

31 **Highlights**

32 • Color-biased regions in the ventral visual pathway are food-selective.
33 • Two ventral food streams begin in V4 and diverge medially and laterally of the FFA.
34 • Food-selective streams use both visual form and color to represent food.

35

36 **In Brief**

37 What is the role of color-biased regions in the ventral visual pathway? Pennock et al. redefine our
38 understanding of color-biased regions by showing that they respond to both food and color. Their findings
39 suggest that color contributes to the visual representation of food.

40

41 **SUMMARY**

42 Color-biased regions have been found between face- and place-selective areas in the ventral visual pathway. To
43 investigate the function of the color-biased regions in a pathway responsible for object recognition, we analyzed
44 the Natural Scenes Dataset (NSD), a large 7T fMRI dataset from 8 participants who viewed up to 30,000 trials of
45 images of colored natural scenes over more than 30 scanning sessions. In a whole-brain analysis, we correlated
46 the average color saturation of the images with voxel responses, revealing color-biased regions that diverge into
47 two streams, beginning in V4 and extending medially and laterally relative to the fusiform face area in both
48 hemispheres. We drew regions of interest (ROIs) for the two streams and found that the images for each ROI
49 that evoked the largest responses had certain characteristics: they contained food, circular objects, warmer hues,
50 and had higher color saturation. Further analyses showed that food images were the strongest predictor of
51 activity in these regions, implying the existence of medial and lateral ventral food streams (VFSs). We found that
52 color also contributed independently to voxel responses, suggesting that the medial and lateral VFSs use both
53 color and form to represent food. Our findings illustrate how high-resolution datasets such as the NSD can be
54 used to disentangle the multifaceted contributions of many visual features to the neural representations of
55 natural scenes.

56 **INTRODUCTION**

57 The ventral visual pathway is specialized for the perception and recognition of visual objects, e.g. faces^{1,2},
58 places^{3,4}, bodies^{5,6}, and words^{7,8}. Color is an important feature of objects^{9,10}, and color biased regions have been
59 found in the ventral visual pathway anterior to V4¹¹⁻¹⁹. But are there supraordinate object specialisms associated
60 with the color biases observed in these regions?

61 The processing of color information begins in the retina with a comparison of the activities of the three
62 classes of cone that are sensitive to short (S), medium (M) and long (L) wavelengths of light. Subsequently,
63 different classes of retinal ganglion cells send luminance and color information to the lateral geniculate nucleus
64 which projects to V1²⁰. In the early visual cortices such as V1, V2, V3 and V4v, responsiveness to hue and
65 saturation as color attributes has been studied using functional magnetic resonance imaging (fMRI)^{16,21-28}. V1 to
66 V3 respond to color among other features^{29,30}, while V4 and the ventral occipital region (VO; anterior to V4) are
67 thought to be specialized for processing color³¹. Voxel activity patterns in V4, VO1 and VO2 can strongly
68 distinguish chromatic from achromatic stimuli³², and clustering and representational similarity analyses have
69 provided evidence for a representation of color in these areas³²⁻³⁴. More cognitive color tasks are also associated
70 with V4, such as mental imagery for color²³ and color memory²⁴. As color information progresses through visual
71 cortical regions, its representation likely becomes transformed to aid cognitive tasks such as object
72 perception^{12,14,35,36}, and color representations in these regions are known to be modulated by other object
73 features such as shape and animacy³⁶. In particular, Rosenthal et al.³⁶ found that the color tuning properties of
74 neurons in macaque IT correlated with the warm colors typical of salient objects³⁷.

75 Most studies of color perception present simple stimuli such as color patches, rather than color as it
76 occurs in natural scenes. However, in daily life our visual system encounters colors as part of conjunctions of
77 object features integrated in context within natural scenes. With simple stimuli, color is dissociated from its
78 regular context and meaning: Such stimuli have basic spatial form, may be selected from a restricted color gamut,
79 and are typically presented on a uniform surround. Visual responses to carefully controlled colored stimuli might
80 be quite different from responses to colors in their complex, naturalistic settings. For example, for colored
81 patches, decoding accuracy drops progressively from V1 to V4^{22,23}, while for colored object categories decoding
82 accuracy increases through the same areas³⁵. To understand how the brain represents color in its usual contexts,
83 and to understand the functions of the color biased regions in the ventral visual pathway, it is therefore crucial
84 to use complex stimuli containing a variety of object categories such as natural scenes¹¹⁻¹³.

85 We aimed to characterize the neural representation of color and its association with the representation
86 of objects and other image properties as they are encountered in natural scenes. The Natural Scenes Dataset
87 (NSD)³⁸ provides a unique opportunity for this endeavor. It is an unprecedented large-scale fMRI dataset in which

88 each participant viewed thousands of colored (and some greyscale) natural scenes over 30 to 40 sessions in a 7T
89 scanner. This dataset therefore has impressively high signal-to-noise and statistical power³⁹. However, images of
90 natural scenes are high-dimensional and visual features can correlate with one another strongly, making it
91 challenging to accurately disentangle contributions of different features. Nonetheless, with its huge number of
92 well-characterized and segmented stimulus images, the NSD is one of the best datasets currently available to
93 uncover the neural representations underlying perception of natural scenes^{38,40}.

94 Our analyses revealed two streams in the ventral visual pathway that exhibit responses to color in the
95 NSD images. We found that both streams were primarily responsive to food objects, implying that color is a key
96 part of the neural representation of food in these ventral visual areas. Our findings are bolstered by two recent
97 papers also finding strong evidence for food selectivity in these regions of the ventral visual pathway using
98 distinct data-driven approaches with the NSD^{41,42}, and an additional fMRI study presenting isolated food
99 images⁴².

100 **RESULTS**

101 **Identifying color-biased regions in the ventral visual pathway**

102 To isolate responses to chromatic compared to achromatic information in the NSD images we conducted
103 a whole-brain correlation between the average color saturation of each NSD image and the BOLD signal change
104 observed at each voxel (Figure 1A). Since saturation and luminance (Figures 2A and S1A) are correlated in natural
105 scenes⁴³, we used the mean luminance of each image as a covariate. The correlations were Bonferroni corrected
106 for each participant based on the number of voxels in participant-native space. We also conducted an analysis
107 to measure split-half reliability, where voxel-by-voxel correlation coefficients for average saturation and voxel
108 responses were correlated over the whole brain for odd and even images.

109 For all participants we found areas showing positive correlations between saturation and voxel
110 responses in the ventral visual pathway (Figure 1), with strong correlations in V4 and diverging into two distinct
111 streams which we divided into medial and lateral regions of interest (ROIs). The medial ROI is located between
112 face and place areas (fLoc-defined areas are shown in Figure 1A and the ROI boundaries in Figure 1B; see fLoc-
113 experiment by Allen et al.³⁸), and is roughly in agreement with the location of the color-biased regions identified
114 by Lafer-Sousa et al.¹¹ (Figure 1B). We conducted a whole brain split-half reliability analysis on the correlation
115 between voxel responses and saturation, which showed high reliability, with $r = 0.82$ (range = 0.71 – 0.89 for
116 different participants).

117 For all 8 participants there were also areas that showed negative correlations between saturation and
118 voxel responses, specifically the PPA and the region located between the lateral and medial ROIs that showed
119 positive correlations (Figure 1A). For seven participants there was an area of negative correlation lateral of the

120 lateral ROI, roughly corresponding to area MT. For six participants (and one further participant in the left
121 hemisphere only) there was a positive correlation with saturation in prefrontal regions (Figure 1A), reminiscent
122 of other findings on color processing in the prefrontal cortex⁴⁴⁻⁴⁶. Several participants also showed significant
123 correlations between saturation and voxel responses in earlier visual areas V1-V3.

124 [Figure 1 about here]

125 **Montages of images producing the highest and lowest voxel responses**

126 Our correlation analysis between BOLD and saturation revealed areas responsive to color in the ventral
127 visual pathway for all participants. To better understand stimulus representation in these areas, we created
128 montages of the images that evoked the highest and lowest voxel responses for these areas, split into four ROIs
129 (medial and lateral, left and right hemispheres; Figure 2B for participant 1 and Figure S1B for the other
130 participants).

131 By inspecting the montages, we identified multiple image properties present in images evoking the
132 highest responses but not in images evoking the lowest responses. These properties were food such as bananas,
133 donuts, and pizzas; circular objects such as plates, clocks and stop signs; warm colors such as reds and oranges;
134 and luminance entropy (how well or poorly luminance values in one location can predict the values in nearby
135 locations^{47,48}). These image characteristics were consistent across all participants, the medial and lateral ROIs,
136 and both hemispheres, suggesting that the four ROIs all process a similar type of visual information.

137 [Figure 2 about here]

138 **No large differences in images statistics between participants**

139 In order to allow a quantitative analysis of voxel responses to the image properties that appeared to
140 distinguish images that evoked the higher and lower voxel responses in our ROIs we calculated an image statistic
141 for each image property. We also included mean luminance as an image statistic as it was used as a covariate in
142 the correlation analysis with saturation. Our image statistics were mean saturation, pixel count for food objects,
143 pixel count for circular objects, mean warmth ratings over the colors of all pixels, luminance entropy and mean
144 luminance (see STAR Methods for a detailed description). For food and circular objects we used pixel count
145 contained within the segmented objects to create continuous variables that could be entered into further
146 analyses along with the other continuous variables. Our assumption was that there is a monotonic relationship
147 between the pixel sizes of these objects and voxel responses, though we did not assume that the relationship
148 has any particular form. There is some evidence to suggest that this is a reasonable assumption⁴⁹, though voxel
149 responses may also depend on other properties of object images, such as real-world size or orientation, which
150 are not captured by the metric.

151 The six image statistics were significantly intercorrelated (see Figure S2B for correlation matrices of
152 image statistics for each participant and Figure 2A and 2C for montages). Average luminance and luminance
153 entropy were strongly positively correlated (group average $p = 0.68$), and circular object pixel count and food
154 pixel count were moderately correlated (group average $p = 0.42$). Besides one exception, all other pairs of image
155 statistics had low but significant correlations (group average $p < 0.30$). Circular object pixel count and luminance
156 entropy were not significantly correlated for seven of the eight participants. The relationships between image
157 statistics were highly consistent between participants, even though different participants viewed largely non-
158 overlapping image sets ($0.9993 \leq p \leq 0.9999$ for pairwise correlations between image statistic correlation
159 matrices between participants). This suggests there were no substantial differences in image statistics between
160 participants.

161 **Relationship between image statistics and average ROI responses**

162 We investigated the relationship between each image statistic and average voxel responses for the four
163 ROIs (medial and lateral areas in both hemispheres) that we had defined based on correlations between voxel
164 responses and average saturation. We plotted moving average ROI responses against each of the image statistics
165 (Figure 3A). ROI responses show positive linear relationships with average saturation and mean warmth ratings
166 of pixel colors. ROI responses show positive non-linear (decelerating) relationships with food pixel count and
167 circular object pixel count, with a higher gain for food pixel count than for any of the other image statistics. There
168 was no relationship between ROI responses and luminance entropy, and a small negative relationship between
169 ROI responses and average luminance. The findings were consistent across hemispheres and ROIs for all eight
170 participants (see Figure S2A for results for individual participants).

171 [Figure 3 about here]

172 **Food is the strongest predictor for responses in the color-biased ROIs**

173 We included the six image statistics in a multiple linear regression to identify the best predictors for the
174 average z-scored voxel responses for our four ROIs (see STAR Methods for details). A regression analysis showed
175 significant relationships in all four ROIs (Medial ROI LH: mean $F (6,9648)$ over 8 participants = 288, $SD = 101.4$, $p < 2.04 \times 10^{-188}$, mean $R^2 = 0.15$, $SD = 0.04$; Medial ROI RH: mean $F (6,9648) = 242.8$, $SD = 100.6$, $p < 7.02 \times 10^{-171}$,
176 mean $R^2 = 0.13$, $SD = 0.04$; Lateral ROI LH: mean $F (6,9648) = 218$, $SD = 95.4$, $p < 1.19 \times 10^{-114}$, mean $R^2 = 0.12$, $SD = 0.04$; Lateral ROI RH: mean $F (6,9648) = 210$, $SD = 97.4$, $p < 4.98 \times 10^{-120}$, mean $R^2 = 0.11$, $SD = 0.04$). Summary
177 results in Table 1 showed that food is the strongest predictor for all four ROIs in all eight participants. Individual
178 results for each participant are available in Table S1.

182 [Table 1 about here]

183 **There are no sub-clusters of voxels that prefer color over food within the ROIs**

184 To test whether there are sub-clusters of voxels within these ROIs that respond to different image
185 statistics we also ran multiple linear regressions on all the individual voxels that showed a significant positive
186 (Bonferroni-corrected) correlation with saturation for each participant. For each voxel we identified the image
187 statistic with the largest beta coefficient (Figure 4). Food pixel count produced the first ranked beta coefficient
188 in the single-voxel multiple regressions for almost all voxels, suggesting that food is the strongest predictor for
189 all four ROIs even at an individual voxel level. For the left medial, left lateral, right medial and right lateral ROIs
190 respectively, 78%, 92%, 69% and 92% of voxels included in the multiple regressions had food as the strongest
191 predictor, and only 4%, 0.6%, 7% and 2% had saturation as the strongest predictor. For the other image statistics
192 there was no consistent pattern. Voxel activity in early visual areas was most strongly predicted by luminance
193 entropy. For V1 voxels defined by the HCPMMP 1.0 atlas⁵⁰, 80% of voxels included in the multiple regressions
194 had luminance entropy for the first ranked beta coefficient, 7% had food and 2% had saturation. The results of
195 our single-voxel multiple linear regressions suggest that food is the main predictor for most voxels in the ROIs
196 and there are no substantial sub-clusters of voxels responding most strongly to other image statistics.

197 [Figure 4 about here]

198 **Color contributes independently to ROI responses in the absence of food**

199 The multiple linear regressions for the ROIs showed that food pixel count had the highest beta
200 coefficients of the six image statistics. The results of our whole-brain correlation with saturation and previous
201 literature¹¹ imply that these areas are responsive to color. We therefore sought to further investigate the
202 contributions of saturation, color warmth and food to ROI responses by conducting two-way ANOVAs (Figure
203 3B), one with factors for food and mean saturation and one with factors for food and mean warmth rating of
204 pixel colors. For these ANOVAs we defined 4 groups of images, one with food and with high saturation or warmth
205 (depending on the ANOVA), one without food and with high saturation or warmth, one with food and with low
206 saturation or warmth and one without food and with low saturation or warmth. Importantly, the shapes of
207 histograms of the image statistics for the food and non-food groups of images were exactly matched (see STAR
208 Methods and Figure S3). Mean z-scored voxel responses for each ROI averaged across the 8 participants are
209 shown for food and saturation in Figure 3B and for food and warmth in Figure 3C. Both figures show a large
210 difference between voxel responses for food versus non-food images in the ROIs, and smaller differences
211 between voxel responses for high versus low saturation and high versus low warmth. The ANOVA with factors
212 for food and saturation revealed a significant main effect for food for all eight participants and all four ROIs
213 (mean $F = 309$, $p < 6 \times 10^{-26}$). All four ROIs also showed a significant main effect of saturation for all eight
214 participants (mean $F = 59$, $2 \times 10^{-30} < p < 2 \times 10^{-7}$). There were significant interactions for some participants in
215 some ROIs. For ANOVA results for all participants, see Figure S5 and Table S2. The ANOVA with factors for food

216 and warmth also revealed a significant main effect of food for all eight participants for all four ROIs (mean $F =$
217 371 , $p < 3 \times 10^{-32}$), and a significant main effect of warmth for all participants and ROIs, other than for Participant
218 6 for the medial area in the LH (mean $F = 28$, $2 \times 10^{-18} < p < 0.1$). There were significant interactions for some
219 participants in some ROIs. For ANOVA results for all participants, see Figure S5 and Table S3.

220 A leading existing theory about the function of the color biased regions in the ventral visual pathway is
221 that they represent behaviorally relevant objects, and are biased towards object-associated colors as a feature
222 of such objects^{14,36}. We therefore conducted further 2-way ANOVAS considering only the colors of pixels within
223 segmented objects rather than pixels over whole images. 2-way ANOVAs with food and mean object pixel
224 saturation as factors revealed strong significant main effects of food for all eight participants and the four ROIs,
225 and smaller significant main effects of saturation for all eight participants and the four ROIs. The interactions
226 were significant only for some participants in some ROIs (For group summary ANOVA results see Figure S4A, for
227 results for individual participants see Figure S5 and Table S4). 2-way ANOVAs with food and mean object pixel
228 warmth as factors revealed strong significant main effects of food for all eight participants and the four ROIs,
229 and smaller significant main effects of warmth for most participants in most ROIs. The interactions were
230 significant only for some participants in some ROIs (For group summary ANOVA results see Figure S4B, for results
231 for individual participants see Figure S5 and Table S5). Thus, when considering object pixels only it is still clear
232 that food is the strongest associate of responses in the ROIs. Object saturation and warmth are more weakly
233 associated with ROI responses, independently of food.

234 Since the number of pixels contained in circular objects was also a relatively strong predictor of activity
235 in the ROIs (Figure 3A) we conducted a 2-way ANOVA with factors for food and the presence or absence of
236 segmented circular objects (circle). There was a significant main effect for food for all eight participants and all
237 four ROIs (mean $F = 741$, $p < 1 \times 10^{-45}$), and a significant main effect of circle for only some participants in some
238 ROIs. There were significant interactions for all participants in all ROIs except for Participant 8 in the RH medial
239 and LH medial areas. For group results see Figure S4C and for results for individual participants see Figure S5 and
240 Table S6.

241 **Analysis of responses to food identifies similar regions to the color-biased areas**

242 Our results indicate that food images are a strong predictor of responses in the ROIs, but since the ROIs
243 were defined by responses to saturation rather than to food, the results reported so far could miss voxels that
244 respond to food but not to saturation. We therefore conducted t-tests for each voxel on the differences between
245 responses to images that contain food and responses to images that do not contain food. Each participant (1 to
246 8) saw 1284, 1284, 1176, 1237, 1303, 1240, 1309, and 1127 images of food, respectively. All other images were
247 considered non-food images based on the Microsoft Common Objects in Context⁴⁰ (COCO) object categories.

248 Figure 5 shows results plotted for the whole brain, also including coordinates of peak activation from a fMRI
249 meta-analysis of food images⁵¹ in the right hemisphere. We converted the Bonferroni-corrected threshold for
250 the saturation correlation analysis (Figure 1) to a t-statistic and applied the same threshold to Figure 5 to make
251 a comparison possible.

252 Our results show that food images are associated with responses in similar areas to the ROIs we
253 identified for their correlated activity with saturation (see the white and black contours superimposed on the RH
254 in Figure 5). The Activation Likelihood Estimation (ALE) meta-analysis by van der Laan et al. (2011) identified
255 locations in the Fusiform Gyrus and Posterior Fusiform Gyrus that are responsive to food, which are located in
256 the medial and lateral ROIs. According to the Human Connectome Project atlas (HCP-MMP 1.0 atlas⁵⁰, the medial
257 ROI ends in the perirhinal ectohippocampal cortex (PeEC) and the lateral ROI ends in area Ph.

258 There are also responses correlated with the presence of food in early visual areas (V1, V2, V3 and V4)
259 which are unlikely to be driven by food itself but by luminance entropy (Figure 4), correlated with the presence
260 of food in the NSD stimulus set. There is activation in dorsal areas of the visual cortex (V1, V2, V3 and V4) to
261 V3CD, LO1 and V3B. Another cluster of activation is found in IPS1, IP1 and IPO and MIP, VIP, LIPv; the latter cluster
262 was also identified in the ALE meta-analysis. Two more areas of activation are found in PFt and PFop and part of
263 AIP in both hemispheres, which the ALE meta analysis identified in the left hemisphere only (Inferior Parietal
264 Gyrus). Another area of activation is found in Pol2, Ig, MI, AAIC, Pir, FOP2 for both hemispheres and a part of
265 FOP3 for the left hemisphere, which corresponds to the Insular cortex in both hemispheres. Some smaller
266 clusters of activation are found in PEF in both hemispheres, in the left hemisphere also spanning parts of IFJp
267 and 6r. Responses to non-food images are significantly higher than to food images in areas MT, MST, TPOJ1,
268 TPOJ2, TPOJ3, PGi, PGp, PGs, IPO, STV, PSL, and PF which cluster together. This is also the case in POS1, POS2,
269 DV, PCV, 5mv, 23c, and in VMV1, PH1 and ProS.

270 [Figure 5 about here]

271 **ROI responses to food and other object categories**

272 To investigate the specificity of voxel responses to food in the ROIs, we calculated average voxel
273 responses for each ROI to each object category in the COCO dataset. We found that on average all the object
274 categories provoking the highest voxel responses were food (Figure S6A). When images containing food were
275 removed from the analysis there was no clear pattern in which other object categories provoked high voxel
276 responses (Figure S6B).

277 **DISCUSSION**

278 We identified four ROIs in the ventral visual pathway responsive to the average color saturation of
279 images, one located medially and the other laterally of the FFA in each hemisphere. The NSD dataset enabled an
280 in-depth analysis of the responsiveness of these color-biased regions because of the large number and variety of
281 images of natural scenes presented in the scanner. When we investigated a selection of image characteristics we
282 found the color-biased regions to be most strongly activated by food, with smaller responses to the image
283 features of saturation, chromatic warmth, and the presence of circular objects. However, even in the relative
284 absence of these image features, images containing food provoked very robust responses in the ROIs. In addition,
285 we found negative correlations between saturation and voxel responses, mostly in areas that are selective for
286 faces, places, and motion (Figure 1A).

287 **Reliability and consistency of results, and biases in the NSD image set**

288 We conducted a split half reliability analysis over odd and even images for our correlation between
289 saturation and voxel responses, which showed strong reliability over the whole brain. Montages of the images
290 that evoked the highest responses in our ROIs contained similar image features for all eight participants (Figures
291 2B and S1), which were absent in montages of images that evoked the lowest responses. The intercorrelations
292 between image statistics were similar for all participants, suggesting that there were no major differences
293 between the unique images shown to each participant to take into account when interpreting the results.
294 Multiple analyses—plots of the relationships between image statistics and voxel responses (Figure 3A), multiple
295 linear regressions for the ROIs (Table 1), and multiple linear regressions for individual voxels (Figure 4)—all
296 showed that food was the strongest predictor of voxel responses in the ROIs. We therefore interpret these
297 regions as food-selective.

298 In working with the NSD image set one of the major challenges researchers face is isolating correlated
299 image features to study their independent contributions to brain activity. Because our ROIs in the ventral visual
300 pathway were known to be color biased^{11,12,14,18,36}, we analysed warmth and saturation in the NSD images. In
301 order to isolate the effects of these image features independently from food we created groups of food and non-
302 food images where the histograms of these color image statistics were exactly matched (Figure S3A). Using these
303 image groups we were able to isolate a main effect of the presence of food in the images on ROI voxel responses
304 (also for an analysis restricted to object pixels: Figure S3B). For isolating the presence of circles in the images
305 there are some limitations in the segmentation data for the NSD image set meaning that some object categories
306 that are potentially circular are present in the images but are not segmented (e.g., plates). We assigned all of the
307 segmented object categories into ‘low circle’ and ‘high circle’ groups (to acknowledge the presence of additional
308 unsegmented circular objects in the images), though this distinction is somewhat subjective and may be
309 imperfect. Additionally, some circular objects may not be circular in the images depending on occlusion or angle.

310 However, using the segmentation data that we had access to, we did not find consistent significant main effects
311 of the presence of segmented circular objects (Table S6). This we consider good evidence that responses in the
312 ROIs cannot be explained by the presence of circular objects in the images. We also note that Khosla et al.⁴¹
313 found a much smaller response to the image statistic of curvature than to food.

314 Our findings are unlikely to be specific to the particular stimuli used. The stimuli are not a random sample
315 of images, and will have been influenced to some extent by photographer selection biases. However, the 73,000
316 images encompass a large variety of different objects in many different contexts, and constitute a comprehensive
317 selection of scenes that provide the best existing dataset for investigating brain responses to natural scenes.

318 **Function of the medial and lateral ROIs in the ventral visual pathway**

319 We found that the medial and lateral VFSs are still biased to color even in the absence of food. This is in
320 line with the results of Lafer-Sousa et al.¹¹, who showed no food stimuli in their fMRI experiment but found color-
321 biased anterior, central, and posterior areas medial in the ventral visual pathway. Their findings also hinted at a
322 lateral color-biased area for a few of their participants. Our results for all eight participants show two
323 approximately continuous streams, diverging medially and laterally beginning in V4. We found that the medial
324 VFS extends further anteriorly from the anterior color-biased region identified by Lafer-Sousa et al.¹¹. Rosenthal
325 et al.³⁶ and Conway¹⁴ have proposed that color-biased regions in the ventral visual pathway are selective for the
326 color statistics of behaviorally relevant objects and could therefore be involved in object detection and
327 categorization. Our findings support the idea that behaviorally relevant features of objects drive responses in
328 these regions, and make the important distinction that it is food objects that drive responses rather than
329 behaviorally relevant objects in general. Our results lead us to interpret the regions as food-selective but color-
330 biased, implying that color is important in the neural representation of food.

331 Our findings are in agreement with those of two other recent studies that have been conducted in
332 parallel. All three studies analyzed the NSD dataset with different aims and different analytical methods, but
333 results have converged on the identification of food-selective areas in the ventral visual pathway. Khosla et al.⁴¹
334 took a data-driven approach, conducting a Bayesian non-negative matrix factorization on the activities of voxels
335 in the ventral visual stream. They found that the third component was strongly associated with food in the NSD
336 images and, also in agreement with our findings, to a lesser degree with image features such as saturation,
337 redness, curvature, and the color statistics of objects. Jain et al.⁴² set out to investigate brain responses to food
338 in the NSD images using a custom coding system for the presence of food, and controlling for the distance of
339 food in the image, and found medial and lateral food-responsive regions similar to those we have identified. They
340 conducted a PCA of responses to food images and found that both food objects themselves and their social and
341 physical contexts influenced brain responses in these regions. They also performed a separate experiment using

342 controlled greyscale images that isolated food objects independently of correlated image features such as color,
343 and identified similar food-responsive regions in the ventral visual pathway. Some regions within the food-
344 selective streams identified in these three studies are also evident in the results of a meta-analysis on fMRI
345 studies of food⁵¹. The ventral visual pathway is known to contain sub-streams for processing faces, places, bodies,
346 and words: these strongly convergent new results from three independent labs suggest the presence of medial
347 and lateral ventral food streams (VFSs) as well.

348 Numerous studies have demonstrated a distinction between the processing of animate versus inanimate
349 objects in the ventral visual pathway^{14,36,52,53}, specifically that areas medial of the FFA respond preferentially to
350 animate objects but lateral areas to inanimate objects^{52,53}. At first glance, the existence of two VFSs separated
351 by the FFA might appear to challenge this finding. However, the placement of food in the category distinction
352 between animate and inanimate objects is ambiguous. For example, fruit and vegetables are living entities and
353 foods, but pizzas and hot dogs are non-living foods processed from ingredients derived from living entities⁵⁴. If
354 animacy distinguishes the responses of areas medial and lateral to the FFA, we might expect that voxel responses
355 to specific categories of food to differ between these areas. However, in our analysis of ROI responses to each
356 COCO object category, we found no clear distinction between medial and lateral areas (Figure S6).

357 The streams in the ventral visual pathway that we have identified as food-selective respond to all
358 categories of food in the COCO image set (Figure S6A), including fruits and vegetables as well as processed foods
359 that were not available in the evolutionary past. We therefore speculate that the VFSs are tuned by exposure to
360 food during a person's lifetime. This would be analogous to the within-lifetime tuning of the visual word form
361 area, which, owing to the relatively recent development of written language, is unlikely to be innately
362 specified^{55,56}. However, as the visual word form area is highly consistent across individuals, it also seems unlikely
363 that it is formed solely through experience⁵⁵.

364 We must also consider the possibility that our results may be influenced by attention or expertise⁵⁷⁻⁶¹.
365 Participants may have been more attentive to images containing food than they were to images containing other
366 objects. Figure S6 shows the responses of the medial and lateral VFSs to images containing objects that could be
367 considered attention-grabbing such as bears, baseball bats, and stop signs. However, these objects are not
368 among those causing the greatest responses. Therefore, we consider it unlikely that these streams are driven by
369 attention rather than food. Alternatively, food images may strongly activate the areas if they are general object
370 processing areas but people have particular expertise for food. There is no evidence in our results that visual
371 expertise determines responses in the ROIs (Figure S6).

372 **Representations of food, objects, color and other image features in the ventral visual pathway**

373 Our findings show that as well as responding to images of food itself, the VFSs respond to collections of
374 visual features common to food objects and also (to a lesser degree) to these features even in the absence of
375 explicit food objects, i.e., shapes and colors that are normally predictive of the presence of food. In support of
376 the idea that representations of food may emerge in the VFSs from a collection of represented food-predictive
377 features, visual object representation in the ventral visual pathway has been found to reflect the co-occurrence
378 of objects and their contexts⁶², and the co-occurrence of feature sets within objects⁶³. In addition, face-selective
379 IT neurons can respond to objects that co-occur with faces⁶⁴ and context-based expectations have also been
380 shown to facilitate object recognition⁶⁵. In the color-biased areas in macaques, nonlinear interactions have been
381 found between object shape and hue in determining single cell activities¹⁹. Humans use color as a heuristic for
382 evaluating food⁶⁶, and there is strong evidence that trichromatic vision helps animals to detect food⁶⁷⁻⁶⁹ and to
383 judge its properties such as ripeness⁷⁰, so it seems plausible that the VFSs should also respond to color as a
384 relevant visual feature. Similarly, the presence of circles in the NSD images is associated with the presence of
385 food, so the VFSs should plausibly show responses to circles, as is evident in the significant interactions we
386 observed between food and circular objects (Table S6), and in the results of Khosla et al.⁴¹ who found that their
387 food-related component was also independently associated with the image statistic of curvature.

388 In the same way that there are collections of visual features including color correlated with the presence
389 of food in natural scenes, there are likely to be different contingencies between image features such as color,
390 and other types of objects or scenes. For example, images of rural environments may contain an
391 overrepresentation of green. It is possible that place-selective regions tend to respond to green images
392 containing the spatial features of rural scenes, but that they may also respond to green in the absence of such
393 spatial features. Such contingencies may explain the negative correlation we observed in the place-selective
394 areas with image saturation (Figure 1A): images of places may tend to be less saturated than other image
395 categories. It remains to be seen whether place-selective areas have preferences for low saturation in the
396 absence of other correlated image features.

397 Conclusion

398 We have found strong evidence that color-biased regions in the ventral visual pathway are food-selective
399 and that there are two distinct medial and lateral VFSs in both hemispheres which diverge from V4 and surround
400 the FFA. The ventral visual pathway is already known to contain sub-streams for processing faces, places, bodies,
401 and words: our results suggest we should now add food. We found that the VFSs also respond to color and
402 circular objects but to a lesser degree. Our findings show how high-quality fMRI datasets can be used to separate
403 the contributions of multiple visual features to the neural representations of natural scenes, and uncover a key
404 feature of the ventral visual pathway: food-selectivity.

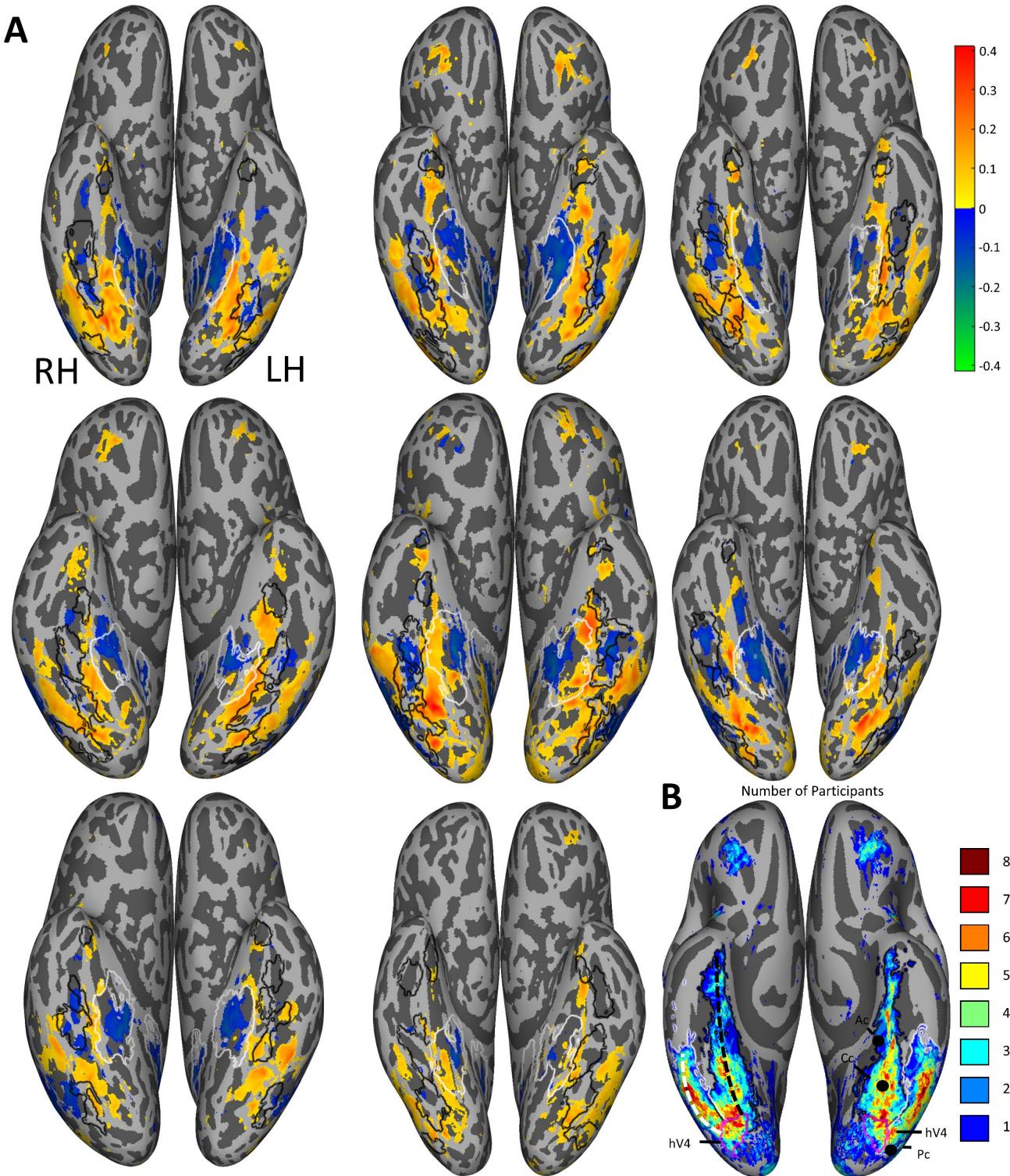
405 **Acknowledgements**

406 Collection and pre-processing of MRI data was supported by NSF IIS-1822683 (K.N.K.), NSF IIS-1822929 (T.N.),
407 NIH S10 RR026783 and the W.M. Keck Foundation. The analyses described here were supported by European
408 Research Council grants COLOURMIND 772193 (A.F.) and COLOURCODE 949242 (J.M.B.).

409 **Author contributions**

410 Conceptualization: K.N.K., T.N., A.F. & J.M.B.; Methodology: All authors; Software: I.M.L.P., C.R. & K.N.K.;
411 Validation: I.M.L.P., K.N.K. & J.M.B.; Formal analysis: I.M.L.P.; Investigation: E.J.A., Y.W.; Resources: K.N.K.,
412 I.M.L.P., C.R., A.F. & J.M.B.; Data curation: E.J.A., Y.W., K.N.K. & I.M.L.P.; Writing – original draft: I.M.L.P., A.F. &
413 J.M.B.; Writing – Review & Editing: A.F., K.K. & J.M.B.; Visualization: I.M.L.P. & J.M.B.; Supervision: K.N.K., A.F.,
414 C.R. & J.M.B.; Project administration: K.N.K., A.F. & J.M.B.; Funding: T.N., K.N.K., A.F. & J.M.B.

415 **Declaration of interests**

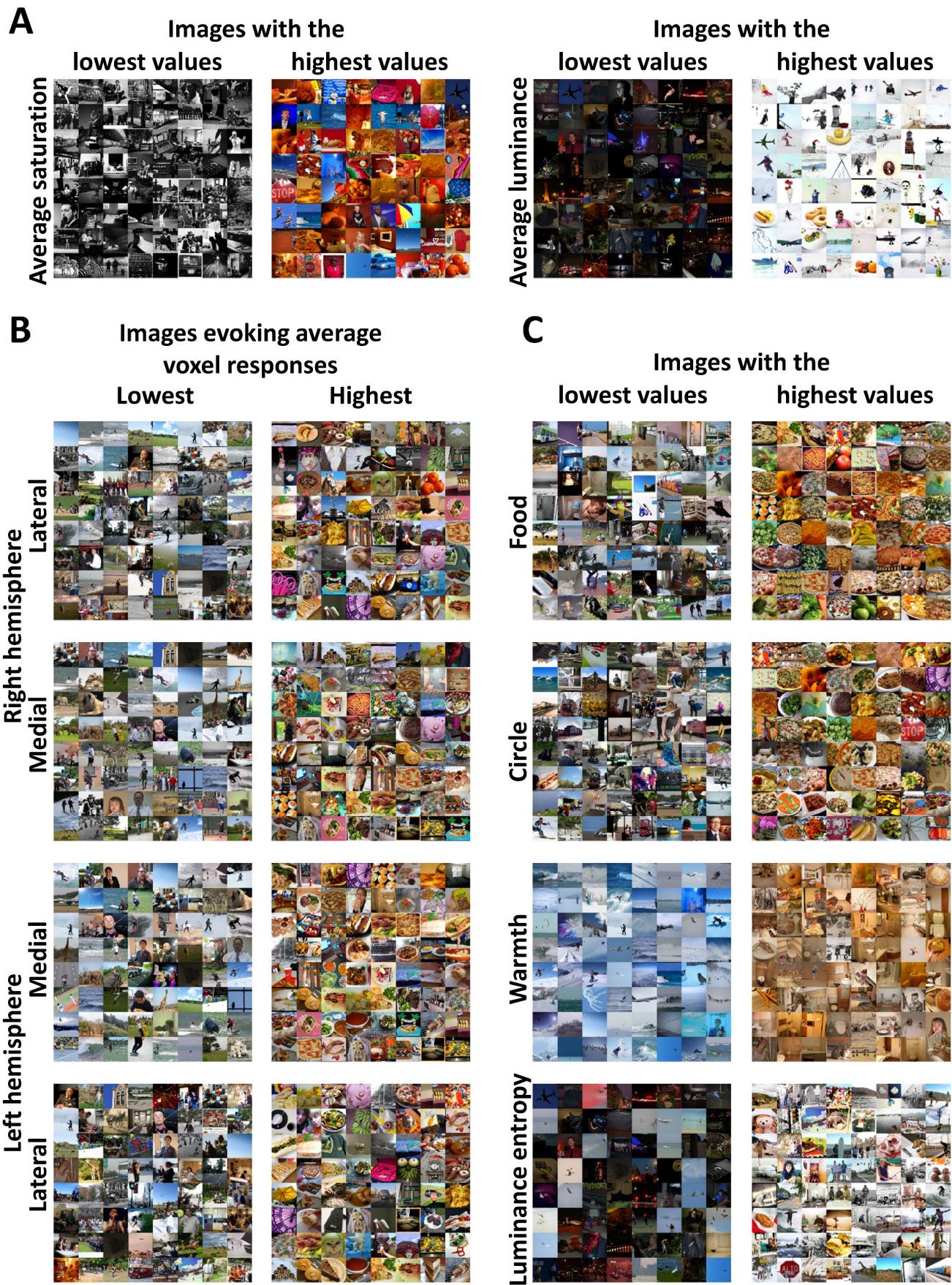

416 The authors declare no competing interests.

417 **Inclusion and diversity**

418 We support inclusive, diverse, and equitable conduct of research.

419

420 **Figure legends**

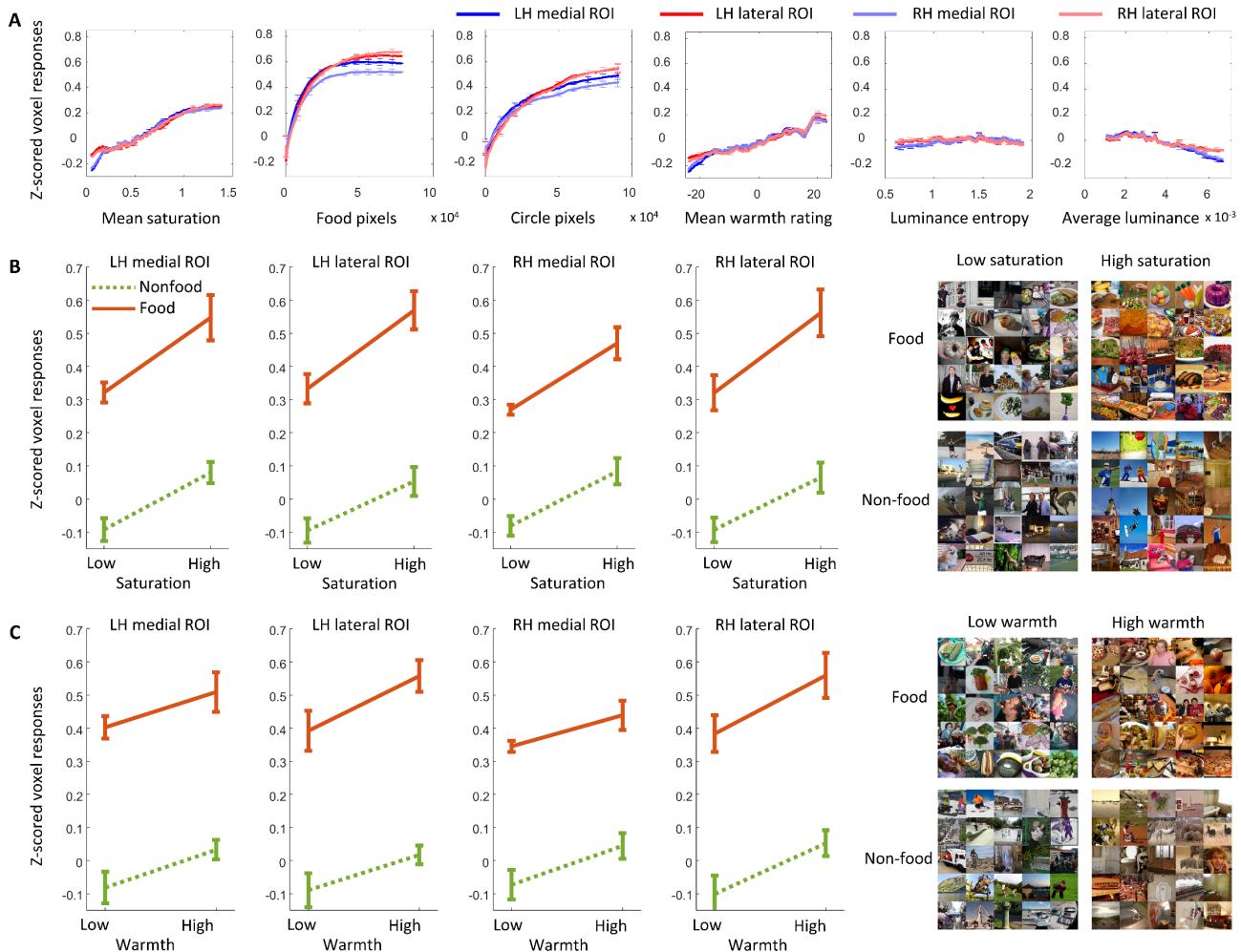


421

422 **Figure 1: Correlations between average saturation and voxel responses.**

423 (A) Pearson correlation maps of the ventral view in native participant space on an inflated cortical surface (top-
 424 left is participant 1, bottom-middle is participant 8; going left to right). The maps show for each voxel the
 425 correlation between the mean saturation of each image and the corresponding voxel responses, with mean
 426 luminance as a covariate. Positive correlations are displayed in red and yellow, and negative correlations in green

427 and blue. Only correlations with significant whole brain Bonferroni-corrected p-values are plotted, showing two
428 color-responsive regions in the ventral visual pathway starting in V4 and diverging medially and laterally of the
429 fusiform face area. Black contours indicate face-selective brain regions for each individual participant (FFA-1,
430 FFA-2, OFA, mTL-faces and ATL-faces) and white contours indicate place-selective areas for each individual
431 participant (PPA and RSC); for a description of how these regions were defined see Allen et al.³⁸.
432 (B) The number of participants showing overlapping significant positive voxels in fsaverage space. On the right
433 hemisphere, the medial stream is indicated by the black dashed line and the lateral stream by the white dashed
434 line. On the left hemisphere the coordinates of the color-biased regions identified by Lafer-Sousa et al.¹¹ are
435 shown (Ac, Cc, Pc). For both hemispheres, hV4 from the brain atlas by Wang et al.⁷¹ is indicated by the magenta
436 contours, the medial ROIs are indicated with black contours and the lateral ROIs with white contours.

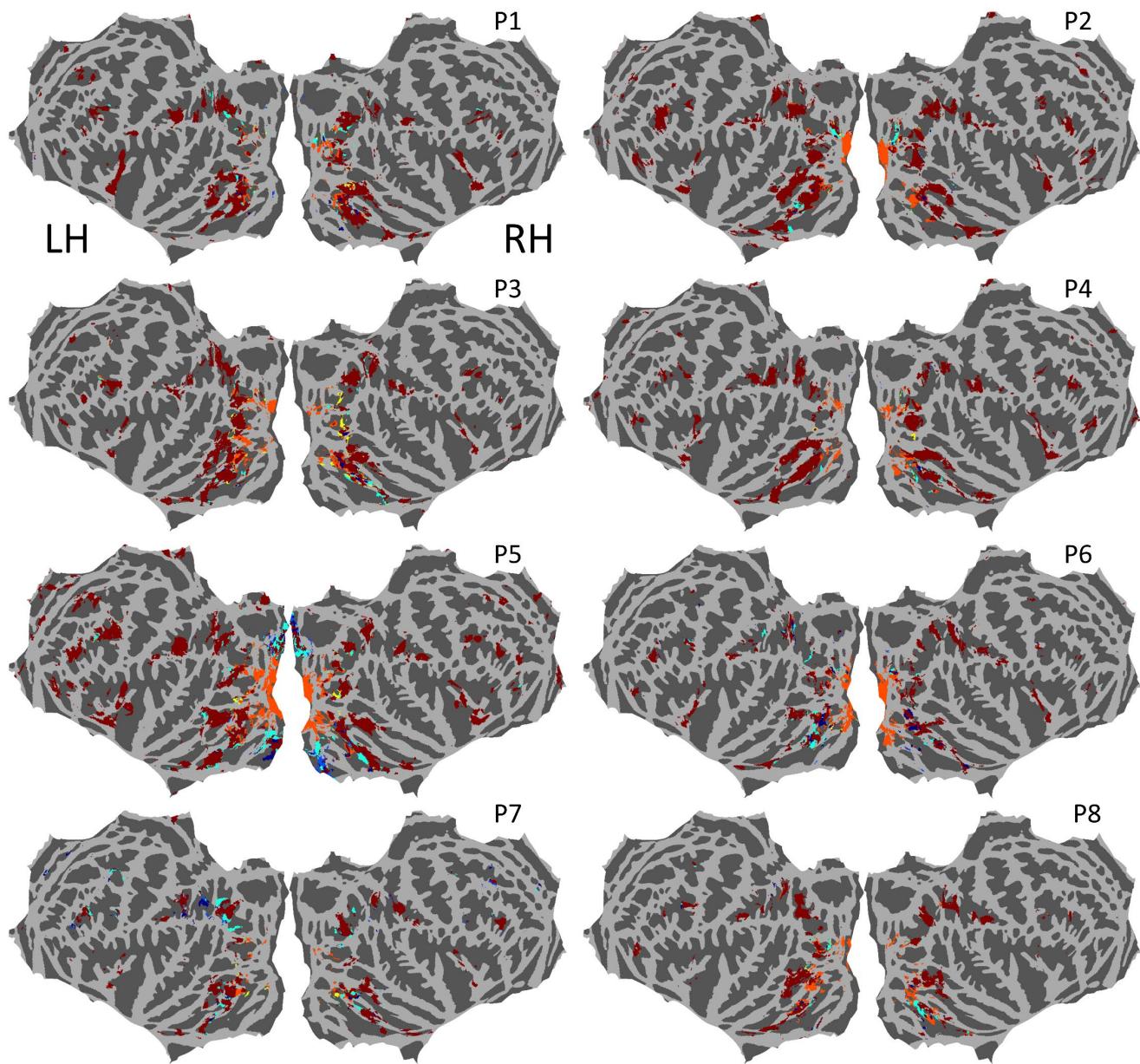


438 **Figure 2: Montages of images evoking the lowest and highest ROI responses and showing variation in each**
439 **image statistic.**

440 (A) Montages of the 68 images with the highest (right montages) and lowest (left montages) values for the image
441 statistics included in the correlation analysis: average saturation and average luminance for Participant 1. See
442 Figure S1A for montages for the other participants.

443 (B) Montages of the 68 images for the lateral and medial ROIs for both hemispheres that evoked the highest
444 (right montages) and lowest (left montages) averaged z-scored voxel responses for Participant 1. See Figure S1B
445 for montages for the other participants.

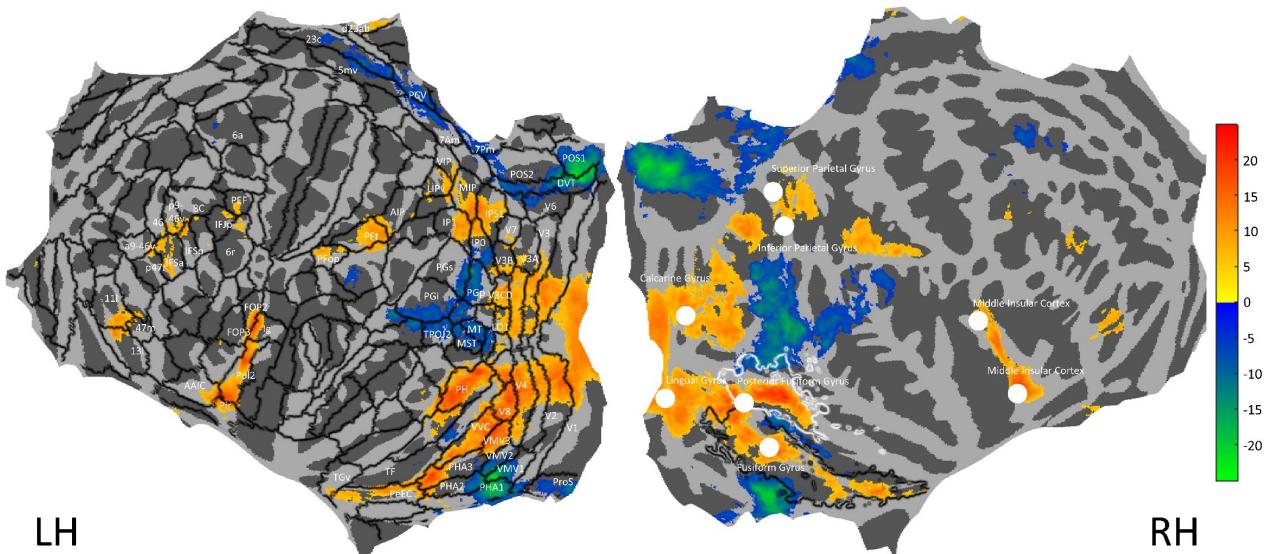
446 (C) Montages of the 68 images with the lowest and highest values for four further image statistics are shown for
447 Participant 1: number of food pixels (food), number of pixels forming circular objects (circle), average warmth
448 rating of pixel colors (warmth) and luminance entropy. The right column contains montages of images with the
449 highest values for each image statistic and the left column contains montages of images with the lowest values
450 for each image statistic. See Figure S1A for montages for the other participants.



451
452 **Figure 3: ROI responses to image statistics**

453 (A) Mean z-scored voxel responses in the medial and lateral ROIs of the left and right hemispheres. Each x-axis
454 shows an image statistic: mean image saturation, number of pixels that are contained in food objects, number
455 of pixels that are contained in circular objects, mean warmth ratings of pixel colors, luminance (L+M) entropy⁴⁸,
456 and mean luminance. The y-axes show the mean z-scored voxel responses. In each case the images were sorted
457 from lowest to highest based on the image statistic. Then a running average of mean z-scored voxel responses
458 for sets of 500 images was plotted (1-500, 2-501, 3-502, etc.), averaged across all participants. Error bars are
459 within-participant 95% confidence intervals. Plots for individual participants are shown in Figure S2A.

460 (B) Effects of food and saturation on mean z-scored voxel responses for all four ROIs (left (LH) and right (RH)
461 hemispheres, and medial and lateral ROIs). The orange lines show mean z-scored voxel responses for images that
462 contained food and the green lines for images that did not contain food based on the COCO object categories.
463 Error bars are within-participant 95% confidence intervals. The montages to the right show randomly selected
464 images from each of the four groups. Plots for individual participants are shown in Figure S5 and ANOVA results
465 for individual participants are shown in Table S2. For the results of equivalent analyses for object pixels only, see
466 Figures S4A and S5, and Table S4.


467 (C) Effects of food and mean rating of warmth for colors of all pixels on mean z-scored voxel responses. The
468 orange lines show mean z-scored voxel responses for images that contained food and the green lines for images
469 that did not contain food based on the COCO object categories. Error bars are within-participant 95% confidence
470 intervals. The montages to the right show randomly selected images from each of the four groups. Plots for
471 individual participants are shown in Figure S5 and ANOVA results for individual participants are shown in Table
472 S3. For the results of equivalent analyses for object pixels only, see Figures S4B and S5, and Table S5.

473 █ Average saturation █ Food █ Circle █ Warmth █ Luminance entropy █ Average luminance

474 **Figure 4. Strongest predictors in single voxel multiple linear regressions for voxels responsive to color**
475 **saturation.**

476 For each of the eight participants flattened whole-brain cortical maps are shown in fsaverage space. Each voxel
477 that showed a significant positive (Bonferroni-corrected) correlation with average saturation was included in the
478 single-voxel multiple regressions, and is colored in the figure according to the image statistic that had the largest
479 beta coefficient in the multiple regression for that voxel. Within the ROIs there are no substantial sub-clusters of
480 voxels for which the strongest predictors in the single-voxel multiple linear regressions are not food.

481

482 **Figure 5. Analysis of responses to food versus non-food images**

483 A flattened cortical map in fsaverage space is plotted showing t-statistics (average t-values across the eight
 484 participants) for the differences between mean voxel responses for food images and mean voxel responses to
 485 non-food images. The Human Connectome Project Atlas (HCP_MMP1⁵⁰) is overlaid for the left hemisphere (black
 486 contours), with regions labelled where they contained voxels with significant t-statistics. On the right hemisphere
 487 are plotted white discs indicating coordinates identified by van der Laan et al.⁵¹ in a meta-analysis of brain areas
 488 responsive to food (see their Table 2), and contours of the medial ROI in black and the lateral ROI in white (as in
 489 Figure 1B).

490 **Table**

 Multiple linear regression beta coefficients

	B0	Average Saturation	Food	Circles	Warmth	Luminance Entropy	Average Luminance
Medial Left	5.3863×10^{-9}	0.0563	0.1950	0.0608	0.0320	0.0446	- 0.0516
Medial Right	5.4712×10^{-9}	0.0553	0.1598	0.0596	0.0294	0.0439	- 0.0473
Lateral Left	9.9330×10^{-12}	0.0343	0.2336	0.0402	0.0279	- 0.0047	- 0.0029
Lateral Right	1.7063×10^{-9}	0.0391	0.2367	0.0272	0.0442	- 0.0089	0.0010

491 **Table 1. Multiple linear regression beta coefficients for the four ROIs.**

492 Average beta coefficients for each image statistic in the multiple linear regressions to predict average voxel
 493 responses, for each of the four ROIs. See Table S1 for results of multiple linear regressions for individual
 494 participants.

495

496 **STAR METHODS**497 **Resource availability**

498 *Lead contact*
499 Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Ian
500 Pennock (ianml.pennock@gmail.com).

501 *Materials availability*
502 This study did not create any new materials.

503 *Data and code availability*
504 • This paper analyzes existing, publicly available data. The Natural Scenes Dataset³⁸ is available via the
505 AWS Registry of Open Data. Raw data are available in BIDS format; prepared data files are also provided
506 along with technical documentation in the NSD Data Manual. The web address is listed in the key
507 resources table.
508 • Tools for visualizing and analyzing the Natural Scenes Dataset are available via GitHub. The web address
509 is listed in the key resources table.
510 • All original code has been deposited at the Open Science Framework and is publicly available as of the
511 date of publication. The DOI is listed in the key resources table.

512 **Key resources table**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Deposited data		
fMRI data reported in Allen et al. (2022)	Natural Scene Dataset	https://registry.opendata.aws/nsd/
Warmth rating data used to calculate our mean rated warmth statistic	Maule, Racey, Tang, Richter, Bird & Franklin, unpublished	https://osf.io/v5wxn/
Software and algorithms		
MATLAB	MathWorks Inc., Natick, USA	https://uk.mathworks.com/products/matlab.html
CVN lab scripts for manipulating and visualizing the NSD data. Many of these scripts are called in the Matlab scripts used for the analysis and results reported in the paper (next row).	Computational Visual Neuroscience Laboratory, Minnesota, USA	https://github.com/cvnlab
Matlab scripts for reproducing the analyses, results and figures reported in the paper	This study	https://osf.io/v5wxn/
Other		
PR-655 spectroradiometer	PhotoResearch, Chatsworth, CA	https://www.jadaktech.com/product/spectrascanner-pr-655/

513 •
514

515 **Experimental model and Subject details**

516 *Participants*

517 Eight participants were included in the study (six females; age range 19-32). All participants had normal
518 or corrected-to-normal vision. Informed consent was obtained, and the University of Minnesota Institutional
519 Review Board approved the experimental protocol.

520

521 **Method details**

522 Here we will provide an outline of the methods used to prepare the NSD that are relevant for our
523 analyses. Further detailed methods for the NSD can be found in Allen et al.³⁸.

524 *MRI data acquisition*

525 The participants were scanned using a 7T Siemens Magnetom passively shielded scanner at the
526 University of Minnesota. A single channel transmit 32 channel receive RF head coil was used. The procedure
527 involved a gradient-echo EPI sequence at 1.8 mm isotropic resolution (whole brain; 84 axial slices, slice thickness
528 1.8mm, slice gap 0 mm, field-of-view 216 mm (FE) x 216 mm (PE), phase-encode direction anterior-to-posterior,
529 matrix size 120 x 120, TR 1600 ms, TE 22.0 ms, flip angle 62°, echo spacing 0.66 ms, bandwidth 1736 Hz/pixel,
530 partial Fourier 7/8, in-plane acceleration factor 2, and multiband slice acceleration factor 3).

531 *Stimulus presentation*

532 A BOLDscreen 32 LCD monitor (Cambridge Research Systems, Rochester, UK) was positioned at the head
533 of the scanner bed. The spatial resolution was 1920 pixels x 1080 pixels and the temporal resolution 120 Hz. The
534 participants saw the monitor via a mirror mounted on the RF coil. There was a 5 cm distance between the
535 participants' eyes and the mirror and a 171.5 cm distance from the mirror to image of the monitor. A PR-655
536 spectroradiometer (PhotoResearch, Chatsworth, CA) was used to measure the spectral power distributions of
537 the display primaries. The BOLDscreen was calibrated to behave as a linear display device which allowed us to
538 calculate the transformation from RGB to LMS tristimulus cone activities. A gamma of 2 was applied to the
539 natural scene images to approximate the viewing conditions of standard computer displays.

540 *Experimental task*

541 The participants performed a long-term recognition task in which they had to press a button stating
542 whether the scene presented on each trial had been shown before or not. On every trial a distinct image was
543 shown for 3 s with a semi-transparent red fixation dot (0.2° x 0.2°; 50% opacity) on a grey background (RGB:
544 127,127,127; S/(L+M) = 1.1154, L/(L+M) = 0.6852). After the 3 s stimulus presentation the same fixation dot and

545 the grey background were shown alone for 1 s. Participants could respond any time during the 4 s trial. Each run
546 contained 75 trials (some of these were blank trials) and lasted 300 s. There were twelve runs per session.

547 *Images displayed*

548 73,000 distinct images were used which were a subsample (the train/val 2017 subsections) of the COCO
549 image dataset⁴⁰, which contains complex natural scenes with everyday objects in their usual contexts. The COCO
550 dataset contains 80 object categories ranging from faces and cars, to food and stop signs (for examples see Figure
551 2). The images were 425 x 425 pixels x 3 RGB channels which were resized to fill 8.4 by 8.4 degrees on the
552 BOLDscreen 32 display using linear interpolation. Participants had up to 40 scan sessions (range 30-40) and saw
553 up to 10,000 images 3 times across these sessions.

554 *Preprocessing*

555 The preprocessing of the functional data included temporal resampling, which corrected for slice time
556 acquisition differences. Field maps were acquired and the resampled volumes were undistorted using the field
557 estimates. These volumes were used to estimate rigid-body motion parameters using SPM5 *spm_realign*. To
558 correct for head motion and spatial distortion, a single cubic interpolation was performed on the temporally
559 resampled volumes. The mean fMRI volume was calculated and was corrected for gradient nonlinearities. Then
560 the volume was co-registered to the gradient-corrected volume from the first scan session, so the first scan
561 session was used as the target space for preparing fMRI data from the different scan sessions.

562 A GLM analysis was applied to the fMRI time-series data to estimate single-trial beta responses. The third
563 beta version (b3, 'betas_fithrf_GLMdenoise_RR'; native surface space) was used in the present study, and no
564 alterations were made to this beta version's preprocessing steps described in Allen et al.³⁸. In brief, the GLMsingle
565 algorithm^{38,72-74} was used to derive nuisance regressors and to choose the optimum ridge regularization
566 shrinkage fraction for each voxel. The extracted betas for each voxel represent estimates of the trial-wise BOLD
567 response amplitudes to each stimulus trial, and these are relative to the BOLD signal observed during the absence
568 of a stimulus (when only the grey screen was shown). Trials showing the same image were averaged to improve
569 signal estimates and reduce the amount of data. All analyses were done in MATLAB 2019a (MathWorks Inc.,
570 Natick, USA).

571

572 **Quantification and Statistical analysis**

573 *Color image statistics*

574 The RGB images were converted to LMS cone tristimulus values using the 10 degree Stockman, MacLeod,
575 Johnson cone fundamentals⁷⁵ interpolated to 1 nm. Chromaticity coordinates in a version of the MacLeod-
576 Boynton chromaticity diagram⁷⁶ based on the cone fundamentals were extracted for each pixel. In this color
577 diagram, the cardinal mechanisms of color vision are represented by the axes $L/(L+M)$ (roughly teal and red
578 colors) and $S/(L+M)$ (roughly chartreuse to violet), which correspond to the two main retinogeniculate color
579 pathways⁷⁷. Saturation was defined as the distance between the values of the pixel in MacLeod-Boynton color
580 space and the NSD grey background. To do this the chromaticity coordinates in the MacLeod-Boynton
581 chromaticity diagram were transformed to polar coordinates⁷⁸. The scaling factor applied to the $L/(L+M)$ axis was
582 0.045. If the luminance of a pixel value fell below a dark filtering criterion of $L+M = 0.0002$, the saturation value
583 was set to zero because at low luminance there is a high level of chromatic noise which is perceptually very dark
584 or black. The saturation values for each pixel were then averaged over the image to find the average saturation
585 of each image. We used the 425 x 425 images for all analyses of image statistics.

586 *Correlation with saturation*

587 For the whole-brain correlation between average saturation and BOLD signal change, with average
588 luminance as a covariate, we used the *partialcorr* function in MATLAB. Average luminance was quantified as $L+M$
589 with no dark filter applied. For the split-half analysis we computed separate correlation maps with saturation
590 (and luminance as a covariate) for odd and even averaged trials. The whole brain correlation maps were
591 correlated to provide split-half reliability correlation coefficients.

592 *Definition of ROIs*

593 We created regions of interest for the medial and lateral areas for both hemispheres. This was done
594 based on the whole-brain map of the number of participants that showed overlap for significant correlations
595 between voxel responses and average saturation in fsaverage space (Fig. 1B). For both hemispheres we drew
596 large ROIs around each stream (medial and lateral) of voxel responses that correlated significantly (following a
597 whole-brain Bonferroni correction) with average saturation in at least one participant, beginning at the boundary
598 of Kastner-defined hV4 (Figure 1B). We applied the four ROIs to each participant but only included voxels in an
599 ROI for a particular participant if the responses showed significant positive correlations with average saturation
600 (again, Bonferroni-corrected over the whole brain).

601 *Creation of montages*

602 We z-scored voxel responses to all images for each voxel and then averaged the z-scored voxel responses
603 across voxels in each ROI for each image. Using the average voxel responses for each ROI we created montages

604 of images that evoked the highest and lowest average voxel responses. We plotted 64 images in each montage
605 out of the 9,209 - 10,000 images each participant saw.

606 *Other image statistics*

607 For each NSD image as well as average saturation and average luminance we extracted four further
608 image statistics: Food pixel count, circular object pixel count, mean warmth rating over all pixels, and luminance
609 entropy. For luminance entropy we used the built-in Matlab function *entropy*⁴⁸, with each image's L+M pixel
610 values as the input.

611 For food and circular objects we summed the number of pixels contained within the relevant objects of
612 the 80 segmented object categories in the COCO dataset. To do this we converted the relevant segmentation
613 data to a binary pixel mask for each image. The food categories were banana, apple, sandwich, orange, broccoli,
614 carrot, hot dog, pizza, donut and cake. The circular object categories were sport ball, pizza, donut, clock, tennis
615 racket, frisbee, wine glass, stop sign, cup, bicycle, umbrella, bowl, apple, cake, toilet and orange. For images that
616 contained multiple relevant objects, pixels were summed over all relevant objects. There are some additional
617 food and circular objects in the COCO image set that have not been segmented, for example, plates.
618 Unsegmented objects were not included in the pixel counts.

619 For the warmth image statistic, we used color warmth ratings collected by our group for another project
620 (Maule, Racey, Tang, Richter, Bird & Franklin, unpublished), where participants were shown a set of 24
621 isoluminant and iso-saturated hues and asked to rate how warm (or cool) they appeared using sliding scale. We
622 used these warmth ratings to interpolate a warmth value for the hue of each pixel that had a luminance higher
623 than the dark filter criterion described previously. Warm ratings had positive values and cool ratings had negative
624 values. We averaged the warmth values of all pixels to get a mean warmth statistic for each image. For
625 intercorrelations between the image statistics for individual participants, see Figure S2B.

626 *Relationships between image statistics and voxel responses*

627 To create Figure 3A, we ranked the images for each image statistic and then averaged over the lowest
628 ranking 500 images (images ranked 1 to 500). We also averaged over the z-scored voxel responses to the same
629 500 images. We repeated this procedure but selected images ranking between 2 and 501 and the corresponding
630 voxel responses. We continued moving one image up until reaching the highest ranking 500 images. Afterwards,
631 we extrapolated the resulting “moving-average” curves to the highest and lowest image statistic values seen by
632 any of the 8 participants. We then averaged across the eight participants at interpolated points along the image
633 statistic. The interpolation was necessary because each participant saw different images (other than the roughly
634 10% common images). In Figure S2A, plots for individual participants are shown.

635 *Multiple linear regression*

636 We applied a rank inverse normal transform (Blom constant) to all image statistics before conducting
637 the multiple regression. Responses for each individual voxel were z-scored across images and then average voxel
638 responses for each image were calculated for each of the four ROIs.

639 *ANOVAs with saturation and food, warmth and food, and circular objects and food*

640 To define image groups for the ANOVA with saturation and food, we categorized images that contained
641 food based on the COCO categories, and all other images were categorized as non-food images. We then split
642 the food images into low and high mean saturation sets based on filtering criteria to roughly equate group sizes.
643 For each saturation set we then selected non-food images in each saturation bin to exactly match the shape of
644 the histogram of mean saturation for the food images. Unscaled distributions of saturation in the four image
645 groups and distributions scaled to unity are shown in Figure S3A. Equivalent distributions for image groups based
646 on the mean saturation of object pixels only are shown in Figure S3B. To define image groups for the ANOVA
647 with food and mean warmth rated color we followed the same procedure and again matched the shapes of
648 histograms of image statistics between the food and non-food image sets. Distributions of mean warmth over
649 whole images are shown in Figure S3A and distributions of mean warmth over object pixels only are shown in
650 Figure S3B. ANOVAs were then conducted on the sets of mean z-scored voxel responses for the images in each
651 group (e.g. high saturation/non-food, high saturation/food, low saturation/non-food and low saturation/food).

652 For the ANOVA with saturation and circular objects we defined image groups based on the presence or
653 absence of segmented food objects in the images and the presence or absence of segmented circular objects in
654 the images, according to our criteria defined above. Group mean voxel responses for each image group are
655 shown in Figure S4C, and voxel responses for each image group for individual participants are shown in Figure
656 S5. ANOVA results for individual participants are shown in Table S6.

657 *ROI responses to food and other object categories*

658 We calculated and plotted the average z-scored voxel responses in each ROI to each category of
659 segmented object the COCO dataset (Figure S6A). We also conducted an equivalent analysis excluding any
660 images that contained a segmented food object (Figure S6B).

661 **REFERENCES**

662 1. Kanwisher, N., McDermott, J., and Chun, M.M. (1997). The Fusiform Face Area: A Module in Human
663 Extrastriate Cortex Specialized for Face Perception. *J. Neurosci.* **17**, 4302–4311.
664 10.1109/CDC.2005.1583375.

665 2. Kanwisher, N., and Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception
666 of faces. *Philos. Trans. R. Soc. B Biol. Sci.* **361**, 2109–2128. 10.1098/rstb.2006.1934.

667 3. Epstein, R., Harris, A., Stanley, D., and Kanwisher, N. (1999). The parahippocampal place area: Recognition,
668 navigation, or encoding? *Neuron* **23**, 115–125. 10.1016/S0896-6273(00)80758-8.

669 4. Epstein, R., and Kanwisher, N. (1998). The parahippocampal place area: A cortical representation of the
670 local visual environment. *Nature* **7**, 6–9. 10.1016/s1053-8119(18)31174-1.

671 5. Peelen, M. V., and Downing, P.E. (2007). The neural basis of visual body perception. *Nat. Rev. Neurosci.* **8**,
672 636–648. 10.1038/nrn2195.

673 6. Downing, P.E., Jiang, Y., Shuman, M., and Kanwisher, N. (2001). A cortical area specialized for visual
674 processing of the human body. *Science* **293**, 2470–2474. 10.1167/1.3.341.

675 7. Kay, K.N., and Yeatman, J.D. (2017). Bottom-up and top-down computations in word- and face-selective
676 cortex. *eLife* **6**, 1–29. 10.7554/eLife.22341.

677 8. Dehaene, S., and Cohen, L. (2011). The unique role of the visual word form area in reading. *Trends Cogn. Sci.* **15**,
678 254–262. 10.1016/j.tics.2011.04.003.

679 9. Witzel, C., and Gegenfurtner, K.R. (2018). Color Perception: Objects, Constancy, and Categories. *Annu. Rev. Vis. Sci.* **4**, 475–499. 10.1146/annurev-vision-091517-034231.

680 10. Tanaka, J., Weiskopf, D., and Williams, P. (2001). The role of color in high-level vision. *Trends Cogn. Sci.* **5**,
682 211–215. 10.1016/S1364-6613(00)01626-0.

683 11. Lafer-Sousa, R., Conway, B.R., and Kanwisher, N.G. (2016). Color-biased regions of the ventral visual
684 pathway lie between face-and place-selective regions in humans, as in macaques. *J. Neurosci.* **36**, 1682–
685 1697. 10.1523/JNEUROSCI.3164-15.2016.

686 12. Lafer-Sousa, R., and Conway, B.R. (2013). Parallel, multi-stage processing of colors, faces and shapes in
687 macaque inferior temporal cortex. *Nat. Neurosci.* **16**, 1870–1878. 10.1038/nn.3555.

688 13. Zeki, S., and Marini, L. (1998). Three cortical stages of colour processing in the human brain. *Brain* **121**,
689 1669–1685. 10.1093/brain/121.9.1669.

690 14. Conway, B.R. (2018). The Organization and Operation of Inferior Temporal Cortex.

691 15. Conway, B.R., Moeller, S., and Tsao, D.Y. (2007). Specialized Color Modules in Macaque Extrastriate Cortex.
692 *Neuron* **56**, 560–573. 10.1016/j.neuron.2007.10.008.

693 16. Beauchamp, M.S., Haxby, J. V., Jennings, J.E., and DeYoe, E.A. (1999). An fMRI version of the farnsworth-
694 munsell 100-hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex.
695 *Cereb. Cortex* **9**, 257–263. 10.1093/cercor/9.3.257.

696 17. Chao, L.L., and Martin, A. (1999). Cortical regions associated with perceiving, naming, and knowing about
697 colors. *J. Cogn. Neurosci.* **11**, 25–35. 10.1162/089892999563229.

698 18. Taylor, J.M., and Xu, Y. (2022). Representation of color, form, and their conjunction across the human
699 ventral visual pathway. *NeuroImage* **251**, 118941. 10.1016/j.neuroimage.2022.118941.

700 19. Chang, L., Bao, P., and Tsao, D.Y. (2017). The representation of colored objects in macaque color patches.
701 *Nat. Commun.* **8**, 2064. 10.1038/s41467-017-01912-7.

702 20. Conway, B.R., Eskew, R.T., Martin, P.R., and Stockman, A. (2018). A tour of contemporary color vision
703 research. *Vision Res.* **151**, 2–6. 10.1016/j.visres.2018.06.009.

704 21. Hadjikhani, N., Liu, A.K., Dale, A.M., Cavanagh, P., and Tootell, R.B.H. (1998). Retinotopy and color
705 sensitivity in human visual cortical area V8. *Nature* **1**, 235–241.

706 22. Brouwer, G.J., and Heeger, D.J. (2009). Decoding and reconstructing color from responses in human visual
707 cortex. *J. Neurosci.* **29**, 13992–14003. 10.1523/JNEUROSCI.3577-09.2009.

708 23. Bannert, M.M., and Bartels, A. (2018). Human V4 Activity Patterns Predict Behavioral Performance in
709 Imagery of Object Color. *J. Neurosci.* **38**, 3657–3668. 10.1523/JNEUROSCI.2307-17.2018.

710 24. Bannert, M.M., and Bartels, A. (2013). Decoding the yellow of a gray banana. *Curr. Biol.* **23**, 2268–2272.
711 10.1016/j.cub.2013.09.016.

712 25. Wade, A., Augath, M., Logothetis, N., and Wandell, B. (2008). fMRI measurements of color in macaque and
713 human. *J. Vis.* **8**, 1–19. 10.1167/8.10.6.

714 26. Brewer, A.A., Liu, J., Wade, A.R., and Wandell, B.A. (2005). Visual field maps and stimulus selectivity in
715 human ventral occipital cortex. *Nat. Neurosci.* **8**, 1102–1109. 10.1038/nn1507.

716 27. Engel, S.A. (2005). Adaptation of oriented and unoriented color-selective neurons in human visual areas.
717 *Neuron* **45**, 613–623. 10.1016/j.neuron.2005.01.014.

718 28. Engel, S., Zhang, X., and Wandell, B. (1997). Colour tuning in human visual cortex measured with functional
719 magnetic resonance imaging. *Nature* **388**, 68–71. 10.1038/40398.

720 29. Mullen, K.T., Dumoulin, S.O., Mcmahon, K.L., Zubizaray, G.I. De, and Hess, R.F. (2007). Selectivity of human
721 retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation. *Eur. J.
722 Neurosci.* **25**, 491–502. 10.1111/j.1460-9568.2007.05302.x.

723 30. Barnett, M.A., Aguirre, G.K., and Brainard, D.H. (2021). A quadratic model captures the human v1 response
724 to variations in chromatic direction and contrast. *eLife* **10**, 1–37. 10.7554/ELIFE.65590.

725 31. Mullen, K.T. (2019). The response to colour in the human visual cortex: the fMRI approach. *Curr. Opin.
726 Behav. Sci.* **30**, 141–148. 10.1016/j.cobeha.2019.08.001.

727 32. Goddard, E., and Mullen, K.T. (2020). fMRI representational similarity analysis reveals graded preferences
728 for chromatic and achromatic stimulus contrast across human visual cortex. *NeuroImage* **215**, 116780.
729 10.1016/j.neuroimage.2020.116780.

730 33. Brouwer, G.J., and Heeger, D.J. (2013). Categorical clustering of the neural representation of color. *J.
731 Neurosci.* **33**, 15454–15465. 10.1523/JNEUROSCI.2472-13.2013.

732 34. Bohon, K.S., Hermann, K.L., Hansen, T., and Conway, B.R. (2016). Representation of perceptual color space
733 in macaque posterior inferior temporal cortex (The V4 complex). *eNeuro* 3. 10.1523/ENEURO.0039-
734 16.2016.

735 35. Vandenbroucke, A.R.E., Fahrenfort, J.J., Meuwese, J.D.I., Scholte, H.S., and Lamme, V.A.F. (2014). Prior
736 Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex. *Cereb. Cortex*
737 26, 1401–1408. 10.1093/cercor/bhu224.

738 36. Rosenthal, I., Ratnasingam, S., Haile, T., Eastman, S., Fuller-Deets, J., and Conway, B.R. (2018). Color
739 statistics of objects, and color tuning of object cortex in macaque monkey. *J. Vis.* 18, 1–21.
740 10.1167/18.11.1.

741 37. Gibson, E., Futrell, R., Jara-Ettinger, J., Mahowald, K., Bergen, L., Ratnasingam, S., Gibson, M., Piantadosi,
742 S.T., and Conway, B.R. (2017). Color naming across languages reflects color use. *Proc. Natl. Acad. Sci. U. S.*
743 A. 114, 10785–10790. 10.1073/pnas.1619666114.

744 38. Allen, E.J., St-yves, G., Wu, Y., Breedlove, J.L., Prince, J.S., Dowdle, L.T., Nau, M., Caron, B., Pestilli, F.,
745 Charest, I., et al. (2022). A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial
746 intelligence. *Nat Neurosci.* 10.1038/s41593-021-00962-x.

747 39. Naselaris, T., Allen, E., and Kay, K. (2021). Extensive sampling for complete models of individual brains.
748 *Curr. Opin. Behav. Sci.* 40, 45–51. 10.1016/j.cobeha.2020.12.008.

749 40. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C.L. (2014).
750 Microsoft COCO: Common objects in context 10.1007/978-3-319-10602-1_48.

751 41. Khosla, M., Murty, N.A.R., and Kanwisher, N. (2022). A highly selective response to food in human visual
752 cortex revealed by hypothesis-free voxel decomposition. *Curr. Biol.*, 1–13. 10.1016/j.cub.2022.08.009.

753 41. Jain, N., Wang, A., Henderson, M.M., Lin, R., Jacob, S., Tarr, M.J., and Wehbe, L. (2022). Food for thought:
754 selectivity for food in human ventral visual cortex. <https://doi.org/10.1101/2022.05.22.492983>

755 43. Long, F., Yang, Z., and Purves, D. (2006). Spectral statistics in natural scenes predict hue , saturation , and
756 brightness. *103*, 6013–6018.

757 44. Bird, C.M., Berens, S.C., Horner, A.J., and Franklin, A. (2014). Categorical encoding of color in the brain.
758 10.1073/pnas.1315275111.

759 45. Persichetti, A.S., Thompson-Schill, S.L., Butt, O.H., Brainard, D.H., and Aguirre, G.K. (2015). Functional
760 magnetic resonance imaging adaptation reveals a noncategorical representation of hue in early visual
761 cortex. *J. Vis.* 15, 1–19. 10.1167/15.6.18.

762 46. Haile, T.M., Bohon, K.S., Romero, M.C., and Conway, B.R. (2019). Visual stimulus-driven functional
763 organization of macaque prefrontal cortex. *NeuroImage* 188, 427–444.
764 10.1016/j.neuroimage.2018.11.060.

765 47. Mather, G. (2020). Aesthetic image statistics vary with artistic genre. *Vis. Switz.* 4. 10.3390/vision4010010.

766 48. Gonzalez, R.C., Woods, R.E., and Eddins, S.L. (2004). Digital Image Processing Using MATLAB (Pearson
767 Education).

768 49. Kay, K.N., Weiner, K.S., and Grill-Spector, K. (2015). Attention reduces spatial uncertainty in human ventral
769 temporal cortex. *Curr. Biol.* **25**, 595–600. 10.1016/j.cub.2014.12.050.

770 50. Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J.,
771 Beckmann, C.F., Jenkinson, M., et al. (2016). A multi-modal parcellation of human cerebral cortex. *Nature*
772 **536**, 171–178. 10.1038/nature18933.

773 51. van der Laan, L.N., de Ridder, D.T.D., Viergever, M.A., and Smeets, P.A.M. (2011). The first taste is always
774 with the eyes: A meta-analysis on the neural correlates of processing visual food cues. *NeuroImage* **55**,
775 296–303. 10.1016/j.neuroimage.2010.11.055.

776 52. Grill-Spector, K., and Weiner, K.S. (2014). The functional architecture of the ventral temporal cortex and its
777 role in categorization. *Nat. Rev. Neurosci.* **15**, 536–548. 10.1038/nrn3747.

778 51. Martin, A., Wiggs, C.L., Ungerleider, L.G., and Haxby, J. V (1996). Neural correlates of category specific
779 knowledge. *Nature* **379**, 649-652.

780 54. Crutch, S.J., and Warrington, E.K. (2003). The selective impairment of fruit and vegetable knowledge: A
781 multiple processing channels account of fine-grain category specificity. *Cogn. Neuropsychol.* **20**, 355–372.
782 10.1080/02643290244000220.

783 55. Kravitz, D.J., Saleem, K.S., Baker, C.I., Ungerleider, L.G., and Mishkin, M. (2013). The ventral visual pathway:
784 An expanded neural framework for the processing of object quality. *Trends Cogn. Sci.* **17**, 26–49.
785 10.1016/j.tics.2012.10.011.

786 56. Baker, C.I., Liu, J., Wald, L.L., Kwong, K.K., Benner, T., and Kanwisher, N. (2007). Visual word processing and
787 experiential origins of functional selectivity in human extrastriate cortex. *104*.

788 57. Bilalic, M., Grottenthaler, T., Nagele, T., and Lindig, T. (2016). The Faces in Radiological Images: Fusiform
789 Face Area Supports Radiological Expertise. *Cereb. Cortex* **26**, 1004–1014. 10.1093/cercor/bhu272.

790 58. Xu, Y. (2005). Revisiting the role of the fusiform face area in visual expertise. *Cereb. Cortex* **15**, 1234–1242.
791 10.1093/cercor/bhi006.

792 59. Bukach, C.M., Gauthier, I., and Tarr, M.J. (2006). Beyond faces and modularity: the power of an expertise
793 framework. *Trends Cogn. Sci.* **10**, 159–166. 10.1016/j.tics.2006.02.004.

794 60. Gauthier, I., Tarr, M.J., Anderson, A.W., Skudlarski, P., and Gore, J.C. (1999). Activation of the middle
795 fusiform 'face area' increases with expertise in recognizing novel objects. *June 2*, 568–573.

796 61. O'Craven, K.M., Downing, P.E., and Kanwisher, N. (1999). fMRI evidence for objects as the units of
797 attentional selection. *Nature* **401**, 584–587. 10.1038/44134.

798 62. Bonner, M.F., and Epstein, R.A. (2021). Object representations in the human brain reflect the co-
799 occurrence statistics of vision and language. *Nat. Commun.* **12**, 1–16. 10.1038/s41467-021-24368-2.

800 63. Fan, S., Wang, X., Wang, X., Wei, T., and Bi, Y. (2021). Topography of Visual Features in the Human Ventral
801 Visual Pathway. *Neurosci. Bull.* **37**, 1454–1468. 10.1007/s12264-021-00734-4.

802 64. Arcaro, M.J., Ponce, C., and Livingstone, M. (2020). The neurons that mistook a hat for a face. *eLife* **9**, 1–19.
803 10.7554/eLife.53798.

804 65. Wischnewski, M., and Peelen, M. V (2021). Causal neural mechanisms of context-based object recognition.
805 eLife, 1–22. 10.7554/eLife.69736.

806 66. Foroni, F., Pergola, G., and Rumiati, R.I. (2016). Food color is in the eye of the beholder: The role of human
807 trichromatic vision in food evaluation. *Sci. Rep.* 6, 6–11. 10.1038/srep37034.

808 67. Sumner, P., and Mollon, J.D. (2000). Catarrhine photopigments are optimized for detecting targets against
809 a foliage background. *J. Exp. Biol.* 203, 1963–1986. 10.1242/jeb.203.13.1963.

810 68. Osorio, D., and Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. *Proc. R. Soc. B
811 Biol. Sci.* 263, 593–599. 10.1098/rspb.1996.0089.

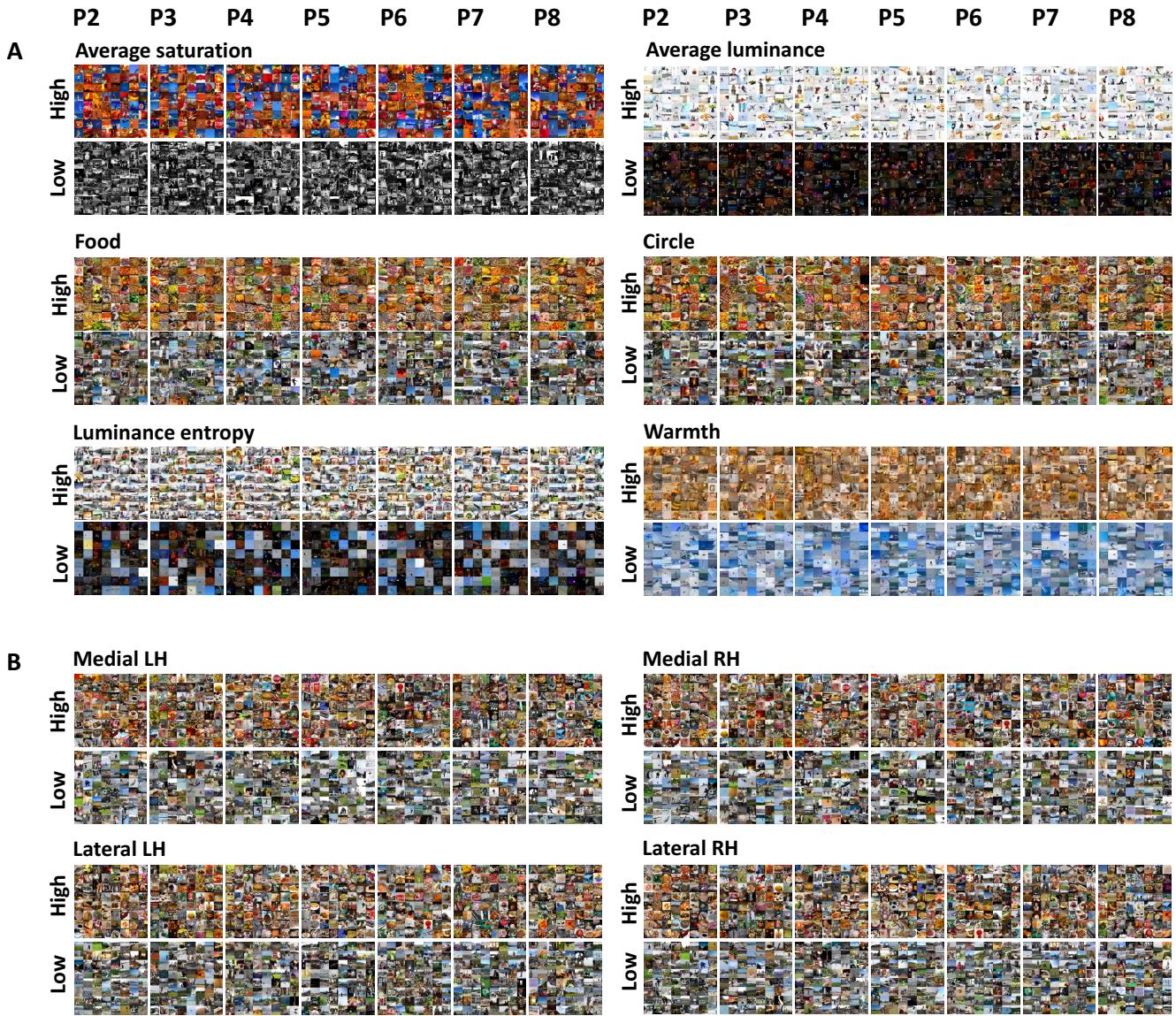
812 69. Regan, B. C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P., Mollon, J.D. (2001). Fruits , foliage
813 and the evolution of primate colour vision. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 356, 229–283.
814 10.1098/rstb.2000.0773.

815 70. Sumner, P., and Mollon, J.D. (2000). Chromaticity as a signal of ripeness in fruits taken by primates. *J. Exp.
816 Biol.* 203, 1987–2000. 10.1242/jeb.203.13.1987.

817 71. Wang, L., Mruczek, R.E.B., Arcaro, M.J., and Kastner, S. (2015). Probabilistic maps of visual topography in
818 human cortex. *Cereb. Cortex* 25, 3911–3931. 10.1093/cercor/bhu277.

819 72. Kay, K.N., Rokem, A., Winawer, J., Dougherty, R.F., and Wandell, B.A. (2013). GLMdenoise: A fast,
820 automated technique for denoising task-based fMRI data. *Front. Neurosci.* 7, 1–15.
821 10.3389/fnins.2013.00247.

822 73. Rokem, A., and Kay, K. (2020). Fractional ridge regression: a fast, interpretable reparameterization of ridge
823 regression. *arXiv*, 1–12. 10.1101/gigascience/giaa133.


824 74. Prince, J.S., Charest, I., Kurzawski, J.W., Pyles, J.A., Tarr, M.J., and Kay, K.N. (2022). GLMsingle: a toolbox for
825 improving single-trial fMRI response estimates. *bioRxiv* 5000, 2022.01.31.478431.

826 75. Stockman, A., MacLeod, D.I.A., and Johnson, N.E. (1993). Spectral sensitivities of the human cones. *J. Opt.
827 Soc. Am. A* 10, 2491. 10.1364/josaa.10.002491.

828 76. MacLeod, D.I., and Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal
829 luminance. *J. Opt. Soc. Am. A* 69, 1183–1186. 10.1364/JOSA.69.001183.

830 77. Mollon, J. D., Cavonius, C.R. (1987). The chromatic antagonisms of opponent process theory are not the
831 same as those revealed in studies of detection and discrimination. In *In Colour vision deficiencies VIII*, D.
832 Springer, ed., pp. 473–483.

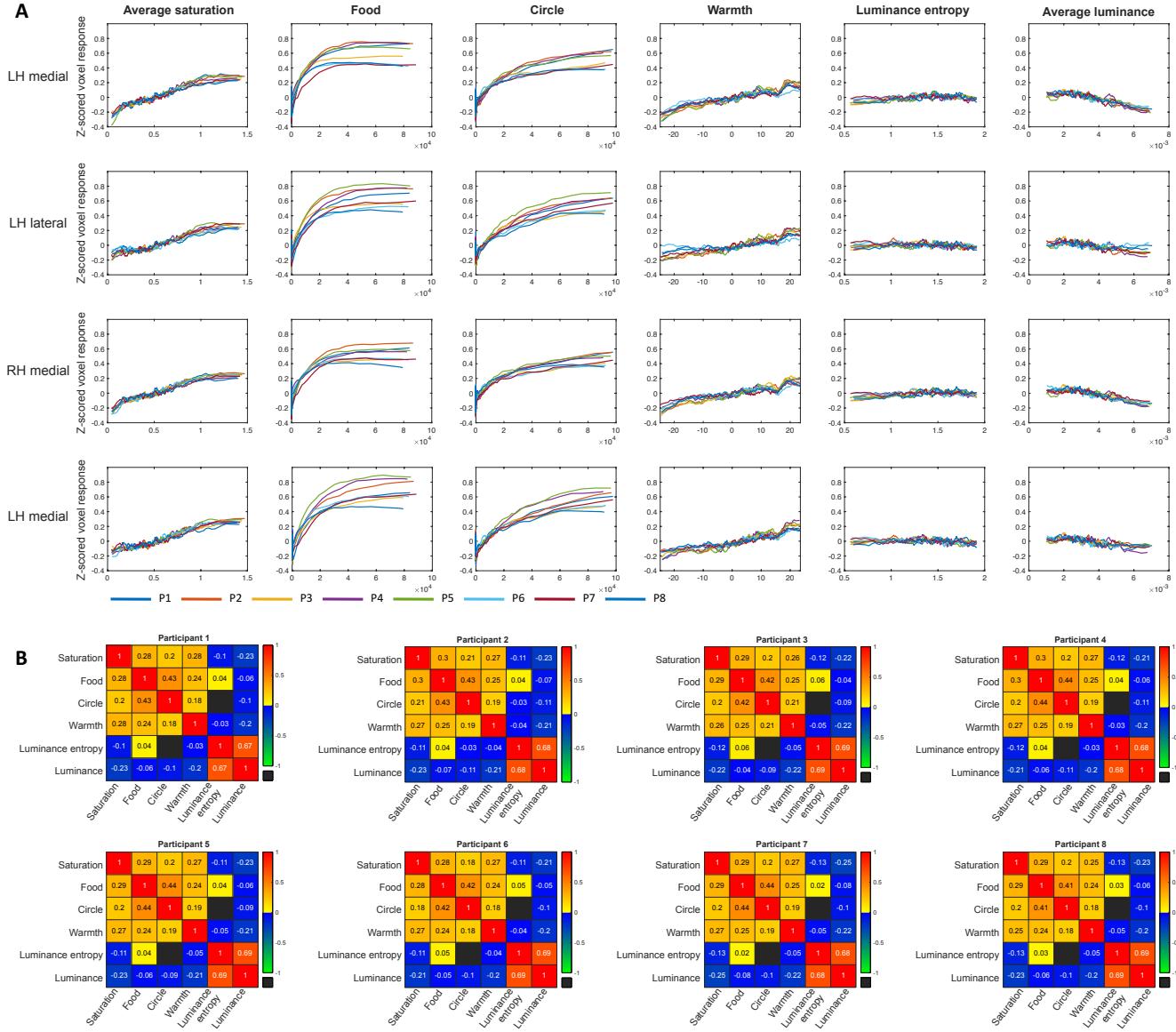

833 78. Bosten, J.M., and Lawrence-Owen, A.J. (2014). No difference in variability of unique hue selections and
834 binary hue selections. *J. Opt. Soc. Am. A* 31, A357. 10.1364/josaa.31.00a357.

Figure S1. Montages of the images lowest and highest for each image statistic and of images evoking the lowest and highest average voxel responses in the four ROIs, related to Figure 2.

(A) Montages of the 64 images with lowest (bottom) and highest (top) image statistics for participants 2 to 8 (left to right). Montages are presented for average saturation (based on the NSD grey background), average luminance (which was a covariate in our correlation analysis), food pixel count, circle pixel count, mean pixel warmth rating and luminance entropy.

(B) Montages showing the 64 images that provoked the highest and lowest averaged z-scored voxel responses in the lateral and medial areas for both hemispheres.

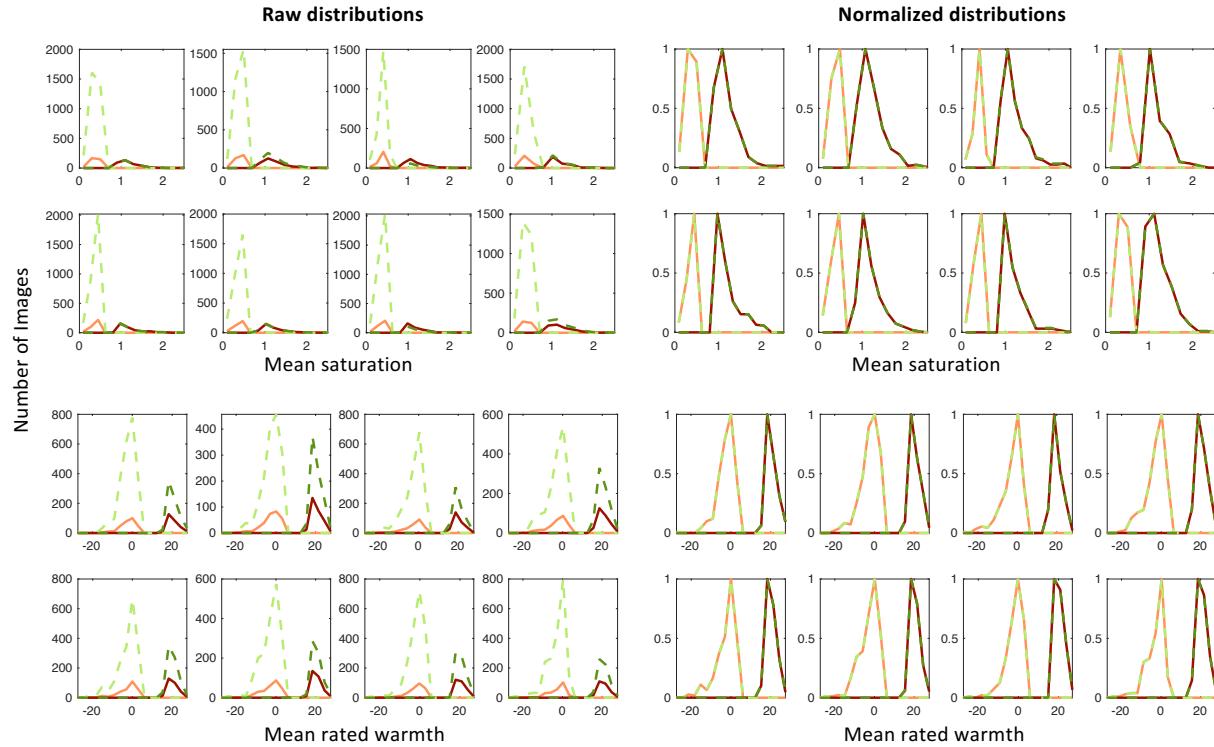
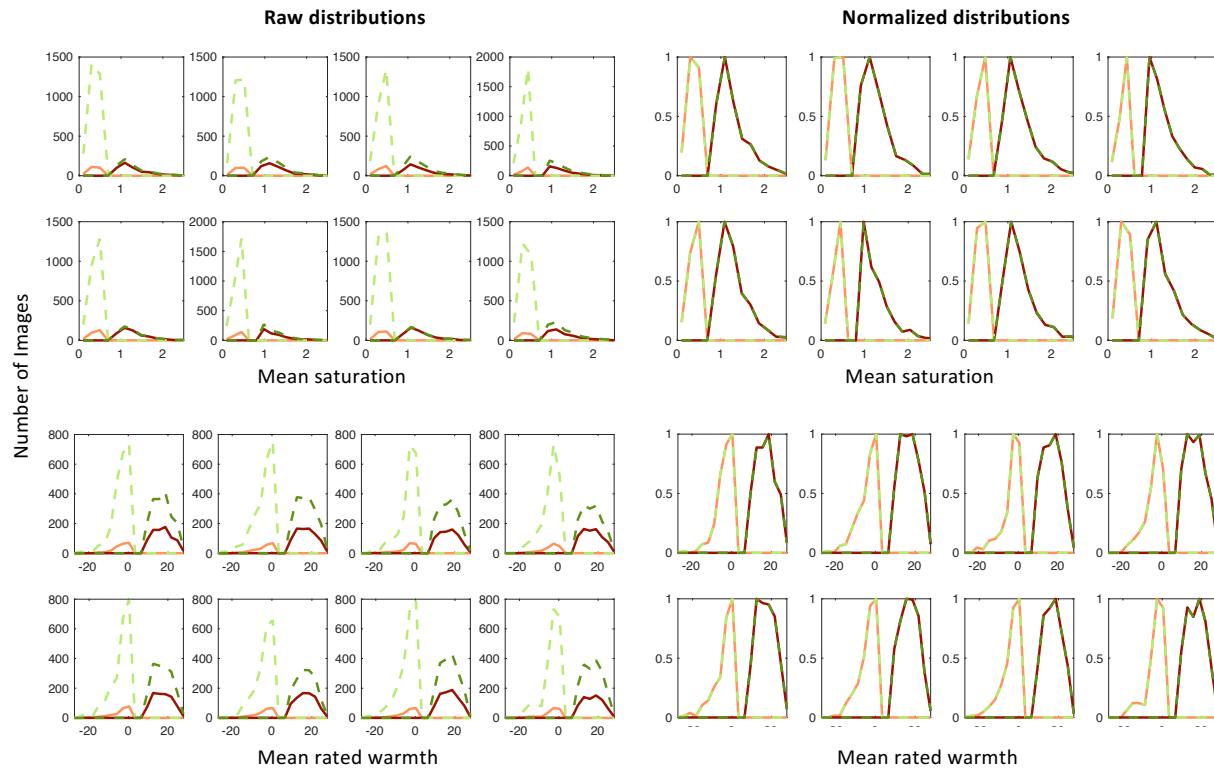


Figure S2. Average ROI responses for each of the image statistics and inter-correlations between image statistics for each participant, related to STAR Methods and Figure 3.


(A) Each row shows interpolated average z-scored voxel responses for each ROI, with data from each of the eight participants plotted in a different color. The x-axis shows an image statistic: average saturation, number of pixels contained in images of food, number of pixels contain in images of circular objects, mean warmth ratings of pixel colors, luminance (L+M) entropy, and average luminance, from the first to the sixth column. The y-axis shows the averaged z-scored voxel responses. The images were ranked from lowest to highest for each image statistic and the image statistic was averaged over sequential sets of 500 images. Then the averages of 500 z-scored voxel responses were sequentially plotted for the corresponding sets of 500 images, e.g., 1-500, 2-501, 3-502, creating a “moving average” voxel response for each ROI as each image statistic increased.

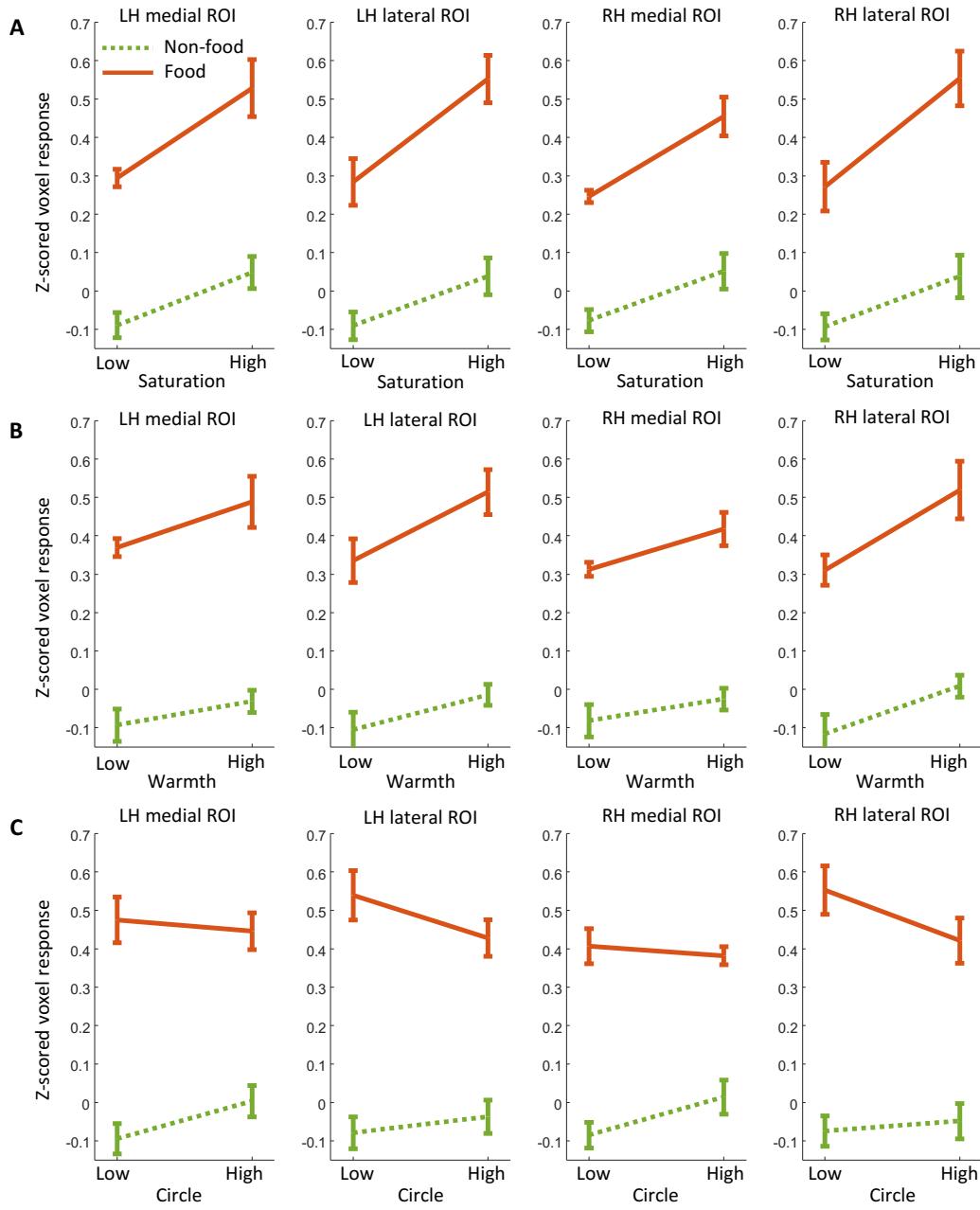
(B) The correlation matrices show the Spearman correlations between our six image statistics for each participant. All pairs of image statistics were significantly correlated apart from luminance (L+M) entropy and circle pixel count, which were significantly correlated for Participant 2 but not for the other 7 participants. Where a correlation was not significant it is omitted, and the cell shaded black.

A Image statistics extracted over whole images

B Image statistics extracted over object pixels only

— Food, high saturation/warmth

— Non-food, high saturation/warmth


— Food, low saturation/warmth

— Nonfood, low saturation/warmth

Figure S3. Histograms of image statistics over whole images and over segmented object pixels only for the groups of images included in the ANOVAs, related to STAR Methods.

(A) Histograms of image statistics for saturation and warmth for the four image groups used in our the 2-way ANOVAs, where image statistics were extracted over whole images. The left panels ('Raw distributions') show unscaled histograms, indicating the numbers of images in each group. In the right panels ('Normalized distributions') the same histograms are scaled to unity, showing that the shape of the histogram for each image statistic group (i.e., high and low saturation, or high and low warmth) is the same for food and non-food images. One panel is shown for each participant.

(B) Histograms of image statistics for saturation and warmth for the four image groups used in our the 2-way ANOVAs, where image statistics were extracted over object pixels only. The left panels ('Raw distributions') show unscaled histograms, indicating the numbers of images in each group. In the right panels ('Normalized distributions') the same histograms are scaled to unity, showing that the shape of the histogram for each image statistic group (i.e., high and low saturation, or high and low warmth) is the same for food and non-food images. One panel is shown for each participant.

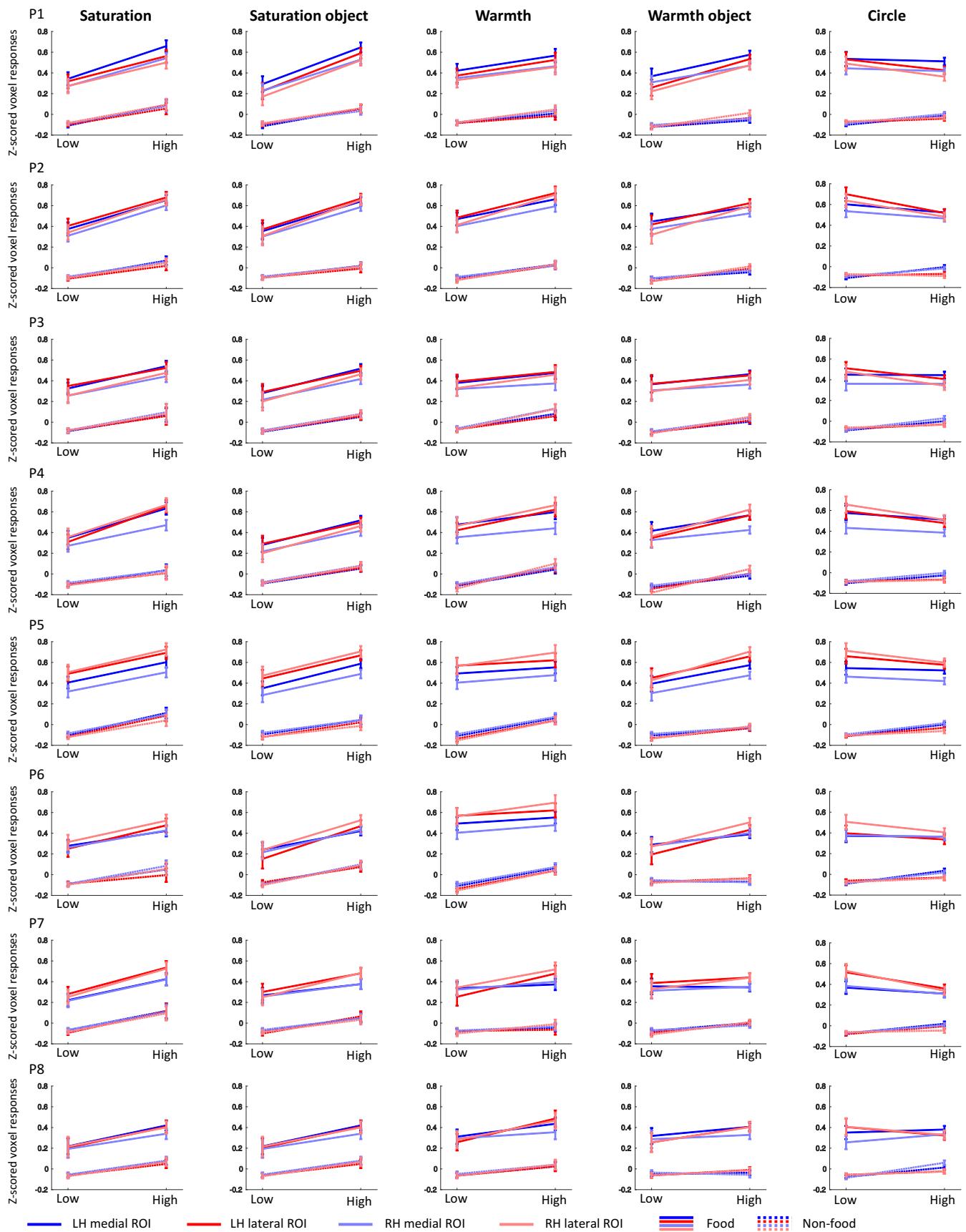
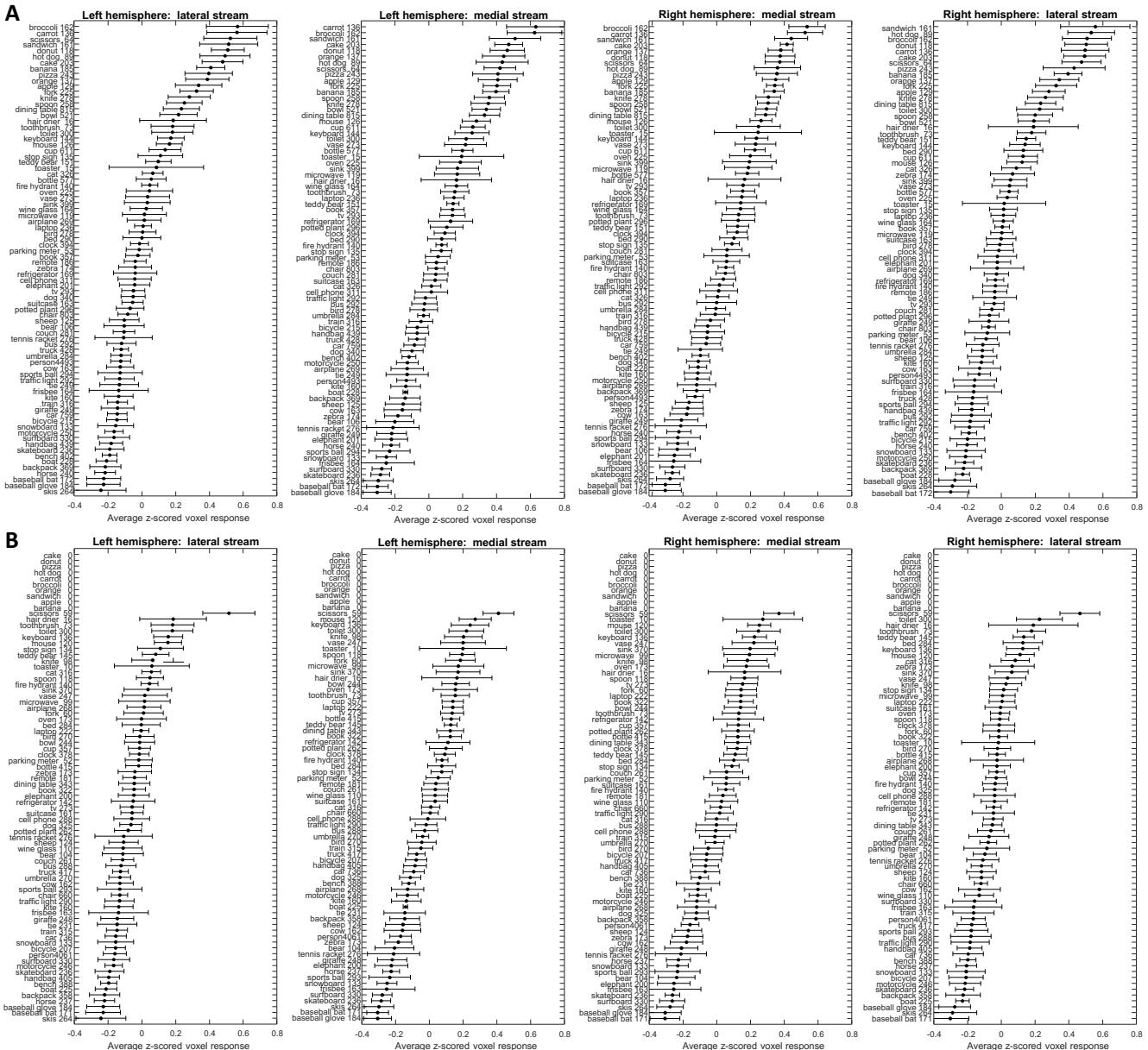


Figure S4. ROI responses to combinations of food, object saturation, object warmth, and circular objects, related to STAR Methods and Figure 3.

(A) Mean z-scored voxel responses to groups of images based on the presence or absence of food, and high or low mean saturation for pixels within segmented objects, averaged across the eight participants. The orange solid lines show mean z-scored voxel responses for images that contained food and the green dashed lines for images that did not contain food based on the COCO object categories. Error bars are within-participant 95% confidence intervals.


(B) Mean z-scored voxel responses to groups of images based on the presence or absence of food, and high or low mean rated warmth for pixels within segmented objects, averaged across the eight participants. The orange solid lines show mean z-scored voxel responses for images that contained food and the green dashed lines for images that did not contain food based on the COCO object categories. Error bars are within-participant 95% confidence intervals.

(C) Mean z-scored voxel responses to groups of images based on the presence or absence of food, and the presence or absence of segmented circular objects, averaged across the eight participants. The categories for circular objects are labeled 'high' and 'low' to account for the additional presence of some unsegmented circular objects in the NSD images. The orange solid lines show mean z-scored voxel responses for images that contained food and the green dashed lines for images that did not contain food based on the COCO object categories. Error bars are within-participant 95% confidence intervals.

Figure S5. Mean voxel responses in the four ROIs for images grouped by food and other image statistics for individual participants, related to STAR Methods and Figure 3.

Two-way ANOVAs were conducted on average z-scored voxel responses for all four ROIs and individual participants with food as one factor and one of the following image statistics as the other factor: (1) mean saturation over whole images (saturation), (2) mean saturation over object pixels only (saturation object), (3) mean warmth ratings of pixel colors over whole images (warmth), (4) mean warmth ratings of pixel colors over object pixels only (warmth object) and (5) the presence or absence of segmented circular objects (circle). For saturation, saturation object, warmth and warmth object the analyses were based on the groups of images matched on image statistics shown in Figure S3. For circle, the analyses were based on all images grouped by the presence or absence of segmented food and the presence or absence of segmented circular objects. The figure shows mean z-scored voxel responses for each image group, for each ROI. The solid lines represent results for images that contained food and the dotted lines represent results for images that did not contain food based on the COCO object categories. Each row shows results for a different individual participant (labeled P1-P8). Error bars are 95% confidence intervals.

Figure S6. ROI responses to food and other object categories, and to other object categories when all images containing food are excluded, related to STAR Methods.

(A) The four panels show average voxel responses to each object category, with one panel for each ROI. The x-axis displays average z-scored voxel responses and the y-axis shows the object category names and the average number of images across 8 participants that contained each category of object, rounded. The 80 object categories are those identified and segmented in the COCO dataset. The object categories are ordered from those provoking the strongest responses (top) to those provoking the weakest responses (bottom), showing that the ROIs respond most strongly to food objects. There may be multiple objects in one image. Error bars are between-subject standard errors of the mean.

(B) The four panels show average voxel response to each object category when images of food are excluded, with one panel for each ROI. The x-axis displays average z-scored voxel responses and the y-axis shows the object name and the average number of images across 8 participants that contained this category of object, rounded. The 80 object categories are those identified and segmented in the COCO dataset. The top shows the object categories that were excluded and the other object categories are ordered from those provoking the strongest responses (top) to those provoking the weakest responses (bottom). There may be multiple objects in one image. The figure shows that food-associated objects provoked high responses (in panels A) because they were present in the images in conjunction with food objects: when images containing food were omitted from the analysis (in panels B), food-associated objects no longer provoked strong responses compared to other categories of object. Error bars are between-subject standard errors of the mean.

Multiple Linear Regression Beta Coefficients							
P1	B0	Average saturation	Food	Circles	Warmth	Luminance entropy	Average luminance
Medial Left	-9.9626x10 ⁻⁹	0.0651	0.2405	0.0607	0.0264	0.0473	-0.0558
Lateral Left	4.6606x10 ⁻⁹	0.0315	0.2465	0.0439	0.014	-0.0255	0.021
Medial Right	-3.7794x10 ⁻⁹	0.0557	0.1881	0.0621	0.0253	0.0461	-0.0497
Lateral Right	6.4530x10 ⁻⁹	0.0359	0.1977	0.0422	0.0471	-0.0004	-0.0055
P2	B0	Average saturation	Food	Circles	Warmth	Luminance entropy	Average luminance
Medial Left	1.7282x10 ⁻⁹	0.0447	0.247	0.0676	0.0411	0.0462	-0.0489
Lateral Left	1.0421x10 ⁻⁹	0.0182	0.3033	0.0259	0.0455	-0.0035	-0.014
Medial Right	4.4754x10 ⁻⁹	0.0501	0.2285	0.0433	0.0393	0.0472	-0.0451
Lateral Right	2.2469x10 ⁻⁹	0.0357	0.2992	0.007	0.0427	-0.0258	0.0222
P3	B0	Average saturation	Food	Circles	Warmth	Luminance entropy	Average luminance
Medial Left	7.2810x10 ⁻⁹	0.0511	0.1897	0.0527	0.0497	0.0481	-0.0513
Lateral Left	2.7417x10 ⁻¹⁰	0.0338	0.2081	0.0317	0.0461	0.0179	-0.0263
Medial Right	2.1672x10 ⁻⁸	0.0595	0.1261	0.06	0.0608	0.0513	-0.0593
Lateral Right	1.7536x10 ⁻⁹	0.0382	0.1829	0.0245	0.0697	-0.0066	0.0006
P4	B0	Average saturation	Food	Circles	Warmth	Luminance entropy	Average luminance
Medial Left	1.5903x10 ⁻⁸	0.0548	0.2571	0.0543	0.0276	0.0191	-0.0301
Lateral Left	-1.3195x10 ⁻⁸	0.0362	0.2754	0.0251	0.0425	0.0069	-0.015
Medial Right	1.7563x10 ⁻⁸	0.0416	0.1802	0.0543	0.0317	0.0255	-0.029
Lateral Right	5.4678x10 ⁻¹⁰	0.0309	0.2965	0.0253	0.0661	-0.0113	-0.0016
P5	B0	Average saturation	Food	Circles	Warmth	Luminance entropy	Average luminance
Medial Left	1.0096x10 ⁻⁸	0.0699	0.221	0.0677	0.0528	0.0510	-0.0404
Lateral Left	4.8522x10 ⁻⁹	0.0403	0.2900	0.0683	0.0473	-0.0061	0.0102
Medial Right	3.5587x10 ⁻⁹	0.0556	0.1758	0.0685	0.0483	0.0340	-0.0191
Lateral Right	-6.1675x10 ⁻⁹	0.0355	0.3295	0.041	0.0565	-0.0292	0.0293
P6	B0	Average saturation	Food	Circles	Warmth	Luminance entropy	Average luminance
Medial Left	2.9056x10 ⁻⁹	0.058	0.1381	0.0726	0.0052	0.0344	-0.0566
Lateral Left	-2.7315x10 ⁻⁹	0.0282	0.1911	0.0446	-0.0104	-0.0262	0.0206
Medial Right	-1.2928x10 ⁻⁸	0.0743	0.1477	0.0545	0.0028	0.0331	-0.0606
Lateral Right	-8.6468x10 ⁻⁹	0.0604	0.2171	0.031	0.0145	-0.0089	-0.016
P7	B0	Average saturation	Food	Circles	Warmth	Luminance entropy	Average luminance
Medial Left	1.2939x10 ⁻⁸	0.0500	0.1253	0.0599	0.0294	0.0407	-0.0558
Lateral Left	5.8260x10 ⁻¹⁰	0.0472	0.1897	0.0550	0.0233	-0.0074	-0.0090
Medial Right	8.1592x10 ⁻⁹	0.0531	0.1439	0.0526	0.0080	0.0235	-0.0232
Lateral Right	1.5644x10 ⁻⁸	0.0342	0.2100	0.0243	0.0315	-0.0061	0.0031
P8	B0	Average saturation	Food	Circles	Warmth	Luminance entropy	Average luminance
Medial Left	2.2001x10 ⁻⁹	0.0564	0.1416	0.0511	0.0235	0.0702	-0.0743
Lateral Left	4.5941x10 ⁻⁹	0.0386	0.1648	0.0268	0.0146	0.0066	-0.0107
Medial Right	5.0486x10 ⁻⁹	0.0527	0.0883	0.0812	0.0187	0.0904	-0.0926
Lateral Right	1.8202x10 ⁻⁹	0.0423	0.1611	0.0222	0.0258	0.0168	-0.0241

Table S1. Beta coefficients for each multiple linear regression for the four ROIs for all eight participants, related to Table 1.

The table shows beta coefficients for the multiple linear regressions for average saturation, food, circular objects, warmth, luminance entropy and average luminance for each individual participant for all four ROIs.

P	Sum of Squared				df				Mean Squared				F				Prob>F			
	Food	Sat	Food * Sat	error	Total	error	Total	Food	Sat	Food * Sat	error	Food	Sat	Food * Sat	Food	Sat	Food * Sat			
Left Medial	1	117	30	1	1160	1395	4293	4296	117	30	1.50	0.27	432	110	6	~0	1.70×10^{-25}	0.01861		
	2	138	24	2	957	1181	4081	4084	138	24	1.59	0.23	588	104	7	~0	4.22×10^{-24}	0.00926		
	3	62	11	0	594	737	2968	2971	62	11	0.29	0.20	309	54	1	~0	2.56×10^{-13}	0.22731		
	4	122	20	2	1076	1280	3587	3590	122	20	2.21	0.30	406	66	7	~0	5.55×10^{-16}	0.00667		
	5	112	19	0	1066	1287	4122	4125	112	19	0.04	0.26	433	74	0	~0	1.40×10^{-17}	0.69346		
	6	61	9	0	1026	1140	3909	3912	61	9	0.00	0.26	234	35	0	~0	3.79×10^{-09}	0.95137		
	7	34	15	0	1308	1406	4279	4282	34	15	0.03	0.31	112	48	0	6.47×10^{-26}	5.89×10^{-12}	0.75381		
	8	54	13	0	930	1033	3931	3934	54	13	0.00	0.24	229	56	0	~0	9.36×10^{-14}	0.96237		
Left Lateral	1	95	18	1	1197	1376	4293	4296	95	18	0.89	0.28	342	63	3	~0	2.23×10^{-15}	0.07491		
	2	170	20	3	1133	1382	4081	4084	170	20	2.80	0.28	611	71	10	~0	4.91×10^{-17}	0.00151		
	3	63	8	0	744	882	2968	2971	63	8	0.09	0.25	252	31	0	~0	2.56×10^{-08}	0.54352		
	4	122	22	6	1127	1328	3587	3590	122	22	6.16	0.31	390	71	20	~0	4.30×10^{-17}	0.00001		
	5	165	19	0	1265	1560	4122	4125	165	19	0.00	0.31	539	60	0	~0	9.75×10^{-15}	0.97895		
	6	75	11	2	1551	1675	3909	3912	75	11	2.25	0.40	190	27	6	3.53×10^{-42}	2.04×10^{-07}	0.01727		
	7	61	21	0	1455	1614	4279	4282	61	21	0.19	0.34	179	62	1	5.26×10^{-40}	5.47×10^{-15}	0.45512		
	8	52	12	0	1241	1338	3931	3934	52	12	0.02	0.32	165	39	0	6.36×10^{-37}	4.28×10^{-10}	0.81215		
Right Medial	1	76	21	1	1020	1175	4293	4296	76	21	1.25	0.24	320	88	5	~0	9.91×10^{-21}	0.02201		
	2	109	23	3	715	896	4081	4084	109	23	2.77	0.18	623	134	16	~0	1.61×10^{-30}	0.00007		
	3	37	10	0	818	917	2968	2971	37	10	0.01	0.28	133	38	0	3.59×10^{-30}	9.52×10^{-10}	0.85560		
	4	70	11	1	795	913	3587	3590	70	11	0.71	0.22	314	50	3	~0	1.76×10^{-12}	0.07401		
	5	74	15	0	1014	1164	4122	4125	74	15	0.00	0.25	301	62	0	~0	4.14×10^{-15}	0.94314		
	6	54	13	0	1000	1114	3909	3912	54	13	0.01	0.26	213	51	0	~0	1.29×10^{-12}	0.84879		
	7	34	14	0	1253	1348	4279	4282	34	14	0.10	0.29	116	47	0	1.16×10^{-26}	6.88×10^{-12}	0.55699		
	8	34	9	1	1167	1243	3931	3934	34	9	0.83	0.30	115	30	3	1.48×10^{-26}	5.49×10^{-08}	0.09379		
Right Lateral	1	65	18	0	1432	1571	4293	4296	65	18	0.29	0.33	196	54	1	1.49×10^{-43}	2.06×10^{-13}	0.35524		
	2	136	26	4	1157	1376	4081	4084	136	26	3.86	0.28	480	93	14	~0	8.68×10^{-22}	0.00023		
	3	42	12	0	1025	1134	2968	2971	42	12	0.25	0.35	122	34	1	8.57×10^{-28}	7.32×10^{-09}	0.39947		
	4	139	20	4	1480	1702	3587	3590	139	20	3.98	0.41	336	50	10	~0	2.25×10^{-12}	0.00190		
	5	193	16	0	1239	1557	4122	4125	193	16	0.37	0.30	643	54	1	~0	2.20×10^{-13}	0.26484		
	6	87	15	0	1327	1486	3909	3912	87	15	0.32	0.34	256	43	1	~0	6.40×10^{-11}	0.32831		
	7	57	20	1	1339	1483	4279	4282	57	20	0.85	0.31	183	63	3	8.90×10^{-41}	2.90×10^{-15}	0.09848		
	8	48	12	0	1311	1403	3931	3934	48	12	0.02	0.33	143	35	0	2.40×10^{-32}	4.08×10^{-09}	0.80650		

Table S2. Results of two-way ANOVAs with food and saturation as factors for all ROIs and all participants, related to Figure 3.

We conducted two-way ANOVAs on average z-scored voxel responses with food and saturation as factors for all four ROIs using the groups of images matched on image statistics shown in Figure S3A. Here we show the results of each individual ANOVA for the individual ROIs and individual participants. The df for each effect was 1 for food, saturation, and the interaction for each individual ANOVA. 'Sat' stands for saturation.

	P	Sum of Squared				df				Mean Squared				F				Prob>F							
		Food		W		Food * W		Error		Total		Food		W		Food * W		Error		Food		W		Food * W	
Left Medial	1	128	6	0	979	1133	3638	3641	128	6	0	0.27	475	23	1	~0	1.37x10 ⁻⁰⁶	0.25604							
	2	161	11	0	701	892	2954	2957	161	11	0	0.24	679	48	2	~0	5.43x10 ⁻¹²	0.14896							
	3	74	6	0	634	740	3117	3120	74	6	0	0.20	363	30	1	~0	3.95x10 ⁻⁰⁸	0.26700							
	4	147	9	0	897	1081	3045	3048	147	9	0	0.29	498	30	0	~0	5.54x10 ⁻⁰⁸	0.48639							
	5	139	6	2	876	1056	3220	3223	139	6	2	0.27	512	23	6	~0	1.53x10 ⁻⁰⁶	0.01769							
	6	75	1	0	774	858	3025	3028	75	1	0	0.26	295	2	0	~0	0.135459	0.96770							
	7	60	3	0	1004	1082	3375	3378	60	3	0	0.30	203	11	0	8.41x10 ⁻⁴⁵	0.00084	0.66818							
	8	63	5	0	781	862	3128	3131	63	5	0	0.25	251	18	1	~0	1.82x10 ⁻⁰⁵	0.45029							
Left Lateral	1	113	5	1	1022	1154	3638	3641	113	5	1	0.28	403	19	3	~0	1.04x10 ⁻⁰⁵	0.09676							
	2	190	16	1	837	1063	2954	2957	190	16	1	0.28	669	56	4	~0	1.04x10 ⁻¹³	0.04472							
	3	83	5	0	783	894	3117	3120	83	5	0	0.25	329	20	0	~0	7.15x10 ⁻⁰⁶	0.48141							
	4	134	15	0	927	1102	3045	3048	134	15	0	0.30	439	49	0	~0	3.59x10 ⁻¹²	0.50281							
	5	193	6	2	1035	1275	3220	3223	193	6	2	0.32	601	19	6	~0	1.44x10 ⁻⁰⁵	0.01833							
	6	83	6	5	1223	1321	3025	3028	83	6	5	0.40	205	15	12	4.20x10 ⁻⁴⁵	0.00010	0.00056							
	7	102	5	0	1151	1274	3375	3378	102	5	0	0.34	298	16	1	~0	6.16x10 ⁻⁰⁵	0.26748							
	8	63	10	2	1012	1099	3128	3131	63	10	2	0.32	195	32	6	6.03x10 ⁻⁴³	1.97x10 ⁻⁰⁸	0.01337							
Right Medial	1	84	6	0	871	979	3638	3641	84	6	0	0.24	349	24	0	~0	9.72x10 ⁻⁰⁷	0.95825							
	2	127	10	1	522	673	2954	2957	127	10	1	0.18	721	57	4	~0	6.34x10 ⁻¹⁴	0.03639							
	3	41	6	2	858	934	3117	3120	41	6	2	0.28	148	23	7	3.26x10 ⁻³³	1.68x10 ⁻⁰⁶	0.00724							
	4	77	7	1	656	764	3045	3048	77	7	1	0.22	356	33	3	~0	9.27x10 ⁻⁰⁹	0.06984							
	5	95	7	1	832	961	3220	3223	95	7	1	0.26	366	26	4	~0	4.04x10 ⁻⁰⁷	0.04915							
	6	75	1	0	753	839	3025	3028	75	1	0	0.25	300	6	1	~0	0.01437	0.46917							
	7	62	3	0	961	1036	3375	3378	62	3	0	0.28	219	10	0	~0	0.00153	0.54130							
	8	44	2	0	963	1022	3128	3131	44	2	0	0.31	143	7	0	2.65x10 ⁻³²	0.00671	0.59617							
Right Lateral	1	76	7	0	1193	1297	3638	3641	76	7	0	0.33	231	22	0	~0	2.96x10 ⁻⁰⁶	0.98783							
	2	164	23	2	854	1061	2954	2957	164	23	2	0.29	567	78	8	~0	1.53x10 ⁻¹⁸	0.00593							
	3	56	12	1	1087	1189	3117	3120	56	12	1	0.35	161	34	2	4.96x10 ⁻³⁶	7.70x10 ⁻⁰⁹	0.19882							
	4	153	22	0	1186	1407	3045	3048	153	22	0	0.39	393	56	0	~0	1.14x10 ⁻¹³	0.48858							
	5	221	12	0	981	1258	3220	3223	221	12	0	0.30	725	40	1	~0	2.76x10 ⁻¹⁰	0.23586							
	6	103	8	1	994	1123	3025	3028	103	8	1	0.33	313	23	2	~0	1.47x10 ⁻⁰⁶	0.12206							
	7	88	9	0	1048	1163	3375	3378	88	9	0	0.31	285	28	1	~0	1.56x10 ⁻⁰⁷	0.25975							
	8	61	9	1	1071	1156	3128	3131	61	9	1	0.34	177	25	2	2.61x10 ⁻³⁹	4.70x10 ⁻⁰⁷	0.19872							

Table S3. Results of two-way ANOVAs with food and warmth as factors for all ROIs and all participants, related to Figure 3.

We conducted two-way ANOVAs on average z-scored voxel responses with food and warmth as factors for all four ROIs using the groups of images matched on image statistics shown in Figure S3A. Here we show the results of each individual ANOVA for the individual ROIs and individual participants. The df for each effect was 1 for food, warmth, and the interaction for each individual ANOVA. 'W' stands for warmth.

	P	Sum of Squared				df		Mean Squared				F		Prob>F			
		Food		Sat Obj	Food * Sat Obj	error	Total	error	Total	Food	Sat Obj	Food * Sat Obj	error	Food	Sat Obj	Food * Sat Obj	
Left Medial	1	124	34	4	1199	1470	4366	4369	124	34	4	0.27	450	124	15	~0	2.32x10 ⁻²⁸ 0.000093
	2	139	20	4	954	1213	4119	4122	139	20	4	0.23	598	84	16	~0	6.64x10 ⁻²⁰ 0.000071
	3	85	17	1	783	945	3908	3911	85	17	1	0.20	423	87	5	~0	1.50x10 ⁻²⁰ 0.023871
	4	138	16	3	1370	1612	4418	4421	138	16	3	0.31	446	53	11	~0	4.26x10 ⁻¹³ 0.000793
	5	122	18	1	1013	1240	3801	3804	122	18	1	0.27	456	66	5	~0	6.27x10 ⁻¹⁶ 0.033049
	6	57	16	0	1174	1308	4424	4427	57	16	0	0.27	217	60	0	~0	9.11x10 ⁻¹⁵ 0.864300
	7	54	7	0	1245	1352	4189	4192	54	7	0	0.30	181	22	0	1.88x10 ⁻⁴⁰	2.75x10 ⁻⁰⁶ 0.730802
	8	43	12	0	971	1071	3962	3965	43	12	0	0.25	176	51	2	2.91x10 ⁻³⁹	1.14x10 ⁻¹² 0.156588
Left Lateral	1	92	33	6	1225	1442	4366	4369	92	33	6	0.28	326	117	20	~0	6.21x10 ⁻²⁷ 0.000006
	2	158	18	5	1165	1445	4119	4122	158	18	5	0.28	559	63	19	~0	2.26x10 ⁻¹⁵ 0.000013
	3	80	14	0	957	1106	3908	3911	80	14	0	0.24	326	59	2	~0	2.00x10 ⁻¹⁴ 0.159019
	4	128	24	9	1399	1643	4418	4421	128	24	9	0.32	405	75	29	~0	6.73x10 ⁻¹⁸ 0.000000
	5	183	17	1	1215	1527	3801	3804	183	17	1	0.32	572	52	3	~0	7.93x10 ⁻¹³ 0.107918
	6	50	28	4	1758	1898	4424	4427	50	28	4	0.40	126	71	9	6.88x10 ⁻²⁹	5.22x10 ⁻¹⁷ 0.002412
	7	80	14	0	1367	1538	4189	4192	80	14	0	0.33	244	44	0	~0	4.37x10 ⁻¹¹ 0.779706
	8	43	11	1	1261	1356	3962	3965	43	11	1	0.32	136	34	3	6.33x10 ⁻³¹	5.18x10 ⁻⁰⁹ 0.090717
Right Medial	1	82	22	4	1040	1216	4366	4369	82	22	4	0.24	345	92	17	~0	1.49x10 ⁻²¹ 0.000040
	2	111	18	4	717	929	4119	4122	111	18	4	0.17	639	103	24	~0	7.22x10 ⁻²⁴ 0.000001
	3	48	15	0	1067	1176	3908	3911	48	15	0	0.27	177	57	1	1.38x10 ⁻³⁹	6.55x10 ⁻¹⁴ 0.402461
	4	79	9	2	1025	1164	4418	4421	79	9	2	0.23	341	40	7	~0	2.23x10 ⁻¹⁰ 0.009354
	5	81	14	1	952	1109	3801	3804	81	14	1	0.25	323	54	3	~0	2.54x10 ⁻¹³ 0.076316
	6	54	22	0	1151	1293	4424	4427	54	22	0	0.26	206	84	0	1.40x10 ⁻⁴⁵	9.30x10 ⁻²⁰ 0.605324
	7	51	7	0	1186	1287	4189	4192	51	7	0	0.28	179	23	0	4.97x10 ⁻⁴⁰	1.58x10 ⁻⁰⁶ 0.906219
	8	28	9	0	1211	1281	3962	3965	28	9	0	0.31	93	29	0	9.30x10 ⁻²²	9.46x10 ⁻⁰⁸ 0.833156
Right Lateral	1	65	30	5	1480	1648	4366	4369	65	30	5	0.34	191	90	15	1.64x10 ⁻⁴²	3.93x10 ⁻²¹ 0.000086
	2	133	26	7	1161	1426	4119	4122	133	26	7	0.28	471	91	24	~0	2.23x10 ⁻²¹ 0.000001
	3	55	22	1	1324	1455	3908	3911	55	22	1	0.34	163	65	3	1.36x10 ⁻³⁶	1.05x10 ⁻¹⁵ 0.062224
	4	154	23	10	1843	2122	4418	4421	154	23	10	0.42	369	55	23	~0	1.67x10 ⁻¹³ 0.000001
	5	213	14	2	1174	1519	3801	3804	213	14	2	0.31	690	46	7	~0	1.18x10 ⁻¹¹ 0.010260
	6	78	30	1	1488	1682	4424	4427	78	30	1	0.34	231	89	4	~0	7.19x10 ⁻²¹ 0.059992
	7	74	15	2	1276	1433	4189	4192	74	15	2	0.30	244	49	5	~0	3.05x10 ⁻¹² 0.021789
	8	42	12	0	1355	1452	3962	3965	42	12	0	0.34	123	34	1	2.83x10 ⁻²⁸	7.03x10 ⁻⁰⁹ 0.413913

Table S4. Results of two-way ANOVAs with food and object saturation as factors for all ROIs and all participants, related to Figure 3.

We conducted two-way ANOVAs with food and object saturation as factors on average z-scored voxel responses for all four ROIs using the groups of images matched for image statistics shown in Figure S3B. Here we show the results of each individual ANOVA for the individual ROIs and individual participants. The df for each effect was 1 for food, object saturation, and the interaction for each individual ANOVA. 'Sat Obj' stands for saturation object.

	P	Sum of Squared				df				Mean Squared				F				Prob>F			
		Food		W obj	Food* W obj	Error		Total	Error	Total	Food	W obj	Food* W obj	Error	Food	W obj	Food* W obj	Food	W obj	Food* W obj	
Left Medial	1	180	11	3	1401	1725	5043	5046	180	11	3	0.28	646	38	11	~0	8.43x10 ⁻¹⁰	0.00108			
	2	195	6	1	1237	1574	5107	5110	195	6	1	0.24	806	24	4	~0	1.20x10 ⁻⁰⁶	0.04853			
	3	107	5	0	925	1113	4582	4585	107	5	0	0.20	532	24	0	~0	8.21x10 ⁻⁰⁷	0.97806			
	4	164	9	0	1471	1780	4618	4621	164	9	0	0.32	515	28	1	~0	1.49x10 ⁻⁰⁷	0.44371			
	5	175	9	2	1307	1615	4927	4930	175	9	2	0.27	659	35	6	~0	4.52x10 ⁻⁰⁹	0.01547			
	6	90	1	1	1190	1337	4528	4531	90	1	1	0.26	341	5	6	~0	0.03198	0.01761			
	7	82	1	1	1568	1698	5241	5244	82	1	1	0.30	276	2	4	~0	0.14708	0.05797			
	8	85	1	1	1199	1335	4754	4757	85	1	1	0.25	336	5	3	~0	0.01972	0.10051			
Left Lateral	1	127	18	6	1410	1676	5043	5046	127	18	6	0.28	453	64	20	~0	1.43x10 ⁻¹⁵	0.00001			
	2	194	15	1	1468	1841	5107	5110	194	15	1	0.29	675	51	4	~0	8.82x10 ⁻¹³	0.05510			
	3	105	5	0	1119	1303	4582	4585	105	5	0	0.24	429	20	1	~0	8.17x10 ⁻⁰⁶	0.41939			
	4	143	17	1	1490	1797	4618	4621	143	17	1	0.32	443	53	2	~0	3.29x10 ⁻¹³	0.13553			
	5	232	13	2	1564	1976	4927	4930	232	13	2	0.32	731	41	5	~0	1.66x10 ⁻¹⁰	0.01961			
	6	74	10	5	1769	1928	4528	4531	74	10	5	0.39	188	26	14	4.72x10 ⁻⁴²	3.52x10 ⁻⁰⁷	0.00018			
	7	118	3	0	1755	1956	5241	5244	118	3	0	0.33	352	8	0	~0	0.00494	0.52488			
	8	69	5	1	1572	1701	4754	4757	69	5	1	0.33	209	16	4	~0	6.35x10 ⁻⁰⁵	0.05277			
Right Medial	1	122	7	1	1220	1438	5043	5046	122	7	1	0.24	502	30	6	~0	5.79x10 ⁻⁰⁸	0.01661			
	2	147	7	1	941	1208	5107	5110	147	7	1	0.18	798	39	4	~0	5.53x10 ⁻¹⁰	0.04574			
	3	66	4	1	1251	1374	4582	4585	66	4	1	0.27	241	16	2	~0	6.54x10 ⁻⁰⁵	0.11682			
	4	96	6	0	1083	1266	4618	4621	96	6	0	0.23	410	24	0	~0	8.93x10 ⁻⁰⁷	0.71038			
	5	115	8	2	1236	1447	4927	4930	115	8	2	0.25	457	32	7	~0	1.90x10 ⁻⁰⁸	0.00997			
	6	88	1	3	1169	1320	4528	4531	88	1	3	0.26	342	6	11	~0	0.01777	0.00082			
	7	78	1	0	1522	1651	5241	5244	78	1	0	0.29	270	3	0	~0	0.06371	0.84060			
	8	64	0	1	1474	1570	4754	4757	64	0	1	0.31	206	0	2	1.40x10 ⁻⁴⁵	0.68461	0.19950			
Right Lateral	1	92	22	2	1643	1858	5043	5046	92	22	2	0.33	283	66	6	~0	4.98x10 ⁻¹⁶	0.01787			
	2	149	25	3	1458	1792	5107	5110	149	25	3	0.29	523	87	9	~0	1.29x10 ⁻²⁰	0.00294			
	3	74	9	0	1522	1678	4582	4585	74	9	0	0.33	223	28	1	~0	1.14x10 ⁻⁰⁷	0.33139			
	4	161	31	0	1935	2322	4618	4621	161	31	0	0.42	383	73	0	~0	1.50x10 ⁻¹⁷	0.60747			
	5	236	23	4	1504	1958	4927	4930	236	23	4	0.31	772	74	12	~0	1.05x10 ⁻¹⁷	0.00067			
	6	109	10	5	1503	1720	4528	4531	109	10	5	0.33	328	31	16	~0	3.32x10 ⁻⁰⁸	0.00008			
	7	103	7	0	1623	1824	5241	5244	103	7	0	0.31	334	23	0	~0	1.30x10 ⁻⁰⁶	0.82623			
	8	69	5	1	1633	1760	4754	4757	69	5	1	0.34	202	14	4	7.01x10 ⁻⁴⁵	0.00020	0.05387			

Table S5. Results of two-way ANOVAs with food and object warmth as factors for all ROIs and all participants, related to Figure 3.

We conducted two-way ANOVAs on average z-scored voxel responses with food and object warmth as factors for all four ROIs using the groups of images matched for image statistics shown in Figure S3B. Here we show the results of each individual ANOVA for the individual ROIs and individual participants. The df for each effect was 1 for food, object warmth, and the interaction for each individual ANOVA. 'W Obj' stands for warmth object.

P	Sum of Squared				df				Mean Squared				F				Prob>F											
	Food		Circle		Food* Circle		Error		Total		Error		Total		Food		Circle		Food* Circle		Error		Food		Circle		Food* Circle	
Left Medial	1	269	1	3	2724	3132	9996	9999	269	1	3	0.27	988	3	9	~0	0.077	0.002										
	2	303	0	7	2368	2820	9996	9999	303	0	7	0.24	1281	1	28	~0	0.417	0.000										
	3	184	1	2	1866	2146	9407	9410	184	1	2	0.20	928	7	8	~0	0.008	0.004										
	4	277	0	4	2869	3273	9205	9208	277	0	4	0.31	888	0	12	~0	0.805	0.001										
	5	271	2	3	2676	3116	9996	9999	271	2	3	0.27	1012	6	13	~0	0.017	0.000										
	6	125	3	4	2490	2706	9407	9410	125	3	4	0.26	472	10	14	~0	0.001	0.000										
	7	109	0	5	3007	3181	9996	9999	109	0	5	0.30	363	1	15	~0	0.361	0.000										
	8	114	3	1	2266	2459	9205	9208	114	3	1	0.25	465	11	3	~0	0.001	0.089										
Left Lateral	1	230	1	4	2745	3047	9996	9999	230	1	4	0.27	837	4	14	~0	0.058	0.000										
	2	374	5	8	2817	3285	9996	9999	374	5	8	0.28	1327	19	28	~0	0.000	0.000										
	3	199	1	4	2285	2541	9407	9410	199	1	4	0.24	820	3	17	~0	0.088	0.000										
	4	280	2	3	2942	3309	9205	9208	280	2	3	0.32	876	6	10	~0	0.017	0.002										
	5	371	0	5	3152	3694	9996	9999	371	0	5	0.32	1177	0	17	~0	0.958	0.000										
	6	137	0	2	3746	3925	9407	9410	137	0	2	0.40	343	0	4	~0	0.526	0.039										
	7	187	1	11	3369	3620	9996	9999	187	1	11	0.34	554	4	32	~0	0.050	0.000										
	8	118	0	2	2940	3093	9205	9208	118	0	2	0.32	370	1	8	~0	0.245	0.006										
Right Medial	1	179	1	3	2399	2679	9996	9999	179	1	3	0.24	745	4	12	~0	0.059	0.001										
	2	244	0	4	1801	2153	9996	9999	244	0	4	0.18	1353	0	24	~0	0.847	0.000										
	3	115	2	2	2597	2793	9407	9410	115	2	2	0.28	415	9	9	~0	0.003	0.003										
	4	153	0	3	2116	2351	9205	9208	153	0	3	0.23	665	1	13	~0	0.316	0.000										
	5	182	1	5	2511	2808	9996	9999	182	1	5	0.25	723	3	18	~0	0.066	0.000										
	6	131	1	3	2463	2672	9407	9410	131	1	3	0.26	499	6	10	~0	0.018	0.002										
	7	116	0	5	2868	3038	9996	9999	116	0	5	0.29	403	0	16	~0	0.969	0.000										
	8	69	9	1	2786	2950	9205	9208	69	9	1	0.30	227	30	3	~0	0.000	0.101										
Right Lateral	1	181	1	6	3311	3545	9996	9999	181	1	6	0.33	545	4	17	~0	0.035	0.000										
	2	325	6	4	2857	3257	9996	9999	325	6	4	0.29	1136	20	13	~0	0.000	0.000										
	3	160	2	5	3199	3394	9407	9410	160	2	5	0.34	469	6	15	~0	0.013	0.000										
	4	330	3	5	3854	4280	9205	9208	330	3	5	0.42	788	7	12	~0	0.007	0.000										
	5	427	1	5	2984	3571	9996	9999	427	1	5	0.30	1429	3	16	~0	0.069	0.000										
	6	210	1	4	3186	3455	9407	9410	210	1	4	0.34	621	2	12	~0	0.142	0.001										
	7	192	6	9	3092	3320	9996	9999	192	6	9	0.31	622	20	28	~0	0.000	0.000										
	8	121	0	2	3085	3243	9205	9208	121	0	2	0.34	361	1	7	~0	0.300	0.009										

Table S6. Results of two-way ANOVAs with food and circle as factors for all ROIs and all participants, related to STAR Methods.

Two-way ANOVAs were conducted on the average z-scored voxel responses with food and circle objects as factors for all ROIs. Here we show the results of each individual ANOVA for the individual ROIs and individual participants. The df for each effect was 1 for food, circle, and the interaction for each individual ANOVA.