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Shockwaves in Jammed Ductile
Granular Media
We investigate shock propagation in confined, frictionless granular media using discrete
element simulations with an elastoplastic contact law. Depending on the level of confine-
ment and loading, elastoplastic systems exhibit a weak or strong shock propagation
response similar to an elastic Hertzian system although the details of the shock development
differ markedly from the elastic case. Two modes of dynamic stress propagation are
observed based on the shock intensity regime: weak shocks carry the stresses via the
initial contact path while strong shocks form new contact networks behind the front.
However, unlike for elastic shock propagation, there is an upper bound to the front velocity
of strong shocks that depends on the maximum intergranular contact stiffness. Since elas-
toplastic contact is a dissipative process, results show that dissipation is enhanced with con-
fining pressure in the weak shock regime. [DOI: 10.1115/1.4053622]
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1 Introduction
In granular materials, the contact interactions between granules

govern the mechanical response of the entire ensemble. The classi-
cal Hertzian contact theory, which describes elastic interactions
between spherical particles, has paved the way to understand the
unique wave propagation properties of granular media. Studies on
1D granular chains have shown that the inherent nonlinearity of
the Hertzian force–displacement contact relationship makes uncom-
pressed granular media behave as a sonic vacuum without a charac-
teristic sound speed [1–3]. As a result, depending on the material
properties and applied loading conditions, nonlinear wave propaga-
tion in granular media takes the form of singular solitary waves,
solitary wave trains, or shockwaves.
Due to the nonlinear contact interactions among its constituents,

wave propagation in 1D granular media can be tuned by simply
confining the granular system through a lateral pressure or precom-
pression. An individual contact without precompression following
the Hertzian force–displacement relationship has zero stiffness at
the origin, thereby making it impossible to propagate sound
waves. However, by applying an initial confining pressure, P0, to
the 1D chain, the contact becomes linearized making it possible
for small disturbances to propagate with a sound speed that scales
as P1/6

0 [4,5]. As the amplitude of the disturbance is increased,
wave propagation becomes increasingly nonlinear and eventually
gives rise to strongly nonlinear solitary waves and strong shocks,
in which the velocity of the shock front, vs, scales with the
maximum dynamic pressure, P, as P1/6 [1,3,5].
In 2D and 3D packings of granular media, a further complexity

arises where the application of an external pressure causes the gran-
ules to jam creating dense, heterogeneous force chains that support
the externally applied loading [6–9]. Studies on elastic systems have

shown duality in the scaling of the sound speed with the confining
pressure. Under different experimental conditions, higher confining
pressures show a P1/6

0 scaling of the sound speed similar to 1D Hert-
zian chains, whereas low confining pressures show a sound speed
scaling of approximately P1/4

0 [10–14]. The crossover between
these two regimes is configuration specific and is speculated to be
a result of nonlinear effects such as dynamic changes in the coordi-
nation number, mixing of shear/compression wave modes, and
contact asperities [11,13,15]. Although these results show a univer-
sal behavior irrespective of the underlying force chains, experi-
ments probing even smaller, more localized length scales of the
order of the force chains reveal that force chains act as conduits
for stress propagation [16,17]. On the opposite end of the spectrum,
strongly nonlinear wave propagation can occur for large impulses
that produce dynamic forces much larger than the initial confining
forces [18–20]. In those studies, the resulting shock front velocity
was found to scale as P1/6 similar to that observed in 1D chains.
A limitation of the Hertzian contact law for ductile granules is that

it is only applicable for small amplitude loading conditions provided
the contact surface has not been preconditioned (pre-yielding of the
contact surface) [21]. If we consider non-preconditioned ductile
granular spheres (granules in its most common form), the Hertzian
contact law greatly overestimates the force–displacement relation
beyond a relatively small critical displacement value as the contact
region yields at low loads due to stress concentrations [22–24].
Over the years, several contact force–displacement laws have been
proposed to capture elastoplastic contact for different material prop-
erties and have been used in discrete element method (DEM) simula-
tions to study the dynamics of elastoplastic wave propagation
[25,26]. While solitary waves in elastic systems propagate unattenu-
ated, elastoplastic waves show severe attenuation due to plasticity
[23,25,27]. Unlike their elastic counterparts, shockwaves in 1D
uncompressed elastoplastic systems show fronts with smaller oscil-
lations and have an upper bound for the wave velocity that depends
on the maximum stiffness of the contact [25,26,28].
In this work, we use DEM simulations to study elastoplastic shock-

wave propagation in confined, random 2D granular packings made of
two spherical grain sizes and make comparisons with corresponding
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elastic Hertzian granular systems. The primary goal of our simulations
is to investigate the effect of confining pressure and impact velocity on
plastic dissipation and front velocity. We first study the phenomenol-
ogy of the shock by observing the shape of the front and force chain
network. Next, we extract the front velocity from the simulations
and predict the lower and upper bounds for 2D randomly packed gran-
ular systems by extending the approximations of these bounds for 1D
chains. Finally, we show the dependence of plastic dissipation on the
confining pressure and excitation velocity by investigating the
dynamic pressure and changes to the contact network.

2 Contact Law and Numerical Methodology
In this study, we use the analytical model developed by Brake for

elastoplastic contact of two perfectly plastic spheres of radii Rα (α=
1, 2) [24]. We assume that all spheres have the same constitutive prop-
erties: stiffness E, Poisson’s ratio ν, and yield stress σy. The loading
force–displacement (Fl – δ) relation adopted in this work has a
smooth transition from an elastic Hertzian domain to a fully plastic
flow domain, while the unloading force–displacement (Fu-δ) relation
is elastic:

Fl =

4
3
E∗ ���

R∗√
δ1.5, δ ≤ δy

sech 1 + n − 2( )( ) δ − δy
δp − δy

( )( )
4
3
E∗

������
R∗δ3

√

+ 1 − sech 1 + n − 2( )( ) δ − δy
δp − δy

( )( )( )
p0πan

an−2p

,
δ ≥ δy

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(1a)

and

Fu =
4
3
E∗

��
R

√
δ − δR( )1.5 (1b)

where a is the contact area, δR is the residual plastic displacement, R is
the deformed relative radius, and subscripts y and p, respectively,
denote the value of the quantity of interest at the onset of yield and
plastic flow. These quantities are calculated using the following equa-
tions:

δy =
R∗

0.3842
πσy
2E∗

( )2

δp =
3p0π
2E∗

( )2

R∗

a = 2 − sech 1 + n − 2( )( ) δ − δy
δp − δy

( )( )( )
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�������
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4/3E∗ ���
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δ1.5m

( )

R =
F2
max

9/16(E∗)2(δmax − δR)3

(1c)

Here, E* and R* are the effective Young’s modulus and effective
radius, respectively, and are given by

E∗ =
E

2(1 − ν2)
and R∗ =

1
R1

+
1
R2

( )−1

The material properties are assumed to be those of brass 260 [23]:
Young’s modulus E= 115 GPa, Poisson’s ratio ν=0.3, and yield
stress σy=619 MPa. The Brake model’s specific parameters, the
Meyer’s exponent n, and contact pressure P0 are, to our knowledge,
not tabulated for brass 260 and were extracted as n=2.042 and
P0 =1.017 GPa by curve fitting to the experimental data shown in
Fig. 1 [23]. As reflected in that figure, the force–displacement relation-
ship under loading is almost linear for higher contact forces. In this

study, inter-granule contact is assumed to be frictionless and thus
only involves normal interactions. The dissipated plastic energy asso-
ciated with a given contact is the area under the loading and unloading
curve and is given by

Ep =
∫δmax
0

Fl dδ −
∫δmax
δR

Fu dδ (2)

It should be noted that Ep increases monotonically with δmax.
In our simulations, we study wave propagation along the length

of a granular channel containing a bidisperse distribution of brass
260 granules with a 2:1 ratio of 0.02 m and 0.04 m diameters.
These granules are confined in a 0.4 m× 4 m rectangular channel
having smooth walls, which are approximated as granules with
very large (105 m) diameter, making these “wall granules” appear
as flat elastoplastic surfaces while being compatible with the simu-
lation framework detailed below. The material properties of the wall
are assumed to be the same as those of the granules but yield a much
stiffer contact due to the larger effective radius. The size of the
simulation channel was chosen to capture the steady-state propaga-
tion of the front and doubling the width of the channel did not bring
about a noticeable difference in the results.
In this study, we employ the “DEM option” of the large-scale

atomic/molecular massively parallel simulator (LAMMPS) molecu-
lar dynamics package [29]. For the entire simulation process, we
integrate the equations of motion under the constant volume and
energy (NVE) ensemble. A timestep of 10−7 s was chosen to
ensure stability and convergence of the numerical results. It is
worth noting that this timestep value is an order of magnitude
smaller than the transit time of a sound wave along the length of
the granular domain. The first step in the simulation process consists
of jamming the granules to generate a prescribed pressure in the gran-
ular ensemble. To that effect, granules are first randomly initialized
with an Hertzian contact law such that the area fraction, Af, of the
total number of granules is close to the jamming transition point of
0.84 for 2D packings (Fig. 2(a)) [30]. Given the channel width and
granular diameters, this packing involves 1375 granules. Next, the
walls are moved inwards from this initial state to compress the gran-
ules and exceed the critical area fraction of 0.84, which causes the
materials to jam and build-up an internal stress state, σij, defined by

σij =
−Fx
wD 0

0 −Fy

lD

[ ]
(3)

Fig. 1 Fit of Brake’s model (Eq. (1a)) to experimental data
obtained from the compression of two 9.52 mm brass 260
spheres. Loading–unloading of two different maximum force
values are shown. The Hertzian contact relation is also shown
for comparison.
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where Fx and Fy are the amplitudes of the horizontal and vertical
force components associated with the pre-impact jamming phase, l
and w, respectively, denote the length and width of the channel,
and D is the diameter of the larger granule (0.04 m). Artificial visc-
osity is applied at this stage to remove excess kinetic energy of the
granules until the total kinetic energy equilibrates to 10−8 J. The
resulting stress state is effectively hydrostatic with a stress ratio
between the vertical and horizontal directions between 0.95 and
0.98 due to the contacts being frictionless and the granules essen-
tially behaving like a “granular liquid” [31]. The order in which
the walls are moved does not affect the final confining pressure
which is area fraction dependent [9] but may affect the underlying
fabric of the force chain network. The confining pressure, P0, can
be computed as P0= (1/2)|σxx+ σyy|. In the next step, the contact
law in the equilibrated system is switched from the elastic Hertzian
contact law to the elastoplastic contact law. The change of contact
law slightly perturbs the previously stabilized granular state, hence
requiring the system to be re-equilibrated under artificial viscosity
until the kinetic energy stabilizes back to approximately 10−8 J.
This state is considered as the starting jammed state as a strong
force chain network forms to support and maintain the pressure
when the artificial viscosity is removed (Fig. 2(b)).
The switch to the elastoplastic contact law inevitably yields con-

tacts that carry loads greater than the yield force (Eq. (1a) with δ=
δy). Contact interactions involving smaller granules show more
yielding as they have a lower yield force due to a small effective
radius. Analysis of the plastic contacts prior to the impact event
indicates that all the contact forces lie within the loading curve of
the contact law irrespective of yielding. As shown in Fig. 3, increas-
ing the pressure results in a progressive increase in the fraction of
yielded contacts with nearly 5% of the contacts being yielded for
a 25 kPa confining pressure and nearly 90% by 350 kPa. For com-
pleteness, we list in Table 1 the yield force values for the different
contacts involved in the simulated granular medium.
The final step in our simulation procedure involves moving the

left wall inwards like a piston with constant velocity, up, to generate
a shock. The other three walls are stationary and do not interact with
the piston or one another. The simulation is terminated before the
shock reaches the opposite end of the channel to prevent reflection.

3 Results and Discussion
3.1 Structure of the Shock. The rightward motion of the

piston generates a pressure front that travels from left to right into
the granular medium, with the granules located behind the front
moving at approximately the velocity of the piston. Visualizing
the propagation of the front by zooming into a portion of the
channel after jamming but before impact (Fig. 4(a)) and for

piston velocities of 0.8 m/s (Fig. 4(b)) and 70 m/s (Fig. 4(c))
reveals how the impact amplitude, i.e., the piston velocity, controls
the dynamic creation of the force network. In Fig. 4(a), we observe
that a significant force chain network develops in the jammed mate-
rial with almost every contact point being active. In Fig. 4(b), this
pre-existing contact network carries the dynamic loading with
force magnitudes higher than the static pre-load as they provide a
transfer path for the contact forces. As a result, the void locations
and shapes also remain mostly intact. In contrast, Fig. 4(c) shows
significant formation of new contacts accompanied by a decrease
in void area fraction behind the propagating front. Since both
Fig. 4(b) and Fig. 4(c) are taken at the same time instant, the
front speed appears to be an increasing function of the piston speed.

Fig. 3 Fraction of yielded contacts, for which the contact force
is greater than the yield force, as a function of confining
pressure.

Table 1 Yield forces for the different interaction combinations

Type of interaction Yield force (N)

Small–small 32.2
Small–big 57.3
Big–big 128.8
Small–wall 128.8
Big–wall 515.1

Note: The term big and small, respectively, denote the big and small
diameter granules in the bidisperse system. Big–big and small–wall have
the same effective radius and therefore the same yield force.

Fig. 2 Pre-impact jamming of the granules. (a) In the prejammed state, the granules (filled
circles) barely interact with each other as apparent from the sparse distribution of force
chains (lines connecting granules). The white spaces denote voids. (b) After the inward
motion of the top and left walls, the granules transition to the jammed state characterized
by a dense force chain network.

Journal of Applied Mechanics MAY 2022, Vol. 89 / 051003-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/89/5/051003/6839128/jam
_89_5_051003.pdf by U

niversity of Illinois U
rbana-C

ham
paign, Philippe G

eubelle on 25 O
ctober 2022



Fig. 5 Shock profile evolution for (a) elastic with up=0.8 m/s, (b) elastoplastic with up=0.8 m/s, (c) elastic
with up=70 m/s, and (d ) elastoplastic with up=70 m/s. The confining pressure of 212 kPa is approximately
the same for all four cases.

Fig. 4 (a) Pre-impact force chain network for the 250 kPa confining pressure case,
(b) propagation of the shock for a piston velocity up=0.8 m/s, and (c) up=70 m/s. The
lighter contact forces denote the dynamic interactions for which the contact forces
exceed those associated with the pre-impact confinement.
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Since the granules are discrete, uniquely identifying the wave
front and extracting the wave speed are challenging. Adopting the
approach of Gómez et al. [19], we obtain the front profile by divid-
ing the length of the channel into 80 uniformly spaced bins and
averaging the horizontal velocity, vx, of the granules in each bin.
A spatially varying velocity profile is then obtained by fitting a
cubic spline through the bin-averaged granule velocity data.
Figure 5 shows the evolution of the front at similar spatial positions
for elastic and elastoplastic shocks for piston velocities of 0.8 m/s
(top figures) and 70 m/s (bottom figures) and for a confining pres-
sure of 212 kPa. For the lower value of up, we observe that the
elastic front (Fig. 5(a)) is sharper and less smooth than the elasto-
plastic front (Fig. 5(b)). In addition, in the elastic case (Fig. 5(a)),
the horizontal velocity of the granules reaches a plateau, albeit
noisy, at about the imposed piston velocity, up. In the plastic
case, at least for this length of channel, no plateau in granule velo-
city is achieved as a result of plastic dissipation.
Comparing the strong and weak shock profiles, we observe that

the strong elastic (Fig. 5(c)) and elastoplastic (Fig. 5(d )) fronts
are sharper than their weak counterparts with the elastoplastic
front being smoother and increasingly wider. Here the shock
width refers to the length over which the profile extends from the
point it first goes above 0 m/s to up. This result implies that the
“base” of the front travels faster similar to an elastic precursor
(annotated in Fig. 5(d )) in homogeneous material. In uncompressed
1D elastoplastic chains, the spreading of a shock front is not
observed even though loading is dominated primarily by the
linear part of the force–displacement curve, which is responsible
for wave dispersion [26]. This 1D result is due to the fact that
loading at any contact must first “travel” up the nonlinear Hertzian
part of the contact law before reaching the linear plastic contact
domain. However, the formation of a contact network in the
jammed state initializes contacts to have a linearized stiffness
depending on the amount of load they carry. The presence of a con-
fining pressure therefore tends to accentuate features of dispersion,
including the presence of a precursor, since it eliminates the intrin-
sically nonlinear response associated with the unconfined state.
The observation of a precursor is also apparent by extracting

the front velocity at different positions along the front profile. The
position-dependent front velocity can be quantified by tracking the
position, x, and time, t, at which the velocity of each bin exceeds a
certain threshold. Figure 6 presents the x–t curves obtained for five
velocity threshold values ranging from 0.005 to 35 m/s for the
shock displayed in Fig. 5(d ). The linear nature of these curves
points to a constant front velocity associated with each velocity

threshold, with the lower-threshold velocities yielding higher front
velocities confirming the existence of an elastic precursor.

3.2 Dependence on Confining Pressure and Piston
Velocity. By extracting the front velocity using the values from
the lowest threshold in Fig. 6, we first verify our system by compar-
ing the results of the elastic (Hertzian) system with theoretically
expected scalings. The weak and strong shock propagation
regimes can readily be observed in the dependence of the shock
front velocity on the confining pressure obtained for different
piston velocities presented in Fig. 7(a). For weak shocks obtained
at low piston velocities, the front velocity scales with the confining
pressure as vs ∼ P1/6

0 , as shown by the solid line in Fig. 7(a). As
mentioned earlier, this front velocity is effectively the speed of
sound of the confined granular system for very small piston
velocities.
As the piston velocity is increased, a transition to the strong

shock regime is visible when the front velocity loses dependency
on the confining pressure. Figure 7(b) shows another representation
of the data in Fig. 7(a) by viewing the front velocity as a function of
piston velocity up. That figure indicates that this regime transition
takes place for up > 4 m/s and that the front velocity emerges to
scale with the theoretically expected scaling of u1/5p [19].
Figure 8 presents the elastoplastic equivalent of the elastic results

shown in Fig. 7. As expected, the sound speed data show close
agreement with those of the elastic system and the same P1/6

0

Fig. 6 x–t plots for different bin velocity thresholds for the
shock profile in Fig. 5(d ) (up=70 m/s and P0=212 kPa). The
largest threshold velocity (35 m/s) is half the piston velocity.
The relative velocity between the smallest and largest threshold
can be as much as 50 m/s.

Fig. 7 Front velocity results for the elastic (Hertzian) system.
(a) Front velocity as a function of confining pressure for different
piston velocities. The black curve corresponds to a P1/6

0 fit of the
sound speed. (b) Front velocity as a function of piston velocity
for selected confining pressures. Symbols are consistent
between subfigures.
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scaling due to the similarity between the Hertzian and elastoplastic
contact laws for small dynamic contact forces. However, for higher
piston velocities, the front velocity is considerably slower in the
elastoplastic system. Figure 8(b) also indicates a small pressure
dependence of the front velocity even for high values of up. This
result is likely associated with the presence of a precursor traveling
ahead of the front and creating a dynamic compression comparable
to that observed for lower piston velocities. There also appears to be
an upper bound for the front velocity as increasing the piston velo-
city more than two-fold from 70 m/s to 150 m/s increases the front
speed by only 7%. This upper bound is due to the stiffness of the
quasi-linear contact law for large intergranular forces making the
granular fabric appear as if it were connected by quasi-linear
springs. For 1D chains, the upper bound of the front velocity,
Vmax,1D, can be obtained from the long wavelength limit of the dis-
persion relation given by

Vmax ,1D =

��������
6Kmax

πDρavg

√
(4)

where Kmax is the maximum intergranular stiffness, D is the granu-
lar diameter, and ρavg is the average density of the granules [26]. For
2D random packings, the maximal stiffness of a contact, c, for a
given granule, p, must be averaged over all the specific angular ori-
entations in the contact network. This averaging is performed using
the granular stiffness tensor formulated by Liao and Chan [32]:

Cijkl(K) =
1
V

∑
p∈V

∑Nc

c=1

Kl2

2
nci n

c
j n

c
kn

c
l (5)

where V is the volume encapsulating the granules, Nc is the number
of contacts for granules p, K is the intergranular contact stiffness, n
is the normal vector connecting two contacts, and l is the spacing
between two neighboring granules. Assuming macroscopic elastic-
ity, a long wavelength approximation for the maximum front speed
can be found using

Vmax,2D =

������������
Cijkl(Kmax)

ρavg

√
(6)

Fig. 8 Front velocity results for the elastoplastic system. (a) Front velocity as a
function of confining pressure for different piston velocities. (b) Front velocity as
a function of piston velocity for selected confining pressures. Symbols are con-
sistent with Fig. 7.
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where the intergranular contact stiffness is assumed to be Kmax, and
ρavg is the average density of the granular assembly contained in V.
It should be noted that Eq. (4) can be derived from Eq. (6) by assum-
ing a unit cell containing one contact and setting n to be [1, 0]. As
evident in Fig. 8, this upper bound agrees well with the numerical
results for a piston velocity of 150 m/s. The practicality of using
an elastoplastic contact law to describe wave propagation for
impacts beyond 150 m/s is not feasible as the granules lose their
spherical shape due to very large loads (>300 kN) for which the
overlap between granules exceeds one-quarter of the granule dia-
meter. Equation (6) can also be used to estimate the sound speed
(c0,predicted) of a packing by replacing the maximal stiffness with
the initial contact stiffness as a result of confinement [33]. Although
the dependence of c0,predicted on confining pressure (dashed curve in
Fig. 8(a)) is similar to that obtained numerically, the analytical pre-
diction overestimates the numerical results. This discrepancy has
been observed elsewhere [13] when homogenization was performed

to predict the sound speed in granular systems and is attributed to
the localized modes associated with the initial force chain
network, which cannot be captured in a long wavelength type
analysis.

3.3 Energy Dissipation Characteristics. The primary goal of
this work is to study the effect of confining pressure on plastic dis-
sipation for elastoplastic wave propagation. The efficiency of the
granular medium to dissipate plastic energy is evaluated by compar-
ing the total dissipated plastic energy (excluding the dissipated
energy during the jamming process), ΔEp,tot, and the work done
by the piston, W. ΔEp,tot is computed by summing the change
between the initial and final plastic energy dissipated (Eq. (2))
over all contacts. The work done by the piston at time t is evaluated
using

W =
∫t
0
Fpup dt (7)

where Fp is the force exerted on the piston. Figure 9 shows the
dependence of theΔEp,tot/W ratio on the piston velocity for different
values of the confining pressure. We observe that dissipation
increases with confining pressure for weak shocks, but this trend
gradually diminishes as the piston velocity increases and eventually
disappears after the formation of strong shocks. Unlike the front
velocity results, which showed a pressure dependence even in the
strong shock regime, a clear transition is observed in Fig. 9 when

Fig. 9 Ratio of dissipated plastic energy to the work done by the
piston as a function of the piston velocity. The confining pres-
sures and symbols are the same as that in Fig. 8.

Fig. 10 Dynamic pressure as a function of piston velocity for the
confining pressures in Fig. 8. The symbols are the same as in
Fig. 8. In the strong shock regime, the standard deviation
between dynamic pressures is less than 1% of the average
dynamic pressure in the shocked state, and there is no overall
hierarchy in the data points as observed in the weak shock
regime.

Fig. 11 (a) Evolution of the formation of new contacts (Nnc) for
different piston velocities for P0=102 kPa and (b) Nnc normalized
by the length traveled by the shock for different confining pres-
sures. Legend symbols are consistent between subfigures.
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up exceeds approximately 4 m/s. For reference, this transition speed
is remarkably lower than the uniaxial shock speed in continuum
brass, which is approximately 440 m/s [34]. This key difference
is associated with the fact that the continuum must not only yield
but also be in the fully plastic region, and this process requires
very strong impacts.
To shed further insight on the dissipation characteristics in the

two shock regimes, we characterize the pressure behind the front
by computing the traction acting on the piston. As shown in
Fig. 10, the dynamic pressure is comparable to the confining pres-
sure in the weak shock regime. As expected, the trend of dynamic
pressure with increasing piston velocity mimics the independence
of the dissipated plastic energy to piston work ratio on the confining
pressure observed in Fig. 9, and all the data points coalesce in the
strong shock regime when the dynamic pressure is an order of mag-
nitude higher than the confining pressure.
The increase in dynamic pressure is partly due to the increase in

the intergranular contact forces and partly due to the formation of
new contacts, Nnc. Figure 11(a), which tracks the evolution of Nnc

for different piston velocity values given the same initial confining
pressure (P0= 102 kPa), shows that Nnc is effectively 0 in the weak
shock regime and that there is a steady increase in Nnc with time for
strong shocks. This result implies that in the weak shock regime, the
dynamic stresses are carried by the initial force chain network as
seen in Fig. 4. Figure 11(b), which presents the evolution of Nnc

normalized by the length traveled by the front, shows that, for the
range of confining pressures in this study, the formation of new con-
tacts is dependent only on the piston velocity.
Therefore, the increase in dissipation with confining pressure in

the weak shock regime is due to individual contacts within the
initial force chain network being capable of dissipating more
energy with increasing pre-load. This is enabled by the fact that a
strongly pre-loaded contact dissipates more energy for an incremen-
tal increase in force due to the monotonically increasing relationship
between plastic dissipation and force. However, in the strong shock
regime, the dynamic forces far supersede the confining forces, thus
making the effect of confinement negligible.

4 Conclusions
In this paper, we have numerically studied elastoplastic shock

propagation in frictionless, 2D jammed granular media with the
aid of DEM simulations based on an elastoplastic contact law
between granules. Similar to their elastic counterparts, elastoplastic
shock propagation shows weak and strong shock regimes with the
transition between them dependent on the piston velocity and the
level of confinement. In the weak shock regime, the shock propaga-
tion speed shows a dependance on the initial confining pressure,
whereas the shock speed is mostly affected by the piston velocity
in the strong shock regime.
Based on the granular properties and conditions considered in this

study, strong shocks can be created in granular systemswith substan-
tially (about two orders of magnitude) smaller piston velocities than
in a homogeneous medium made of the same material. In the weak
shock regime, dynamic stresses are carried by force chains formed
due to confinement, while a strong shock is characterized by a con-
siderable rearrangement of granules and the formation of new con-
tacts. When compared with shockwaves in elastic granular media,
elastoplastic shockwaves have smoother, less sharp profiles, with
an elastic precursor traveling ahead of the front. Elastoplastic shock-
waves also propagate considerably slower than elastic shockwaves
and the shock velocity is bounded by two linearized approximations
of the stiffness of the contact network. The lower bound (effectively
the sound speed of the system) and upper bound are functions of the
volume averaged intergranular contact stiffness due to confinement
and maximum contact stiffness, respectively.
Energy dissipation is enhanced with confinement in the weak

shock regime as strongly pre-loaded contacts dissipate more
energy. This finding can extend the already known capability of a

granular medium to dissipate more energy per volume than a contin-
uum medium made out of its constituent material [28]. However, in
the strong shock regime, the dynamic stress behind the shock front
supersede that associated with the initial force chain network,
making dissipation independent of the confining pressure.
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