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Abstract
Background  Plastic dissipation at inter-granular contacts during elasto-plastic wave propagation plays a significant role in 
wave attenuation. However, it is unknown if plastic dissipation during impact is enhanced if the granular medium is initially 
in an unconfined ’fluid-like’ state or that of a more rigid ‘solid-like’ state caused by applying a confining pressure.
Objective  The goal of this work is to investigate both experimentally and numerically the impact response of a two-dimensional 
hexagonal granular array consisting of metallic spheres enclosed in a polymeric membrane subjected to different levels of con-
fining pressure. We seek to quantify the granular trajectories, the effect of the membrane, and the ratio of the dissipated plastic 
energy to the net input energy between the unconfined and confined states.
Methods  We perform experiments using a modified split Hopkinson pressure bar on a specimen of monodisperse brass 
spheres confined by a polymeric membrane and record the impact event using high-speed photography so that particle track-
ing can be used to track granular motion. After impact, the sphere surfaces are examined to measure plastic contact areas, 
allowing the dissipated plastic energy to be estimated. To support the experiments, capture the lateral confining effect of the 
membrane and applied pressure, and investigate larger arrays, discrete element simulations are conducted.
Results  When the granular array is confined, we observed shorter and consistent granular trajectories between trials, a greater 
dissipated energy to net input energy ratio, and a stiffer membrane response.
Conclusion  Experimental and numerical results indicate that the external confining pressure increases plastic dissipation.

Keywords  Granular media · Impact · Plastic dissipation · Particle Tracking

Introduction

The unique wave propagation properties of granular media 
and their versatility based on size distribution and granular 
characteristics have sparked interest in the use of granu-
lar media for impact mitigation. Research done in the past 
two decades has shown that by simply tapering a granular 
chain or by adding heterogenities to the chain in the form 
of granules with different sizes and/or material properties, 
one can severely attenuate nonlinear solitary waves which 
traverse granular systems [1–3]. Further attenuation can be 

achieved by splitting the input energy along multiple granu-
lar pathways or transferring energy to supporting structures 
such as elastic membranes and guides [4–6]. It is important 
to note that most of these methods do not require dissipa-
tion at the contact-level such as viscoelasticity, friction and 
plastic deformation to mitigate impact. However, the inclu-
sion of contact level dissipation has been shown to be very 
effective in dissipating energy without the need for complex 
structuring or arrangement of granules. Viscoelastic interac-
tions for example can have coefficients of restitution which 
continue to decrease with impact velocity thereby enabling 
less energy to be transferred from one granule to another 
[7, 8]. Energy can also be dissipated by friction due to the 
relative motion and rotation of the granules during an impact 
event [9, 10]. For higher levels of loading, plastic defor-
mation at contacts can also take place in ductile granules. 
In general, the contact-induced stress concentrations cause 
the granules to yield at low globally applied loads, thereby 
attenuating waves more efficiently than in the bulk material, 
which would have remained elastic for the same load [11]. 
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By understanding the parameters that control these relative 
energy dissipation mechanisms, we can design devices with 
superior mitigation capabilities.

One relatively unexplored feature in the design of an 
impact protection granular system is achieving mitigation by 
controlling the amount of plastic dissipation at contacts. The 
tunable parameter we investigate is the level of confinement 
which can be varied by altering the external pressure con-
fining the granular array. When the array is unconfined and 
in a hexagonal close pack (90.6% packing fraction in 2D), 
the granules are free to move laterally and are only resisted 
by their enclosure. However, an external confining pressure 
adds a precompression which resists granular motion there-
fore adds rigidity to the array without changing the packing 
fraction. This solid-like response contrasts with that of the 
unconfined state in which the lack of force chains makes the 
granules flow like a liquid when subjected to shear loading. 
One would therefore expect that this difference in mate-
rial response translates to a transition in energy dissipation 
mechanisms from a friction-dominated mechanism in the 
unconfined case to a plasticity-driven dissipation process in 
the confined state. The focus of this paper is to investigate 
the effect the confining pressure has on plastic dissipation.

To fully understand the mechanisms involved in an 
impact event, it is imperative to understand wave propaga-
tion in granular media. Seminal work began with the iden-
tification of nonlinear amplitude dependent elastic solitary 
waves in 1D uncompressed chains using a Hertzian contact 
law between granules [12]. Subsequently, it was found that 
precompressing granular systems can give a mix of linear 
and nonlinear wave propagation behavior depending on 
the ratio of precompression to dynamic loading, with wave 
propagation becoming increasingly linear with precompres-
sion [13–17]. Studies were then extended to chains with 
dimers [18, 19], 2D packings [20], and different loading 
conditions for 2D and 3D packings [21, 22]. However, these 
results are limited to loads within the elastic regime, which 
are much less than the loads generated during high-energy 
impact. In the plastic regime, the contact law deviates from 
the Hertzian contact law to an elasto-plastic contact law. 
Pioneering experiments performed by Shukla and cow-
orkers on disks highlight this effect by showing that wave 
propagation can be accurately described by using a defor-
mation-dependent damping contact law [23, 24]. Experi-
mental studies on spheres have shown that the transmitted 
energy at the inter-granular contacts under impulsive elasto-
plastic conditions is dependent on the material properties, 
impact velocity, and diameter ratios of the granules [25, 
26]. Experiments on 1D chains and 2D granular packings 
have found that the shape of the output pulse significantly 
attenuates with distance when compared with the loading 
pulse and depends on the packing configuration [27–30]. 
These experimental results are validated by simulations 

which used analytical or numerically obtained elasto-plastic 
contact laws between granules.

In this study, we evaluate the impact response of a granu-
lar array that consists of brass spheres enclosed in a poly-
meric membrane subjected to vacuum by quantifying the 
effect the vacuum pressure has on the ratio of dissipated 
plastic energy to input energy and on the trajectories of the 
impacted grains. When vacuum is applied, the pressure dif-
ference causes the granules to transition to a more rigid state. 
This transition is used, for example, in soft robotics applica-
tion to grip and move objects [31, 32]. The overall rigidity of 
the assembly can be tuned by changing the vacuum pressure 
with lower absolute pressures (i.e., higher vacuum) resulting 
in increased solidity. Previous studies have shown the role 
of the membrane in increasing the overall stiffness of the 
structure [32] and storing energy during impact in the form 
of strain energy [5].

To investigate the energy dissipation mechanisms in the 
unconfined and confined states, we conduct split Hopkinson 
pressure bar-like (SHPB) experiments on brass specimens 
and study the effect of the applied vacuum on the motion of 
the granules and the associated plastic energy dissipation. 
High-speed photography and particle tracking are used to 
extract the trajectories and kinematics of the spheres dur-
ing impact. After impact, the bead surfaces are examined 
to quantify the energy dissipated due to plasticity. These 
experimental methods are described in Experimental Setup. 
To support the experiments, we detail in Numerical Method 
Discrete Element Method (DEM) simulations used to model 
the influence of the membrane, make comparisons with 
experimental measurements, and investigate the scaling of 
results with arrays of larger sizes. The results and discus-
sion of the experimental and simulation results are presented 
in Results and Discussion.

Experimental Setup

The specimens used for this experiment consist of 9.52 mm-
diameter brass 260 spheres obtained from McMaster-Carr, 
which are arranged in a 5x5 hexagonal packing inside of 
a membrane made of Stretchlon 200 bagging film. A 5x5 
packing was chosen as it shows the lateral expansion of the 
array within the confines of the experimental setup unlike 
larger arrays which inhibit this motion or touch the sides 
of the testing rig. Additionally, the meticulous process of 
tabulating the plastic dissipation for all the contacts also 
limits the use of a lot of granules. Stretchlon 200, commonly 
used in the vacuum-assisted resin-transfer molding of com-
posites, was selected as the membrane in these experiments 
because it can stretch as much as 500%, thereby allowing it 
to conform to the granules and resist failure during impact. 
Confinement is induced by the suction of air from the bag 
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using a vacuum pump. Since the spheres are monodisperse 
and are prearranged in a hexagonal packing prior to applying 
vacuum, the spheres attain the densest packing of a hexago-
nal close pack once confined. To maintain consistency, bag 
dimensions are chosen to enclose a hexagonal array without 
excess material.

The experimental setup consists of a modification of a 
SHPB to load the granular array, which rests on a steel test-
ing rig as shown in Fig. 1. The setup consists of an incident 
bar, which impacts an aluminum wedge-shaped plate that 
in turn impacts the specimen across its entire width. On the 
opposite side of the loading, the specimen contacts a fixed 
steel plate which acts as a rigid support. A transparent plexi-
glass plate is placed on top of the array to prevent out of 
plane motion of the granules and to allow for the experiment 

to be viewed from above using a high-speed camera. The 
array lies on top of a steel plate and is aligned such that 
the centerline of the array coincides with the center of the 
wedge.

A Redlake HS-4 high-speed camera is used to capture 
loading and unloading at a frame rate of 11600 fps (time 
between frames of 0.086ms) with a resolution of 480 by 224 
pixels. This frame rate is too low to capture initial elasto-
plastic wave propagation through the array occurring over 
0.08ms [27] but provides a sufficient temporal resolution  
to view the motion of all the granules during longer times, 
and their interaction with the membrane. Selected frames of 
the different phases of the experiment are shown in Fig. 2  
for experiments without a membrane (Fig. 2(a)), unconfined  
with membrane (Fig. 2(b)), and confined at 100 kPa (Fig. 2(c)).  
A particle-tracking Python library, Trackpy [33], was used 
to track the motion of the granules by detecting the loca-
tion of light reflection off individual granules. These reflec-
tions manifest as bright circles, which contrast against a 
dark background, thereby making it possible for the particle 
tracking algorithm to detect and track trajectories. Using  
this information, it is possible to determine the horizontal 
(x) and vertical (y) displacements of the granules. Conse-
quently, their respective horizontal and vertical velocities  
can be found by fitting a cubic spline to the displacement 
histories and taking the time derivative.

In a conventional SHPB setup, the energy input into the 
system can be determined using the incident and reflected 
pulse signals in the incident bar. However, in our setup, the 
presence of a loading wedge between the incident bar and 
specimen implies that the incident bar pulse signal is not 

Fig. 1   Split Hopkinson pressure bar setup and an enlarged image of 
the granular specimen subjected to 100 kPa vacuum pressure

Fig. 2   Selected sequence of 
high-speed images of the exper-
iment for (a) no membrane, (b) 
unconfined with membrane, and 
(c) confined at 100 kPa. The 
scale bar is uniform throughout 
all images and 0s corresponds 
to the time at impact. The left, 
center, and right set of frames 
respectively capture the pre-
impact, loading, and unloading 
part of the impact event
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representative of the loading that enters the granular array. 
To address this issue, a small gap is left between the wedge 
and the array at the start of each experiment so there is 
enough time for the wedge to move as a rigid body. The 
position of the loading wedge is tracked by detecting the 
light reflected by aluminum foil placed on the wedge surface. 
The wedge is assumed to move rigidly at this longer time 
scale and the input energy is the kinetic energy of the wedge 
right before impact. Frictional losses between the wedge and 
the steel surface along which it moves are assumed to be 
negligible for the distance traveled by the wedge as verified 
by experiments in the absence of granular specimens. The 
fixed transmission plate to the rear of the specimen does not 
move during the impact event as verified by Trackpy.

Finally, after the experiment was completed, we quanti-
fied how much of the input energy was dissipated as plastic 
energy at the granule contact points by examining the gran-
ules visually using a stereo microscope and by photograph-
ing all visible dimples. Note that the granular surfaces were 
also examined prior to each experiment. If any pre-existing 
dimples were detected, the granules were either discarded 
or not included in the final tally. It should be noted that 
dimples are not generated during the confining process as 
confirmed by inspecting the granular surface after confining 
the array in the vacuum bag and then removing from the 
bag without loading. Typically, the dimples were circular 
or oblong in nature, and, less than 5% of all the dimples 
showed multiple overlapping dimples at the same loca-
tion, which would indicate repeated impacts. Dimples in  
an image (Fig. 3(a)) were detected using the elliptical Hough  
transform algorithm [34]. The ellipse’s major and minor 
dimensions were averaged to obtain the dimple diameter 
of an equivalent circle. For overlapping dimples in the 5% 
of cases, an ellipse was fitted to encompass both dimples 
as shown in Fig. 3(b). This approach was adopted because 
the region of overlap between dimples deformed elastically, 
and accounting for the dissipated energy of both dimples 

individually would greatly overestimate the dissipated 
energy. Similarly, it should also be noted that repeated col-
lisions at the same dimple would not continue to dissipate 
additional plastic energy once the largest dimple diameter 
is attained.

Numerical Method

Contact Law

The contact force between two granules is governed by the 
contact law derived from FEM simulations by Pal et al. 
[35] for sphere-sphere contact with rate-independent and 
elastic-perfectly-plastic material properties. The relation 
between the force (F) between contacting granules and 
the relative displacement ( � ) between them is expressed in 
three stages: (i) elastic Hertzian contact, (ii) plastic loading 
to the maximum force ( Fmax ), and (iii) elastic unloading to 
a permanently deformed state with a residual displacement 
( �r ). Subsequent reloading follows the elastic unloading 
contact relationship until Fmax with any further loading 
beyond this point following the plastic contact law. In the 
loading phase, the contact force, Fl , takes the following 
form:

with

where the normal displacement at yield, �y , and the contact 
area at  yield,  Ay  ,  are respectively given by   
�y =
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Fig. 3   (a) Single dimple and (b) multiple dimples at a contact. The 
gold outline in (b) demarcates the individual dimples, while the red 
outline denotes the fitted ellipse to compute the averaged dimple 
diameter
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The pertinent material properties for brass are: Young’s mod-
ulus E = 115 GPa, Poisson’s ratio � = 0.3, and yield stress  
�y = 619 MPa [25]. The subscripts 1 and 2 distinguish the 
properties of the two contacting granules.

The impactor wedge and transmission plate are modeled 
as rigid half-spaces, and their interaction with the brass 
granules in the loading phase is approximated by doubling 
the contact force corresponding to a given relative displace-
ment as shown in equation (1). It should be noted that this 
approximation for the contact law may not be directly appli-
cable as the wedge is made out of aluminum, which has 
a lower yield strength than brass. However, we found that 
changing the parameters of the wedge did not yield drastic 
differences in the grain trajectories or the wedge velocity, 
and showed a good agreement with the experiments as seen 
in Fig. 10. The unloading phase follows equation (3) with 
the residual displacement, �r,wall , given as

Here the residual effective radius, R∗

p
 , can be found using

where E∗

wall
 and Fy,wall are respectively the equivalent stiff-

ness and yield force assuming the wall is rigid. Equations 
(4–5) is obtained from the analytical Thornton model for the 
elastic-perfectly-plastic contact of two spheres, which was 
shown to approximate interactions between a sphere and a 
wall reasonably well [36]. The contact laws between brass 
beads and between a brass bead and the rigid half space 
are presented in Fig. 4, together with the (elastic) Hertzian 
contact relation shown for reference. By relating the force, 

E∗
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1 − �2
2

E2

)

−1

and R∗
=

(

1

R1

+
1

R2

)

−1

.

(4)�r,wall = �max −

(

3Fmax

4E∗

wall
R∗

p

)

.

(5)R∗

p
=

4E∗

wall

3Fmax

(

2Fmax + 2Fy,wall

2�(4.7)�y

)1.5

,

the relative displacement, and the residual displacement to 
the contact area, A, equations (1–3) allows for the evaluation 
of the dissipated plastic energy, Ep , as the area between the 
loading and unloading curves in Fig. 4(a) as

The dissipated plastic energy Ep can thus be extracted given 
the dimple diameter using the curve in Fig. 4(b).

Quasi‑static Confinement Simulations

Confinement is achieved in the simulations by compress-
ing the granules in a quasi-static manner by using mov-
able rigid walls surrounding the granules as illustrated in 
Fig. 5(a). In this process, the motion of the walls is pro-
gressively imposed so that the equivalent stress state of the 
discrete system given by equation (7), corresponds to a state 
of hydrostatic pressure with amplitude corresponding to the 
applied vacuum pressure. The volume-averaged stress ten-
sor is given by

(6)Ep = ∫
�max

0

Fld� − ∫
�max

�r

Fud�.

Fig. 4   (a) Elasto-plastic contact 
law for brass sphere-sphere 
interaction (red) and sphere-
rigid-wall interactions (blue) 
compared with the classical 
Hertzian contact law (green). 
(b) Dissipated plastic energy, 
Ep , versus the dimple diameter

Fig. 5   Schematic for numerical simulations: (a) quasi-static confine-
ment and (b) impact simulation. Striped walls are stationary while 
filled walls can move in the direction of the arrows
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where f c
�
 and lc

�
 are the force and branch vectors, respectively,  

at contact c, and the product is summed over all contacts, Nc 
[37]. For a given granule i contacting ni neighboring gran-
ules, equilibrium equations can be written as

where �i,j is the contact force vector between granule i 
and contacting granule j, and �i is the wall reaction force 
vector acting on granules along the boundary. Expanding 
equation (8) for all the granules gives a system of coupled 
nonlinear equations, which are solved using the Newton-
Raphson method at every increment of wall compression 
for the unknown granular centroid locations and boundary 
reaction forces.

Impact Simulations

Impact simulations are performed using the discrete element 
method with the equations of motion solved in the x and y 
directions for the system shown schematically in Fig. 5(b). 
The impactor wedge, denoted by the left wall in Fig. 5(b), 
and the transmission plate, corresponding to the right wall 
in Fig. 5(b), are modelled as rigid steel particles with infi-
nite radii. To match the experiments, the impactor wedge is 
given the experimentally measured mass while the rigid wall 
is assumed to have an infinite mass. In addition, the wedge 
is constrained to move only in the x direction. The initial 
velocity of the wedge is set as the value measured experi-
mentally using particle tracking. The granules are initially 
assumed to be at rest with centroidal positions and reaction 
forces obtained from the confining simulations described 
in  Quasi-static Confinement Simulations. The reaction 
forces are exerted throughout the simulation and continue 
to act on the granules along the upper and lower boundaries. 
In this simplified numerical analysis, only normal, friction-
less, elasto-plastic contact is modelled and rotational effects 
are neglected.

To further simplify the computational model, the mem-
brane itself is not explicitly modelled but rather the primary 
effects of the membrane are simulated using a simplified 
spring-dashpot model with stiffness, k, and dissipation coef-
ficient, c, linked to the lateral (free) surfaces of the granular 
array as shown in Fig. 5(b). The linear spring of stiffness k 
represents the stiffness of the membrane and the dashpot of 
coefficient c captures dissipation due to the motion of the 
granules against the conforming membrane. The values of k 
and c are calibrated through comparison with experiments 

(7)��� =
1

V

Nc
∑

c=1

f c
�
lc
�
,

(8)
ni
∑

j=1

�i,j + �i = 0,

using a parametric study described in Calibration of Mem-
brane Properties.

The equations of motion for all the granules yield a sys-
tem of ordinary differential equations in terms of the posi-
tion of the centroid of granules, which are solved using the 
fourth-order Runge-Kutta scheme. A timestep of 5 × 10

−8s 
was chosen after a convergence study on numerical values 
generated in the simulation.

Results and Discussion

Trajectory and Kinematics

As reflected in Fig. 6, the granular trajectories for the dif-
ferent experimental scenarios are the following: without 
membrane; unconfined (no vacuum pressure but enclosed in 
membrane); and confined with 50, 70, and 100 kPa vacuum 
pressure. In the absence of a membrane (Fig. 6(a)), the unre-
strained granules rapidly lose contact with their neighbors 
and follow linear trajectories. As expected, experiments per-
formed with the membrane (Fig. 6(b–e)) yield granule tra-
jectories with much smaller displacements, especially with 
the application of vacuum. The repeatability of the experi-
mental results increases with the level of confinement due 
to the combined effect of the stiffening of the membrane 
and the equilibration of the crystal into a hexagonal close 
pack configuration. The added variability in the unconfined 
specimen can also be attributed to the presence of small gaps 
at contacts as noted in previous experiments [30]. It is also 
worth observing that granules in the confined experiments 
return to their pre-impact arrangements after unloading, 
while the unconfined crystal undergoes a substantial rear-
rangement as seen in Fig. 2(a).

The vertical (y) and horizontal (x) velocities obtained by 
differentiating the trajectory data with time are presented 
in Fig. 7 and show a strong acceleration in both directions 
in the initial phase of the impact event, followed by a rapid 
deceleration to an instantaneous rest at maximum compres-
sion. The horizontal velocity then switches sign and the 
granules return to their original position at a slower velocity. 
Even though the results presented in Fig. 7 correspond to a 
70 kPa experiment, profiles with similar features are found 
for other vacuum pressures.

The measured evolution of the wedge velocity, which is 
used as one of the key validation quantities in the numeri-
cal analysis presented in the next section, is shown in Fig. 8 
for different values of the confining pressure. The wedge 
rapidly decelerates after impact until it momentarily loses 
contact with the specimen as apparent by the kink early in 
the profile. This temporary separation is attributed to the 
reflected primary wave from the transmission plate impact-
ing the wedge. As also apparent in Fig. 8, the wedge velocity 
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profiles associated with the confined experiments are similar 
and cross the horizontal axis sooner than their unconfined 
counterparts, indicating that the confining pressure restricts 
the forward motion of the wedge.

Calibration of Membrane Properties

Modeling the membrane with high fidelity is a challenging 
task in our discrete element formulation as the membrane 
conforms to the sides of the spheres in the outer periphery of 
the specimen and the polymer membrane material can have 
a highly nonlinear constitutive response. In addition, dur-
ing impact, the membrane stretches and changes the area of 
contact with the granules, which in turn alters the frictional 
dissipation associated with the granule/membrane interac-
tion. To achieve a reasonable comparison with experiments, 
our model includes a simplified description of the lateral 
confining effect of the membrane and the energy dissipation 
stemming from the viscous response of the membrane and 
its frictional interaction with the granules.

As described earlier, this simplified model includes a 
spring-dashpot model attached to the sides of the array, i.e, 
to the granules that are not in contact with the incident or 
transmission plates, as was shown schematically in Fig. 5(b). 
The spring stiffness, k, and dashpot dissipation coefficient, 
c, representing the confining and dissipative effects of the 
membrane, respectively, are then found with the aid of a 
parametric calibration study by minimizing the error, e, 
between the numerically ( vw,sim ) and experimentally ( vw,exp ) 
obtained evolution of the wedge velocity. This error measure 
is defined as

where the bounds of the integral are based on the wedge 
velocity profiles shown in Fig. 8 with tmax denoting the time 
at which the wedge stops its forward motion. Contour plots of 
the dependence of e on the membrane parameters k and c are  
presented in Fig. 9. As apparent there, the optimum value of 
the spring stiffness k is found to be 7000 N/m for the confined 

(9)e = ∫
tmax

0

√

(

vw,exp − vw,sim
)2
dt

Fig. 6   Experimental granular 
trajectories for (a) no mem-
brane, (b) unconfined, (c) 50 
kPa, (d) 70 kPa, and (e) 100 kPa 
vacuum pressure. The wedge 
impacts the granules on the left 
and displaces them to the right 
from their starting positions 
(+). Overlapping colors denote 
results from different, nominally 
identical, experiments
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case (irrespective of the vacuum pressure) and 3000 N/m for 
the unconfined case. This observation agrees with quasi-static  
bending tests, which reported an increase in bending stiffness  
with vacuum pressure [32]. As for the optimal c value, both the 
confined and unconfined cases yield a value of 2 Ns/m. Simu-
lated evolutions of the wedge velocity and granule trajectories  

obtained with these optimal parameters are presented in Fig. 10. 
The lower level of agreement in the granule trajectory predic-
tions in the unconfined case could be attributed to the inability 
of the simplified spring-dashpot model to handle the larger 
horizontal motion of the less constrained granules, or due to 
the presence of small gaps between the membrane and adjacent 
granules before impact in experiments. The latter would imply 
that the effect of the membrane activates at a slightly later time  
after impact once the granules impinge on the membrane.

Lateral Expansion

In this subsection we quantify the lateral expansion of the 
specimen observed in Fig. 6 by computing the ratio of lat-
eral strain to axial strain, � , based on granular trajectories. 
This ratio will be denoted as the lateral expansion ratio 
even though its definition is similar to the Poisson’s ratio 
of a continuum material. The reason being that the limited 
dimensions of the array makes it unlikely to assume that the 
values taken by � could be generalized to be representative 
as a material property for a granular array of any size or 
subjected to different boundary conditions.

If we consider four spheres of interest in a rhombic 
arrangement with two spheres each in the horizontal (l and 

Fig. 7   x and y velocities of 
granules selected from the top 
image for a specimen with 70 
kPa vacuum pressure

Fig. 8   Evolution of the wedge velocity ( Vw ) normalized by its initial 
value ( Vw,i ) measured before impact for varying levels of vacuum 
pressure
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r) and vertical directions (t and b), � can be extracted by com-
paring the vertical and lateral contractions of the granules. 
For example, using granule number 32 (l), 19 (r), 33 (t) and 
3 (b) in Fig. 7, the lateral expansion ratio can be expressed as

(10)� = −

uy,33 − uy,3

y0,33 − y0,3
ux,19 − ux,32

x0,19 − x0,32

,

where ux and uy are the respective x and y displacements, and 
x
0
 and y0 are the respective initial positions. This definition 

yields similar results when applied to the nearest and next 
nearest neighbors specified in a rhombic configuration.

Figure 11 shows the experimentally and numerically 
obtained lateral expansion ratio as a function of wedge dis-
placement. As evident there is a sharp increase in � in the 
beginning as the forces are distributed outward along net-
works at 60◦ from the plane of loading in a hexagonal close 
pack system. The maximum value of � is well beyond 1 which 
implies that there is an increase in the area of the specimen. 
This phenomenon is due to dilatancy as the granular layers 
slide past each other [38]. The rise in � gradually decreases 
as the interstitial gaps open up during granular rearrange-
ment, thereby offering less resistance to granular motion in 
the loading direction. Also apparent is the fact that the higher 
vacuum pressure experiments yield a slightly lower value 
of � in the early stages of the impact event, which agrees 

Fig. 9   Contours for the error 
measure defined in Eq. (9) for 
different values of k and c in the 
parametric study for (a) uncon-
fined case, for which the opti-
mal k and c are 3000 N/m and 2 
Ns/m, respectively, and (b) 70 
kPa confined case, for which 
the optimal k and c are 7000 
N/m and 2 Ns/m, respectively. 
Results obtained for different 
vacuum pressures yield similar 
contour plots, hence only one 
representative result is shown

Fig. 10   Experimental and numerical evolution of the wedge velocity 
and particle trajectories for the unconfined (a) and confined (70 kPa) 
(b) cases. The adopted simulation parameters are the optimal param-
eter combination extracted in Fig. 9

Fig. 11   Lateral expansion ratio ( � ) versus wedge displacement from 
experimental data and simulations. The presented results are aver-
aged over multiple trials conducted at a given pressure level, for both 
experiments (dashed) and simulations (filled). Scatter bars indicate 
the standard deviation between trials
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intuitively with the inverse relationship between lateral 
motion and the confining pressure. As the wedge displace-
ment increases, all cases converge to the same value of � as 
inertial effects become less significant. The experimental and 
simulation results agree well with each other after an initial 
displacement of around 0.3 mm, with the early discrepancy 
attributed to the inability of the virtual model to capture the 
experiments immediately after impact (Fig. 10).

Energy Dissipation

One of the main objectives of this work is to determine 
how impact-induced plastic dissipation is affected by the 
confining pressure. The total energy of the system prior to 
impact is the kinetic energy of the wedge. During impact, 
elasto-plastic waves traverse the array increasing the kinetic 
energy of the granular array while simultaneously dissipat-
ing energy by plastic dissipation at granule contact points, 
by friction both between granules and between granules and 
membrane, and by viscous losses in the membrane itself. 
Figure 12(a) illustrates the evolution of the kinetic energy of 
the wedge and the sum of kinetic energies of all the granules 
extracted from the particle tracking measurements of each 
granule’s instantaneous velocity (Fig. 7). As apparent there, 
the maximum kinetic energy of the granules is only a frac-
tion of the wedge energy with the remainder predominantly 
converted to strain energy of the membrane, and dissipated 
through plastic deformation and frictional contact. To sup-
port these results, simulations are used to obtain the evolu-
tion of energy transfer between the wedge and granular array 
(Fig. 12(b)) which cannot be extracted experimentally. The 
instantaneous strain energy at a contact ( Es ), work done by 
pressure on boundary granules ( Ewd,vacuum ), spring potential 
energy ( Emem,pot ) and dissipated viscous energy ( Emem,visc ) 
are calculated using the following equations

Here vy refers to the y velocity of the granule attached to the 
dashpot. It can be seen that plastic dissipation is an incre-
mental process with intermittent jumps throughout the dura-
tion of the impact. Another observation is that between these 
jumps, granular strain energy is negligible which implies 
that the granules are non-contacting or carrying very low 
loads. Eventually at maximum compression once the kinetic 
energies of both the wedge and granules drop to zero, the 
greatest plastic dissipation and membrane potential energy 

(11)

Es =

{ ∫ �

0
Fld�, � ≤ �y,

∫ �

�r
Fud� � ≥ �y

Ewd,vacuum = R ⋅ u

Emem,pot = 0.5ku2
y

Emem,vis = �
t

0

cv2
y
dt.

are realized. Although the trends of the kinetic energies for 
both the experiments and simulations are similar, the experi-
ments show a lower maximum granular kinetic energy due 
to simulations being frictionless and having a simplistic 
membrane model.

The compression phase is followed by the restitution 
phase when the strain energy of the membrane gets pre-
dominantly converted back into kinetic energy of the 
wedge which gets pushed back. Additional plastic dissipa-
tion is not expected to occur during restitution as the gran-
ules move much slowly, and are thus unlikely to generate 
forces comparable to the maximum forces in compression. 
The net input energy is thus the difference in the kinetic 
energy of the wedge before and after impact.

The results for the dissipated plastic energy, obtained 
using the procedure outlined in Experimental setup based 
on a post-mortem measurements of residual contact areas 
on the granules, are shown normalized by the net input 
energy in Fig. 13. These results reveal that having a non-
zero vacuum pressure creates a jump in the dissipated plastic 

Fig. 12   (a) Kinetic energies of the wedge and granules for an experi-
ment with a vacuum pressure of 50 kPa. The timescale is referenced 
to the time at which the wedge impacts the specimen. The kinetic 
energy before impact indicates the energy which the wedge obtains 
from the SHPB. (b) Energy evolution of the different constituents as 
obtained from the simulations for the same 50 kPa experiment
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energy. However, no noticeable increase in dissipation with 
the vacuum pressure is observed in the confined regime. The 
scatter bars indicate the deviation of results between trials 
due to differences in impact velocity and errors associated 
with dimple area measurement. It is also apparent that, even 
though the simulations do not capture friction between the 
beads, the dissipation ratios show close agreement between 
the experiment and simulations for the confined cases, which 
suggests that friction plays a secondary role in this state. The 
slightly higher dissipation in the simulations could be due 
to the fact the interaction between the wedge and membrane 
is not included in the simulations leading to more energy 
transmitted to the array than in the experiment. However, the 
reasons for the substantially higher dissipation obtained in 
the unconfined simulations could be twofold. It could be first 
attributed to the model’s inability to capture frictional dis-
sipation due to the relative motion between granules, which 
is likely more prominent in the unconfined case. Another 
reason could be due to the existence of small gaps between 
the granules and the membrane as mentioned in Calibration 
of Membrane Properties. If small gaps exist, the simulation 
protocol would artificially stiffen the array enabling more 
plastic dissipation. Simulations conducted on unconfined 
experiments without a membrane (k = c = 0) verify this 
claim as shown by the green data point in Fig. 13. Here 
we assume the net input energy to be the same as that of 
the experiments, but the dissipated plastic energy is gener-
ated under no membrane conditions. The results indicate 
that plastic dissipation in unconfined experiments occurs 

during the initial impact as the absence of the membrane 
prevents further granular interaction (Fig. 2(a)). The ces-
sation of plastic dissipation even after the granules start to 
push against the membrane could be due to the granules 
being scattered after the first impact to create networks 
which transmit energy outwards to the membrane.

The relative independence of the plastic dissipation on 
the vacuum pressure in the confined regime can be linked 
to the clustering of data for the wedge velocity and lat-
eral expansion ratio described in previous sections. This 
observation can be explained as follows: due to the ordered 
nature of the hexagonally packed array and the fact that the 
forces generated at impact are much larger than the forces 
holding the array together, the specimen (irrespective of 
the vacuum pressure) gets briefly disjointed making the 
granules lose contact with each other during initial wave 
propagation. Although the resolution of the high-speed 
camera is not high enough to observe this loss of contact, 
this effect could make the plastic dissipation and lateral 
expansion results indistinguishable between the different 
levels of confinement as the momentary loss in contact net-
work leads to an inability to transmit contact forces and in 
turn to dissipate energy.

Numerical Investigation of Effects of Array Size

The above choice of a 5 × 5 granular array which was stud-
ied both experimentally and numerically was primarily 
driven by physical consideration and space limitation in the 
experimental set-up. To address the question of whether the 
results observed so far can be generalized to larger arrays, 
we have performed numerical simulations on larger array 
sizes using the same modeling approach that has produced 
reliable results for the 5 × 5 case. These simulations were 
conducted on unconfined (no vacuum and no membrane) 
and confined symmetric square arrays to investigate the 
effect that array size has on trajectories and dissipation. 
Unlike the 5 × 5 packing which has symmetry only about 
the vertical (y axis) mid-plane at the center of the packing, 
the square arrays have symmetry about the horizontal mid-
plane (x axis) in the center as well. Having symmetry about 
both the x and y axes does not bias the way in which the 
array moves, and, as will be seen, allows for the results to 
be generalized. Since the energy dissipated by the dashpot is 
less significant compared to the energy stored in the spring 
(Fig. 12(b)), the effect of the dashpot is ignored in this analy-
sis. In order to make comparisons amongst differently sized 
arrays, the mass of the impactor wedge is scaled linearly 
with the total mass of the granular array while keeping Vw at 
the median experimental Vw of 2.23 m/s. This scaling is eas-
ily derived from the conservation of energy and momentum 
involving the collision of two rigid bodies such that similar 

Fig. 13   Dissipated plastic energy (normalized by the input energy) 
vs. the vacuum pressure: comparison between experiments and simu-
lations. The scatter bars denote the standard deviation between trials 
with the 0 kPa, 50 kPa, 70 kPa, and 100 kPa experiments respectively 
involving 5,6,4,and 5 trials. Additional simulations performed with-
out the spring-dashpot for the unconfined cases show better agree-
ment with experiments
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post impact velocities are obtained when the mass of one of 
the rigid bodies is changed.

Plotting the granular trajectories for an array containing 
39 and 588 granules, top portion of Fig. 14, reveals a pat-
tern in which the array particle motions occur within three 
regions moving in a symmetric manner about the horizontal 
plane of symmetry. The first region constitutes of two trian-
gular blocks in the left half of the granular array which split 
up about the midpoint, and slide almost like a rigid portion 
along an angle moving in opposite directions. These blocks, 
which are collectively referred to here as the “shell”, move 
around a diamond-shaped “core” whose particles exhibit far 
less motion. To the aft of the core are two smaller triangular 
sections, collectively referred to here as the “base”, which 
constitute particles in contact with, or very near, the right-
hand wall support. The base is flanked on the inner side by 
the core and on the outer side by the shell. This characteristic 
granular motion was observed for all array sizes simulated, 
and even the asymmetric 5 × 5 array shows these same three 
region types in Fig. 10, with each half of the shell and base 
containing a different number of granules since the 5 × 5 
array is asymmetric.

The consistent trajectories which appear in each region 
irrespective of the array size motivates the discussion on 
the effect array size has on plastic dissipation. A map of 
the total amount of dissipated plastic energy per granule is 
presented in Fig. 14 illustrating the importance each starting 
granular position has on its energy dissipating capability. 

This map is obtained by equally distributing the final dis-
sipated energy at a pairwise contact between two contacting 
granules, and summing over all contacts for a given granule. 
Comparing the location specific dissipated energy reveals 
that both the 39 and 588 granules systems show less plastic-
ity on the lateral (top and bottom) edges of the array, and 
more dissipation in the core. A possible explanation for the 
latter is that the granules in the core move less as they are 
confined on all four sides, leading to increased compression 
and more plastic dissipation there. The asymmetry in plastic 
dissipation even though the arrays are symmetric is due to 
multiple wave reflections from the rigid transmission plate 
and wedge. These boundary reflections have been showed 
in Hertzian systems to cause perfectly symmetric packings 
to transcend to disorder over long durations [22].

Figure 15 quantifies these plastic dissipation results by 
tallying the average dissipated energy per granule in the 
three regions for different confining pressures and array 
sizes. It can be first observed that dissipation is independent 
of confining pressure apart from the fact that there is a jump 
in dissipation between an unconfined and confined array 
which agrees with the results shown in Fig. 13. The near 
four-fold increase in dissipation between the unconfined and 
confined array in Fig. 15, as opposed to the two-fold increase 
in the 5 × 5 packing, is due to the symmetric array having 
more support and these simulations having no viscous dis-
sipation. Upon closer investigation, we observe that the core 
shows the most plastic dissipation, followed by the base and 

Fig. 14   Figure matrix show-
ing the granular trajectories 
and plastic dissipation map 
for arrays containing 39 and 
588 granules. The colorbar 
denotes the energy dissipated 
per granule. + show the starting 
positions of trajectories
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shell. Increasing the array size shows a slight decrease in 
the aggregate dissipated energy in the three regions (11% 
between 39 and 588 granules) primarily due to dissipation 
decreasing in the base. Given the consistency in the parti-
tioning of both trajectories and plasticity in the three regions 
with varying array size, it is plausible that the experimental 
observations will carry over to for larger hexagonally packed 
granular systems.

Conclusions

In this manuscript, we have presented an experimental and 
numerical investigation of the impact response of a vacuum-
induced, confined granular array. The array consists of brass 
spheres enclosed in a polymer membrane, which upon the 
application of vacuum promotes a transition from an uncon-
fined fluid-like state to that of a confined rigid state. Experi-
ments have been conducted on 2D hexagonally packed arrays 
using a split Hopkinson pressure bar-type loading device 
while recording the impact event using high-speed imaging. 
Particle tracking has been implemented on the high-speed 
photography footage to track the motion of granules, while 
post-mortem analysis of the granular surfaces after impact 
have quantified the energy dissipated due to plasticity.

The confined experiments have shown similar and shorter 
trajectories between trials, which contrast with the substan-
tially larger displacements observed in the unconfined exper-
iments. During loading, there is a reversible change in the 
granular configuration for confined experiments, which is 
recovered when the specimen is unloaded. To complement 
the experiments, discrete element simulations have been 
performed with a frictionless, elasto-plastic contact law for 

the granules and a simplified linear spring-dashpot model 
of the membrane. The numerical model has been calibrated 
for the membrane stiffness (k) and damping coefficient (c) 
through a comparison with the experimental evolution of the 
wedge velocity. The model has then been validated against 
the trajectories of the granules during the impact event, and 
the evolution of the effective lateral expansion ratio in the 
confined states extracted from the relative motion of adja-
cent particles. The energy dissipated due to plasticity has 
been found to be higher in confined experiments, which sug-
gests that the transition enhances plastic dissipation. How-
ever, there was no noticeable increase in dissipation with 
vacuum pressure in the range investigated in this study. The 
lower agreement between simulations and experiments for 
the unconfined case suggests the need for a more realistic 
model for the membrane and its frictional interaction with 
the brass particles. Finally, simulations performed on larger 
symmetric arrays showed that the results for trajectories and 
plastic dissipation are generally size independent as noted by 
the consistency in these results irrespective of the array size.
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