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Abstract

Background Plastic dissipation at inter-granular contacts during elasto-plastic wave propagation plays a significant role in
wave attenuation. However, it is unknown if plastic dissipation during impact is enhanced if the granular medium is initially
in an unconfined ’fluid-like’ state or that of a more rigid ‘solid-like’ state caused by applying a confining pressure.
Objective The goal of this work is to investigate both experimentally and numerically the impact response of a two-dimensional
hexagonal granular array consisting of metallic spheres enclosed in a polymeric membrane subjected to different levels of con-
fining pressure. We seek to quantify the granular trajectories, the effect of the membrane, and the ratio of the dissipated plastic
energy to the net input energy between the unconfined and confined states.

Methods We perform experiments using a modified split Hopkinson pressure bar on a specimen of monodisperse brass
spheres confined by a polymeric membrane and record the impact event using high-speed photography so that particle track-
ing can be used to track granular motion. After impact, the sphere surfaces are examined to measure plastic contact areas,
allowing the dissipated plastic energy to be estimated. To support the experiments, capture the lateral confining effect of the
membrane and applied pressure, and investigate larger arrays, discrete element simulations are conducted.

Results When the granular array is confined, we observed shorter and consistent granular trajectories between trials, a greater
dissipated energy to net input energy ratio, and a stiffer membrane response.

Conclusion Experimental and numerical results indicate that the external confining pressure increases plastic dissipation.

Keywords Granular media - Impact - Plastic dissipation - Particle Tracking

Introduction achieved by splitting the input energy along multiple granu-
lar pathways or transferring energy to supporting structures

The unique wave propagation properties of granular media  such as elastic membranes and guides [4—6]. It is important

and their versatility based on size distribution and granular
characteristics have sparked interest in the use of granu-
lar media for impact mitigation. Research done in the past
two decades has shown that by simply tapering a granular
chain or by adding heterogenities to the chain in the form
of granules with different sizes and/or material properties,
one can severely attenuate nonlinear solitary waves which
traverse granular systems [1-3]. Further attenuation can be
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to note that most of these methods do not require dissipa-
tion at the contact-level such as viscoelasticity, friction and
plastic deformation to mitigate impact. However, the inclu-
sion of contact level dissipation has been shown to be very
effective in dissipating energy without the need for complex
structuring or arrangement of granules. Viscoelastic interac-
tions for example can have coefficients of restitution which
continue to decrease with impact velocity thereby enabling
less energy to be transferred from one granule to another
[7, 8]. Energy can also be dissipated by friction due to the
relative motion and rotation of the granules during an impact
event [9, 10]. For higher levels of loading, plastic defor-
mation at contacts can also take place in ductile granules.
In general, the contact-induced stress concentrations cause
the granules to yield at low globally applied loads, thereby
attenuating waves more efficiently than in the bulk material,
which would have remained elastic for the same load [11].
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By understanding the parameters that control these relative
energy dissipation mechanisms, we can design devices with
superior mitigation capabilities.

One relatively unexplored feature in the design of an
impact protection granular system is achieving mitigation by
controlling the amount of plastic dissipation at contacts. The
tunable parameter we investigate is the level of confinement
which can be varied by altering the external pressure con-
fining the granular array. When the array is unconfined and
in a hexagonal close pack (90.6% packing fraction in 2D),
the granules are free to move laterally and are only resisted
by their enclosure. However, an external confining pressure
adds a precompression which resists granular motion there-
fore adds rigidity to the array without changing the packing
fraction. This solid-like response contrasts with that of the
unconfined state in which the lack of force chains makes the
granules flow like a liquid when subjected to shear loading.
One would therefore expect that this difference in mate-
rial response translates to a transition in energy dissipation
mechanisms from a friction-dominated mechanism in the
unconfined case to a plasticity-driven dissipation process in
the confined state. The focus of this paper is to investigate
the effect the confining pressure has on plastic dissipation.

To fully understand the mechanisms involved in an
impact event, it is imperative to understand wave propaga-
tion in granular media. Seminal work began with the iden-
tification of nonlinear amplitude dependent elastic solitary
waves in 1D uncompressed chains using a Hertzian contact
law between granules [12]. Subsequently, it was found that
precompressing granular systems can give a mix of linear
and nonlinear wave propagation behavior depending on
the ratio of precompression to dynamic loading, with wave
propagation becoming increasingly linear with precompres-
sion [13—17]. Studies were then extended to chains with
dimers [18, 19], 2D packings [20], and different loading
conditions for 2D and 3D packings [21, 22]. However, these
results are limited to loads within the elastic regime, which
are much less than the loads generated during high-energy
impact. In the plastic regime, the contact law deviates from
the Hertzian contact law to an elasto-plastic contact law.
Pioneering experiments performed by Shukla and cow-
orkers on disks highlight this effect by showing that wave
propagation can be accurately described by using a defor-
mation-dependent damping contact law [23, 24]. Experi-
mental studies on spheres have shown that the transmitted
energy at the inter-granular contacts under impulsive elasto-
plastic conditions is dependent on the material properties,
impact velocity, and diameter ratios of the granules [25,
26]. Experiments on 1D chains and 2D granular packings
have found that the shape of the output pulse significantly
attenuates with distance when compared with the loading
pulse and depends on the packing configuration [27-30].
These experimental results are validated by simulations

&

which used analytical or numerically obtained elasto-plastic
contact laws between granules.

In this study, we evaluate the impact response of a granu-
lar array that consists of brass spheres enclosed in a poly-
meric membrane subjected to vacuum by quantifying the
effect the vacuum pressure has on the ratio of dissipated
plastic energy to input energy and on the trajectories of the
impacted grains. When vacuum is applied, the pressure dif-
ference causes the granules to transition to a more rigid state.
This transition is used, for example, in soft robotics applica-
tion to grip and move objects [31, 32]. The overall rigidity of
the assembly can be tuned by changing the vacuum pressure
with lower absolute pressures (i.e., higher vacuum) resulting
in increased solidity. Previous studies have shown the role
of the membrane in increasing the overall stiffness of the
structure [32] and storing energy during impact in the form
of strain energy [5].

To investigate the energy dissipation mechanisms in the
unconfined and confined states, we conduct split Hopkinson
pressure bar-like (SHPB) experiments on brass specimens
and study the effect of the applied vacuum on the motion of
the granules and the associated plastic energy dissipation.
High-speed photography and particle tracking are used to
extract the trajectories and kinematics of the spheres dur-
ing impact. After impact, the bead surfaces are examined
to quantify the energy dissipated due to plasticity. These
experimental methods are described in Experimental Setup.
To support the experiments, we detail in Numerical Method
Discrete Element Method (DEM) simulations used to model
the influence of the membrane, make comparisons with
experimental measurements, and investigate the scaling of
results with arrays of larger sizes. The results and discus-
sion of the experimental and simulation results are presented
in Results and Discussion.

Experimental Setup

The specimens used for this experiment consist of 9.52 mm-
diameter brass 260 spheres obtained from McMaster-Carr,
which are arranged in a 5x5 hexagonal packing inside of
a membrane made of Stretchlon 200 bagging film. A 5x5
packing was chosen as it shows the lateral expansion of the
array within the confines of the experimental setup unlike
larger arrays which inhibit this motion or touch the sides
of the testing rig. Additionally, the meticulous process of
tabulating the plastic dissipation for all the contacts also
limits the use of a lot of granules. Stretchlon 200, commonly
used in the vacuum-assisted resin-transfer molding of com-
posites, was selected as the membrane in these experiments
because it can stretch as much as 500%, thereby allowing it
to conform to the granules and resist failure during impact.
Confinement is induced by the suction of air from the bag



Experimental Mechanics (2022) 62:849-862

851

High-speed camera

Transparent plate
Specimen

Impactor wedge Transmission plate

Incident bar

Striker

1l

o o e
e o R
7 %, 2 «(Ti\"\:(f;\ (ia ;

Fig.1 Split Hopkinson pressure bar setup and an enlarged image of
the granular specimen subjected to 100 kPa vacuum pressure

using a vacuum pump. Since the spheres are monodisperse
and are prearranged in a hexagonal packing prior to applying
vacuum, the spheres attain the densest packing of a hexago-
nal close pack once confined. To maintain consistency, bag
dimensions are chosen to enclose a hexagonal array without
excess material.

The experimental setup consists of a modification of a
SHPB to load the granular array, which rests on a steel test-
ing rig as shown in Fig. 1. The setup consists of an incident
bar, which impacts an aluminum wedge-shaped plate that
in turn impacts the specimen across its entire width. On the
opposite side of the loading, the specimen contacts a fixed
steel plate which acts as a rigid support. A transparent plexi-
glass plate is placed on top of the array to prevent out of
plane motion of the granules and to allow for the experiment

to be viewed from above using a high-speed camera. The
array lies on top of a steel plate and is aligned such that
the centerline of the array coincides with the center of the
wedge.

A Redlake HS-4 high-speed camera is used to capture
loading and unloading at a frame rate of 11600 fps (time
between frames of 0.086ms) with a resolution of 480 by 224
pixels. This frame rate is too low to capture initial elasto-
plastic wave propagation through the array occurring over
0.08ms [27] but provides a sufficient temporal resolution
to view the motion of all the granules during longer times,
and their interaction with the membrane. Selected frames of
the different phases of the experiment are shown in Fig. 2
for experiments without a membrane (Fig. 2(a)), unconfined
with membrane (Fig. 2(b)), and confined at 100 kPa (Fig. 2(c)).
A particle-tracking Python library, Trackpy [33], was used
to track the motion of the granules by detecting the loca-
tion of light reflection off individual granules. These reflec-
tions manifest as bright circles, which contrast against a
dark background, thereby making it possible for the particle
tracking algorithm to detect and track trajectories. Using
this information, it is possible to determine the horizontal
(x) and vertical (y) displacements of the granules. Conse-
quently, their respective horizontal and vertical velocities
can be found by fitting a cubic spline to the displacement
histories and taking the time derivative.

In a conventional SHPB setup, the energy input into the
system can be determined using the incident and reflected
pulse signals in the incident bar. However, in our setup, the
presence of a loading wedge between the incident bar and
specimen implies that the incident bar pulse signal is not

Fig.2 Selected sequence of
high-speed images of the exper-
iment for (a) no membrane, (b)
unconfined with membrane, and
(¢) confined at 100 kPa. The
scale bar is uniform throughout
all images and Os corresponds
to the time at impact. The left,

(@)

center, and right set of frames
respectively capture the pre-
impact, loading, and unloading
part of the impact event

(b)

0.862ms

(c)
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representative of the loading that enters the granular array.
To address this issue, a small gap is left between the wedge
and the array at the start of each experiment so there is
enough time for the wedge to move as a rigid body. The
position of the loading wedge is tracked by detecting the
light reflected by aluminum foil placed on the wedge surface.
The wedge is assumed to move rigidly at this longer time
scale and the input energy is the kinetic energy of the wedge
right before impact. Frictional losses between the wedge and
the steel surface along which it moves are assumed to be
negligible for the distance traveled by the wedge as verified
by experiments in the absence of granular specimens. The
fixed transmission plate to the rear of the specimen does not
move during the impact event as verified by Trackpy.
Finally, after the experiment was completed, we quanti-
fied how much of the input energy was dissipated as plastic
energy at the granule contact points by examining the gran-
ules visually using a stereo microscope and by photograph-
ing all visible dimples. Note that the granular surfaces were
also examined prior to each experiment. If any pre-existing
dimples were detected, the granules were either discarded
or not included in the final tally. It should be noted that
dimples are not generated during the confining process as
confirmed by inspecting the granular surface after confining
the array in the vacuum bag and then removing from the
bag without loading. Typically, the dimples were circular
or oblong in nature, and, less than 5% of all the dimples
showed multiple overlapping dimples at the same loca-
tion, which would indicate repeated impacts. Dimples in
an image (Fig. 3(a)) were detected using the elliptical Hough
transform algorithm [34]. The ellipse’s major and minor
dimensions were averaged to obtain the dimple diameter
of an equivalent circle. For overlapping dimples in the 5%
of cases, an ellipse was fitted to encompass both dimples
as shown in Fig. 3(b). This approach was adopted because
the region of overlap between dimples deformed elastically,
and accounting for the dissipated energy of both dimples

(b)

Fig.3 (a) Single dimple and (b) multiple dimples at a contact. The
gold outline in (b) demarcates the individual dimples, while the red
outline denotes the fitted ellipse to compute the averaged dimple
diameter

&

individually would greatly overestimate the dissipated
energy. Similarly, it should also be noted that repeated col-
lisions at the same dimple would not continue to dissipate
additional plastic energy once the largest dimple diameter
is attained.

Numerical Method
Contact Law

The contact force between two granules is governed by the
contact law derived from FEM simulations by Pal et al.
[35] for sphere-sphere contact with rate-independent and
elastic-perfectly-plastic material properties. The relation
between the force (F) between contacting granules and
the relative displacement (6) between them is expressed in
three stages: (i) elastic Hertzian contact, (ii) plastic loading
to the maximum force (F,,,,), and (iii) elastic unloading to
a permanently deformed state with a residual displacement
(6,). Subsequent reloading follows the elastic unloading
contact relationship until F,,,. with any further loading
beyond this point following the plastic contact law. In the
loading phase, the contact force, F;, takes the following
form:

%E* VR*&3, 5<6,

F = A
ayAy<2.48 — L4lexp ( 0098(- ~ 1))) (A—> 526,
y y

(D
with
5 1.14
A <5—y> , 6, <6 < 177.66, ,
A, 5 . 2)
Y 2.37 5 )" 59.96 ), otherwise

y

where the normal displacement at yield, 6,, and the contact

> Yy
area at yleld Ay, are respectively given by
8, = i < L Zm ) R* and A, = 7R*6,. During unloading, the
contact force, F,, is expressed as

5—5 \'
Fo=Fon|l5——5 ) - ®)

where
_ 5max
8, = 0.956,,c —25.946, + 25 exp ( —0.015 -1 )s,.
5y Y

E* and R* are the effective Young’s modulus and effective
radius, respectively, and are given by
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The pertinent material properties for brass are: Young’s mod-
ulus E = 115 GPa, Poisson’s ratio v = 0.3, and yield stress
o, = 619 MPa [25]. The subscripts 1 and 2 distinguish the
properties of the two contacting granules.

The impactor wedge and transmission plate are modeled
as rigid half-spaces, and their interaction with the brass
granules in the loading phase is approximated by doubling
the contact force corresponding to a given relative displace-
ment as shown in equation (1). It should be noted that this
approximation for the contact law may not be directly appli-
cable as the wedge is made out of aluminum, which has
a lower yield strength than brass. However, we found that
changing the parameters of the wedge did not yield drastic
differences in the grain trajectories or the wedge velocity,
and showed a good agreement with the experiments as seen
in Fig. 10. The unloading phase follows equation (3) with

the residual displacement, 6, ,,;, given as
3F,
o =6 — | —=—— ).
rywall max <4E* R* > (4)
wall”"p

Here the residual effective radius, R;, can be found using

4E*  (2F, 4+ 2F, o\
R* wall < Ys ”) i (5)

PT 3Fm \ 2740,

where E  and F , are respectively the equivalent stiff-
ness and yield force assuming the wall is rigid. Equations
(4-5) is obtained from the analytical Thornton model for the
elastic-perfectly-plastic contact of two spheres, which was
shown to approximate interactions between a sphere and a
wall reasonably well [36]. The contact laws between brass
beads and between a brass bead and the rigid half space
are presented in Fig. 4, together with the (elastic) Hertzian
contact relation shown for reference. By relating the force,

Fig.4 (a) Elasto-plastic contact (a)

law for brass sphere-sphere
2000

Fig.5 Schematic for numerical simulations: (a) quasi-static confine-
ment and (b) impact simulation. Striped walls are stationary while
filled walls can move in the direction of the arrows

the relative displacement, and the residual displacement to
the contact area, A, equations (1-3) allows for the evaluation
of the dissipated plastic energy, E, as the area between the
loading and unloading curves in Fig. 4(a) as

67‘71% 517[{1.\’
E, = /0 Fds — /5 F,dé. 6)

-

The dissipated plastic energy E, can thus be extracted given
the dimple diameter using the curve in Fig. 4(b).

Quasi-static Confinement Simulations

Confinement is achieved in the simulations by compress-
ing the granules in a quasi-static manner by using mov-
able rigid walls surrounding the granules as illustrated in
Fig. 5(a). In this process, the motion of the walls is pro-
gressively imposed so that the equivalent stress state of the
discrete system given by equation (7), corresponds to a state
of hydrostatic pressure with amplitude corresponding to the
applied vacuum pressure. The volume-averaged stress ten-
sor is given by

(b)
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N,
1 - C JC
=5 ;fal,,, (7)

where f¥ and lz are the force and branch vectors, respectively,
at contact ¢, and the product is summed over all contacts, N,
[37]. For a given granule i contacting n; neighboring gran-
ules, equilibrium equations can be written as

Z F,»J +R; =0, 8)
J=l

where F;; is the contact force vector between granule i
and contacting granule j, and R, is the wall reaction force
vector acting on granules along the boundary. Expanding
equation (8) for all the granules gives a system of coupled
nonlinear equations, which are solved using the Newton-
Raphson method at every increment of wall compression
for the unknown granular centroid locations and boundary
reaction forces.

Impact Simulations

Impact simulations are performed using the discrete element
method with the equations of motion solved in the x and y
directions for the system shown schematically in Fig. 5(b).
The impactor wedge, denoted by the left wall in Fig. 5(b),
and the transmission plate, corresponding to the right wall
in Fig. 5(b), are modelled as rigid steel particles with infi-
nite radii. To match the experiments, the impactor wedge is
given the experimentally measured mass while the rigid wall
is assumed to have an infinite mass. In addition, the wedge
is constrained to move only in the x direction. The initial
velocity of the wedge is set as the value measured experi-
mentally using particle tracking. The granules are initially
assumed to be at rest with centroidal positions and reaction
forces obtained from the confining simulations described
in Quasi-static Confinement Simulations. The reaction
forces are exerted throughout the simulation and continue
to act on the granules along the upper and lower boundaries.
In this simplified numerical analysis, only normal, friction-
less, elasto-plastic contact is modelled and rotational effects
are neglected.

To further simplify the computational model, the mem-
brane itself is not explicitly modelled but rather the primary
effects of the membrane are simulated using a simplified
spring-dashpot model with stiffness, &, and dissipation coef-
ficient, c, linked to the lateral (free) surfaces of the granular
array as shown in Fig. 5(b). The linear spring of stiffness
represents the stiffness of the membrane and the dashpot of
coefficient ¢ captures dissipation due to the motion of the
granules against the conforming membrane. The values of &
and c are calibrated through comparison with experiments

&

using a parametric study described in Calibration of Mem-
brane Properties.

The equations of motion for all the granules yield a sys-
tem of ordinary differential equations in terms of the posi-
tion of the centroid of granules, which are solved using the
fourth-order Runge-Kutta scheme. A timestep of 5 x 1078s
was chosen after a convergence study on numerical values
generated in the simulation.

Results and Discussion
Trajectory and Kinematics

As reflected in Fig. 6, the granular trajectories for the dif-
ferent experimental scenarios are the following: without
membrane; unconfined (no vacuum pressure but enclosed in
membrane); and confined with 50, 70, and 100 kPa vacuum
pressure. In the absence of a membrane (Fig. 6(a)), the unre-
strained granules rapidly lose contact with their neighbors
and follow linear trajectories. As expected, experiments per-
formed with the membrane (Fig. 6(b—e)) yield granule tra-
jectories with much smaller displacements, especially with
the application of vacuum. The repeatability of the experi-
mental results increases with the level of confinement due
to the combined effect of the stiffening of the membrane
and the equilibration of the crystal into a hexagonal close
pack configuration. The added variability in the unconfined
specimen can also be attributed to the presence of small gaps
at contacts as noted in previous experiments [30]. It is also
worth observing that granules in the confined experiments
return to their pre-impact arrangements after unloading,
while the unconfined crystal undergoes a substantial rear-
rangement as seen in Fig. 2(a).

The vertical (v) and horizontal (x) velocities obtained by
differentiating the trajectory data with time are presented
in Fig. 7 and show a strong acceleration in both directions
in the initial phase of the impact event, followed by a rapid
deceleration to an instantaneous rest at maximum compres-
sion. The horizontal velocity then switches sign and the
granules return to their original position at a slower velocity.
Even though the results presented in Fig. 7 correspond to a
70 kPa experiment, profiles with similar features are found
for other vacuum pressures.

The measured evolution of the wedge velocity, which is
used as one of the key validation quantities in the numeri-
cal analysis presented in the next section, is shown in Fig. 8
for different values of the confining pressure. The wedge
rapidly decelerates after impact until it momentarily loses
contact with the specimen as apparent by the kink early in
the profile. This temporary separation is attributed to the
reflected primary wave from the transmission plate impact-
ing the wedge. As also apparent in Fig. 8, the wedge velocity
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profiles associated with the confined experiments are similar
and cross the horizontal axis sooner than their unconfined
counterparts, indicating that the confining pressure restricts
the forward motion of the wedge.

Calibration of Membrane Properties

Modeling the membrane with high fidelity is a challenging
task in our discrete element formulation as the membrane
conforms to the sides of the spheres in the outer periphery of
the specimen and the polymer membrane material can have
a highly nonlinear constitutive response. In addition, dur-
ing impact, the membrane stretches and changes the area of
contact with the granules, which in turn alters the frictional
dissipation associated with the granule/membrane interac-
tion. To achieve a reasonable comparison with experiments,
our model includes a simplified description of the lateral
confining effect of the membrane and the energy dissipation
stemming from the viscous response of the membrane and
its frictional interaction with the granules.

As described earlier, this simplified model includes a
spring-dashpot model attached to the sides of the array, i.e,
to the granules that are not in contact with the incident or
transmission plates, as was shown schematically in Fig. 5(b).
The spring stiffness, k, and dashpot dissipation coefficient,
¢, representing the confining and dissipative effects of the
membrane, respectively, are then found with the aid of a
parametric calibration study by minimizing the error, e,
between the numerically (v, ;,) and experimentally (v,, ;)
obtained evolution of the wedge velocity. This error measure
is defined as

tmax
€= A V (Vw,exp - Vw,sim)zdt

where the bounds of the integral are based on the wedge
velocity profiles shown in Fig. 8 with #,,,, denoting the time
at which the wedge stops its forward motion. Contour plots of
the dependence of e on the membrane parameters k and c are
presented in Fig. 9. As apparent there, the optimum value of
the spring stiffness k is found to be 7000 N/m for the confined

®
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Fig.7 x andy velocities of
granules selected from the top
image for a specimen with 70
kPa vacuum pressure
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case (irrespective of the vacuum pressure) and 3000 N/m for
the unconfined case. This observation agrees with quasi-static
bending tests, which reported an increase in bending stiffness
with vacuum pressure [32]. As for the optimal ¢ value, both the
confined and unconfined cases yield a value of 2 Ns/m. Simu-
lated evolutions of the wedge velocity and granule trajectories

1 . T .
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Fig.8 Evolution of the wedge velocity (V,,) normalized by its initial
value (V,,;) measured before impact for varying levels of vacuum
pressure

&
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obtained with these optimal parameters are presented in Fig. 10.
The lower level of agreement in the granule trajectory predic-
tions in the unconfined case could be attributed to the inability
of the simplified spring-dashpot model to handle the larger
horizontal motion of the less constrained granules, or due to
the presence of small gaps between the membrane and adjacent
granules before impact in experiments. The latter would imply
that the effect of the membrane activates at a slightly later time
after impact once the granules impinge on the membrane.

Lateral Expansion

In this subsection we quantify the lateral expansion of the
specimen observed in Fig. 6 by computing the ratio of lat-
eral strain to axial strain, #, based on granular trajectories.
This ratio will be denoted as the lateral expansion ratio
even though its definition is similar to the Poisson’s ratio
of a continuum material. The reason being that the limited
dimensions of the array makes it unlikely to assume that the
values taken by 7 could be generalized to be representative
as a material property for a granular array of any size or
subjected to different boundary conditions.

If we consider four spheres of interest in a rhombic
arrangement with two spheres each in the horizontal (/ and
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Fig.9 Contours for the error (a)
measure defined in Eq. (9) for
different values of k and c in the
parametric study for (a) uncon-
fined case, for which the opti-
mal k and ¢ are 3000 N/m and 2
Ns/m, respectively, and (b) 70
kPa confined case, for which
the optimal k and ¢ are 7000
N/m and 2 Ns/m, respectively.
Results obtained for different
vacuum pressures yield similar
contour plots, hence only one
representative result is shown
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r) and vertical directions (f and b), n can be extracted by com-
paring the vertical and lateral contractions of the granules.
For example, using granule number 32 (1), 19 (), 33 () and
3 (b) in Fig. 7, the lateral expansion ratio can be expressed as
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Fig. 10 Experimental and numerical evolution of the wedge velocity
and particle trajectories for the unconfined (a) and confined (70 kPa)
(b) cases. The adopted simulation parameters are the optimal param-
eter combination extracted in Fig. 9
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where u, and u are the respective x and y displacements, and
X, and Y, are the respective initial positions. This definition
yields similar results when applied to the nearest and next
nearest neighbors specified in a rhombic configuration.
Figure 11 shows the experimentally and numerically
obtained lateral expansion ratio as a function of wedge dis-
placement. As evident there is a sharp increase in 4 in the
beginning as the forces are distributed outward along net-
works at 60° from the plane of loading in a hexagonal close
pack system. The maximum value of 7 is well beyond 1 which
implies that there is an increase in the area of the specimen.
This phenomenon is due to dilatancy as the granular layers
slide past each other [38]. The rise in 77 gradually decreases
as the interstitial gaps open up during granular rearrange-
ment, thereby offering less resistance to granular motion in
the loading direction. Also apparent is the fact that the higher
vacuum pressure experiments yield a slightly lower value
of 1 in the early stages of the impact event, which agrees

4.5
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Fig. 11 Lateral expansion ratio (7) versus wedge displacement from
experimental data and simulations. The presented results are aver-
aged over multiple trials conducted at a given pressure level, for both
experiments (dashed) and simulations (filled). Scatter bars indicate
the standard deviation between trials

SEM
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intuitively with the inverse relationship between lateral
motion and the confining pressure. As the wedge displace-
ment increases, all cases converge to the same value of 5 as
inertial effects become less significant. The experimental and
simulation results agree well with each other after an initial
displacement of around 0.3 mm, with the early discrepancy
attributed to the inability of the virtual model to capture the
experiments immediately after impact (Fig. 10).

Energy Dissipation

One of the main objectives of this work is to determine
how impact-induced plastic dissipation is affected by the
confining pressure. The total energy of the system prior to
impact is the kinetic energy of the wedge. During impact,
elasto-plastic waves traverse the array increasing the kinetic
energy of the granular array while simultaneously dissipat-
ing energy by plastic dissipation at granule contact points,
by friction both between granules and between granules and
membrane, and by viscous losses in the membrane itself.
Figure 12(a) illustrates the evolution of the kinetic energy of
the wedge and the sum of kinetic energies of all the granules
extracted from the particle tracking measurements of each
granule’s instantaneous velocity (Fig. 7). As apparent there,
the maximum kinetic energy of the granules is only a frac-
tion of the wedge energy with the remainder predominantly
converted to strain energy of the membrane, and dissipated
through plastic deformation and frictional contact. To sup-
port these results, simulations are used to obtain the evolu-
tion of energy transfer between the wedge and granular array
(Fig. 12(b)) which cannot be extracted experimentally. The
instantaneous strain energy at a contact (E,), work done by
pressure on boundary granules (E, ; cum)> SPring potential
energy (E,,,, ,,) and dissipated viscous energy (E,,
are calculated using the following equations

em,visc)

J Fids, 5 <6,
s = s '
T\ fy Fds 820,

E =R-
wd,vacuum u (1 1)

E = 0.5ku§

mem,pot

t
_ 2
E omvis = /0 cvydt.

Here v, refers to the y velocity of the granule attached to the
dashpot. It can be seen that plastic dissipation is an incre-
mental process with intermittent jumps throughout the dura-
tion of the impact. Another observation is that between these
jumps, granular strain energy is negligible which implies
that the granules are non-contacting or carrying very low
loads. Eventually at maximum compression once the kinetic
energies of both the wedge and granules drop to zero, the
greatest plastic dissipation and membrane potential energy
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Fig. 12 (a) Kinetic energies of the wedge and granules for an experi-
ment with a vacuum pressure of 50 kPa. The timescale is referenced
to the time at which the wedge impacts the specimen. The kinetic
energy before impact indicates the energy which the wedge obtains
from the SHPB. (b) Energy evolution of the different constituents as
obtained from the simulations for the same 50 kPa experiment

are realized. Although the trends of the kinetic energies for
both the experiments and simulations are similar, the experi-
ments show a lower maximum granular kinetic energy due
to simulations being frictionless and having a simplistic
membrane model.

The compression phase is followed by the restitution
phase when the strain energy of the membrane gets pre-
dominantly converted back into kinetic energy of the
wedge which gets pushed back. Additional plastic dissipa-
tion is not expected to occur during restitution as the gran-
ules move much slowly, and are thus unlikely to generate
forces comparable to the maximum forces in compression.
The net input energy is thus the difference in the kinetic
energy of the wedge before and after impact.

The results for the dissipated plastic energy, obtained
using the procedure outlined in Experimental setup based
on a post-mortem measurements of residual contact areas
on the granules, are shown normalized by the net input
energy in Fig. 13. These results reveal that having a non-
zero vacuum pressure creates a jump in the dissipated plastic
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energy. However, no noticeable increase in dissipation with
the vacuum pressure is observed in the confined regime. The
scatter bars indicate the deviation of results between trials
due to differences in impact velocity and errors associated
with dimple area measurement. It is also apparent that, even
though the simulations do not capture friction between the
beads, the dissipation ratios show close agreement between
the experiment and simulations for the confined cases, which
suggests that friction plays a secondary role in this state. The
slightly higher dissipation in the simulations could be due
to the fact the interaction between the wedge and membrane
is not included in the simulations leading to more energy
transmitted to the array than in the experiment. However, the
reasons for the substantially higher dissipation obtained in
the unconfined simulations could be twofold. It could be first
attributed to the model’s inability to capture frictional dis-
sipation due to the relative motion between granules, which
is likely more prominent in the unconfined case. Another
reason could be due to the existence of small gaps between
the granules and the membrane as mentioned in Calibration
of Membrane Properties. If small gaps exist, the simulation
protocol would artificially stiffen the array enabling more
plastic dissipation. Simulations conducted on unconfined
experiments without a membrane (k = ¢ = 0) verify this
claim as shown by the green data point in Fig. 13. Here
we assume the net input energy to be the same as that of
the experiments, but the dissipated plastic energy is gener-
ated under no membrane conditions. The results indicate
that plastic dissipation in unconfined experiments occurs

0.5 ; . . , ,

04 { J
5 03F ]
|
E 02 J
R 1 I Experimental

I Numerical
0.1r Numerical (k=c=0) |
0 1 1 1 1 1 1
0 20 40 60 80 100

Vacuum Pressure (kPa)

Fig. 13 Dissipated plastic energy (normalized by the input energy)
vs. the vacuum pressure: comparison between experiments and simu-
lations. The scatter bars denote the standard deviation between trials
with the 0 kPa, 50 kPa, 70 kPa, and 100 kPa experiments respectively
involving 5,6,4,and 5 trials. Additional simulations performed with-
out the spring-dashpot for the unconfined cases show better agree-
ment with experiments

during the initial impact as the absence of the membrane
prevents further granular interaction (Fig. 2(a)). The ces-
sation of plastic dissipation even after the granules start to
push against the membrane could be due to the granules
being scattered after the first impact to create networks
which transmit energy outwards to the membrane.

The relative independence of the plastic dissipation on
the vacuum pressure in the confined regime can be linked
to the clustering of data for the wedge velocity and lat-
eral expansion ratio described in previous sections. This
observation can be explained as follows: due to the ordered
nature of the hexagonally packed array and the fact that the
forces generated at impact are much larger than the forces
holding the array together, the specimen (irrespective of
the vacuum pressure) gets briefly disjointed making the
granules lose contact with each other during initial wave
propagation. Although the resolution of the high-speed
camera is not high enough to observe this loss of contact,
this effect could make the plastic dissipation and lateral
expansion results indistinguishable between the different
levels of confinement as the momentary loss in contact net-
work leads to an inability to transmit contact forces and in
turn to dissipate energy.

Numerical Investigation of Effects of Array Size

The above choice of a 5 x 5 granular array which was stud-
ied both experimentally and numerically was primarily
driven by physical consideration and space limitation in the
experimental set-up. To address the question of whether the
results observed so far can be generalized to larger arrays,
we have performed numerical simulations on larger array
sizes using the same modeling approach that has produced
reliable results for the 5 X 5 case. These simulations were
conducted on unconfined (no vacuum and no membrane)
and confined symmetric square arrays to investigate the
effect that array size has on trajectories and dissipation.
Unlike the 5 X 5 packing which has symmetry only about
the vertical (y axis) mid-plane at the center of the packing,
the square arrays have symmetry about the horizontal mid-
plane (x axis) in the center as well. Having symmetry about
both the x and y axes does not bias the way in which the
array moves, and, as will be seen, allows for the results to
be generalized. Since the energy dissipated by the dashpot is
less significant compared to the energy stored in the spring
(Fig. 12(b)), the effect of the dashpot is ignored in this analy-
sis. In order to make comparisons amongst differently sized
arrays, the mass of the impactor wedge is scaled linearly
with the total mass of the granular array while keeping V,, at
the median experimental V,, of 2.23 m/s. This scaling is eas-
ily derived from the conservation of energy and momentum
involving the collision of two rigid bodies such that similar




860

Experimental Mechanics (2022) 62:849-862

post impact velocities are obtained when the mass of one of
the rigid bodies is changed.

Plotting the granular trajectories for an array containing
39 and 588 granules, top portion of Fig. 14, reveals a pat-
tern in which the array particle motions occur within three
regions moving in a symmetric manner about the horizontal
plane of symmetry. The first region constitutes of two trian-
gular blocks in the left half of the granular array which split
up about the midpoint, and slide almost like a rigid portion
along an angle moving in opposite directions. These blocks,
which are collectively referred to here as the “shell”, move
around a diamond-shaped “core” whose particles exhibit far
less motion. To the aft of the core are two smaller triangular
sections, collectively referred to here as the “base”, which
constitute particles in contact with, or very near, the right-
hand wall support. The base is flanked on the inner side by
the core and on the outer side by the shell. This characteristic
granular motion was observed for all array sizes simulated,
and even the asymmetric 5 X 5 array shows these same three
region types in Fig. 10, with each half of the shell and base
containing a different number of granules since the 5 X 5
array is asymmetric.

The consistent trajectories which appear in each region
irrespective of the array size motivates the discussion on
the effect array size has on plastic dissipation. A map of
the total amount of dissipated plastic energy per granule is
presented in Fig. 14 illustrating the importance each starting
granular position has on its energy dissipating capability.

This map is obtained by equally distributing the final dis-
sipated energy at a pairwise contact between two contacting
granules, and summing over all contacts for a given granule.
Comparing the location specific dissipated energy reveals
that both the 39 and 588 granules systems show less plastic-
ity on the lateral (top and bottom) edges of the array, and
more dissipation in the core. A possible explanation for the
latter is that the granules in the core move less as they are
confined on all four sides, leading to increased compression
and more plastic dissipation there. The asymmetry in plastic
dissipation even though the arrays are symmetric is due to
multiple wave reflections from the rigid transmission plate
and wedge. These boundary reflections have been showed
in Hertzian systems to cause perfectly symmetric packings
to transcend to disorder over long durations [22].

Figure 15 quantifies these plastic dissipation results by
tallying the average dissipated energy per granule in the
three regions for different confining pressures and array
sizes. It can be first observed that dissipation is independent
of confining pressure apart from the fact that there is a jump
in dissipation between an unconfined and confined array
which agrees with the results shown in Fig. 13. The near
four-fold increase in dissipation between the unconfined and
confined array in Fig. 15, as opposed to the two-fold increase
in the 5 X 5 packing, is due to the symmetric array having
more support and these simulations having no viscous dis-
sipation. Upon closer investigation, we observe that the core
shows the most plastic dissipation, followed by the base and

Fig. 14 Figure matrix show-
ing the granular trajectories
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Fig. 15 Stacked bar plot of the plastic dissipation per granule in each
region for differently sized square packings. Each group has 4 col-
umns which denote the confining pressure as annotated in the figure

shell. Increasing the array size shows a slight decrease in
the aggregate dissipated energy in the three regions (11%
between 39 and 588 granules) primarily due to dissipation
decreasing in the base. Given the consistency in the parti-
tioning of both trajectories and plasticity in the three regions
with varying array size, it is plausible that the experimental
observations will carry over to for larger hexagonally packed
granular systems.

Conclusions

In this manuscript, we have presented an experimental and
numerical investigation of the impact response of a vacuum-
induced, confined granular array. The array consists of brass
spheres enclosed in a polymer membrane, which upon the
application of vacuum promotes a transition from an uncon-
fined fluid-like state to that of a confined rigid state. Experi-
ments have been conducted on 2D hexagonally packed arrays
using a split Hopkinson pressure bar-type loading device
while recording the impact event using high-speed imaging.
Particle tracking has been implemented on the high-speed
photography footage to track the motion of granules, while
post-mortem analysis of the granular surfaces after impact
have quantified the energy dissipated due to plasticity.

The confined experiments have shown similar and shorter
trajectories between trials, which contrast with the substan-
tially larger displacements observed in the unconfined exper-
iments. During loading, there is a reversible change in the
granular configuration for confined experiments, which is
recovered when the specimen is unloaded. To complement
the experiments, discrete element simulations have been
performed with a frictionless, elasto-plastic contact law for

the granules and a simplified linear spring-dashpot model
of the membrane. The numerical model has been calibrated
for the membrane stiffness (k) and damping coefficient (c)
through a comparison with the experimental evolution of the
wedge velocity. The model has then been validated against
the trajectories of the granules during the impact event, and
the evolution of the effective lateral expansion ratio in the
confined states extracted from the relative motion of adja-
cent particles. The energy dissipated due to plasticity has
been found to be higher in confined experiments, which sug-
gests that the transition enhances plastic dissipation. How-
ever, there was no noticeable increase in dissipation with
vacuum pressure in the range investigated in this study. The
lower agreement between simulations and experiments for
the unconfined case suggests the need for a more realistic
model for the membrane and its frictional interaction with
the brass particles. Finally, simulations performed on larger
symmetric arrays showed that the results for trajectories and
plastic dissipation are generally size independent as noted by
the consistency in these results irrespective of the array size.
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