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ABSTRACT13

Advances in modern artificial intelligence (AI) have inspired a paradigm shift in human neuroscience,14

yielding large-scale functional magnetic resonance imaging (fMRI) datasets that provide high-resolution15

brain responses to tens of thousands of naturalistic visual stimuli. Because such experiments necessarily16

involve brief stimulus durations and few repetitions of each stimulus, achieving sufficient signal-to-noise17

ratio can be a major challenge. We address this challenge by introducing GLMsingle, a scalable,18

user-friendly toolbox available in MATLAB and Python that enables accurate estimation of single-trial19

fMRI responses (glmsingle.org). Requiring only fMRI time-series data and a design matrix as inputs,20

GLMsingle integrates three techniques for improving the accuracy of trial-wise general linear model21

(GLM) beta estimates. First, for each voxel, a custom hemodynamic response function (HRF) is identified22

from a library of candidate functions. Second, cross-validation is used to derive a set of noise regressors23

from voxels unrelated to the experimental paradigm. Third, to improve the stability of beta estimates for24

closely spaced trials, betas are regularized on a voxel-wise basis using ridge regression. Applying25

GLMsingle to the Natural Scenes Dataset and BOLD5000, we find that GLMsingle substantially improves26

the reliability of beta estimates across visually-responsive cortex in all subjects. Comparable27

improvements in reliability are also observed in a smaller-scale auditory dataset from the StudyForrest28

experiment. Furthermore, these improvements translate into tangible benefits for higher-level analyses29

relevant to systems and cognitive neuroscience. Specifically, we demonstrate that GLMsingle: (i) improves30

the decorrelation of response estimates between trials that are nearby in time; (ii) enhances31

representational similarity between subjects both within and across datasets; and (iii) boosts32

one-versus-many decoding of visual stimuli. GLMsingle is a publicly available tool that can significantly33

improve the quality of past, present, and future neuroimaging datasets that sample brain activity across34

many experimental conditions.35

Keywords: fMRI pre-processing, GLM, large-scale datasets, denoising, voxel reliability36

INTRODUCTION37

Across many scientific disciplines, datasets are rapidly increasing in size and scope. These resources38

have kickstarted a new era of data-driven scientific discovery (Richards et al., 2019; Jumper et al.,39

2021; Iten et al., 2020; Ravuri et al., 2021; Schawinski et al., 2018; D’Isanto and Polsterer, 2018).40

In visual neuroscience, recent efforts to sample individual brains at unprecedented scale and depth41

have yielded high-resolution functional magnetic resonance imaging (fMRI) datasets in which subjects42

view thousands of distinct images over several dozen hours of scanning (see Naselaris et al., 2021 for43

a review). These exciting “condition-rich” datasets are large enough to propel the development of44

computational models of how humans process complex naturalistic stimuli. For example, resources45
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such as the Natural Scenes Dataset (NSD, Allen et al., 2022), BOLD5000 (Chang et al., 2019), and46

THINGS (Hebart et al., 2019) may be useful for advancing our ability to characterize the tuning (Bao47

et al., 2020; Li and Bonner, 2021; Long et al., 2018; Kriegeskorte and Wei, 2021; Popham et al., 2021),48

topography (Blauch et al., 2021; Doshi and Konkle, 2021; Zhang et al., 2021; Lee et al., 2020), and49

computations (Yamins et al., 2014; DiCarlo et al., 2012; Freeman et al., 2013; Marques et al., 2021;50

Horikawa and Kamitani, 2017) performed in visual cortex.51

The potential of large-scale datasets to reveal general principles of neural function depends critically on52

signal-to-noise ratio (SNR), which refers to one’s ability to reliably measure distinct neural signatures53

associated with different stimuli or experimental conditions. Diverse sources of noise affect fMRI data,54

and these noise sources limit the robustness and interpretability of data analyses (Liu, 2016; Kay et al.,55

2013). For example, subject head motion, scanner instabilities, physiological noise, and thermal noise56

all contribute unwanted variability to fMRI data. Noise is especially problematic in studies that sample57

a large number of conditions, since the number of repetitions of each condition is typically limited,58

resulting in noisy responses even after trial-averaging.59

The approach we have developed to mitigate the effects of noise comes in the context of general60

linear model (GLM) analysis of fMRI time-series data (Dale, 1999; Monti, 2011). We assume that61

the goal of the GLM analysis is to estimate beta weights representing the blood oxygenation level62

dependent (BOLD) response amplitude evoked by different experimental conditions. In this context,63

we define noise as variability observed across repeated instances of a given condition. Therefore,64

methods that decrease such variability are desirable. Our approach seeks to maximize data quality at65

the level of individual voxels in individual subjects (as opposed to data quality assessed only at the66

region or group level), and seeks to obtain response estimates for single trials. These desiderata are67

powerful; if achieved, they can flexibly support a wide range of subsequent analyses including relating68

brain responses to trial-wise behavioral measures and pooling data across trials, brain regions, and/or69

subjects.70

To realize these goals, we introduce GLMsingle, a user-friendly software toolbox (with both MATLAB71

and Python implementations) that performs single-trial BOLD response estimation. Given fMRI72

time-series data and a design matrix indicating the onsets of experimental conditions, GLMsingle73

implements a set of optimizations that target three aspects of the GLM framework (Figure 1):74

1. The choice of hemodynamic response function (HRF) to convolve with the design matrix75

2. The inclusion of nuisance regressors that account for components of the data that are thought to76

be noise77

3. The use of regularization to improve the accuracy of the final beta estimates78

Importantly, to enable fluid application to even the largest fMRI datasets, GLMsingle is fully automated79

(no manual setting of parameters) and can be executed efficiently even when gigabytes of fMRI data80

are passed as input.81

We previously used the GLMsingle algorithm to estimate BOLD responses in the NSD dataset (Allen82

et al., 2022). While the optimizations implemented in GLMsingle had a positive impact on data quality,83

it was not apparent whether the improvements would generalize to other datasets. The goal of this paper84

is to provide a standalone description of GLMsingle and to rigorously assess performance not only on85

NSD, but also on BOLD5000 (Chang et al., 2019), a distinct large-scale fMRI dataset acquired with86

different subjects, at different field strength, and with a different experimental design (see Methods). In87
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Figure 1: Overview of GLMsingle
GLMsingle takes as input a design matrix (where each column indicates the onset times for a given condition) and fMRI
time-series in either volumetric or surface space, and returns as output an estimate of single-trial BOLD response amplitudes
(beta weights). GLMsingle incorporates three techniques designed to optimize the quality of beta estimates: first, the use of a
library of hemodynamic response functions (HRFs), where the best-fitting HRF from the library is chosen for each voxel;
second, an adaptation of GLMdenoise (Kay et al., 2013) to the single-trial GLM framework, where data-derived nuisance
regressors are identified and used to remove noise from beta estimates; and third, an efficient re-parameterization of ridge
regression (Rokem and Kay, 2020) as a method for dampening the noise inflation caused by correlated single-trial GLM
predictors.

both datasets, we show that the optimizations implemented in GLMsingle dramatically improve the88

reliability of GLM beta estimates. We provide further evidence of the general utility of GLMsingle89

by also evaluating its performance on the music-listening experiment from StudyForrest (Hanke et al.,90

2015). This dataset differs in a number of respects from NSD and BOLD5000: it reflects a non-visual91

modality, and contains fewer experimental conditions, longer condition durations, greater number of92

repetitions per condition, and a jittered inter-stimulus interval. The performance improvements found93

in this third dataset suggest that GLMsingle may be applicable to a wide range of fMRI tasks and study94

designs.95

We also study the effect of these optimizations on downstream analyses that are of particular relevance to96

systems and cognitive neuroscience, including representational similarity analysis (RSA) (Kriegeskorte97

et al., 2008) and multivoxel pattern analysis (MVPA) (Haxby et al., 2001, Norman et al., 2006, Poldrack98

et al., 2011). In all analyses, we observe improvements in key outcome metrics, suggesting that99

GLMsingle meaningfully improves the ability of researchers to gain insight into neural representation100

and computation. Our findings demonstrate that GLMsingle affords the neuroimaging community a101

clear opportunity for improved data quality. Online materials (code, documentation, example scripts)102

pertaining to GLMsingle are available at glmsingle.org.103

RESULTS104

To assess the impact of GLMsingle, we evaluate four different types of single-trial response estimates105

(henceforth, beta versions). The first arises from a baseline procedure that reflects a typical GLM106

approach for fMRI analysis (beta version b1), and each subsequent beta version (b2-b4) incorporates an107
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additional strategy for optimizing model fits and mitigating the effects of noise. The final beta version108

(b4) contains the complete set of optimizations provided by the GLMsingle toolbox. The GLMsingle109

algorithm consists of the following steps:110

1. A baseline single-trial GLM is used to model each stimulus trial separately using a canonical111

HRF. This provides a useful baseline for comparison (b1: AssumeHRF).112

2. An optimal HRF is identified for each voxel (Allen et al., 2022) by iteratively fitting a set113

of GLMs, each time using a different HRF from a library of 20 HRFs. For each voxel, we114

identify the HRF that provides the best fit to the data (highest variance explained), and inherit the115

single-trial betas associated with that HRF (b2: FitHRF).116

3. GLMdenoise (Kay et al., 2013; Charest et al., 2018) is used to determine nuisance regressors to117

include in the model. Principal components analysis is applied to time-series data from a pool of118

noise voxels (see Methods for details), and the top principal components are added one at a time119

to the GLM until cross-validated variance explained is maximized on-average across voxels (b3:120

FitHRF + GLMdenoise).121

4. With the nuisance regressors determined, fractional ridge regression (Rokem and Kay, 2020) is122

used to regularize the single-trial betas, using a custom amount of regularization for each voxel,123

determined via cross-validation (b4: FitHRF + GLMdenoise + RR).124

GLMsingle improves the reliability of beta estimates125

We first examine the effect of GLMsingle on the test-retest reliability of voxels across relevant regions126

of visual cortex in NSD and BOLD5000 (Figure 2). For NSD, we analyze the first 10 scan sessions of127

data from each of the first 4 subjects (each scan session consisted of 12 x 5.0-min runs). Each scan128

session was analyzed separately, and each scan session contained, on average, 35 conditions with 3129

trials each, 107 conditions with 2 trials each, and 431 conditions with 1 trial each. For BOLD5000, we130

analyze the complete dataset for subjects CSI1-3, all of whom completed the full experiment. These131

data were collected over 15 scan sessions (each scan session consisted of either 9 or 10 runs lasting 6132

min and 28 s each). Groups of 5 scan sessions were analyzed jointly, and each group resulted in, on133

average, 0 conditions with 4 trials each, 9 conditions with 3 trials each, 40 conditions with 2 trials each,134

and 1642 conditions with 1 trial each. Our reliability procedure measures the consistency of a voxel’s135

response profile (using Pearson r) over repeated presentations of the same stimuli, revealing areas of136

the brain containing stable BOLD responses. This straightforward approach enables direct comparison137

of data quality between different beta versions.138

We directly compared the b1 and b4 beta versions for each subject within a liberal mask of visual cortex139

(nsdgeneral ROI), finding widespread increases in reliability when comparing GLMsingle to baseline140

(Figure 2a). The positive effect is nearly uniform across voxels in NSD. In BOLD5000, as in NSD,141

we see aggregate benefits when comparing b1 and b4, though results for individual voxels are more142

variable. A likely explanation for this is that reliability metrics are inherently noisier due to the smaller143

number of repeated stimuli in BOLD5000. In addition, the magnitude of the benefits of b4 over b1144

are somewhat smaller in BOLD5000 compared to NSD. This is likely true for a number of reasons,145

including the generally lower SNR in BOLD5000 (as a data-driven technique, GLMsingle is more146

effective at higher levels of SNR) and the relatively long inter-stimulus interval in BOLD5000 (ridge147

regression is expected to have smaller impact when there is less overlap of the BOLD response across148

successive trials).149
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Figure 2: Impact of GLMsingle on voxel test-retest reliability
To compute reliability for a given voxel, we measure the test-retest Pearson correlation of GLM beta profiles over repeated
presentations of the same stimuli (see Methods). (A) Differences in reliability between b1 (derived from a baseline GLM)
and b4 (the final output of GLMsingle) are plotted within a liberal mask of visual cortex (nsdgeneral ROI). Scatter plots
show reliability values for individual voxels. (B) Relative differences in mean reliability within the nsdgeneral ROI. For each
voxel, we computed the mean reliability value over all beta versions being considered (b1-b4), and then used this as the
basis for thresholding voxels (from Pearson r = −0.2 to 0.6). At each threshold level, for each beta version, we compute the
voxel-wise difference between the reliability of that specific beta version and the mean reliability value, and then average
these difference values across voxels within the nsdgeneral ROI. The traces in the first column indicate the mean (+/- SEM)
across subjects within each dataset. The bars in the second column indicate subject-averaged differences in reliability at
threshold r = 0.2. The relative improvement in reliability due to GLMsingle (b1 vs. b4) tends to increase when examining
voxels with higher reliability, and each optimization stage within GLMsingle (HRF fitting, GLMdenoise, ridge regression)
confers added benefit to voxel reliability.

To summarize the impact of GLMsingle in NSD and BOLD5000, we compared the performance150

of b1-b4 for individual subjects, across different voxel reliability thresholds (Figure 2b). We find151

that all subjects show clear improvement from b1 to b4 and the improvement in reliability due to152

GLMsingle tends to increase when examining voxels that respond more reliably to experimental stimuli.153

Furthermore, examining reliability in intermediate beta versions (b2 and b3) – which implement HRF154

optimization and GLMdenoise, respectively – reveals that each successive stage of processing in155

GLMsingle tends to confer added benefit to voxel reliability compared to baseline (b1).156

To better understand the nature of the HRF fitting procedure, we examined selected HRFs across157

visually-responsive cortex of a representative subject (Figure 2––figure supplement 1). In active158

voxels, we observe a structured, low-frequency spatial gradient in HRF indices (Figure 2––figure159

supplement 1b). Moreover, identified HRF indices are highly consistent from session to session160

(Figure 2––figure supplement 1c). This provides evidence that, beyond merely capturing subject-161

specific deviation from the assumed HRF, the FitHRF procedure confers benefit by capturing voxel-wise162

differences in HRF shapes. We note that there are strong biophysical reasons to expect voxel-wise163

differences in HRF shapes, related to variation in the brain’s vasculature (Kay et al., 2020).164

We next compared GLMsingle to Least-Squares Separate (LSS), a popular technique for robust signal165

estimation in rapid event-related designs (Mumford et al., 2012, 2014; Abdulrahman and Henson, 2016).166

The LSS procedure fits a separate GLM for each stimulus, where the trial of interest is modeled as one167

regressor, and all other (non-target) trials are collapsed into a second regressor. LSS provides a useful168

point of comparison for ridge regression, as both strategies seek to mitigate the instabilities in GLM169
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Figure 3: Relative quality of GLMsingle and LSS beta versions
(A) Left panel: relative differences in mean reliability between beta versions. 8 beta versions are compared: b1-b4, and the
4 auxiliary beta versions used to compare GLMsingle and Least-Squares Separate (LSS). LSS betas (dashed traces) are
compared to those estimated using fractional ridge regression (RR, solid traces), when using a canonical HRF (LSS, light gray
vs. RR, dark gray) and when performing HRF optimization (LSS, light purple vs. RR, dark purple). Right panel: Summary
of performance at threshold level r = 0.2. Error bars reflect the standard error of the mean, computed over the 8 subjects
analyzed from NSD and BOLD5000. Fractional ridge regression yields more reliable signal estimates than LSS across voxel
reliability levels. (B) Same as Panel (A), except that reliability computations occur only between image repetitions processed
in independent partitions of fMRI data. Qualitative patterns are unchanged. (C) Scatter plots comparing voxel reliability
between corresponding LSS and GLMsingle beta versions (top: AssumeHRF; bottom: FitHRF). We show results for an
example subject (NSD subj01, nsdgeneral ROI). The advantage of ridge regression over LSS is most apparent in the most
reliable voxels.

estimation that can arise from having correlated single-trial predictors. To directly compare GLMsingle170

to LSS, we computed auxiliary GLMsingle beta versions that do not incorporate GLMdenoise. This171

allows us to isolate the effect of the GLM estimation procedure (i.e., LSS vs. fractional ridge regression).172

For both the case of an assumed HRF and the case of voxel-wise tailored HRFs, we find that fractional173

ridge regression yields more reliable signal estimates than LSS (Figure 3). These improvements174

are most pronounced in the most reliable voxels (Figure 3c). LSS can be viewed as applying heavy175

regularization uniformly across voxels, while our ridge regression approach is more flexible, tailoring176

the degree of regularization to the SNR of each voxel. Heavy regularization may actually degrade the177

quality of signal estimates in reliable voxels, and our approach avoids this possibility.178
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We then performed a complete assessment of all auxiliary beta versions and the primary versions179

(b1-b4), in order to determine whether any other analysis strategy could achieve parity with b4 in the180

quality of GLM outputs. Reassuringly, when summarizing the relative quality of all 8 beta versions181

over a range of reliability thresholds, we observe superior performance from b4, the default output of182

GLMsingle (Figure 3a). For these and subsequent findings, it is important to note that differences183

between beta versions should be interpreted with caution at very high reliability thresholds, as voxel184

counts may be quite low for certain subjects.185

GLMsingle relies on an internal cross-validation procedure through which key hyperparameters (the186

number of noise regressors and the voxel-wise levels of ridge regression regularization) are optimized to187

maximize the consistency of responses across condition repetitions. This raises a possible concern that188

our reliability estimates (e.g. Figure 2) are somewhat optimistic. As a strict assessment of reliability,189

we repeated the reliability quantification for each of the 8 beta versions, this time computing test-retest190

correlation values using only beta responses obtained from completely separate data partitions. We find191

that results are broadly unchanged using this more stringent evaluation procedure (Figure 3b).192

As a further test of the general applicability of GLMsingle, we repeated the above procedures using193

data from the music-listening component of StudyForrest (Hanke et al., 2015). This dataset measures194

brain responses as subjects listen to 25 distinct 6-s musical clips from 5 genres, with 8 repetitions per195

condition for each of 16 subjects. Each condition is repeated once per functional run, and each subject196

completed one session of data consisting of 8 runs. This dataset differs from NSD and BOLD5000 in197

several key respects: the scale (there are far fewer trials), the task modality (auditory, as opposed to198

visual), and the use of a jittered inter-stimulus interval (the delay between trials is variable between199

4-8 s). As in NSD and BOLD5000, we observe substantial improvements in reliability through the200

application of GLMsingle (Figure 4a-c), these improvements are consistent across subjects (Figure201

4d), and each individual component of GLMsingle confers added benefit in reliability compared to the202

baseline GLM. These findings, arising from a smaller-scale dataset that may more closely resemble a203

typical fMRI study, suggest the general applicability of GLMsingle to a wide range of datasets.204

GLMsingle helps disentangle neural responses to neighboring trials205

Thus far, we have established that GLMsingle provides BOLD response estimates that have substantially206

improved reliability compared to a baseline GLM. In the remainder of this paper, we explore whether207

these improvements have tangible consequences for downstream analyses relevant for cognitive and208

systems neuroscience. We first examine whether GLMsingle is able to more effectively disentangle209

neural responses to proximal stimuli, as inaccurate single-trial GLM estimation may manifest as high210

similarity (temporal autocorrelation) between beta maps from nearby trials. We computed dataset-211

averaged temporal similarity matrices, revealing the degree of temporal autocorrelation in each beta212

version (Figure 5). Temporal autocorrelation manifests as non-zero correlation values off the diagonal213

of the temporal similarity matrices, and is presumably undesirable.214

In a baseline GLM that uses a canonical HRF and ordinary least squares (OLS) fitting (b1), we observe215

striking patterns of temporal autocorrelation extending several dozen trials forward in time. This216

is true in both NSD, which has a rapid event-related design (a new stimulus presented every 4 s),217

as well as in BOLD5000, where stimuli are spaced 10 s apart to alleviate issues relating to signal218

overlap. To quantify these effects, we compute mean temporal autocorrelation as a function of time219

post-stimulus for each beta version. In NSD, for the baseline GLM (b1), positive correlations are as220

high as r = 0.5 for consecutive trials, and gradually reduce to around r = 0 after around 100 s (Figure221

5a). In BOLD5000, b1 autocorrelation peaks as high as around r = 0.4 for consecutive trials, requiring222

nearly 160 s to reduce to r = 0 (Figure 5b). We speculate that the relatively long timescale of the223
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Figure 4: Impact of GLMsingle on reliability in the StudyForrest music-listening task
(A) Differences in voxel test-retest reliability (Pearson r) between b1 (a baseline GLM) and b4 (the final output of GLMsingle)
are plotted for individual voxels. Only voxels that are active in response to experimental stimuli (ON-OFF R2 > 5) are plotted.
(B) Estimated beta values (% BOLD change) for b1 and b4 in a hand-selected auditory cortex voxel from 6 representative
subjects. Chosen voxels are indicated with pink stars in panel A. Each column represents one of 25 experimental conditions,
with each condition presented 8 times. Test-retest reliability values reflect the split-half correlation between groups of 4 trial
repetitions, averaged over all possible splits of the available repetitions (70 unique splits). (C) Relative differences in mean
reliability between beta versions b1 - b4, computed using the same procedure as used for NSD and BOLD5000 (see Figure
2). Traces indicate the mean (+/- SEM) across subjects. The bar graph (right) indicates the subject-averaged differences in
reliability at threshold r = 0.6. (D) Relative differences in mean reliability over different reliability inclusion thresholds are
plotted for each subject.

correlations reflects the long timescale of hemodynamic responses (the post-undershoot can extend224

for 30 s or longer) and/or the slow nature of (low-frequency) physiological noise related to cardiac225

and respiratory variation. Notably, mean beta maps from successive trials in NSD are anticorrelated226

for b1, a known artifact of OLS fitting in the case of high multicollinearity between GLM predictors227

(Mumford et al., 2014; Soch et al., 2020).228

When applying GLMsingle, these patterns of temporal autocorrelation change dramatically. In NSD229

b4, autocorrelation drops to r = 0 much more rapidly than in b1, and in BOLD5000, beta maps from230

successive trials in b4 are now nearly uncorrelated on average. This is an expected outcome, since231

the stimuli in NSD and BOLD5000 are ordered pseudorandomly. In both datasets, an intermediate232
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Figure 5: Impact of GLMsingle on temporal autocorrelation
For each dataset, we compute the degree of temporal autocorrelation in each beta version by averaging session-wise
representational similarity matrices over subjects. We plot results arising from analysis of voxels at two different reliability
thresholds (r = 0 and r = 0.3) for NSD (A) and BOLD5000 (B). Assuming that ground-truth neural responses to consecutive
trials should be uncorrelated on average, positive (or negative) Pearson r values off the diagonal imply sub-optimal estimation
of BOLD responses. In the right-most column, we plot mean autocorrelation between all pairs of timepoints. Applying
GLMsingle (b4) results in a substantial decrease in temporal autocorrelation compared to a baseline GLM approach (b1).

beta version (b2) containing only HRF optimization confers marginal benefit over b1, but the most233

dramatic improvements come from the addition of both GLMdenoise and fractional ridge regression234

(b4). Overall, these results demonstrate the utility of GLMsingle for disentangling neural responses235

to nearby stimuli in event-related designs, even when events are presented relatively slowly (as in236

BOLD5000).237

GLMsingle improves between-subject representational similarity across datasets238

Large-scale datasets such as NSD and BOLD5000 are well-suited for representational analyses (e.g.,239

RSA) that compare evoked neural response patterns between individual subjects, across different exper-240

imental modalities, and against computational models (e.g., deep neural networks, see Kriegeskorte,241

2015, Serre, 2019 for review.) In almost all such studies, representational analyses presume that the242

same set of stimuli will evoke reasonably similar responses across subjects. As such, given the ubiquity243
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of noise in fMRI, it is reasonable to expect that improving the accuracy of single-trial response estimates244

should yield representations that are more similar across individuals.245

Figure 6: Impact of GLMsingle on inter-subject RDM correlations
(A) Correlations of RDMs across all pairs of subjects and beta versions, at 3 different voxel reliability thresholds. We
compute RDMs for each subject and beta version using Pearson dissimilarity (1 - r) over repetition-averaged betas within the
nsdgeneral ROI. Grid lines separate beta versions from one another, an individual cell reflects the RDM correlation between
one pair of subjects, and cross-dataset comparisons occupy the top-right and bottom-left quadrants of the matrices. (B)
Mean inter-subject RDMs correlations within NSD (left), within BOLD5000 (center), and between the two datasets (right).
GLMsingle (b4) yields a considerable strengthening of RDM correspondence for each subject pair being considered, within
and between datasets.

To compare representations between subjects, we used the approach of RSA (Kriegeskorte et al.,246

2008). First, we isolated stimuli that overlap between BOLD5000 and the subset of NSD analyzed247

for this manuscript (the first 10 sessions from each subject). Using these 241 stimuli, we constructed248

representational dissimilarity matrices (RDMs) using repetition-averaged betas from each individual,249

and then correlated all pairs of subject RDMs within and between datasets. Note that GLMsingle is not250

designed to enhance or optimize cross-subject representational similarity; as such, it is informative to251

examine RSA correlations between subjects as a way of assessing methods for denoising (Charest et al.,252

2018). Strikingly, in comparing beta versions b1 and b4, we observe a consistent strengthening of RDM253

correspondence (Figure 6b). This trend held within NSD, within BOLD5000, and when comparing the254

RDMs of subject pairs between the two datasets. The latter result is especially striking given the many255

methodological differences between NSD and BOLD5000: fMRI data were collected at different sites256

on different scanners, at different field strengths (7T vs. 3T), with different behavioral tasks, and with257

different inter-stimulus intervals (4 s vs. 10 s).258
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These results indicate that GLMsingle, through its multifaceted approach to mitigating the effects of259

noise, helps reveal meaningful shared variance in neural responses across individuals who viewed the260

same stimuli. The GLMsingle toolbox may therefore be a key resource for future fMRI studies seeking261

to stitch together data across subjects from different sites or cohorts.262

GLMsingle enables fine-grained image-level MVPA decoding263

As a final analysis, we assessed the effect of GLMsingle on the results of multivoxel pattern analysis264

(MVPA). In a “one-vs.-many” classification paradigm, we trained linear SVM models for each subject265

to predict image identity from neural response patterns. The baseline GLM (b1) classification accuracy266

was slightly above chance on average for the subjects in NSD and BOLD5000 when including all visual267

cortex voxels (Figure 7a, blue traces). Performing the same MVPA procedure using GLMsingle betas268

(b4), we observe that mean accuracy approximately triples in NSD and doubles in BOLD5000 (Figure269

7a, red traces). Moreover, in both datasets we observe a substantial increase in classification accuracies270

with increasing voxel reliability threshold, with the most dramatic improvements achieved using b4 in271

NSD (Figure 7a, left panel, right-most bins).272

The level of performance that GLMsingle facilitates on this challenging multi-way decoding task273

highlights the ability of the technique to accurately identify and model the stable structure contained274

in noisy fMRI time-series. To illustrate this point, we performed 2D multidimensional scaling (MDS,275

Borg and Groenen, 2005) using NSD betas that were included in MVPA. Comparing results between276

beta versions b1 and b4, we observe improved clarity of an animacy division in the representational277

space of an example subject (Figure 7b).278

DISCUSSION279

As scientific datasets grow in scale and scope, new techniques for data processing will help to unlock280

their potential. This is especially true in human neuroscience where data remain both expensive and281

time-consuming to collect (Naselaris et al., 2021). This paper has introduced GLMsingle, a publicly282

available toolbox for analyzing fMRI time-series data that leverages data-driven techniques to improve283

the accuracy of single-trial fMRI response estimates. We have tested GLMsingle extensively using NSD284

and BOLD5000, two of the largest fMRI datasets that densely sample responses within individuals.285

For both datasets, analyses of the response estimates provided by GLMsingle indicate substantial286

improvements in several key metrics of interest to neuroscientists: (i) enhanced test-retest reliability of287

voxel response profiles, a straightforward metric of data quality; (ii) reduced temporal autocorrelation,288

a common fMRI effect that is presumably undesirable and especially prominent in rapid event-related289

designs; (iii) increased representational similarity across subjects both within and across datasets; and290

(iv) improved multivariate pattern classification performance when discriminating responses evoked by291

individual images.292

Principles underlying GLMsingle293

GLMsingle incorporates three optimization procedures to improve the estimation of fMRI responses:294

1. HRF fitting. GLMsingle uses a “library of HRFs” technique to select the most appropriate HRF295

to use for each voxel in a given dataset (Allen et al., 2022). This library consists of a set of296

20 HRFs that were derived from experimental data (specifically, the first NSD scan session297

acquired in each of the 8 NSD subjects). It is well known that variations in HRFs exist across298

voxels, brain areas, and subjects, and that mismodeling the timecourse of a voxel may lead to299

suboptimal analysis outcomes (Handwerker et al., 2004, 2012). Imposing constraints on HRF300

selection by choosing from a fixed set of HRFs avoids the instability (high variance) associated301

11



Figure 7: Impact of GLMsingle on image-level MVPA decoding accuracy
(A) Image-level linear SVM decoding accuracy by beta version. At each reliability threshold, we compute the mean decoding
accuracy over subjects within each dataset, as well as the standard error of the mean. Classifiers are trained on n − 1
available image repetitions, and tested on the held-out repetition, with accuracy averaged over cross-validation folds.
Applying GLMsingle (b4) yields dramatic increases in image decodability compared to a baseline GLM (b1). (B) The effect
of GLMsingle on animacy representation is shown in an example NSD subject (subj01) using multi-dimensional scaling.
GLMsingle clarifies the division in representational space between stimuli containing animate and inanimate objects.

with more flexible timecourse modeling approaches, such as finite impulse response modeling302

(Kay et al., 2008; Bai and Kantor, 2007). Variations in timecourse shapes in the HRF library303

reflect a continuum between short-delay, narrow-width timecourses to long-delay, broad-width304

timecourses, and are likely caused by variations in the contribution of large vessels to the BOLD305

response observed in a voxel (Kay et al., 2020).306

2. Data-driven denoising. Incorporating an adaptation of the GLMdenoise technique (Kay et al.,307

2013), GLMsingle uses principal components analysis to calculate potential nuisance regressors308

from fMRI time-series data observed in voxels that are deemed unrelated to the experimental309

paradigm. These regressors are incorporated into the GLM using a cross-validation procedure to310

determine the optimal number of nuisance regressors to add. A key aspect of our approach is311
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the acknowledgement that including increasing numbers of nuisance regressors will, at some312

point, cause overfitting and degradation of results (Kay et al., 2013); this motivates the use of313

cross-validation to determine the optimal level of model complexity.314

3. Regularization of GLM weights. To improve the accuracy of single-trial GLM response estimates,315

GLMsingle uses fractional ridge regression (Rokem and Kay, 2020), with an optimal degree of316

regularization identified for each voxel, again using cross-validation. The improvements afforded317

by this procedure are due to the substantial amount of overlap of the fMRI response across318

successive trials, unless very long (> 30 s) inter-stimulus intervals are used. It is well known319

that, in the context of ordinary least squares estimation, two predictors that are correlated (or320

anti-correlated) will have reduced estimation precision compared to the scenario in which the321

predictors are uncorrelated (Mumford et al., 2012; Soch et al., 2020). For rapid event-related322

designs, predictors for consecutive trials are typically correlated, and ordinary least-squares323

estimates will suffer from high levels of instability. Ridge regression imposes a shrinkage prior324

(penalizing the sum of the squares of the beta estimates), which can, in principle, dampen the325

effects of noise and improve out-of-sample generalizability of the beta estimates.326

Ideal use-cases for GLMsingle327

GLMsingle is designed to be general in its application. It uses data-driven procedures that automatically328

adapt to the signal-to-noise characteristics of a given dataset. For example, in datasets where structured329

noise is prevalent, appropriate nuisance regressors will automatically be included, whereas in datasets330

with very little structured noise (e.g., low head motion), fewer (or no) nuisance regressors will be331

included. As another example, for experimental designs with high temporal overlap between consecutive332

trials or high levels of noise, relatively strong levels of shrinkage regularization will likely be selected.333

GLMsingle is a general technique that can be fruitfully applied to nearly any fMRI experiment involving334

discrete events (including block designs). However, we recognize that integrating a new tool into335

an analysis workflow requires effort. Therefore, we anticipate that the most consequential impact of336

GLMsingle will be observed for study designs with low sensitivity (such as condition-rich designs).337

Implementation guidelines338

Datasets can have complex features that may complicate the way in which one applies GLMsingle.339

In this section, we comment on major implementation-related choices that the user may face when340

deciding how to apply GLMsingle to their own experimental paradigms. Additional discussion of more341

minor issues can be found in the online toolbox documentation.342

Experimental design343

Requirement of repeated conditions – In order to determine appropriate hyperparameter settings, it344

is necessary for some number of repeated trials to exist in the data that are input to GLMsingle. It345

is not critical that the conditions be balanced in their number of repetitions, and even a handful of346

repeats appears to be sufficient to robustly guide the estimation of hyperparameters. For example, for347

the groups of sessions from BOLD5000 that were analyzed in this paper, typically only about 3% of348

the conditions were repeated (i.e. had more than a single trial).349

Minimum trial separation – The degree to which GLMsingle can effectively separate response ampli-350

tudes to closely spaced trials is an empirical question that depends, in part, on the temporal characteris-351

tics of the hemodynamic response function. As shown in this paper, effective results were obtained352

in the Natural Scenes Dataset where the trial separation is 4 s (images are shown for 3 s and the353

inter-stimulus interval is 1 s). More rapid experimental designs will generally incur greater overlap in354
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the BOLD responses to neighboring trials, making response estimation more challenging. However, in355

these scenarios a greater number of trials can be run, which may counteract the loss of power arising356

from the response overlap. Future work could seek to systematically manipulate inter-trial intervals to357

assess the effectiveness of GLMsingle under more rapid designs.358

Coding of blank trials – GLMsingle expects that blank trials are not coded in the design matrix. The359

GLM uses a set of polynomials per run to model the baseline signal, which is associated with sections360

of the experiment that are not explicitly coded as events. Single-trial betas therefore reflect evoked361

BOLD responses above and beyond the baseline signal. Coding blank trials as events would interfere362

with this important component of the GLM estimation procedure.363

Modeling trial subcomponents – In some experiments, there may be multiple stages of a given trial364

(e.g., cue, preparatory period, stimulus presentation). GLMsingle does not distinguish between these365

subcomponents, and the particular modeling strategy is at the discretion of the experimenter. One366

approach is to treat all subcomponents of a trial as contributing to a single response amplitude.367

Alternatively, each subcomponent can be treated as a distinct condition (e.g., the cue for condition A368

coded as ‘condition A1’ and the stimulus for condition A coded as ‘condition A2’, and so on). In such369

an approach, the goal is to estimate a separate response amplitude for each subcomponent of each trial.370

fMRI data preparation371

Handling data from multiple scan sessions – BOLD responses and noise characteristics can change372

substantially across scan sessions (days) for an individual. For this reason, it is generally recommended373

to apply GLMsingle to individual scan sessions, if possible. However, if it is necessary to apply374

GLMsingle to data concatenated across days, one potential problem is that gross amplitude differences375

across sessions will be treated as noise, leading to suboptimal estimation performance. Users may376

avoid this issue by taking advantage of the sessionindicator option, which allows users to specify377

how different runs are grouped into sessions. GLMsingle uses this information internally to z-score378

responses within sessions to better estimate cross-validated model performance. This normalization379

step does not propagate to final outputs. In the processing of BOLD5000 data for this manuscript, we380

indeed took advantage of the sessionindicator option (see Methods).381

Compatible pre-processing steps – Beyond the expectation that the fMRI data provided to GLMsingle382

are minimally preprocessed (e.g., motion corrected and ideally slice-time corrected), there are several383

other common pre-processing steps that are fully compatible with GLMsingle. First, the pipeline works384

in a straightforward manner with data that have been masked, skull-stripped, or projected into surface385

space (where voxels falling outside of gray matter may have already been excluded). Second, spatial386

changes (such as the registration of fMRI data to an atlas space, or to a subject’s anatomy) do not387

interfere with the operation of GLMsingle. Third, it is acceptable to perform grand intensity scaling to388

normalize units across subjects and/or sessions. However, users should be wary of scaling procedures389

that are applied differently across brain regions or voxels, or across different runs in a session. Finally,390

since GLMsingle requires the design matrix and fMRI data to be temporally synchronized, users may391

need to resample one or both objects in order to match their temporal resolution.392

Incompatible pre-processing steps – Several common fMRI pre-processing steps are unnecessary in393

conjunction with GLMsingle. For example, high-pass filtering of fMRI data is not recommended, as394

GLMsingle automatically includes a set of polynomials to model low-frequency drifts in the baseline395

signal that may occur over the course of each run. Neither is low-pass filtering necessary, since the396

use of well-regularized hemodynamic response functions to model evoked responses automatically397

discounts high-frequency temporal noise. In addition, it is not recommended to project out putative398
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nuisance components of fMRI data (e.g., motion regressors, nuisance regressors derived from white399

matter or cerebrospinal fluid) prior to running GLMsingle, as these pre-filtering approaches pose a risk400

of biasing signal estimates. GLMsingle’s approach is to learn nuisance components from the data and401

to respect the potential overlap of these components with signal components of interest.402

HRF estimation403

HRF selection does not require cross-validation – The components of GLMsingle beyond HRF selection404

each have natural, unregularized states: for GLMdenoise, this entails including no additional nuisance405

regressors, and for ridge regression, this entails performing ordinary least-squares estimation and406

adding no shrinkage bias. The selection of the HRF, however, is different. At least in its current407

formulation, GLMsingle views each of the HRFs from the library as an equally valid HRF, which is408

justifiable given the diversity of HRF shapes across voxels and subjects. Thus, there is no notion of409

regularization inherent to the procedure, and GLMsingle needs only to select the HRF that maximizes410

fit to the data.411

GLMdenoise412

Control over the noise pool – The default behavior of GLMsingle is to automatically select noise413

pool voxels as those that both exceed a simple signal intensity threshold (which excludes out-of-414

brain voxels) and have negligible amounts of BOLD variance related to the experiment (using an415

R2 threshold). If desired, users of GLMsingle can control the noise pool voxels via the brainthresh416

argument (determining which voxels pass the intensity threshold), the brainR2 argument (determining417

which voxels pass the R2 threshold), and the brainexclude argument (allowing for a custom mask of418

voxels to be considered for the noise pool). Users may also limit the number of noise PCs that may be419

added to the GLM (or hard-code the quantity ahead of time) via the pcstop argument.420

Constraints on denoising – Could denoising remove signals of interest? GLMsingle guards against421

improper use of nuisance regressors through cross-validation. If, for any reason, there are valid422

experimental signals being derived from the noise pool, GLMsingle will tend to avoid including these423

regressors since they will likely degrade the cross-validation performance of the model. In fact, even if424

the noise pool is deliberately expanded to include signal-carrying voxels, some improvement in beta425

estimates is still possible, since the GLM estimation can theoretically separate the variance contributions426

from signal and nuisance regressors (Kay et al., 2013).427

Ridge regression428

Scale and offset following regularization – By default, after the application of ridge regression, GLMs-429

ingle applies a post-hoc scale and offset to the single-trial betas obtained for a given voxel to best match430

the response distribution of the unregularized case. The reason for this is that due to shrinkage, the431

betas for voxels with poor signals are shrunken close to 0 – they have a bias to be small in magnitude.432

The simple scale and offset step is intended to undo this bias. Users may omit the scale and offset433

(via appropriate setting of the wantautoscale argument) and/or avoid ridge regression altogether (via434

wantfracridge).435

Scenarios where key hypotheses depend on neighboring trials – Studies seeking to analyze responses436

to trials that are close together in time (e.g., repetition suppression tasks, or preparation-execution437

in motor tasks) pose fundamental challenges with respect to signal estimation, due to the substantial438

overlap in BOLD responses when events occur within seconds of one another. Users should be mindful439

of how they analyze data using GLMsingle in these contexts. Of particular relevance is the fact that440
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ridge regression, through its shrinkage bias, encourages some amount of temporal smoothing of beta441

estimates for nearby trials (in the sense that beta weights from temporally adjacent trials are biased to442

be more similar in magnitude). When the critical hypotheses depend on responses to nearby trials, users443

may consider disabling the ridge regression component of GLMsingle (to avoid any effects of temporal444

smoothing). However, note that there is no guarantee that doing so will improve the accuracy of signal445

estimation – single-trial predictors associated with neighboring events will still be highly correlated,446

and ordinary least-squares (OLS) estimates will exhibit structured, correlated errors as a result. In fact,447

our empirical results suggest that ridge regression reduces unwanted temporal autocorrelation (Figure448

5).449

Ridge regression enables interpretation of GLM R2 – In the case of a single-trial design matrix, the450

quantity and flexibility of the predictors enables a regression model fit using OLS to capture almost all451

the variance in the time-series data from a voxel, even if that voxel contains no actual signal. Thus,452

for all GLMsingle beta versions that do not include ridge regression (b1 - b3), users should avoid453

interpreting the GLM R2 values, as they will be inflated across the brain and not provide a reliable454

index of signal-to-noise ratio (SNR). However, the ridge regression technique (as a direct consequence455

of its goal of optimizing cross-validated generalizability of the single-trial beta estimates) will tend456

to leave unperturbed the voxels that have good SNR and aggressively regularize the voxels with little457

or no SNR. As a consequence, the GLM R2 values produced by ridge regression (b4) will be directly458

indicative of SNR, and therefore can be informative to the user.459

Potential limitations to consider when applying GLMsingle460

GLMsingle relies on cross-validation to determine two key hyperparameters: (i) the number of nuisance461

regressors to use in the GLM as derived by applying PCA to data from the noise pool voxels; and (ii)462

the amount of ridge-regression shrinkage to apply for each voxel. Although the data-driven nature of463

the technique is one of its strengths (since it adapts to the characteristics of each dataset), it is also a464

potential limitation. First, a prerequisite for application of GLMsingle is the existence of at least some465

repeated trials in a given dataset. A dataset consisting only of experimental conditions with a single466

occurrence each cannot be used in conjunction with the cross-validated procedures for determining467

the optimal number of nuisance regressors and the voxel shrinkage fractions. Second, since data are468

invariably noisy, the determination of hyperparameters is subject to noise, and it is not guaranteed that469

hyperparameter estimates will be accurate in all possible data situations. It remains an open question for470

further investigation what the minimum data requirements are for reasonably accurate hyperparameter471

estimation.472

Given the requirement of repeated discrete events, GLMsingle is not applicable to resting-state data,473

since they contain no explicit task structure. Similarly, GLMsingle is not suitable for experiments that474

involve continuous event structures – for example, movie watching, storytelling, dynamic exploration,475

game-playing — unless certain events within the task are coded as discrete, repeated instances. For476

example, the appearance on-screen of a particular character could be treated as a repeated “event” in477

constructing a design matrix. Or, as another example, certain words or parts of speech could be treated478

as “events” within a continuous auditory or linguistic experiment.479

It is important to consider whether denoising comes at the potential cost of introducing bias (Kay,480

2022). Considering each component of GLMsingle, we believe that the risk of bias is minimal for most481

use cases. First, considering the library-of-HRFs approach, we note that the conventional approach482

of using a fixed canonical HRF actually incurs more risk of biasing response estimates than does an483

approach that attempts to flexibly capture variations in HRFs. Nonetheless, we acknowledge that the484

library may not necessarily capture all HRF shapes, and this represents one possible source of bias485
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(note that it is possible to derive a new HRF library tailored to a given dataset of interest). Second,486

considering the GLMdenoise procedure, we note that data-derived nuisance regressors are not blindly487

removed from the time-series data prior to modeling, as this would pose a clear risk of removing488

experimentally-driven signals, thereby leading to bias (Liu et al., 2001). Rather, by including both489

task-related regressors and nuisance regressors in the GLM, the model can appropriately partition490

variance between signal and noise sources. Third, considering ridge regression, we note that shrinkage491

can be viewed as a form of temporal smoothing (as explained above). While this is indeed a source of492

bias, this should be concerning only for investigations where relative responses for nearby trials are493

of specific interest (e.g., studies of repetition suppression). For other investigations, and especially494

for experiments where condition ordering is pseudorandom, it is unlikely that this form of temporal495

regularization and its associated bias would lead to incorrect scientific inferences.496

More generally, it is important to realize that GLMsingle uses limited and principled signal processing497

methods to improve the quality of BOLD signal estimates. It is not meant to – nor is able to – arbitrarily498

remove variability from a set of data, variability that may in fact be of interest to the researcher499

(e.g., trial-to-trial variations in response due to changes in behavioral state). Rather, GLMsingle is500

capable of modifying the data in only relatively constrained ways, for example, by dampening temporal501

instabilities in beta estimates (ridge regression) and by removing variance attributable to nuisance502

regressors (GLMdenoise). As we have demonstrated, applying GLMsingle to empirical data provides503

major substantive benefits with respect to downstream analytical outcomes.504

Online example scripts and tutorials505

To enable easy adoption of GLMsingle, we provide extensive documentation and example scripts for506

common neuroimaging use-cases (glmsingle.org). Publicly available online resources include code507

implementation of GLMsingle in both MATLAB and Python, example scripts and notebooks, technical508

documentation, and answers to frequently asked questions. The GLMsingle pipeline is designed to509

be easy to implement in different neuroimaging pipelines. The example scripts we provide illustrate510

typical GLMsingle usage for both event-related and block designs. These scripts guide the user through511

basic calls to GLMsingle, using representative, small-scale example datasets. In addition, they provide512

helpful visualizations related to inspection and interpretation of intermediate outputs from the pipeline513

(e.g., optimal HRF indices and ridge regression shrinkage fractions). We hope these practical resources514

facilitate the application of GLMsingle to existing and future neuroimaging datasets.515

Conclusion516

Our results suggest that GLMsingle represents a methodological advancement that will help improve517

data quality across different fMRI designs. While improvements in MR hardware (e.g. magnetic field518

strength, RF coil, pulse sequences) and experimental design (e.g. optimized study design and trial519

distributions) may contribute to improved data quality, the benefits of GLMsingle demonstrated in520

this paper make clear that data processing techniques are another critical factor that can profoundly521

impact SNR and overall experimental power. As an analogy, we observe that the rapid (and annual)522

improvement in cell phone cameras has been driven in large part by advances in image analysis523

algorithms. As summarized by an Apple executive, “[while sensor quality has improved], increasingly,524

what makes incredible photos possible aren’t just the sensor and the lens but the chip and the software525

that runs on it” (Wilson, 2018). We suggest that GLMsingle represents a similar advance in signal526

processing for fMRI.527
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SUPPLEMENTARY FIGURES528

Figure 2––figure supplement 1: Inspection of HRF structure across space and time
Here we examine the optimal HRF indices chosen by GLMsingle within a liberal mask of visual cortex (nsdgeneral ROI) from
an example subject (NSD subj01). (A) Maps of R2 values from an ON-OFF GLM, where all conditions are collapsed into
a single predictor (see Methods). ON-OFF R2 values are output by GLMsingle for each of the subject’s 10 experimental
sessions, and plotted here are the average R2 values. Voxels are thresholded at three different levels: R2 < 10 (top row),
reflecting relatively inactive voxels, including those outside of gray matter; R2 >= 10 (middle row), reflecting voxels that are
active in response to experimental stimuli, and R2 >= 50 (bottom row), reflecting voxels that are highly active in response to
experimental stimuli. (B) Chosen HRF indices from the first scan session. In active voxels (middle and bottom rows), optimal
HRF indices exhibit structure in the form of a low-frequency spatial gradient. (C) Stability of chosen HRF indices across
sessions at different ON-OFF R2 thresholds. The optimal HRF indices within the nsdgeneral ROI are extracted for each
session, thresholded at different ON-OFF R2 levels, and correlated between each pair of sessions. The inset indicates the
average r over the lower triangular portion of each matrix. Optimal HRF indices identified using GLMsingle are stable over
different experimental sessions in voxels that are active in response to experimental stimuli.
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MATERIALS AND METHODS529

Description of GLMsingle530

531

Inputs to GLMsingle532

GLMsingle expects that input fMRI data have been preprocessed with motion correction at minimum,533

and ideally slice time correction as well. Additional common pre-processing steps such as compensation534

for spatial distortion, spatial smoothing, or registration to an anatomical space (or atlas space) are535

all compatible with GLMsingle without any complications. Detrending or high-pass filtering the536

time-series data is not necessary, as low-frequency fluctuations are modeled as part of the GLM fitting537

procedure. The input fMRI data can be supplied in either volumetric or surface format. Besides fMRI538

data, the other user-provided input to GLMsingle is an array of design matrices corresponding to each539

run of the time-series data, indicating the sequence of events that occurred during the runs. GLMsingle540

expects that these are matrices with dimensions (time x conditions), where each column corresponds to541

a single condition and consists of 0s except for 1s indicating the onset times for that condition. Further542

details about data formats are provided in the online code repository.543

GLMsingle overview544

GLMsingle consists of three main analysis components. The first component is the use of a library of545

hemodynamic response functions (HRFs) to identify the best-fitting HRF for each voxel. This simple546

approach for compensating for differences in hemodynamic timecourses across voxels (Handwerker547

et al., 2004) has several appealing features: it invariably provides well-regularized HRF estimates, and548

it is efficient and can be executed with reasonable computational cost. The second component is an549

adaptation of GLMdenoise to a single-trial GLM framework. GLMdenoise is a previously introduced550

technique (Kay et al., 2013) in which data-derived nuisance regressors are identified and used to remove551

noise from—and therefore improve the accuracy of—beta estimates. The third analysis component is an552

application of ridge regression (Hoerl and Kennard, 1970) as a method for dampening the noise inflation553

caused by correlated single-trial GLM predictors. To determine the optimal level of regularization for554

each voxel, we make use of a recently developed efficient re-parameterization of ridge regression called555

“fractional ridge regression” (Rokem and Kay, 2020).556

Derivation of the library of HRFs557

The HRF library incorporated into GLMsingle was previously used for signal estimation in analyzing558

the Natural Scenes Dataset. Complete details on the derivation procedure for the HRF library can be559

found in the NSD dataset paper (Allen et al., 2022). In brief, empirically-observed BOLD timecourses560

were subject to principal components analysis, projected onto the unit sphere, and parameterized using a561

path consisting of 20 regularly-spaced points through the area of greatest data density. The timecourses562

corresponding to the resulting set of 20 points were fit using a double-gamma function as implemented563

in SPM’s spm hrf.m, yielding a fixed library of 20 HRFs. This library is the default in GLMsingle,564

and was used for all analyses of the NSD and BOLD5000 datasets described here. In future work, it is565

possible to refine or expand the HRF library (e.g., by deriving it from a larger pool of subjects, or by566

restricting estimation to individual subjects).567

Cross-validation framework for single-trial GLM568

The GLMdenoise and ridge regression analysis components of GLMsingle both require tuning of569

hyperparameters (specifically, the number of nuisance regressors to include in GLM fitting and the570

regularization level to use for each voxel). To determine the optimal setting of hyperparameters, we571

use a cross-validation approach in which out-of-sample predictions are generated for single-trial beta572

estimates. Performing cross-validation on single-trial betas, as opposed to time-series data, simplifies573
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and reduces the computational requirements of the cross-validation procedure. Note that because of574

cross-validation, although GLMsingle produces estimates of responses to single trials, it does require575

the existence of and information regarding repeated trials (that is, trials for which the experimental576

manipulation is the same and expected to produce similar brain responses). This requirement is fairly577

minimal, as most fMRI experiments are designed in this manner.578

The first step of the cross-validation procedure is to analyze all of the available data using a generic579

GLM. In the case of GLMdenoise, this amounts to the inclusion of zero nuisance regressors; in the case580

of ridge regression, this amounts to the use of a shrinkage fraction of 1, which corresponds to ordinary581

least-squares regression. In both cases, the generic analysis produces a full set of unregularized single-582

trial betas (e.g., in one NSD session, there are 750 single-trial betas distributed across 12 runs, and in583

one BOLD5000 session, there are either 370 or 333 single-trial betas distributed across either 10 or 9584

runs). The second step of the procedure is to perform a grid search over values of the hyperparameter585

(e.g., number of GLMdenoise nuisance regressors; ridge regression shrinkage fraction). For each586

value, we assess how well the resulting beta estimates generalize to left-out runs. By default, for all587

cross-validation procedures, GLMsingle implements the following leave-one-run-out routine: (1) one588

run is held out as the validation run, and experimental conditions that occur in both the training runs589

and the validation run are identified; (2) squared errors between the regularized beta estimates from590

the training runs and the unregularized beta estimates from the validation run are computed; (3) this591

procedure is repeated iteratively, with each run serving as the validation run, and errors are summed592

across iterations.593

GLMsingle algorithm594

Having described the essential aspects of the estimation framework above, we now turn to the steps in595

the GLMsingle algorithm. GLMsingle involves fitting several different GLM variants. Each variant596

includes polynomial regressors to characterize the baseline signal level: for each run, we include597

polynomials of degrees 0 through round(L/2) where L is the duration in minutes of the run.598

1. Fit a simple ON-OFF GLM. In this model, all trials are treated as instances of a single experi-599

mental condition, and a canonical HRF is used. Thus, there is a single “ON-OFF” predictor that600

attempts to capture signals driven by the experiment. The utility of this simple model is to pro-601

vide variance explained (R2) values that help indicate which voxels carry experimentally-driven602

signals.603

2. Fit a baseline single-trial GLM. In this model, each stimulus trial is modeled separately using a604

canonical HRF. This model provides a useful baseline that can be used for comparison against605

models that incorporate more advanced features (as described below).606

3. Identify an HRF for each voxel. We fit the data multiple times with a single-trial GLM, each607

time using a different HRF from the library of HRFs. For each voxel, we identify which HRF608

provides the best fit to the data (highest variance explained), and inherit the single-trial betas609

associated with that HRF. Note that the final model for each voxel involves a single chosen HRF610

from the library.611

4. Use GLMdenoise to determine nuisance regressors to include in the model. We define a pool of612

noise voxels (brain voxels that have low ON-OFF R2, according to an automatically determined613

threshold) and then perform principal components analysis on the time-series data associated614

with these voxels (separately for each run). The top principal components (each of which is a615

timecourse) are added one at a time to the GLM until cross-validation performance is maximized616
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on-average across voxels. The inclusion of these nuisance regressors is intended to capture617

diverse sources of noise that may be contributing to the time-series data in each voxel.618

5. Use fractional ridge regression to regularize single-trial betas. With the nuisance regressors619

determined, we use fractional ridge regression to determine the final estimated single-trial betas.620

This is done by systematically evaluating different shrinkage fractions. The shrinkage fraction621

for a given voxel is simply the ratio between the vector length of the set of betas estimated622

by ridge regression and the vector length of the set of betas returned by ordinary least-squares623

estimation, and ranges from 0 (maximal regularization) to 1 (no regularization). For each voxel,624

in the context of a GLM that incorporates the specific HRF chosen for that voxel as well as the625

identified nuisance regressors, cross-validation is used to select the optimal shrinkage fraction.626

The default behavior of GLMsingle is to return beta weights in units of percent signal change by627

dividing by the mean signal intensity observed at each voxel and multiplying by 100. To preserve628

the interpretability of GLM betas as percent signal change even after applying shrinkage via ridge629

regression, we apply a post-hoc scaling and offset on the betas obtained for each given voxel in order to630

match, in a least-squares sense, the unregularized betas (shrinkage fraction equal to 1) obtained for that631

voxel.632

To give a sense of the computational requirements of GLMsingle, we report here results for an example633

scenario. We ran the MATLAB version of GLMsingle with default parameters on the first NSD scan634

session for subj01 (1.8-mm standard-resolution version of the data). The scan session involved 750635

trials and a data dimensionality of (81 voxels × 104 voxels × 83 voxels) = 699,192 voxels and (12636

runs × 226 volumes) = 2,712 time points. The code was run on an 32-core Intel Xeon E5-2670 2.60637

GHz Linux workstation with 128 GB of RAM and MATLAB 9.7 (R2019b). The data were loaded in638

single-precision format, resulting in a base memory usage of 8.4 GB of RAM (the data alone occupied639

7.6 GB). Code execution (including figure generation and saving results to disk) took 4.8 hours (average640

of 2 trials). The maximum and mean memory usage over the course of code execution was 38.0 GB641

and 18.5 GB of RAM, respectively.642

GLMsingle outputs643

The default output from GLMsingle includes the different GLM beta estimates that are progressively644

obtained in the course of the algorithm (e.g. the single-trial betas with voxel-wise tailored HRFs; the645

single-trial betas incorporating GLMdenoise, etc.). The pipeline also outputs several metrics of interest,646

such as a map of the HRF indices chosen for different voxels, the R2 values from the ON-OFF GLM, a647

map of the voxels identified as “noise”, a summary plot of the cross-validation procedure used to select648

the number of noise regressors, and a map of the amount of ridge regression shrinkage applied at each649

voxel. These outputs are displayed in a set of convenient figures.650

Flexibility of GLMsingle651

Although GLMsingle provides default settings for the parameters that control its operation, the toolbox652

is flexible and allows the user to adjust the parameters if desired. Modifying the parameters allows the653

user to achieve a range of different behaviors, such as expanding the HRF library to include additional654

candidate HRFs; changing the maximum number of nuisance regressors tested during GLMdenoise655

(default is 10); modifying the range of shrinkage fractions evaluated for ridge regression (default is656

0.05 to 1 in increments of 0.05); and running different flavors of GLM models that omit HRF fitting,657

GLMdenoise, and/or ridge regression. For complete documentation, please refer to the GLMsingle658

function descriptions and example scripts available at glmsingle.org.659
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Application of GLMsingle to NSD and BOLD5000660

661

In order to assess the efficacy of GLMsingle for large-scale fMRI datasets, we tested GLMsingle on662

the NSD (Allen et al., 2022) and BOLD5000 (Chang et al., 2019) datasets. Both datasets involve663

presentation of many thousands of natural images. NSD and BOLD5000 share an overlapping subset of664

stimuli from the Microsoft Common Objects in Context (COCO) database (Lin et al., 2014), enabling665

direct comparison between the brain responses observed in the two datasets. However, there are a666

number of differences between the datasets: the two datasets were collected at different field strengths,667

with different event timings, and at different spatial and temporal resolution. In addition, while NSD668

contains many repeated stimuli within each scan session, BOLD5000 contains very few. As such,669

processing BOLD5000 requires grouping of input data across scan sessions to facilitate the cross-670

validation procedures used in GLMsingle. This challenging processing scheme with respect to image671

repetitions provides a strong test of the robustness of the GLMsingle technique.672

NSD Dataset673

For complete details of the NSD study, including scanning parameters, stimulus presentation, and674

experimental setup, refer to the Methods section of the corresponding dataset paper (Allen et al., 2022).675

In brief, a total of 8 subjects participated in the NSD experiment, each completing between 30-40676

functional scanning sessions. For the full experiment, 10,000 distinct images from the Microsoft COCO677

dataset were designed to be presented 3 times each over the course of 40 sessions. For computational678

convenience and to make comparisons across subjects easier, only the first 10 NSD sessions from679

subjects 1–4 are used for the analyses contained in this manuscript. Functional data were collected at680

7T, with 1.8-mm isotropic resolution, and with a TR of 1.6 s. Each trial lasted 4 s, and consisted of the681

presentation of an image for 3 s, followed by a 1-s gap. A total of 12 NSD runs were collected in one682

session, containing either 62 or 63 stimulus trials each, for a total of 750 trials per session.683

The fMRI data from NSD were pre-processed by performing one temporal resampling to correct684

for slice time differences and one spatial resampling to correct for head motion within and across685

scan sessions, EPI distortion, and gradient nonlinearities. This procedure yielded volumetric fMRI686

time-series data in subject-native space for each NSD subject. In this paper, we analyze the standard-687

resolution pre-processed data from NSD which has 1.8-mm spatial resolution and 1.333-s temporal688

resolution (the time-series data are upsampled during pre-processing).689

BOLD5000 Dataset690

For complete details of the BOLD5000 study and methodology, refer to the corresponding dataset paper691

(Chang et al., 2019). A total of 4 subjects participated in the BOLD5000 dataset (CSI1-4). A full dataset692

contained 15 functional scanning sessions; subject CSI4 completed only 9 sessions before withdrawing693

from the study. BOLD5000 involved presentation of scene images from the Scene UNderstanding694

(SUN) (Xiao et al., 2010), COCO (Lin et al., 2014), and ImageNet (Deng et al., 2009) datasets. A total695

of 5,254 images, of which 4,916 images were unique, were used as the experimental stimuli. 112 of the696

4,916 distinct images were shown four times and one image was shown three times to each subject.697

Functional data were collected at 3T, with 2-mm isotropic resolution, and with a TR of 2 s. Each trial698

lasted 10 s, and consisted of the presentation of an image for 1 s, followed by a 9-s gap. A total of699

either 9 or 10 runs were collected in one session, containing 37 stimulus trials each, for a total of either700

333 or 370 trials per session.701

The fMRI data from BOLD5000 were preprocessed using fMRIPrep (Esteban et al., 2019). Data pre-702

processing included motion correction, distortion correction, and co-registration to anatomy (or further703
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details, please refer to the BOLD5000 dataset paper (Chang et al., 2019). This yielded volumetric fMRI704

time-series data in subject-native space for each BOLD5000 subject.705

Because GLMsingle requires condition repetitions in order to perform internal cross-validation proce-706

dures, and because BOLD5000 contains a limited number of within-session repetitions, we concatenated707

data from groups of 5 sessions together before processing using GLMsingle. To account for differences708

in BOLD signal intensity across different sessions, we performed a global rescaling operation to the709

data within each session to roughly equate the time-series mean and variance across the 5 sessions710

comprising one batch of data. Specifically, we first computed the global mean fMRI volume across all711

5 sessions, and then, for each session, computed a linear fit between the mean volume from a single712

session and the global mean volume. This yielded a multiplicative scaling factor applied to each session713

in order to roughly equate signal intensities across sessions.714

Applying GLMsingle to NSD and BOLD5000715

We used GLMsingle to estimate single-trial BOLD responses in the NSD and BOLD5000 datasets.716

For NSD, GLMsingle was applied independently to each scan session. For BOLD5000, groups of717

5 sessions were processed together, following the rescaling procedure described above. The default718

GLMsingle parameters were used for processing both NSD and BOLD5000, except that we evaluated719

up to 12 nuisance regressors in GLMdenoise (default: 10).720

Four different versions of single-trial GLM betas were computed and saved. The first beta version (b1,721

AssumeHRF) is the result of Step 2 of the GLMsingle algorithm, and reflects the use of a canonical722

HRF with no extra optimizations. We treat these generic GLM outputs as a baseline against which723

beta versions are compared; estimating BOLD responses using a canonical HRF and ordinary least724

squares (OLS) regression reflects an approach that has been commonly applied in the field of human725

neuroimaging. The second beta version (b2, FitHRF) is the result of Step 3, and reflects the result of726

voxel-wise HRF estimation. The third beta version (b3, FitHRF + GLMdenoise) is the result of Step 4,727

incorporating GLMdenoise, and the final beta version (b4, FitHRF + GLMdenoise + RR) arises from728

Step 5, and reflects the additional use of ridge regression. For comparisons between GLMsingle and729

Least-Squares Separate (LSS) signal estimation (Figure 3), 4 auxiliary beta versions were computed.730

LSS betas were compared to those estimated using fractional ridge regression in the scenario of using731

the canonical HRF (AssumeHRF + LSS vs. AssumeHRF + RR) and in the scenario of performing732

HRF optimization using the GLMsingle library (FitHRF + LSS vs. FitHRF + RR). Our validation733

analyses involve comparing optimized GLMsingle betas (b2, b3, b4) against those estimated using the734

baseline GLM approach (b1), and performing an 8-way comparison incorporating both b1-b4 and the735

4 auxiliary beta versions used for comparisons with LSS. Prior to all analyses, the responses of each736

voxel were z-scored within each experimental session in order to eliminate potential nonstationarities737

arising over time, and to equalize units across voxels.738

Applying GLMsingle to the StudyForrest music-listening data739

As a further test of the general applicability of GLMsingle, we repeated the above procedures using data740

from the music-listening component of StudyForrest (Hanke et al., 2015). This dataset measures brain741

responses as subjects listen to 25 total musical clips from 5 genres, with 8 repetitions per condition742

per subject. We analyze the group of 16 subjects from this dataset for whom all functional data files743

were available on the online data repository. Each stimulus was a 6-s excerpt from the middle of a744

distinct musical piece, for each of five different musical genres: Ambient, Country, Heavy Metal,745

50s Rock’n’Roll, and Symphonic. All trials had 4, 6, or 8 s of delay (no audio, white fixation cross)746

after each musical stimulus, with the order of delays randomized within a run. The 25 stimuli were747

identical across runs and presented exactly once per run. Each subject completed 1 session of the748

experiment, which consisted of 8 runs. BOLD data were distortion-corrected and anatomically aligned749

23



to a per-subject BOLD template image prior to analysis (see Hanke et al., 2015 for acquisition and pre-750

processing details). GLMsingle was applied to the data from each subject using default hyperparameter751

settings.752

Assessing the impact of GLMsingle753

754

Analysis of optimal HRF indices755

We sought to analyze the structure of HRF indices across visually-responsive cortex of a representative756

subject (NSD subj01). To identify voxels that were responsive to experimental stimuli, we examined757

the R2 output from the ON-OFF GLM that is computed in the course of deriving signal estimates758

for each session – this value reflects the variance explained in the observed BOLD time series by a759

single predictor containing all experimental events coded jointly. To derive a single metric of signal760

quality, we computed the mean ON-OFF R2 value for all voxels within the nsdgeneral mask. These761

values are plotted across three different threshold levels in Figure 2––figure supplement 1a. Figure762

2––figure supplement 1b shows the optimal HRF indices derived from the first scan session from NSD763

subj01. To estimate the consistency of optimal HRF indices in this subject, we identified the group of764

nsdgeneral ROI voxels corresponding to each threshold level (rows, Figure 2––figure supplement 1)765

and computed the Pearson correlation between the pattern of HRF indices identified for each of the 10766

sessions that were analyzed (Figure 2––figure supplement 1c).767

Analysis of voxel reliability768

Computing test-retest reliability – To compute reliability in NSD and BOLD5000, we repeated the769

following procedure for each beta version. We first extracted the betas from trials that correspond to770

repetitions of the same stimuli (NSD: 3 instances per stimulus; BOLD5000: 4 instances for subjects771

CSI1-3, and 3 for CSI4). For each voxel, this yielded a matrix of dimensions (repetitions x images). To772

compute reliability, Pearson correlation was computed between the average voxel response profiles773

for each possible unique split-half of the data. Therefore, in the case of 4 available repetitions, the774

reliability for a voxel was the average of 3 correlation values, with image repetitions grouped as775

follows: corr(mean(1, 2) vs. mean(3, 4)); corr(mean(1, 3) vs. mean(2, 4)); corr(mean(1, 4) vs.776

mean(2, 3)). In the case of 3 repetitions, the reliability was the average of: corr(mean(1, 2) vs.777

(3)); corr(mean(1, 3) vs. (2)); corr(mean(2, 3) vs. (1)). In the StudyForrest data, the reliability of778

response estimates in each voxel was computed using the following test-retest reliability procedure:779

the available repetitions (8) were divided into all possible unique split-halves (70 possibilities); for780

each split, the 25-valued response profiles for each group of 4 repetitions were averaged; the Pearson781

correlation between the response profiles from the two groups was computed; and correlation values782

were averaged across the 70 possible splits, yielding a single reliability value per voxel. Although783

Pearson correlation makes certain distributional assumptions, we suspect that the basic trends in our784

results would be unchanged were we to use other metrics for quantifying reliability (e.g. Spearman785

rank correlation).786

ROI analysis within visual cortex – To summarize reliability outcomes for each beta version, we used787

a liberal mask containing voxels in visual cortex. Specifically, we used the nsdgeneral ROI from the788

NSD study, which was manually drawn on fsaverage to cover voxels responsive to the NSD experiment789

in the posterior aspect of cortex (Allen et al., 2022). To achieve a common reference ROI in volumetric790

space for each subject, we first transformed the nsdgeneral ROI to MNI space, and then mapped this791

ROI from MNI space to the space of each subject in NSD and each subject in BOLD5000.792
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Composite voxel reliability scores – In comparing different beta versions output by GLMsingle, we793

sought to understand whether the optimizations tended to affect all voxels equally, or whether the impact794

was mediated by voxel reliability. We therefore measured how different beta versions differed in our795

key outcome metrics (e.g. mean voxel reliability) as a function of the reliability of included voxels. To796

achieve fair comparisons, we ensured that the same groups of voxels were compared at each reliability797

threshold across beta versions. We achieved this by computing composite voxel reliability scores: the798

mean reliability value in each voxel over beta versions b1-b4. We then subselected groups of voxels799

by applying varying threshold levels to the composite reliability scores. For analyses incorporating800

the 4 auxiliary beta versions, composite reliability scores were computed as the mean across all 8 beta801

versions.802

Effect of reliability on beta quality – To quantify the performance of different beta versions as a function803

of voxel reliability, composite scores were thresholded at increasing values (from Pearson r = −0.2 to804

0.6, in steps of 0.05) to determine the included voxels at each reliability level. At each threshold, we805

computed the difference between the reliability achieved by a given beta version and the composite806

reliability (i.e. the average across beta versions). This difference was averaged across voxels, producing807

traces that reflect the relative quality of data from each beta version compared to the group average,808

across different levels of voxel reliability (Figure 2b).809

Out-of-sample reliability analysis – GLMsingle makes use of all of the data that it is presented with, via a810

series of internal cross-validation operations. As such, there is some degree of dependence between runs.811

Note that this does not pose a significant “circularity” problem with respect to downstream analyses,812

as GLMsingle has no access to any scientific hypotheses and it is unlikely that GLMsingle could bias813

the single-trial beta estimates in favor of one hypothesis over another. However, when the primary814

analysis outcome is to establish that responses to the same condition are reliable across trials (e.g.815

Figures 2, 3), then that outcome is exactly what the GLMsingle algorithm is trying to achieve during816

hyperparameter selection. For a stringent quantification of reliability, we performed additional analyses817

in which quantification of reliability is restricted to responses estimated in completely independent818

calls to GLMsingle (Figure 3b). Specifically, we identify all instances where a condition is repeated819

within the same partition of data processed by GLMsingle (partition size: 1 session for NSD, 5 sessions820

for BOLD5000), and remove these instances from the calculation of reliability. The results show that821

even with strict separation, the patterns of results are essentially the same.822

Comparison to LSS - Least-Squares Separate (LSS) is a popular technique for robust signal estimation823

in rapid event-related designs (Mumford et al., 2012, 2014; Abdulrahman and Henson, 2016). The LSS824

procedure fits a separate GLM for each stimulus, where the trial of interest is modeled as one regressor,825

and all other (non-target) trials are collapsed into a second regressor. An implementation of LSS is826

included in the GLMsingle toolbox.827

Analyses of reliability in StudyForrest - Figure 4 shows the results of analyses that seek to validate828

the efficacy of GLMsingle using data from the music-listening task in StudyForrest. We examine829

differences in the test-retest reliability (Pearson r) of active voxels between b1 and b4 in Figure 4a.830

Active voxels are identified using a thresholding procedure applied to the ON-OFF R2 values, and831

only voxels that are active in response to experimental stimuli (ON-OFF R2 > 5) are plotted. To832

compute relative differences in mean reliability between beta versions b1 - b4 (Figure 4c-d), we used833

an identical procedure to that used for NSD and BOLD5000 (Figure 2b). Traces in Figure 4c indicate834

the mean (+/- SEM) across the 16 available subjects, whose data are plotted individually in Figure 4d.835

Analysis of temporal autocorrelation836

A commonly used strategy to increase fMRI statistical power is to increase the number of experimental837
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trials by allowing them to be presented close together in time. However, given the sluggish nature838

of BOLD responses and the existence of temporal noise correlations, this strategy tends to yield839

correlations in GLM beta estimates for nearby trials (Mumford et al., 2014; Olszowy et al., 2019;840

Woolrich et al., 2001; Kumar and Feng, 2014). In general, we expect that such correlations are largely841

artifactual and unwanted. Given that GLMsingle attempts to reduce noise levels, we sought to explore842

whether GLMsingle has a noticeable impact on temporal autocorrelation.843

Average temporal autocorrelation by dataset – For each beta version, the following procedure was844

used to assess the degree of temporal autocorrelation in the data. For visual cortex data from each845

experimental session (nsdgeneral ROI, Allen et al., 2022), we computed the Pearson correlation846

between the spatial response patterns from each pair of trials in the session, yielding a representational847

similarity matrix (RSM) where the temporal ordering of trials is preserved. This process was repeated848

for all sessions, yielding a total of 10 RSMs for each NSD subject and 15 RSMs for each BOLD5000849

subject (9 for subject CSI4, who did not complete the full study). To assess autocorrelation in the data –850

relationships arising due to temporal proximity of different trials – we then took the average of all RSMs851

within each dataset. Note that in both NSD and BOLD5000, the order of stimulus presentation was852

essentially unstructured (pseudorandom). Thus, in terms of signal content (stimulus-driven responses853

in the absence of noise), we expect that trials should be uncorrelated, on average, and that any non-zero854

correlations are indicative of the effects of noise that persist following GLM fitting. The extent to which855

non-zero r values extend forward in time from the RSM diagonal indicates the timescale of the noise856

effects in a given beta version.857

Computing the autocorrelation function – For quantitative summary, we computed a temporal autocor-858

relation function from the dataset-averaged RSM for each beta version (Figure 5). For a given RSM,859

we computed the average similarity value between all trials k and k + x, where x varies from 1 to860

n, where n is the dimensionality of the RSM. Intuitively, at x = 1, autocorr(x) equals the average861

of all values falling 1 index below the diagonal of the RSM; at x = 5, it equals the average of all862

values falling 5 indices below the diagonal, etc. This procedure outputs a succinct summary of the863

average correlation in neural response between all pairs of time-points within a session, allowing864

for easy comparison between the beta versions in a single plot (Figure 5, right-most column). The865

theoretical desired outcome is autocorr(x) = 0; thus, beta versions whose autocorrelation functions866

are “flatter” (e.g. less area under the curve) presumably contain more accurate GLM estimates. Because867

the temporal interval between trials differed between NSD (4 s) and BOLD5000 (10 s), we express the868

autocorrelation functions in terms of seconds post-stimulus for plotting, to allow for straightforward869

comparison between the datasets.870

Effect of reliability on temporal autocorrelation – The effect of temporal autocorrelation in GLM betas871

may vary depending on the relative responsiveness of different voxels to the experimental stimuli.872

As such, we repeated the autocorrelation analyses several times, varying the expanse of voxels that873

were included. We again relied on the aggregate reliability scores (computed previously) as a measure874

of voxel quality, which are the average voxel reliabilities taken across all the beta versions under875

consideration. This avoids biasing the voxel selection procedure. In Figure 5, we compare temporal876

autocorrelation trends arising from analysis of voxels at two different reliability thresholds (r = 0 and877

r = 0.3).878

Analysis of between-subject representational similarity879

Another way to assess the quality of beta estimates is to examine the similarity of BOLD response880

estimates across subjects. The underlying logic is that noise is expected to be stochastic in the881

data acquisition for each subject, and thus, should on average increase the dissimilarities of BOLD882

response estimates across subjects. A method that accurately removes noise would then be expected883
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to increase the similarity of BOLD responses across subjects. To quantify response similarity, we884

use representational similarity analysis (RSA), a commonly used approach in systems and cognitive885

neuroscience (Kriegeskorte et al., 2008; Nili et al., 2014; Diedrichsen and Kriegeskorte, 2017; Kaniuth886

and Hebart, 2021).887

Between-subject RSA correlations – For comparisons between subjects across NSD and BOLD5000,888

we identified a subset of 241 images that overlapped between BOLD5000 and the portion of NSD being889

analyzed for this manuscript. Once overlapping images were identified, the corresponding GLM betas890

for each version were isolated, and averaged over all available repetitions within subject (3 for NSD, 4891

for BOLD5000). Then, we used Pearson dissimilarity (1 − r) to compute RDMs over the averaged892

betas for each subject, in each dataset. To assess the impact of voxel reliability on cross-subject893

RDM correlations, this procedure was repeated across a range of voxel reliability inclusion levels894

r = [−1, 0, 0.05, 0.1, 0.15, 0.2, 0.25], using the beta version-averaged aggregate reliability scores895

computed previously. Voxels inside the nsdgeneral ROI were used in this analysis. Once RDMs896

were computed for each subject, using responses from the sets of stimuli detailed above, within- and897

across-dataset RSA correlations were computed using the vectorized lower-triangular portions of each898

RDM (Figure 6b).899

Analysis of MVPA decoding accuracy900

Multivoxel pattern analysis (MVPA) investigates the information contained in distributed patterns of901

neural activity to infer the functional role of brain areas and networks. Pattern decoding tools like902

MVPA have been deployed extensively in systems and cognitive neuroscience to study the function of903

neural ROIs (Haxby et al., 2001; Norman et al., 2006; Naselaris et al., 2011; Charest et al., 2018). To904

further assess the practical impact of GLMsingle, we tested the efficacy of MVPA decoding using the905

different beta versions output by the toolbox.906

Image-level decoding paradigm – We implemented a challenging “one-vs-many” decoding task to907

assess whether data quality was sufficiently high to characterize the distinct neural patterns associated908

with individual naturalistic images in the NSD and BOLD5000 datasets. Within each dataset, we909

identified the set of images that all subjects viewed at least 3 times, and then performed multiclass910

linear support vector machine (SVM) decoding via leave-one-repetition-out cross-validation. In NSD,911

a total of 82 classes were used, representing the images that overlapped across the 10 available sessions912

from subj01-04. In BOLD5000, the subset of these 82 stimuli overlapping between all subjects of both913

datasets were used (a total of 20 classes). We then assessed the degree to which relative differences in914

decoding accuracy between b1 and b4 changed depending on the reliability of the included voxels. We915

conducted the above decoding procedure iteratively, each time increasing the voxel reliability inclusion916

threshold for data within the nsdgeneral ROI (range r = 0 to 0.35). BOLD5000 subject CSI4, having917

completed only 9 of 15 experimental sessions, was excluded from MVPA procedures due to insufficient918

stimulus repetitions.919

Multidimensional scaling – To gain insight into the representational changes due to GLMsingle that920

may support improvements in MVPA decoding, we performed multidimensional scaling (MDS) over921

repetition-averaged NSD betas from a baseline GLM (b1) and the final betas from GLMsingle (b4),922

within the nsdgeneral ROI of an example subject (NSD subj01). In Figure 7b, we compare the 2-923

dimensional MDS embeddings between these beta versions, coloring COCO stimuli based on whether924

they contain animate or inanimate objects according to the image annotations.925
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