z in terms of units in the p-cyclotomic tower
of Qp.

1. INTRODUCTION

The algebraic K-theory of the sphere spectrum, K(S), is an object of basic and
fundamental interest, relating geometric topology and arithmetic. Celebrated work
of Waldhausen establishes a comparison between K(S) and a stable space of h-
cobordisms for the disk D™. On the other hand, K(S) is intimately related to
K(Z), the algebraic K-theory of the integers, which encodes arithmetic invariants
(e.g., Bernoulli numerators and denominators). For instance, the natural map
K(S) — K(Z) is a rational equivalence, and the latter is understood rationally by
old work of Borel.

At a prime p, our understanding of algebraic K-theory of ring spectra relies on
trace methods. Bokstedt, Hsiang, and Madsen constructed a topological version
of negative cyclic homology called topological cyclic homology (T'C) and a Chern
character K — T'C, the cyclotomic trace. Following earlier work of Rognes, in a
previous paper we studied the homotopy groups of K (S) in terms of the cyclotomic
trace and linearization maps: a basic theorem of Dundas (building on work of
Goodwillie and McCarthy) provides a homotopy cartesian square

K(S), —— K(Z);

L]

TC(S), —— TC(Z),,
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2 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

where the maps K(S) — K(Z) and TC(S) — TC(Z) are the linearization maps
induced by the unit map of F ring spectra S — Z.

For the rest of the paper, we restrict to the case of p an odd prime. In [3, 5.3],
the authors showed that the fiber square above splits as a wedge of p — 1 fiber
squares of the form:

GzK(S);; E— EiK(Z)A

| l
&TC(S)) — &TC(Z))

for i = 0,...,p — 2 (or better, numbered modulo (p — 1)). We identify the spec-
tra €;(—) more specifically below. These squares are exactly the summands that
would result from an eigensplitting of the fiber square for an action of F)S via the
Teichmiiller character w for a conjectural action of p-adically interpolated Adams
operations; see [ibid., §5]. We refer to the summands in the ith square above as the
“u' eigenspectra” even though such Adams operations have not been constructed
in this generality. (If they do exist, the w® eigenspectrum is the summand where
the Ff-action in the stable category is given by the character wh: F) — Z; and
the action of Z).)

As a formal consequence, the fiber of the cyclotomic trace for S, or equivalently,
for Z also comes with an eigensplitting. In this paper, we identify the eigenspectra
summands. In [4], the authors identified the fiber of the cyclotomic trace Fib(r)
in K-theoretic terms as the (—3)-connected cover of X711y (L (1)K (Z)), where
Iz, denotes the Z,-Anderson dual. Taking the idea of eigenspectra seriously, the
natural conjecture is that the w’ eigenspectra of Fib(7) should be the corresponding
eigenspectra of this Anderson dual. In the spirit of the identification in [ibid.], the
w' eigenspectrum of Fib(7) should correspond to the Z,-Anderson dual of the WwP™?
eigenspectrum of Ly (1)K (Z). Our main theorem establishes this conjecture.

Theorem 1.1. There is a canonical weak equivalence between the fiber of the map
&7 K (S)y—eTC(S)) and the (—3)-connected cover of ¥~ Iz, L (1y(ep—i K (Z)}).

We also describe how the duality map of [4] interacts with the fiber sequence;
we discuss these additional results in Section 5, after reviewing terminology and
notation.

Theorem 1.1 is consistent with an expansive picture of the behavior of the conjec-
tural p-adically interpolated Adams operations on K (S). In particular, it is natural
to conjecture compatibility with the (known) p-adic Adams operations on T'C(S)
as well as multiplicative properties. Given such operations on the co-category level,
Theorem 1.1 would follow. However, while the existence of such Adams operations
on the stable category level is enough to obtain a splitting on Fib(7), it would
not be enough to deduce Theorem 1.1 without additional arguments like the ones
below.

While this paper obviously builds on the authors’ previous work [2-4], we have
tried to make it as self-contained as possible, with specific citations to any facts
needed from those papers.

Conventions. We use the term “stable category” to refer to the homotopy cate-
gory of spectra with its structure as a tensor triangulated category. The symbol A
denotes the smash product in the stable category.
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THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC TRACE 3

Some of the statements and results below involve precise accounting for signs.
For this we use the following conventions: suspension is (=) A S! and cone is
(=) A I, where in the latter case we use 1 as the basepoint. Cofiber sequences are
sequences isomorphic (in the stable category) to Puppe sequences formed in the
usual way using this suspension and cone. A cofiber sequence leads to a long exact
sequence of homotopy groups; we use the sign convention that for a map f: A —
B, the connecting map 7,Cf — m,_1A in the long exact sequence of homotopy
groups is (—1)"o ! composed with the Puppe sequence map m,C'f — 7, XA, where
o denotes the suspension isomorphism m,,_1A — 7,3A. (Consideration of the
example of standard cells explains the desirability of the sign.)

We form the homotopy fiber Fib(f) of a map f using the space of paths starting
from the basepoint; we then have a canonical map X Fib(f) — Cf in the usual way
(using the suspension coordinate to follow the path and then follow the cone). We
switch between fiber sequences and cofiber sequences at will, using the convention
that for the fiber sequence

B % Fib(f) & AL B,

the sequence

Fib(f) & A L5 B ZZ2 sipin(f)

is a cofiber sequence where e: >Q0B — B is the counit of the ¥, (2 adjunction.
For the long exact sequence of homotopy groups associated to a fiber sequence, we
use the long exact sequence of homotopy groups of the associated cofiber sequence.
In terms of the fiber sequence displayed above, the connecting map m,11B —
7, Fib(f) is the composite of the canonical isomorphism 7,41 B = m,Q2B and the
map (—1)"m,0.

For a cofiber sequence

AL BY cMna

and a fixed spectrum X, the sequence

QF(A,X) =% (e, x) % F(B, X) 15 P4, X)
is a fiber sequence and

F(O,X) % F(B,X) L5 F(A, X) 25 mF(C, X)

is a cofiber sequence.

2. A REVIEW OF THE EIGENSPLITTING OF THE CYCLOTOMIC TRACE

In this section, we review the splitting constructed in [3] of the cofiber sequence
(2.1) Fib(r) — K(Z);, < TC(Z);, — S Fib(7).

It can be useful to express this in purely K-theoretic terms, using the Hesselholt-
Madsen results that TC(Z), — TC(Zy), is a weak equivalence [11, Add. 6.2] and
that K(Zy), — TC(Zy); is a connective cover [11, Th. D]. Thus, we can just as well
identify the connective cover of Fib(7) as the fiber of the map K(Z), — K(Z,;);
induced by the completion map Z — Z,,. As we will recall below, little information
is lost by working in the K(1)-local category and hence by studying the cofiber

sequence

(2.2) Fib(k) — Ly K(Z) & Ly K(Z,) — S Fib(k).
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4 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

We will switch back and forth between discussing the localized sequence (2.2) and
non-localized sequence (2.1).

We begin by reviewing notation for some of the basic building blocks of the split-
ting. Let KU, denote p-completed complex periodic K-theory, and let L denote
the p-complete Adams summand:

KU) ~ LV YLV ---VE* 1L,

Let J = Lg(1)S. If we choose an integer  which multiplicatively generates the units
of Z/p?, then J is weakly equivalent to the homotopy fiber of 1 —!: L — L for
the Adams operation ¢!. In deducing p-complete results from K(1)-local results,
we write kuy, ¢, and j for the connective covers respectively of KU, L, and J.

The main theorem of Dwyer-Mitchell [10] (as reinterpreted in [3, §2]) produces
a canonical splitting of L (1)K (Z) as a certain wedge of K (1)-local spectra

(2.3) LK(l)K(Z)EJ\/}/o\/"'\/Yp_Q,

where Y; is characterized by the property that L*(Y;) is concentrated in degrees
congruent to 2i — 1 mod 2(p — 1) with L?*~1(Y;) defined as an L°L-module in
terms of a certain abelian Galois group. Because L?~1(Y;) is a finitely generated
L°L-module of projective dimension 1, Y; is the homotopy fiber of a map between
wedges of copies of ¥2*"!'L (which on L*~1(—) give a projective L°L-resolution
of L?*~1(Y;)). From this it follows that 7.Y; is concentrated in degrees congruent
to 26 — 1 and 2¢ — 2 mod 2(p — 1); moreover, it is free (as a Z,-module) in odd
degrees. As m,J is concentrated in degrees congruent to —1 = 2p — 3 mod 2(p — 1)
and degree 0, any particular homotopy group of L 1)K (Z) involves only at most
a single Y; and possibly J. The following two results from [3] (q.v. (2.8) and the
preceding paragraph) simplify certain arguments.

Proposition 2.4. Yy >~ x.

Proposition 2.5. L'Y; is a free LY L-module of rank 1, and so Y; is (non-canon-
ically) weakly equivalent to XL.

We say more about the relationship of ¥; and ¥L in Remark 7.7 in Section 7.
Let y; be the 1-connected cover of Y; for all ¢; then

K(Z)y; =jVyoV -V ypa.
We have a similar canonical splitting of Ly 1)K (Zy) that takes the form
LK(I)K(Zp) ~JVEJ NV ZyV---V Zp—2,
where Z; is non-canonically weakly equivalent to ¥*~'L and J' is the K(1)-
localization of the Moore spectrum MZ; for the units of Z,, J' := LK(1)MZ;~ Al-
ternatively, J' is canonically weakly equivalent to (J A MZ; )g; it is non-canonically

weakly equivalent to J since (MZ; ), is non-canonically equivalent to S;. The

spectra Z; were denoted X! Ly¢ (i) in [3] for the non-canonical weak equivalence
Z; ~ L71L(i) = £%71L. The Z; admit a canonical description in terms of the
units of cyclotomic extensions of @, which we review in Section 7.

Let j’ be the connective cover of J’, and for i # 0, let z; be the 1-connected
cover of Z;; let zg be the (—2)-connected cover of Zy. Then

TC(Z)y ~jVE]VaV---Vz o
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THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC TRACE 5

A key result proved in [3, 3.1] is that the cyclotomic trace and the completion map
are diagonal on the corresponding pieces.

Theorem 2.6 ([3, 3.1]). In the notation above, the cyclotomic trace 7: K(Z), —
TC(Z), decomposes as the wedge of the identity map j — j and maps y; — 2; for
i=0,...,p—2; the completion map k: Ly 1yK(Z) — Lg1)K(Zy) decomposes as
the wedge of the identity map J — J and maps Y; — Z; fori =0,...,p—2. The
composite with the projection to the summands X5’ and X.J' is the trivial map for
T and k, respectively.

It follows that the cofiber sequences of equations (2.1) and (2.2) decompose into
wedges of cofiber sequences. To explain this, we need to introduce some notation.

Definition 2.7. Let X; and x; denote the homotopy fiber of the maps Y; — Z;
and y; — z;, respectively.

We have the following analogues of Propositions 2.4 and 2.5 for X; and Xy. The
first is an immediate consequence of Proposition 2.4; the second is a restatement of
[3, 4.4], which asserts (in the notation here) that Y7 — Z; is a weak equivalence.

Proposition 2.8. The connecting map Zy — ¥ Xq is a weak equivalence; in par-
ticular, Xo is (non-canonically) weakly equivalent to X ~2L.

Proposition 2.9. X; ~ x

As a consequence of Definition 2.7 we have that
Fib(r) ~j ' Vag V- Va,_o and Fib(k) ~J'VXoV--- VX, o

Because the maps in the definition are only defined in the stable category, the
splitting of the fibers do not automatically give a canonical splitting of the fiber
sequences. However, looking at the cofiber sequence

>z — X, — Y — Z;

we see that X; can have L-cohomology only in degrees congruent to 2 — 1 and
2i — 2 mod 2(p — 1), or equivalently:

Proposition 2.10. Fori=0,...,p—2, [X;,X/L] = 0 unless j = 2i—1 or j = 2i—2
mod 2(p — 1).

From this we see that [X;,X7'Z;] = 0 for j # i and [2;,¥7 2] = 0 for j # .
The latter is clear from Proposition 2.8 in the case i = 0 and in the remaining cases
follows from the isomorphisms

[z, 27 2] 2 (2,571 Z;) 2 [X,, 871 7).
The first isomorphism holds since z; is O-connected for ¢ = 1,...,p — 2 while
Z_lzj — Z_le is a weak equivalence on 0-connected covers for all j. The sec-
ond isomorphism holds because X; is the K(1)-localization of x; and X71Z; is
K (1)-local. We also note that [J/,¥71Z;] = 0 and [j/,X7'Z;] = 0 for all j # 1
since mpX"'Z; = 0. We have that [J/,X£7'Z;] = Z, (non-canonically) and so
7/, 71 21]0, 00)] = Z,, with the isomorphism induced by mo:

[/, 271 Z1]0, 00)] — Hom(moj", mo X~ " Z1) = Hom((Z)}, Zy) = Zyp.

Since 7121 is the fiber of the map ¥717;[0, 00) — HZ, that induces the identifi-
cation m Zy = Z,, we see that [j’,$7121] = 0. In particular, we have shown that
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6 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

all of the indeterminacy in the map of fiber sequences is zero (in the non-localized
case), and we get the following consequence.

Corollary 2.11. The cofiber sequence (2.1) splits canonically as a wedge of the
cofiber sequences

j/ * Ej/ = E]/
T Yo 20 X
Tpo Yp—2 Zp—2 LTp_2.

The cofiber sequence (2.2) splits canonically as an analogous wedge in terms of J,
J', X, Y, and Z;.

3. REVIEW OF ARITHMETIC DUALITY IN ALGEBRAIC K-THEORY

In [4], we identified the fiber of the cyclotomic trace using a spectral lift of global
arithmetic duality. Relating this identification to the splittings described above
requires some of the details of the global duality map and a closely related local
duality map. We give a short and mostly self-contained review of the construction
in this section.

In arithmetic, local duality is an isomorphism

Hiy (ks M) — (HE (ks M*(1)))",
where k is the field of fractions of a complete discrete valuation ring whose residue
field is finite (e.g., a finite extension of Q,), M is a finite Galois module, and (—)*

denotes the Pontryagin dual. A version of this duality holds in algebraic K-theory
where it takes the following form. (For a proof, see [4, 1.4].)

Theorem 3.1 (K-theoretic local duality). Let k be the field of fractions of a com-
plete discrete valuation ring whose residue field is finite. The map
LK(I)K(]C) — IQ/Z(LK(I)K(k) A MQP/ZP) ~ Izp (LK(l)K(k))
adjoint to the composite map
LK(l)K(k) A LK(l)K(k) A MQP/ZP — I@/ZS
described below is a weak equivalence.

We have stated the theorem in a way that emphasizes the parallel with the
algebraic result. The functor Ig,z(—) denotes Brown-Comenetz duality, the spec-
tral analogue of Pontryagin duality; it can be constructed in terms of the Brown-
Comenetz dual of the sphere spectrum Ig/;S as the derived function spectrum
F(—,1g/2S). The functor Iz, (—) denotes Z,-Anderson duality; it can be con-
structed as

Iz, (=) = Igjz(= AN Mg, /z,) = F(—, F(Mg,/z,, lo/2S)) = F(—,1z,S).

The duality map in Theorem 3.1 is constructed as follows. The E ., multiplication

on K (k) induces a map
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THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC TRACE 7

and we have a canonical map
(3.2) LK(l)K(k‘) A MQP/ZP — IQ/ZS

essentially induced by the Hasse invariant (see [4, (1.2)] for details).
In terms of Anderson duality, the weak equivalence

LK (k) = Iz, (L) K (k)
in Theorem 3.1 is adjoint to the map
LgyK(E) AN LgayK (k) — Iz,8
induced by the multiplication and the map
(3.3) v Ly K (k) — Iz,S.

adjoint to (3.2).

The local duality theorem relates to our work in this paper when we consider the
case k = Q. In this case, Quillen’s localization theorem and Quillen’s calculation
of the K-theory of I, together say that the fiber of the map K(Z,), — K(Q,); is
HZ, and it follows that the map Lg (1)K (Z,) — L 1)L(Q,) is a weak equivalence.
We then have the following corollary.

Corollary 3.4 (Local duality for Z,). Let vz, : Lg ) K(Zy) — Iz,S be the compos-
ite of the map Ly 1)K (Zy) = Lg1)K(Qp) and the map vy, : Lix1)K(Qp) — Iz,S
of (3.3). The map Ly\K(Zyp) — Iz,(Lx)K(Zy)) adjoint to the composite of
multiplication and vz,

L) K(Zp) A L) K (Zp) — Ly K (Zy) —2 I, S

is a weak equivalence.

The K-theoretic analogue of global duality identifies Fib(x) in (2.2) in terms of
the Z,-Anderson dual of Lg 1)K (Z). Rather than stating it in the full generality
proved in [4], we state it just in this case. In [4, (1.7)], we construct a map

(3.5) ug: Fib(k) — X711, S,

from the Albert-Brauer-Hasse-Noether sequence for Q. It is compatible with the
map vg, above in the sense that vg, is the composite

Eu@

Lx1yK(Qp) ~ Lxg1)yK(Z,) — SFib(k) —> X' S Iy S,

where Ly 1)K (Z,) — X Fib(x) is the connecting map in the fiber sequence (2.2).
The map (3.5) induces the following K-theoretic global duality theorem.

Theorem 3.6 (K-Theoretic Tate-Poitou duality for Z). The map
Fib(k) — S 'y, L1y K(Z)
adjoint to the map
Lx1)yK(Z) NFib(k) — 7', S

induced by the Ly 1)K (Z)-module structure map Ly 1)K (Z) NFib(k) — Fib(x) and
the map ug: Fib(k) = X711z S is a weak equivalence.
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8 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

4. THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC TRACE

Combining Theorem 3.6 with the canonical wedge decomposition of K (Z) de-
scribed above in equation (2.3), we obtain the following decomposition of Fib(k).

Fib(k) =~ X7y (Lg)yK(Z)) =~ X7y (JVYy V- VY, o)
=Yy JVET U, YoV VET Y, .

Our goal in this section is to identify this wedge decomposition with (a permutation
of) the wedge decomposition

Fib(k) ~J' VXoV -V X, 2

constructed above in Corollary 2.11. This is accomplished in Theorem 4.1 together
with an observation on the J’ summand stated in Theorem 4.3 below.

Theorem 4.1. The canonical isomorphism in the stable category
Fib(k) ~ X7y, JVE Ty Yo V- VI, Y, o

identifies J' as E—llzp.] and X; as Z—llsz;_i (for i #0,1) or Z—llzpyl_i (for
1=0,1). Moreover:
(i) [Xi, X7z, Y;] =0 unless i +j =1 mod (p — 1).
(ii) [X;, 27z, J] =0 for all i.
(iii) [J, 27 2, Y;] =0 for all 5.

In later formulas we will simply write X; ~ Efllszp_i and understand the
indexing to be mod (p — 1).

Proof. To simplify notation, we write D for Eilfzp inside this proof. The multi-
plication L A L — L together with the canonical identification of 7oL as Z,, induces
a map L — Iz L that is easily seen to be an isomorphism in the stable category,
q.v. [13, 2.6] (this is essentially due to Anderson [1]). This gives us a canonical
identification of DL as X~'L, which is the main tool we use.

All statements follow from verification of (i), (ii), and (iii). As discussed above,
Y; fits in a cofiber sequence of the form

/25720 —y; — \/2¥7 'L — \/2¥ 7L

(for some finite wedges of copies of ¥"L); it follows that DY} fits into a cofiber
sequence of the form

Y UL s \/2¥L — DY, — \/TS YL,
V V i—V

Applying Proposition 2.10, we see that [X;, DY;] = 0 unless —2j = 2i — 2 mod
2(p — 1), or equivalently ¢ + j = 1 mod (p — 1). This proves (i).

Writing J as the fiber of a self-map of L, DJ fits then into a cofiber sequence of
the form

S'L—DJ—L—1L

and again applying Proposition 2.10, it follows that [X;, DJ] = 0 unless 2i —2 =0
or 2i —1 = —1mod 2(p — 1). In the first case, X; ~ * by Proposition 2.9. In the
second case ¢ = 0; by Proposition 2.8, X is non-canonically weakly equivalent to
Y 72L, and [¥72L, DJ] = 0. This proves (ii).

Finally, to prove (iii), we note that DY} is K (1)-local. Since J’ is non-canonically
weakly equivalent to J ~ Lg(1)S, to see that [J', DY;] = 0 it suffices to see that
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THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC TRACE 9

moDY; = 0. Since 7,Y; is concentrated in degrees congruent to 2j — 1 and 2j — 2
mod 2(p — 1), we have that moDY; can only possibly be non-zero for j = 0 but by
Proposition 2.4, Yy ~ *. (I

While we have defined the X; solely in terms of the fiber sequence, we have
defined J’ intrinsically, and so the equivalence of J’ with E’llsz under the iso-
morphism in the stable category Fib(k) ~ X~1I; K(Z) constitutes additional in-
formation. In fact, we have a canonical weak equivalence

J — 2y J

that we call the standard weak equivalence, constructed as follows. Since J’ is
defined as the K (1)-localization of the Moore spectrum My, and (Z) ), is a pro-
jective Z,-module, maps in the stable category from J’ into K(1)-local spectra
are in canonical one-to-one correspondence with homomorphisms from (Z,); into
mo. We note that $711z J is K(1)-local, and to calculate moX 11z J, we use the
fundamental short exact sequence for the Z,-Anderson dual: For any spectrum X,
there is a canonical natural short exact sequence

4.2 0 — Ext(n_, 1X,Z,) — m,Iz X — Hom(n_,X,Z,) — 0.
P D 14

For finitely generated Z,-modules, Hom(—,Z,) and Ext(—;Z,) coincide with
Homg, (—,Z,) and Extz,(—;Z,). In the case of X = J, since 7_oJ = 0, we
then have a canonical identification of WoE_IIZPJ as Hom(w_1J,Z,). The Morava
Change of Rings Theorem identifies m_;.J canonically in terms of continuous group
cohomology:

m_1J = H(ZY; Zy) = Hom(Z), Zp,) = Hom((Z} )}, Zyp),

N
p7
q.v. [9, (1.1)], for the continuous action of Z); on 7,KU) arising from the p-adic
interpolation of the Adams operations. This then gives a canonical isomorphism

TSIz, J = Hom(Hom((Z) ), Zy), Zy).

Since (Z,;); is projective of rank 1, the double dual map is an isomorphism, giving
us a canonical isomorphism

(25 )y — w0y, J

specifying the standard weak equivalence.

On the other hand, we have a canonical map J' — Fib(k) arising from the fiber
sequence (2.2) and the XJ" summand of Lg 1)K (Zy) ~ Lg1)K(Qp). In terms of
maps from (Z) ), into mo Fib(k), we can therefore identify this map J' — Fib(x)
as coming from the canonical identification of the cokernel of

1 L)y K(Z) — 71 L)y K(Zy)

as (Z, ), (the p-completion of the cokernel of the map (Z[1/p])* — Q). Theorem
4.3 compares the two maps.

Theorem 4.3. The composite map J' — Fib(k) ~ X1 K(Z) — X711y J is the
standard weak equivalence.

We postpone the proof to Section 6.
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10 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

5. SELF-DUALITY OF THE FIBER SEQUENCE OF THE CYCLOTOMIC TRACE

In this section, we extend the analysis from the previous section by showing that
the fiber sequence defining Fib(k) is self-dual. This requires the compatibility of
K-theoretic local and global duality discussed in Section 3.

Theorem 5.1. The following diagram commutes up to the indicated sign

Fib(k) ———— L1y K (Z) —"— Lic(1) K (Zy) —2— S Fib(x)

I A

2711’2? (LK(l)K(Z)g,ﬁ Eilfzp (Flb(/ﬁ))) — IZPLK(l)K(Zpl_} IZPLK(l)K(Z)
Iz, p 12,0 Izt

where the top sequence is the cofiber sequence (associated to the fiber sequence)
defining Fib(k), the bottom sequence is the Z,-Anderson dual of its rotation, and
the vertical maps are induced by the K -theoretic Tate-Poitou duality theorem for Z
(Theorem 3.6) and the K -theoretic local duality theorem for Z, (Theorem 3.4).

Proof. The assertion is that Xp is Z,-Anderson dual to p and « is Z,-Anderson
dual to 0. Given pairings

€;: Az ANB; — IZPS
whose adjoints 7;: B; — F(A;, Iz,S) are weak equivalences, then for maps f: A; —
Asand g: By — By, m ogon;1 is Z,-Anderson dual to f exactly when the diagram

id
Ay A By~ AL A By

f/\idl Jfl

Ao N By T) IZPS

commutes. In this case, when the weak equivalences 7, 72 are fixed and understood,
we say that g is Z,-Anderson dual to f. By construction, the following diagram
commutes

LK () A L K (Zy) “% Ly K (Z) A S Fib(s) —— S Fib(x)

Licn K (Zy) A L K () ——— Licy K () ———— 12,8

where ;o denotes the multiplication, £ denotes the L (1)K (Z)-module action map,
and u and v are the maps in the global and local duality theorems, respectively.
This gives the duality between 0 and k. To compare p and X.p, consider the diagram

Fib() A £ Fib(r) ——— Fib(r) A SL (1) K (Z)

- |

Lk K(Z) A SFib(k) ————— I, S

where the unlabeled maps are induced by the duality pairing. The down-then-right
composite is uz composed with the suspension of the non-unital multiplication on
Fib(k), whereas the right-then-down composite is uz composed with the suspension
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THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC TRACE 11

of the opposite of the non-unital multiplication on Fib(x). Since the non-unital
multiplication on Fib(k) is F, and in particular commutative in the stable category,
the diagram commutes. O

As an immediate consequence, we get duality between the cofiber sequences
in Corollary 2.11. Theorem 4.3 indicates the relationship between the j and j’
sequences. The relationship between the remaining ones is summarized in the
following Corollary.

Corollary 5.2. For eachi in Z/(p—1), the following diagram commutes up to the
indicated sign

Pi Ki 0;

X; Y;

T

Eillzp (Yp_i — Eilfzp (Xp_i) — IZP (Zp_i) — IZP ()/p—z)
'z, 0p—i 1z, Op—i —lzp fip—i
where the top sequence is the cofiber sequence (associated to the fiber sequence)

defining X;, the bottom sequence is the Z,-Anderson dual of its rotation, and the
vertical maps are induced by the maps

X; — Fib(k) — 7'y (L K(Z)) — Sz, (Yp—i)
Y — Lg1yK(Z) — 7'z, (Fib(k)) — X7y (Xp—s)
Zi — Lg)K(Zp) — Iz,(Lx1)K(Zyp)) — Iz,(Zp—i)

arising from local and global K -theoretic duality.

In the case of primes that satisfy the Kummer-Vandiver condition, we can be
a bit more specific. A prime p satisfies the Kummer-Vandiver condition when p
does not divide the order of the class group of Z[(, + Cgl] for ¢, = e2™/P_1In this
case, Dwyer-Mitchell [10, 12.2] identifies the homotopy type of the spectra Y; in
terms of the Kubota-Leopoldt p-adic L-function: given any power series f in the
p-adic integers, there is a unique self-map ¢ on L in the stable category such that
on Ty(p—1)n, ¢ is multiplication by f((1 4 p)™ — 1) (cf. [16, 2.4]). A celebrated
theorem of Iwasawa [12] implies in this context that for ¢ = 2,4,...,p — 3, there
exists a self-map of ¥?*~'L which on 7, is multiplication by the value of the
Kubota-Leopoldt p-adic L-function L,(—n,w"). The spectrum Y; is non-canonically
weakly equivalent to the homotopy fiber of this map. The Z,-Anderson self-duality
of L then identifies Iz, Y; as (non-canonically) weakly equivalent to the fiber of the
selfmap of ¥27%'L that on g, is multiplication by L,(n,w’). In particular, for
J=3,5...,p—2, X; ~ E_llszp,j is then non-canonically weakly equivalent to
the homotopy fiber of the self-map of X2/ ~1L that on ma,_; is multiplication by
L,y(n,w'™7), or equivalently, on ma, 1 is multiplication by L,(n + 1,w'™7). For i
odd and for j even, Y; and X; are non-canonically weakly equivalent to ¥2%=1L and
%2/ [, respectively. (Independently of the Kummer-Vandiver condition Yy ~ * and
X1 ~ % by Propositions 2.4 and 2.9.)

In the case of an odd regular prime, the relevant values of the Kubota-Leopoldt
p-adic L-functions are units, and the spectra X; and z; are trivial for j odd.
This is consistent with Rognes’ computation [19, 3.3] of the homotopy fiber of
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12 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

the cyclotomic trace as (non-canonically) weakly equivalent to j V E_Zk:o;, in this
case. More generally, we have the following corollary.

Corollary 5.3. Let p be an odd prime that satisfies the Kummer-Vandiver condi-
tion. The cofiber sequence

Fib(r) — K(Z)) — TC(Z)) — L Fib(r)

is (non-canonically) weakly equivalent to the wedge of the cofiber sequences

j, * 2]/ = Ej/
4 A2 . .
[ el AN 3 e 38 1=3,5,...,p—2
. . EAS .
»2iy Ys $2i-lp Tt 92—y 1=2,4,...,p—3
NI 3 A oy J—— (i=1)
¥2 * Tl =y (i=0),

where \¢ is the unique self-map of %10 that on may, 11 is multiplication by the value
Ly(n+1,wP™%), XS is the unique self-map of X2~ that on ma,41 is multiplication
by the value L,(—n,w"), and L, denotes the Kubota-Leopoldt p-adic L-function.

6. PROOF OF THEOREM 4.3

As discussed above the statement of Theorem 4.3, maps from J’ to Fib(k) are
determined by maps from (Z,;),, to mo Fib(x); we have two isomorphisms of (Z,’)
with 7o Fib(x) and we need to show that they are the same. It is slightly eas-
ier to work with the Z,-duals instead. We can canonically identify the Z,-dual
of moFib(k) as m_1Lg1)K(Z): the fundamental short exact sequence (4.2) for
moX Iy, K(Z) gives an isomorphism

mo% "y, K(Z) = Hom(n_1 L (1)K (Z), Zy)
since m_a L (1)K (Z) = 0 (as Yy =~ *). The identification of 7_1J as Hom(Z,, Z,)
above and the canonical map J — Lk (1)K (Z) gives one isomorphism of 7_1 L (1y(%Z)

with Hom(Z),Z;), which we denote as a. The isomorphism of m Fib(7) with
(Z)), as the quotient of m L (1)K(Qp) = (Q)); gives another isomorphism of

P
m_1Lg)(Z) with Hom(Z),Z,), which we denote as 7. We need to prove that
n=a.

We have an intrinsic identification of 7_; Lg (1)K (Z) coming from Thomason’s
descent spectral sequence [23, 4.1], which in this case canonically identifies

T_1Lg)K(Z) = 71 Lgq)yK(Z[1/p])

as H}, (SpecZ[1/p];Z,) (continuous étale cohomology). Let Qg denote the max-
imal algebraic extension of Q that is unramified except over S = {p}, and let
Gs = Gal(Qs/Q). The abelianization G%° of Gg corresponds to the maximal
abelian extension of Q that is unramified except over p, which is Q(upe) (where
tpoe denotes the group of p™th roots unity for all n). We have the standard identi-
fication of the continuous étale cohomology HJ, (SpecZ[1/pl; Z,) as the Galois co-
homology H},,(Qs/Q;Z,) [15, 11.2.9], which we can identify as the abelian group
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THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC TRACE 13

of continuous homomorphisms
Hom,(G's,Z,) = Hom (G, Z,).
We have a further isomorphism

GY = Gal(Q(pp=)/Q) 2 lim Gal(Q(upn)/Q) = Uim(Z/p")* = L,

where the first isomorphism is inverse to the isomorphism (Z/p™)* = Gal(Q(u,»)/Q)
taking an element u € (Z/p™)* to the automorphism of Q(u,n) induced by the au-
tomorphism ¢ +— ¢* on p,». This then constructs an isomorphism

v: m-1Lg)K(Z) — Hom(Z, ,Z,) = Hom(Z,; , Zy).

First we show v = a. Choose a prime number [ such that [ is a topological
generator of Z;, or equivalently, a generator of 7/p*, and consider the quotient
map Z[1/p] — Z/l =TF,. By celebrated work of Quillen [18], the composite map

j— K(Z), — K(F),

is a weak equivalence and an embedding of IF‘IX in C* induces a weak equivalence
K(F;);, — kuj with the automorphism ® on K (IF;); induced by the Frobenius
automorphism of F; mapping to the Adams operation ¥ on kuy, (independently of
the choice of embedding). We will also write ® for the corresponding automorphism
of Lg1yK(F;). For any functorial model of Ly (1)K(—), the induced map from
Lk 1)K (F;) into the homotopy fixed points of ® (the homotopy equalizer of ® and
the identity on Ly 1)K (F;)) is a weak equivalence. Writing Ly 1)K (F;)"® for the
homotopy fixed points of ®, the map
LK (F) — LgayK(F)"®

is the unique map that takes the unit element of mo(Lg 1)K (F;)) to the unique
element of mo(L (1)K (F;)"®) that maps to the unit element of (L 1)K (F;)).
This gives a canonical identification of 1 (L 1)K (F;)) as H'((®); Z,), where (®)
denotes the cyclic group generated by ®; we have used the canonical isomorphism
mo(Lk 1)K (F))) = Z, induced by the unit and we note that this isomorphism is
consistent with the canonical isomorphism 7o KU, = Z;, under the weak equivalence
Lxa)K(F;) — KU, (independently of the choice of the embedding F} — CX).
Under the identification of 7_y.J as H}(Z);Z,) above, the composite map

J — LK(l)K(Z) — LK(l)K(Fl)
induces on w_; the map
H (25 Zp) — H'((®):Z,)

induced by the inclusion of [ in Z) (the inclusion of Ul in the group of p-adically
interpolated Adams operations). This gives us information about . In terms of the
identification of 7_1 (L (1)K (F;)) as H} (Fi; Z,) from Thomason’s descent spectral
sequence, the map

H(Fi;Zy) & H (F1/Fi; Zp) — H'((®); Zy)
is induced by the inclusion of the Frobenius in Gal(F;/F;). By naturality, the

composite map

Hy (Z[3]: Zy) = Hi(Gs3 Ly) — He(Gal(Fi; Z,)) — H'((®):Z,)

1
P
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14 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

is induced by the inclusion of ® in Gg as the automorphism of (the p-integers in)
Qs that does the automorphism ¢ ~ ¢! on . This then shows that v = a.

We now compare «y and 7. Here it is easiest to work first in terms of L (1) K (Qj).
Using the standard identification of 7 L (1)K (Qp) as the p-completion of the units,
we have a Qp-analogue of 7 using local duality: let

Np: "1l K(Qp) — Hom((Q;);,Zl,) = Hom((@;,ZP)
be the isomorphism derived from the isomorphism 7 Lg1)K(Qp) = (Q)), by

p/p
Anderson duality. We then have a commutative diagram

71 LeyK(Z) —— 71 Ly K (Z[2]) —— 71 Ly K(Qp)

1
P

nlm {

Hom(Z), Z,) Hom(Q;', Zy)

*

q

by the compatibility of local and global duality. (Here ¢* is the map induced by
the standard quotient isomorphism Q /{p) = Z;.) To produce a local analogue
of v, we use the Artin symbol # in local class field theory [21, §3.1]. The Artin
symbol gives an isomorphism between the finite completion of the units of Q, and
the Galois group of the maximal abelian extension @gb of Qp: For z € Q, writing
r = ap™ for a € Z,, the Artin symbol takes x to the unique element 6(zx) of
Gal(Q2"/Q,) that acts on the p™th roots of unity p,» by raising to the 1/a power
and acts on the maximal unramified extension (Q,)"™" of Q, by the mth power of a
lift of the Frobenius. Using the isomorphism

To1Lg)K(Qp) = H(Qp3 Zp)
from Thomason’s descent spectral sequence and the canonical isomorphism
Hélt (Qp; Zp) = Héal(@p/Q;D; Zp) = HomC(Gal(@;b/Qp), Zp)
(as above), the Artin symbol induces an isomorphism
—Yp: T-1Lg1)K(Qp) — Hom(Q, Zy).

We have implicitly defined an isomorphism 7,: The formula for the Artin symbol
implies that the following diagram commutes

7 1Ly K(Z) —— m 1Ly K(Z[2]) —— 71 Ly K(Qy)

P

'Ylm NJ{'Y;D
Hom(Z; ’ ZP) * HOHl(Q;; ’ ZP)

|

Hom(Z,,Zy)

k

Hom(Z, , Zy) x Zy

(id,0)

(where the bottom right vertical isomorphism is induced by the ap™ decompo-
sition of Q) as Z; x Z). In other words, omitting notation for the isomor-
phism arising from Thomason’s descent spectral sequence and the usual isomor-
phism H} (Qp; Zy) = Hom(Gal(Q:"/Qp), Zy), 7p is the Zp-dual of —f. The Artin
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THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC TRACE 15

symbol has a cohomological characterization [21, §2.3, Prop. 1]: for a character

p: Gal(Q,/Q,) — Q/Z and z € Q,
p(0(x)) = —inv(x U p)

(cf. [17, p. 386]) where on the right we interpret = as an element of HZ, (Q,;Z,) and
p as an element of H} (Q,; Q/Z), while the symbol U denotes the cup product on
étale cohomology

Hélt(Qp§Zp(1)) ® Hélt((@zﬁ Q/Z) — HéQt(Qp; Q/Z(1)),

and inv denotes the map induced by the Hasse invariant (q.v. [22, XIII§3, Prop. 6ff]).
Because

inv(z Uy): Hét(Qp; Zp(1)) ® Hét((@m Qp/Zp) — Q/Z
is the local duality pairing, restricting to

H (Qps Z/p" (1)) ® Hey(Qus Z/p") — Z/p",

taking the inverse limit, and applying the isomorphism from Thomason’s descent
spectral sequence gives us the Anderson duality pairing

T Lg1)K(Qp) ® 1Ly K(Qp) — Zy.

We conclude that 7, = 7,. Since the map ¢*: Hom(Z,',Z,) — Hom(Q,,Z,) is an
injection, we conclude that n = ~.

7. THE EIGENSPECTRA OF T'C(Z),

As shown in [3, (2.4)], TC(Z), admits a canonical splitting with summands j,
35, and the spectra denoted in Section 2 as z;, for ¢ = 0,...,p — 2. As indicated
there, z; is non-canonically weakly equivalent to %2~/ (for i # 1) or X?~1¢ (for
i = 1). The purpose of this section is to give an identification of these summands
in intrinsic terms. We work in terms of the K(1)-localizations Z;, and our main
result is to explain the perspective that Z; is %=1 L tensored over A = [L, L] with
a free A-module and to identify that A-module intrinsically in number theoretic
terms; see Corollary 7.5 for a precise statement. The remainder of the section
discusses the problem of finding a generator for this free module. The number
theory literature discusses several approaches, which we review. The content of
this section is independent of the other sections.
Let
7 = ZO VeV Zp_g = LK(I)ZO VeV LK(I)Zp—2-
Since z; is the l-connected cover (for ¢ # 0) or (—2)-connected cover (for i =
0) of Z; = Li 1)z, to identify z;, it suffices to identify Z;. Since Z; is non-
canonically weakly equivalent to X* 'L (for L the Adams summand of KU})), we
have that [Z;, Z;] = 0 for i # j. The decomposition of Z into the summands Z;
is therefore unique, and so it suffices to identify Z. It follows from Hesselholt-
Madsen [11, Th. D, Add 6.2] that T'C' of the p-completion map and the cyclotomic
trace
TC(Z) — TC(Zy) «— K(Zp)
are K (1)-equivalences. These maps induce a weak equivalence from Z to a sum-
mand of L 1)K (Zy), which Dwyer-Mitchell [10, §13] identifies in terms of units of
cyclotomic extensions of Q,. We now review this identification.
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16 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

Let F, = Qp(ppn+1) (with FLy = Q,), and let E, = (F, /torsion); (where
ppn+1 denotes the p™ ! roots of unity in some algebraic closure of Q,). The norm
(in Galois theory) gives maps F,, — F,,_1; let E be the inverse limit. The Galois
group Gal(F, /Q,) is canonically isomorphic to (Z/p™*t!)* and this makes F,, a
p-complete Z,[(Z/p"!)*]-module. The norm E, — E,_; is a Z,[(Z/p""1)¥]-
module map and so in the inverse limit F, is a module over the Iwasawa algebra

N = Z,[[Zy]] = im Z[(Z/p" 1) *].
As a completed group ring, A’ comes with an (anti)involution x that sends the
group elements to their inverses; for a A’-module M, we denote by MX the A’-
module obtained via this involution. Coincidentally, A" = [KU, KU}'| via the map
that takes an element a of Z to the (p-adically interpolated) Adams operation ¢®
(which exists for p-completed topological K-theory), and in particular, we have a
canonical action of A’ on KU, (in the stable category). Dwyer-Mitchell [10, §13]
then shows that F., (denoted there as F/_(red)) is free of rank 1 as a A’-module,
observes that

(Z,KU)| = (KU})(Z) =0

(cf. [ibid., 6.11]), and constructs a canonical isomorphism
(7.1) [X7'Z, KU} = (KU))'(Z) = Homp/ (Eso, A')X

of A’-modules (cf. [ibid., 8.10]). For formal reasons, this characterizes Z in the
stable category via the Yoneda Lemma (see [ibid., 4.12]).

Theorem 7.2 (Dwyer-Mitchell [10, 9.1]). For any spectrum X, the natural map
[X7 Z_lz] — Hom[KUQ,KUQ]([Z_lza KU}?]a [X7 KUpA])
= HOIHA/ (HOIIlA/ (Eoo, A/)X, [X, KUI;\]) = Egco Qpr [X, KU;;]
is an tsomorphism.

The last isomorphism follows from the fact that F., is free of finite rank, using
the isomorphism
Homp/ (Es, A/)X = Hompy/ (E?fo, A/)
adjoint to the y-twisted evaluation map
(7.3) Hom/ (Eoo, )X @ EX, — (A)X —— A,

X

Plugging X = KU into Theorem 7.2, we get an isomorphism of A’-modules
[KU»,27'2] 5 EX on [KU,, KU)| = EX.
Concisely, this isomorphism and the isomorphism of (7.1) identify the y-twisted
evaluation map (7.3) with the composition in the stable category
X7'Z,KU)| ® [KU), %' Z) — [KU), KU = .

~

We have a canonical identification of endomorphism rings A" = [KU), KU}| and
(712,571 Z] induced by choosing any weak equivalence KU} ~ ¥~!'Z: because
A’ is commutative every choice induces the same isomorphism. Commutativity also
implies that the A’-module structure on [KU}, X' Z] from [~ Z, ¥7! Z] coincides
with the A’-structure from [KU}, KU,] and we see that the isomorphism in Theo-
rem 7.2 is an isomorphism of A’-modules for the A’-module structure on [X,%717]
from [X7'Z,%71Z]. Using the duality of the invertible A’-modules [X~'Z, KU}
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THE EIGENSPLITTING OF THE FIBER OF THE CYCLOTOMIC TRACE 17

and [KU}, $71Z], Theorem 7.2 then implies the following slightly less complicated
isomorphism.

Corollary 7.4. For any spectrum X, the natural map
Eg(o X [Xv KU[?] = [KUga EilZ] ®[KUI/,\,KUPA] [Xa KUIN - [X7271Z]
is an isomorphism.

We can identify the spectra Z; using the eigensplitting of EX . To explain this,
let A be the completed group ring

A = Z,[[UY)] = im Z,[U* /U™,

where U™ denotes the subgroup of Z,; of elements congruent to 1 mod p™. Then A
is a (topological) subring of A’ and because Z; = p,_1 x U', A" is isomorphic to
the group algebra Afu,1]. We prefer to write A’ = A[F)], using the Teichmiiller
character w: F; — Z, for the isomorphism F — p,—1. Because p —1 is invertible
in Z, and p,—1 C Zp, we get orthogonal idempotent elements

= 3 wla) e
p aGF;
in A’ for i = 0,...,p — 2 (where we have written the group elements (in Z,) using
Adams operation notation to distinguish them from the coefficient elements (in Z,,)
of the completed group algebra A’). These give a Cartesian product decomposition
of A,
A = EQA/ X X €p_2A/7

where the elements of ¢;A can be characterized as the elements of A’ on which ]F;‘
acts by multiplication by w’; we call this the w’ eigenspace of A’. Since w® = w!TP~1,
it makes sense and can be convenient to index the eigenspaces on elements of
Z/(p—1) rather than the specific representatives 0, ...,p—2. The inclusion A — A’
induces an isomorphism of (topological) Z,-algebras between A and ¢; A’ for each i.
Every A’-module admits a corresponding decomposition into w’ eigenspaces, which
we can regard as A-modules.

The Cartesian product decomposition of A’ above corresponds exactly to the
Cartesian product decomposition of [KU), KU},

[KU),KU}| = [L,L] x [S2L,$°L] x - -+ x [ 7L, 5274

induced by the Adams splitting KU, ~ LV Y2LV---VE?P~4L: the decomposition

isomorphism takes [$% L, ¥ L] to precisely the subset of [KU), KU}] of elements

on which ¢*(® acts by multiplication by w(a)? for all a € F;*. The isomorphism

A = [KU), KU}| induces an isomorphism A = [L, L] for the inclusion of [L, L] as

the diagonal in [][L, L] = [][X*'L,£* L]. Since the identification of [KU}, X' Z]

as EX above is an isomorphism of A’-modules, we get an isomorphism of A-modules
&|KU), 7' Z] = ¢ EX,

on the w' eigenspaces for all i. The idempotent ¢; of [K Uy, K Uzﬂ is the composite
of the projection and inclusion

KU) — L — KU},
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18 ANDREW J. BLUMBERG AND MICHAEL A. MANDELL

so we see that
GKU), X' Z) 2 [S¥ L, Z] 2 [S¥L, 57" Ziy]

(numbering mod p — 1) as [E*L,571Z;] = 0 unless j =i+ 1 (mod p — 1). We
then get the following characterization of Z;.

Corollary 7.5. Leti € Z/(p—1). For any spectrum X, the natural map
&EX @p [X,S¥L) =[S L, 7' Zip1] @seip peip) [X, L] — [X, 57 Zi44]
is an isomorphism.

More can be said about choosing weak equivalences Z; ~ Y£*~'L. From the
discussion above, choosing such a weak equivalence is equivalent to choosing a
generator of the free rank one A-module ¢;,_1 EX , and this is equivalent to choosing
a generator of the free rank one A-module €,_; Fw.

We treat the case of €gF separately, but all cases require a choice of a system
of primitive pth roots of units ¢, € pyn+1 with (¥ = (,—1, which we now fix. (For

example, choosing an embedding of Q, in C, one could take ¢, = ezm/pnﬂ.) Then
Cn —1is a uniformizer for OF, for each n: we have N, . /r, (Cat1— 1)=¢,—1and
Ng,/q,(Co — 1) = p. This argument also shows that the system (¢, — 1)) specifies
an element of E,, and we can consider its w® eigenfactor € ((¢, — 1)).

Proposition 7.6. In the A'-module Ew., €0((, — 1)) generates eqEoo

Proof. The valuation F,* — Z is a homomorphism that sends roots of unity to
zero and so extends to a homomorphism F, — Z,. It commutes with the norm
and so assembles to a homomorphism E., — Z,. Giving Z,, the trivial A’-action,
the homomorphism E., — Z, is A'-linear and factors through egE. Because
(n—1 € F* has valuation 1, A is a local ring, and ¢y E is a free rank one A-module,
it follows by Nakayama’s Lemma that eq(((,, — 1)) is a generator of egFEo. O

Remark 7.7. We note that the element €y((¢, — 1)) of €gFw is in the image of the
corresponding A’-module defined in terms of Z[1/p] in place of Q,, that is, the
inverse limit over norm maps of the p-completion of the units of Z[(,, 1/p] modulo
torsion. This element can be used to construct a weak equivalence ¥~'Y; ~ L by an
argument analogous to the one for Theorem 7.2 (but for the g piece only). Since the
resulting weak equivalence is just the composite of the weak equivalence ¥~'Y; —
¥~1Z; induced by the cyclotomic trace and the weak equivalence X7 'Z; ~ L
coming from the previous proposition (and Corollary 7.5), we omit the details.

For other eigenspaces, €;(({, — 1)) is generally not a generator. If ¢ £ 0 mod
p — 1, then (¢, — 1) € F* is a cyclotomic unit [14, 3§5]. In particular, it is a
real multiple of a root of unity [14, p. 84], and as such, €;(¢, — 1) becomes the
identity element in ¢; F,, for i odd. For i even, €;(¢;, — 1)) is a generator of €; F if
and only if the Bernoulli number B; is relatively prime to p (see the argument for
Theorem 1.4 in Chapter 7 of Lang [14]).

The authors know of two (for ¢ = 1) or three (for i = 2,...,p — 2) distinct
ways of producing generators for the other eigenspaces. For the constructions, let
U} denote the subgroup of F* congruent to 1 mod ¢, — 1 and let UL = limU}
under the norm maps. Since U} is p-complete, the Galois action on UL makes it
a A'-module. Let T},(p) = limjtyn+1, a A’-submodule of UL,. Since pn+1 is the
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torsion of U} and f(p—1)pn+1 is the torsion in F'*, we have an exact sequence of
A’-modules

0 — Tp(p) — UL — By — Z, — 0,
where Z, has the trivial Galois action and the map F., — Z, is induced by the
valuation as in the proof of Proposition 7.6 above. In particular UL — E, is an
isomorphism on w’ eigenspaces for i # 0,1 and an epimorphism on w®.

Given an element ((u,,)) € UL, we can detect whether ¢;((u,,)) maps to a generator
of €;FEw using the Kummer homomorphisms (see [14, 7§1-2]) ¢;: U3 — F,. Let
D: Z,[[X]] = Z,[[X]] be the homomorphism of Z,-modules Df = (1 + X) f'(X).
Given u € U}, u = f,(¢o — 1) for some (non-unique) f, € Z,[[X]] with leading
coeflicient congruent to 1 mod p; for i = 1,...,p — 2, define

¢z(u) = Di(log(fu))b(:@ (mOd p) S ]va

where log(f) = (f —1) — (f —1)?/2 + -+ (or more generally, for any power se-
ries f with constant term a unit in Z,, we can equivalently interpret D?log(f) as
D=1+ X)f'/f)). The power series f, is well defined mod (p, XP~1) since Op,
has ramification index p — 1 over Z,. As a consequence, fy,(X)fy(X) = fu(X)
mod (p, XP~1). The formal power series identity for log(1 + X) (or the product
rule applied to (gh)’/(gh)) implies

D’ 1Og(fufv) =D' log(fu) + D log(fv)

and ¢; is a well-defined homomorphism. The (easily checked) formula
D(f(X+1)" = 1)) =a(X + D)*f (X +1)" = 1) = aDf|(x11)e—1

shows that ¢;(¢)"u) = a'¢;(u) for any u € Uy, a € ZX. Tt follows that ¢;(e;u) =
¢;(u). Since €;Fo, is a free rank one A-module and A is a local ring, if ¢;(ug) # 0
for some ((u,,)) € UL, and either i € {2,...,p—2} or i = 1 and e ug & pyp, then the
image of €;(un)) generates €; E. For the first construction of generators, we use
the following proposition from [14, 7§3].

Proposition 7.8. Fizi € 1,...,p— 2. There exists A € pp—1,A # 1 such that
¢i(w(A = 1)7HA = o)) # 0.

The proof is an analysis of ¢;(ug())) for ug(A) = w(A—1)"1(A—(p). Clearly, we
can take fu, () = w(A—1)"1(A=1—-X). We then have D(log( fu,))|x=0 = 1/(1=X),
and in general, a little bit of algebra (q.v. [14, p. 182]) shows that D(log Juo(n))|x=0
is a rational polynomial in A whose numerator is a monic polynomial of degree
i —1 < p—2; thus, for at least one of the p — 2 values of A € p,—1 \ {1}, ¢:i(uo(N))
must be non-zero mod p.

For the w! eigenspace, we also need the following observation.

Proposition 7.9. Let X € p,—1 \ {1} and let ug(N) = w(A —1)"H (X = (o). Then
€1(up(A)) is not a pth root of unity.

Proof. Let m = (g — 1 € Op,; we note (p) = (7P~ 1). It suffices to check that
e1(ug(\))P #1  (mod 7P,

Since w(A — 1)71(A — 1) is in Z,, and is by construction congruent to 1 mod p (a
fortiori congruent to 1 mod 7 in O, ), it is in €oUa and €; takes it to the identity.
We then have

e1(uo(N) = e (w(A_l{()J(Al)(A_n) =q (1— Ai1>,
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and

T\’ pT
_ =1 £ p+1
(1 /\_1> =1 ] (mod wP™).

Moreover, since

of pm \_, apm _ ([ pr \* pil
Y <1 /\_1>1 /\_1<1 /\_1> (mod 7P 7)),

it follows that e (ug(A\))? =1 — pr/(1 —A) 1 (mod 7P*1). 0

Taking A as in Proposition 7.8, let u, = w(A —1)7}(A — ¢,). Because X € p,_1,
we have Np, . /F, (Unt1) = un, and the system ¢;((u,)) maps to a generator of
EiEoo-

Proposition 7.10. Let i € 1,...,p — 2, and choose X € p,_1 \ {1} such that
i(wN = 1)7E(A = o)) # 0. Then €;(w(X — 1)7(\ = () € UL maps to a
generator of €;Eo.

The next construction of generators, due to Coates-Wiles [6, Theorem 4], avoids
the indefiniteness of the unspecified choice A in the previous construction. Let
B € Z, denote the unique (p — 1)th root of 1 — p which is congruent to 1 mod p.
Let I" be the unique Lubin-Tate formal group law over Z, with [p|p[X] = X? +pX,
and let 6 be the unique strict isomorphism from the multiplicative formal group law
Gy, to T. (For an introduction to this Lubin-Tate theory, see for example [14, 8§1],
particularly Theorems 1.1 and 1.2.) Because m, = ¢, — 1 satisfies

pla,, (Tni1) = (Tp1 + )P =1 =7,
for n > 07 Ty = 9(7-‘-") satisfies
Ty F P = Ty
for n > 0, and o + pro = 0. Let u, = 8—2,. We have Np,_,/p, (Un11) = tn, and

it is easy to calculate ¢;(ug) as follows. Because I' agrees with the additive formal
group law to order p — 1, 8(X) =log(1 + X) (mod XP). Calculating

—(i —1)!
(8 —log(1 + X))*’
we get ¢;(up) = —(i —1)! # 0 € Fp,. In the case ¢ = 1, e1up is not a pth root of
unity (see [20, 2.5]). This proves that €;((u,)) maps to a generator of ¢; Eo, for all
i=1,...,p—2.

D' (B —log(1+ X)) =

Proposition 7.11. Leti € 1,...,p—2. In the notation of the previous paragraph,
€i(B—0(¢, — 1)) € UL maps to a generator of €;Ex.

Finally, Coleman [7,8] constructs an extremely nice isomorphism ¢; Eo, — A for
i #0,1. The Coleman map L£: UL — A’ fits into an exact sequence of A’-modules

0—Ty(n) — UL BN —7Z,(1) — 0

(see [5, 3.5.1] or [20, Theorem 2]), where Z,(1) is the A’-module with underlying
Zy-module Z, where Z, acts by multiplication (it is isomorphic to T}, (u) under
the isomorphism a — ((¢%))). In particular, the Coleman map is an isomorphism
on w' eigenspaces for i # 1. Choosing a generator of e;A’ for i # 0,1, L' gives
a generator of ¢;UL which maps to a generator of €;Fs,. (This generator has ¢;
equal to 1 by [5, 3.5.2].)
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