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Abstract 11 

 12 

Experimental datasets are growing rapidly in size, scope, and detail, but the value of these datasets is 13 

limited by unwanted measurement noise. It is therefore tempting to apply analysis techniques that attempt 14 

to reduce noise and enhance signals of interest. In this paper, we draw attention to the possibility that 15 

denoising methods may introduce bias and lead to incorrect scientific inferences. To present our case, we 16 

first review the basic statistical concepts of bias and variance. Denoising techniques typically reduce 17 

variance observed across repeated measurements, but this can come at the expense of introducing bias 18 

to the average expected outcome. We then conduct three simple simulations that provide concrete 19 

examples of how bias may manifest in everyday situations. These simulations reveal several findings that 20 

may be surprising and counterintuitive: (i) different methods can be equally effective at reducing variance 21 

but some incur bias while others do not, (ii) identifying methods that better recover ground truth does not 22 

guarantee the absence of bias, (iii) bias can arise even if one has specific knowledge of properties of the 23 

signal of interest. We suggest that researchers should consider and possibly quantify bias before deploying 24 

denoising methods on important research data. 25 

  26 
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Introduction 27 

 28 

Modern science has witnessed major advances in the application of computational analyses to large 29 

datasets [1,2]. This has led to a ‘big data’ revolution in which datasets of increasing size, scope, and detail 30 

are being amassed [3–5]. In the field of neuroscience, advances in electrophysiological, optical, and 31 

magnetic resonance techniques are enabling measurement of the structure and function of animal and 32 

human brains at higher resolution, with greater coverage, and over longer temporal durations. However, a 33 

major challenge in these measurements is the presence of noise, which we define as unwanted variability 34 

across repeated measurements from the same individual. Such noise can originate from a variety of 35 

sources and can be both structured (e.g., imaging artifacts, head motion, physiological noise, variations in 36 

cognitive performance) and unstructured (e.g., thermal noise, optical shot noise). Depending on the goals 37 

of a given experiment, many of these types of noise are undesirable to the researcher. 38 

Developing methods for removing noise from data has been a long-standing objective in 39 

neuroscience. High levels of noise in experimental data hinder scientific inferences; thus, there is a 40 

temptation to apply denoising methods to such data. Indeed, there are many interesting recently proposed 41 

approaches for denoising, including low-rank methods [6–8], methods based on data-driven noise 42 

derivation [9–11], methods that exploit the power of deep neural networks [12–15], and self-supervised 43 

methods [16]. In surveying the literature, we find extensive discussion and consideration of denoising 44 

methods and how they fare in specific scientific paradigms. However, we think that, aside from a few notable 45 

exceptions [17,18], there has been insufficient emphasis on the issue of statistical bias. 46 

Bias, in the statistical sense, is defined as the discrepancy between the average expected outcome 47 

of a given experiment (and its associated analysis) and the ground-truth parameter being estimated (a more 48 

formal treatment is provided later). In expositions of denoising methods, the possibility of bias is often not 49 

even mentioned or discussed, let alone quantified and assessed. Coming to clarity on this methodological 50 

issue is especially important in the context of modern datasets. This is because increasing sizes of datasets, 51 

increasing levels of noise (due to increased spatial resolution, temporal resolution, and acquisition speeds), 52 

and increasing complexity of data analysis pipelines all tend to obscure or make more difficult the 53 

assessment of bias. A critical message of this paper is that bias is risky: while a method might improve the 54 

correspondence between a noisy dataset and a ground-truth measure, this might come at the cost of 55 

introducing systematic biases into the data and lead to incorrect scientific inferences. 56 

We write this article with two goals in mind. First, we wish to draw attention to—or perhaps rekindle 57 

interest in—the basic statistical concepts of bias and variance. Our presentation is general in order to isolate 58 

the essential principles at stake. We attempt to provide a concise distillation of the concepts of bias and 59 

variance that is easy to understand for non-statisticians. Second, we wish to communicate several 60 

simulations that illustrate how these concepts and principles can be applied in concrete scientific 61 

paradigms. We design these examples based on our experience in neuroimaging, and we make freely 62 

available the underlying data and code to promote transparency (files available at https://osf.io/weg87/). 63 
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The examples are not intended to establish general methodological findings (for that, more extensive 64 

analyses are necessary), but rather to provide important insights into the nature of denoising. We 65 

acknowledge that the ideas and principles we convey may already be apparent to expert practitioners. 66 

Thus, perhaps the primary audience of this paper are researchers who are interested in—but have not fully 67 

developed their stance towards—strategies for denoising data. Ultimately, we hope this article spurs 68 

method developers to consider and potentially quantify bias in candidate denoising methods and users to 69 

consider the risk of bias when applying denoising methods to important research data. 70 

  71 
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Materials and methods 72 

 73 

Simulation framework 74 

 75 

All simulations (as depicted in Figs 2–4) use a common analytical framework. We first design a ground truth 76 

based on either empirical or synthetic data. We then generate simulated data by adding randomly 77 

generated noise to the ground truth. This produces a set of measurements, each of which may contain 78 

multiple data points (e.g. different voxels, different time points). Next, we apply various denoising methods. 79 

Each method is applied independently to each measurement and produces a set of analysis results. Finally, 80 

for each method, we compute quantitative metrics that assess the performance of the method. Three 81 

metrics are computed and are detailed below. 82 

Bias is quantified by computing, for each data point, the absolute deviation between the mean 83 

across analysis results and the ground truth, normalized by the standard error across analysis results (this 84 

normalization can be viewed as a form of studentization, in which a quantity is normalized by a measure of 85 

error, producing units that are easy to interpret). Note that computing the absolute value is important, since 86 

a denoising method might overestimate and underestimate the ground truth in different parts of a dataset 87 

and it should be penalized for doing so. We summarize the results by calculating the median absolute 88 

deviation across data points. The values are in normalized units, and low values are desirable, as they 89 

indicate low deviations from ground truth. Data points for which the standard error across analysis results 90 

is 0 are ill-defined and are ignored in the calculation (e.g. Fig 3B, right column, time = 0 s). 91 

It is important to note that our metric of bias is not, strictly speaking, the same as the idealized 92 

theoretical definition of statistical bias (see Equation 1). The theoretical definition would require computing 93 

expectation over an infinite (or very large) number of simulations; in contrast, our metric is suitable for 94 

computation in finite data regimes and takes into account the limited number of simulations through 95 

normalization by standard error (with the underlying idea that running more simulations to reduce standard 96 

error is always desirable, if computational resources are available). One issue with the metric is that non-97 

zero values are obtained even for unbiased measurements (thus, the metric can be viewed as the “apparent 98 

bias”). Therefore, to provide a suitable comparison, we perform Monte Carlo simulations (assuming a 99 

Gaussian noise distribution) to determine the value that is expected for the case of unbiased 100 

measurements; this value is plotted as ‘Baseline’ in Figs 2–4. Note that this baseline value can be computed 101 

analytically as tinv(0.75,v) which indicates the inverse of the cumulative distribution function associated 102 

with Student’s t-distribution, evaluated at 75% and v degrees of freedom. For example, in the case of 10 103 

measurements, tinv(0.75,9) = 0.70 indicating that half of a set of samples drawn from a t-distribution with 9 104 

degrees of freedom are expected to have an absolute value less than or equal to 0.70. 105 
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Variance is quantified by computing, for each data point, the standard error across analysis results. 106 

We summarize the results by calculating the median standard error across data points. The values are in 107 

the units of the original data, and low values are desirable, as they indicate high reliability of analysis results. 108 

Error is quantified by computing Pearson’s correlation between each analysis result and the ground 109 

truth. (Note that correlation allows flexibility for scaling and offset; while a non-flexible metric such as mean 110 

squared error is technically more correct, correlation is appealing for its interpretable units and is likely 111 

sufficient in most cases.) We summarize the results by calculating the mean correlation observed across 112 

analysis results. Intuitively, this metric assesses how well a denoising method recovers ground truth. 113 

Correlation values range from –1 to 1. High values are desirable, as they indicate high similarity of analysis 114 

results to the ground truth. 115 

 116 

Simulation 1: Anatomical data 117 

 118 

In this simulation, we use as ground truth the pre-processed 0.8-mm T1-weighted anatomical volume 119 

acquired from Subject 1 from the Natural Scenes Dataset (NSD) [19]. The intensity values in this volume 120 

range approximately from 0 to 1400 (see Fig 2A, middle). Also from NSD, we use the brain mask calculated 121 

for the subject and the tissue segmentation provided by FreeSurfer (see Fig 2A, bottom). We map the 1-122 

mm MNI T1-weighted atlas provided with FSL (https://fsl.fmrib.ox.ac.uk/fsl/) to the subject-native anatomical 123 

space using linear interpolation (see Fig 2A, top). We generate a set of 10 measurements by adding noise 124 

drawn from a Gaussian distribution with mean zero and standard deviation 300 (noise drawn independently 125 

for each voxel). We evaluate four denoising methods: (1) No denoising refers to using the measurements 126 

as-is. (2) Gaussian smoothing refers to spatially smoothing a given measurement using a 3D isotropic 127 

Gaussian kernel with a full-width-half-maximum (FWHM) of 3 mm. (3) MNI atlas prior refers to averaging a 128 

given measurement with the MNI atlas (mapped to subject-native space). Before averaging, a scale and 129 

offset is applied to the atlas such that the mean of the data within gray matter (as indicated by the tissue 130 

segmentation) and the mean of the data within white matter are matched to the corresponding gray- and 131 

white-matter means in the MNI atlas. (4) Anisotropic smoothing refers to applying nonlinear anisotopic 132 

diffusion-based smoothing [20] as implemented in Segmentator [21]. The diffusion-based smoothing is run 133 

for 20 iterations. For all denoising methods, quantitative metrics of performance (as described previously) 134 

are computed using voxels within the brain mask. 135 

 136 

Simulation 2: Response timecourses 137 

 138 

In this simulation, we use as ground truth a synthetic hemodynamic response function (HRF) generated by 139 

evaluating a double-gamma function as implemented in SPM’s spm_hrf.m 140 

(https://www.fil.ion.ucl.ac.uk/spm/). The parameters [6 16 1 1 2 0] are used; these are the defaults, except 141 
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for the fifth parameter, which is set to create a strong undershoot. The double-gamma function is convolved 142 

with a 1-s boxcar, sampled at a rate of 1 s, and then scaled to peak at 1. The resulting HRF represents a 143 

hypothetical fMRI response timecourse to a 1-s stimulus (see Fig 3A, top). We generate a set of 10 144 

measurements by adding temporally correlated Gaussian noise with mean zero and standard deviation 0.2 145 

(this was accomplished by generating zero-mean Gaussian noise with standard deviation 0.2 and 146 

convolving the noise with a 5-s boxcar scaled to have a Euclidean norm of 1). We evaluate three denoising 147 

methods: (1) No denoising refers to using the measurements as-is. (2) Basis restriction refers to projecting 148 

the measurements onto a set of basis functions and then reconstructing the measurements. For basis 149 

functions, we take the library of 20 canonical HRFs obtained from the Natural Scenes Dataset [19] 150 

(getcanonicalhrflibrary.m), predict the response to a 1-s stimulus, perform principal components analysis 151 

on the 20 timecourses, and extract the top three principal component timecourses (see Fig 3A, bottom). (3) 152 

Parametric fit refers to fitting each measurement using a double-gamma model (same as used to generate 153 

the data). Specifically, we use nonlinear optimization (MATLAB Optimization Toolbox’s lsqnonlin.m) to 154 

determine the optimal parameters for a double-gamma function (as implemented in SPM’s spm_hrf.m) such 155 

that when convolved with a 1-s boxcar, the result best approximates the measurement in a least-squares 156 

sense. The initial seed for the optimization is set to [6 16 1 1 6 0], which are the defaults in spm_hrf.m. 157 

 158 

Simulation 3: Tuning curves 159 

 160 

In this simulation, we use as ground truth a synthetic set of tuning curves associated with several 161 

hypothetical units (these units can be thought of as individual neurons or voxels). We construct tuning 162 

curves that represent the response of 10 units to 50 conditions—these conditions can be viewed as different 163 

points along some hypothetical stimulus dimension. We fix the dimensionality of the representation to be 164 

exactly 4. This is accomplished by creating 4 Gaussian functions spaced equally along the stimulus 165 

dimension, and then generating tuning curves for each unit by weighting and summing these Gaussian 166 

basis functions using a set of randomly generated weights (random numbers are drawn from a uniform 167 

distribution between 0 and 1 and then cubed). Each unit’s tuning curve is scaled to peak at 1, and to aid 168 

visibility, units are arranged in sorted order according to the center-of-mass of each tuning curve (see Fig 169 

4A). We generate a set of 30 measurements by adding noise drawn from a Gaussian distribution with mean 170 

zero and standard deviation 0.6. (For visibility, only 10 of these 30 measurements are shown in Fig 4B, 171 

bottom row.) We evaluate three denoising methods. (1) No denoising refers to using the measurements as-172 

is. (2) Boxcar smoothing refers to smoothing each unit’s measured tuning curve using a boxcar kernel with 173 

width 3 and integral 1 (this is simply a moving average with window size 3). (3) PCA refers to reducing the 174 

dimensionality of each measurement to a specific target rank, a method also referred to as Truncated SVD 175 

[22]. Variants of this method can be found in the literature  [6,7]. Specifically, given a measurement 𝑿 (10 176 

units ´ 50 conditions), we perform singular value decomposition to obtain 𝑿 = 𝑼𝑺𝑽! where 𝑼 (10 ´ 10) has 177 
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loadings in the columns, 𝑺 (10 ´ 50) has singular values in decreasing order on the diagonal and zeros 178 

elsewhere, and 𝑽  (50 ´ 50) has timecourse components in the columns. We then perform low-rank 179 

reconstruction of the measurement using n = 2, 3, 4, 6, or 8 components (referred to as PCA2, PCA3, 180 

PCA4, PCA6, and PCA8) by computing the reconstructed measurement 𝑿∗ = 𝑼∗𝑺∗𝑽∗! where 𝑼∗ contains 181 

the first n columns of 𝑼, 𝑺∗ contains the upper-left n ´ n elements of 𝑺, and 𝑽∗ contains the first n columns 182 

of 𝑽. 183 

 184 

Tissue segmentation 185 

 186 

To provide an example of the downstream impact of denoising, we carry out post-hoc analyses on the 187 

results of the first simulation (anatomical data). First, we generate a noisy measurement using a noise level 188 

of standard deviation 100. We then apply the four denoising methods (as previously described) to the 189 

measurement. Given that a typical goal in anatomical imaging is to identify different anatomical structures, 190 

we attempted to segment the data produced by each denoising method. Specifically, we take each result, 191 

perform skull stripping using FSL’s BET (Brain Extraction Tool), and then use FSL’s FAST (FMRIB’s 192 

Automated Segmentation Tool) [23] to obtain a tissue segmentation. In Fig 5, we show the hard 193 

segmentation output (‘seg’) which provides labels for cerebrospinal fluid, gray matter, and white matter. 194 

  195 
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Results 196 

 197 

A brief review of bias and variance 198 

 199 

We start by briefly reviewing some basic statistical concepts [24,25]. Suppose we are interested in 200 

estimating a certain population parameter by performing measurements of this parameter. There are two 201 

distinct aspects of the quality of our measurements: bias and variance. Bias refers to the discrepancy, if 202 

any, between the average expected outcome of our measurements and the population parameter. All else 203 

being equal, we want bias to be zero (or low), since we want our measurements to cluster around the true 204 

value of the population parameter. Variance refers to the variability of our measurements. All else being 205 

equal, we want variance to be low, since this helps us narrow down a range of plausible values for the 206 

population parameter. 207 

A simple example helps illustrate these concepts. Fig 1 depicts a 2 ´ 2 crossing of different 208 

measurement scenarios. The columns differ in the amount of measurement bias. The left column 209 

corresponds to unbiased measurement, in which measurements, on average, equal the ground-truth 210 

parameter, whereas the right column corresponds to biased measurement, in which measurements, on 211 

average, are higher than the ground-truth parameter. The rows differ in the amount of measurement 212 

variance. The top row corresponds to low-variance measurement, in which measurements cluster tightly 213 

together, whereas the bottom row corresponds to high-variance measurement, in which measurements are 214 

spread far apart. 215 

 216 
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 217 
 218 
Fig 1. Bias and variance in measurement. In each of the four depicted simulations, 2 is the ground-truth value 219 
and 30 measurements are simulated by drawing values from a Gaussian distribution. In the left column, the 220 
Gaussian distributions have a mean of 2 (unbiased), whereas in the right column, the distributions have a mean 221 
of 4 (biased). In the top row, the Gaussian distributions have a variance of 0.3 (low variance), whereas in the 222 
bottom row, the distributions have a variance of 8 (high variance). The inset indicates the mean squared error 223 
(MSE) between the measurements and the ground truth. Bias can be estimated as the discrepancy between the 224 
mean of the measurements and the ground truth. Variance can be estimated as the variability across the 225 
measurements. Code available at https://osf.io/6x8kq/. 226 

 227 

A common approach for assessing how well a measurement procedure captures the population 228 

parameter is to compute mean squared error (MSE), which refers to the average squared deviation of the 229 

measurements from the population parameter. It is important to note that this error metric reflects separate 230 

contributions of bias and variance. Specifically, mean squared error is equal to the sum of two separate 231 

terms, a squared-bias term and a variance term: 232 

MSE = BIAS# + VARIANCE    (1) 233 

To see why this is the case, we first define bias as the difference between the average expected 234 

measurement and the ground-truth value: 235 

BIAS = 𝔼[𝑦4] − 𝑦    (2) 236 
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where 𝑦  indicates the ground-truth value, 𝑦4  indicates a single measurement, and 𝔼 is the expectation 237 

operator indicating the average over an infinite number of repeated measurements. We compute the 238 

squared bias as follows: 239 

BIAS# = 𝑦# − 2𝑦𝔼[𝑦4] + (𝔼[𝑦4])#   (3) 240 

Note that squared bias is always non-negative. Next, we define variance as the average squared deviation 241 

of the measurements around their mean: 242 

VARIANCE = 𝔼[(𝑦4 − 𝔼[𝑦4])#]    243 

= 𝔼[𝑦4# − 2𝑦4𝔼[𝑦4] + (𝔼[𝑦4])#]    244 

= 𝔼[𝑦4#] − 2𝔼[𝑦4]𝔼[𝑦4] + (𝔼[𝑦4])# 245 

= 𝔼[𝑦4#] − (𝔼[𝑦4])#     (4) 246 

Finally, we define mean squared error as the average squared deviation of the measurements from the 247 

ground-truth value: 248 

MSE = 𝔼[(𝑦 − 𝑦4)#] 249 

= 𝔼[𝑦# − 2𝑦𝑦4 + 𝑦4#] 250 

= 𝑦# − 2𝑦𝔼[𝑦4] + 𝔼[𝑦4#]   (5) 251 

Adding some terms and grouping, we obtain: 252 

MSE = (𝑦# − 2𝑦𝔼[𝑦4] + (𝔼[𝑦4])#) + (𝔼[𝑦4#] − (𝔼[𝑦4])#)  (6) 253 

By substituting from Equations 3 and 4, we see: 254 

MSE = BIAS# + VARIANCE    (7) 255 

 256 

Insights and implications for denoising 257 

 258 

Having reviewed the concepts of bias and variance, we highlight some important insights. First, we remind 259 

ourselves of the classic distinction between reliability and accuracy. Even though a procedure might provide 260 

highly reliable measurements (low variance), this does not necessarily imply that that the measurements 261 

are accurate. This is because the measurements might have systematic deviation (bias) from the ground-262 

truth parameter (e.g., see upper-right panel of Fig 1). Second, we observe that assessing error relative to 263 

ground truth does not provide specific information regarding bias. Error, as discussed earlier, reflects the 264 

combination of both bias and variance. Hence, a situation in which error is low is compatible with the 265 

existence of bias (e.g., in Fig 1, the upper-right panel exhibits lower error than the lower-left panel but has 266 

substantial bias). 267 

We now transition to the topic of denoising. A common situation that an experimentalist may face 268 

is one in which a set of measurements are corrupted by high levels of noise but are at least expected to 269 

converge, across repeated experiments, to the true signal. This situation can be characterized as high 270 

variance and unbiased (Fig 1, lower left). To reduce noise, the experimentalist might try applying a 271 

denoising technique to the data. In doing so, there are two general types of outcomes. One outcome is that 272 

variance is reduced while the absence of bias is maintained (see arrow labeled ‘Denoising without bias’ 273 
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that begins in the lower-left panel and ends in the upper-left panel). This is a great outcome. A different 274 

outcome is that variance is reduced but bias is introduced (see arrow labeled ‘Denoising with bias’ that 275 

begins in the lower-left panel and ends in the upper-right panel). This is a less desirable outcome, as 276 

repeated experiments converge to an incorrect signal. Reduction of variance but introduction of bias is an 277 

instance of the classic bias-variance tradeoff [25]. From a certain perspective, one might argue that 278 

introducing bias is desirable if this reduces overall error [26]. However, we feel that this is risky and warrants 279 

careful consideration (see Discussion). 280 

 281 

Examples of bias and variance in denoising 282 

 283 

While we have described theoretical considerations to take into account when assessing a denoising 284 

method, it may be unclear how much these considerations actually matter in practical situations. To provide 285 

more concrete insights, we construct three denoising simulations based on our experience with 286 

neuroimaging data. The goal of these simulations is to provide examples of how the performance of different 287 

denoising methods can be formally evaluated. In each example, we start with a ground truth, generate noisy 288 

measurements based on this ground truth, apply different denoising methods to each measurement, and 289 

calculate metrics that quantify the performance of the denoising methods. We generally follow the theory 290 

presented earlier, but use versions of the metrics that are more suitable and interpretable for practical data 291 

scenarios. Specifically, we quantify bias as the median absolute deviation between the mean across 292 

analysis results and the ground truth and express this in units of standard error; we quantify variance as 293 

the median standard error across analysis results; and we quantify error as the average correlation between 294 

each analysis result and the ground truth (see Methods). Please note that the denoising methods 295 

demonstrated in the examples are not intended to be realistic methods that one might want to use in practice 296 

(e.g., Gaussian smoothing is obviously a naive approach; averaging with an MNI atlas is obviously a very 297 

crude approach). This is because the point of the examples is not so much to determine the best state-of-298 

the-art denoising method, but rather to demonstrate how bias and variance can be formally studied. 299 

In the first simulation, we use as ground truth a high-quality 0.8-mm isotropic anatomical MRI scan 300 

of a human brain (Fig 2A) and simulate noisy measurements of this ground truth by adding Gaussian noise. 301 

(Real noise in MRI data is better characterized according to Rician and/or other types of distributions, and 302 

may have complex spatial variations across the image [27,28]. Here we use the simplifying assumption of 303 

Gaussian noise, and acknowledge that results may vary in interesting ways for other types of noise.) As 304 

expected, the raw data (‘No denoising’) follow the ground truth, in the sense of lacking bias, but suffer from 305 

high variance (Fig 2B, first column). The method of spatial smoothing (‘Gaussian smoothing’) reduces 306 

variance, but incurs major deviations from ground truth (Fig 2B, second column). This is not surprising since 307 

the smoothing kernel used has a relatively large full-width-half-maximum of 3 mm, which will obviously 308 

remove fine-scale features of the convoluted cerebral cortex. The method of averaging a given 309 

measurement with a pre-existing atlas (‘MNI atlas prior’) provides some variance reduction, but also 310 
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introduces some bias (Fig 2B, third column). This makes sense, since the atlas is generally expected to 311 

provide good guesses for tissue intensity, but may bias the measurement in parts of the individual’s brain 312 

that deviate from the atlas. Finally, the method of applying anisotropic smoothing (‘Anisotropic smoothing’) 313 

greatly reduces variance and, appealingly, introduces very little bias, if any (Fig 2B, fourth column). Our 314 

interpretation is that the assumption embodied by anistropic smoothing—namely, that true structures are 315 

locally contiguous and have homogeneous signal intensity—is well matched to the anatomical structure of 316 

the brain, at least at the current spatial resolution. 317 

The quantitative summary plots (Fig 2C) provide interesting insights. Anisotropic smoothing 318 

reduces variance but does not incur appreciable bias (arrow 1). In contrast, other methods such as 319 

Gaussian smoothing reduce variance but incur substantial bias (arrow 2). Thus, a bias-variance tradeoff 320 

does not necessarily occur in all situations. We also see that error is not a perfect metric to discriminate 321 

amongst methods, as both anisotropic smoothing (location 3) and Gaussian smoothing (location 4) yield 322 

comparable levels of correlation between analysis results and ground truth. Finally, there is a general 323 

relationship between reducing variance and increasing similarity to ground truth (arrow 5). This makes 324 

sense since denoising methods should, in theory, reduce unwanted measurement noise and generally push 325 

results towards the ground truth. 326 

 327 
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 328 
 329 
Fig 2. Denoising anatomical data. In this simulation (code available at https://osf.io/qxp8y/), we generate noisy 330 
measurements by starting with a ground-truth T1-weighted anatomical volume and adding Gaussian noise 331 
independently to each voxel. We then attempt to denoise the data using different denoising methods: no 332 
denoising, simple Gaussian spatial smoothing, averaging with a group-average atlas prior, and performing 333 
anisotropic diffusion. The images depict a zoomed-in view of the posterior section of a single axial slice, and the 334 
same color map and range is used for all images. (A) Reference volumes. We illustrate the ground-truth 335 
anatomical volume (middle), the MNI atlas used in one of the denoising methods (top), and the tissue 336 
segmentation obtained from FreeSurfer, showing gray and white matter (bottom). (B) Denoising results. Each 337 
column shows results for a different denoising method. We show three example measurements (top row), the 338 
mean across measurements (middle row), and detailed plots for a small line of voxels (bottom row). (C) 339 
Quantitative assessment of bias, variance, and error. Bias is quantified as the median absolute difference 340 
between the average measurement and the ground truth, where the difference is normalized by the standard 341 
error across measurements. Variance is quantified as the median standard deviation across measurements. Error 342 
is quantified as the correlation between each measurement and the ground truth, averaged across 343 
measurements. The gray vertical line indicates the bias value associated with the case of unbiased measurement 344 
(assuming Gaussian noise). 345 

 346 
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In the second simulation, we use as ground truth a synthetic hemodynamic response function (Fig 347 

3A, top) and simulate noisy measurements of this ground truth by adding temporally correlated Gaussian 348 

noise. As expected, the raw data (‘No denoising’) follow the ground truth, in the sense of lacking bias, but 349 

suffer from high variance (Fig 3B, first column). The method of reconstructing the measurements using a 350 

small set of basis functions (‘Basis restriction’) greatly reduces variance but incurs major deviations from 351 

the ground truth (Fig 3B, second column). The discrepancy can be traced to the fact that the basis functions 352 

do not have much dynamics around the time of the undershoot (see blue arrow). The method of fitting a 353 

parametric function to the data (‘Parametric fit’) provides variance reduction and, appealingly, introduces 354 

very little bias, if any (Fig 3C, third column). This makes sense, since the parametric function used to fit the 355 

data is the same function that was used to generate the ground truth. If a different parametric function were 356 

used, these results of course may no longer hold. 357 

The quantitative summary plots (Fig 3C) bear out the above observations. Basis restriction is very 358 

effective at reducing variance but is highly biased (location 1). Nonetheless, on balance, the bias-variance 359 

tradeoff is such that error is reduced compared to no denoising (location 2). However, there is even a better 360 

method: parametric fitting is essentially unbiased (location 3) and performs the best at achieving results 361 

that are similar to the ground truth (location 4). Interestingly, even though parametric fitting has more 362 

variance across analysis results than basis restriction, parametric fitting yields results that better match 363 

ground truth (arrow 5). This can be understood as the consequence of the undesirable bias that is induced 364 

by basis restriction. 365 

 366 
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 367 
 368 

Fig 3. Denoising response timecourses. In this simulation (code available at https://osf.io/6jhmr/), we generate 369 
noisy measurements by starting with a ground-truth hemodynamic response function (HRF) and adding 370 
temporally correlated Gaussian noise. We then attempt to denoise the data using different denoising methods: 371 
no denoising, reconstruction using a restricted set of basis functions, fitting using a parametric model. (A) 372 
Reference timecourses. We illustrate the ground-truth HRF (top) and the temporal basis functions used in one of 373 
the denoising methods (bottom). (B) Denoising results. Each column shows results for a different denoising 374 
method. We show three example measurements (top row) and comparison to the ground truth (bottom row). (C) 375 
Quantitative assessment of bias, variance, and error. Same format as Fig 2C. 376 

 377 

In the third simulation, we use as ground truth a synthetic set of tuning curves (10 units, 50 378 

conditions) whose dimensionality is fixed to 4 (Fig 4A) and simulate noisy measurements of this ground 379 

truth by adding Gaussian noise. As expected, the raw data (‘No denoising’) follow the ground truth, in the 380 

sense of lacking bias, but suffer from high variance (Fig 4B, first column). The method of boxcar smoothing 381 

substantially reduces variance and, appealingly, does not incur any appreciable bias (Fig 4B, second 382 

column). This makes sense given that the width of the boxcar used is 3, which is relatively small compared 383 

to the intrinsic smoothness of the ground-truth tuning curves. The method of dimensionality reduction using 384 

principal components analysis (PCA) yields variance reduction at the expense of bias, with the specific 385 

bias-variance tradeoff controlled by the number of dimensions. Specifically, if dimensionality is aggressively 386 

reduced, more variance reduction is achieved but more bias is introduced (e.g., Fig 4B, sixth column). If 387 
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dimensionality is reduced less aggressively, less variance reduction is achieved but less bias is introduced 388 

(e.g., Fig 4B, third column). 389 

The quantitative summary plots (Fig 4C) provide additional insight. The bias-variance tradeoff in 390 

PCA is clearly visible: there is a continuous progression from PCA6 to PCA2 in terms of increasing amounts 391 

of bias and decreasing amounts of variance (arrow 1). Compared to PCA8, PCA6 does not incur 392 

appreciable bias; this suggests that preserving six dimensions is sufficient to retain all (or nearly all) of the 393 

underlying signal in the noisy measurements. The method of boxcar smoothing clearly outperforms PCA, 394 

as it greatly reduces variance and does not induce bias (location 2), and, moreover, achieves the best 395 

match to ground truth (location 3). Interestingly, the number of dimensions in PCA that maximizes similarity 396 

to ground truth is 3 (location 4), which is not the same as the true dimensionality of the underlying 397 

representation. This may seem counterintuitive at first, but can be understood as the simple consequence 398 

of the mixing of bias and variance when quantifying similarity to ground truth. That is, even though retaining 399 

only 3 dimensions is guaranteed to discard some of the true signal and incur bias (since the ground-truth 400 

dimensionality is 4), the reduction of variance afforded by retaining only 3 dimensions apparently improves 401 

the overall similarity to ground truth. Perhaps the most important insight is that reducing dimensionality to 402 

4 already starts to introduce noticeable levels of bias (location 5). This is due to the fact that in the presence 403 

of measurement noise, the dimensions identified by PCA will start to deviate from the true dimensions that 404 

underlie the ground-truth representation. In other words, noise inevitably corrupts all of the PCA-identified 405 

dimensions, not just the ones that are discarded [6]. Hence, there is no guarantee that using 4 dimensions 406 

will retain all of the relevant signal contained in a given measurement. 407 

 408 
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 409 
 410 

Fig 4. Denoising tuning curves. In this simulation (code available at https://osf.io/a6k9m/), we generate noisy 411 
measurements by starting with a ground-truth collection of tuning curves whose underlying dimensionality is fixed 412 
at 4 and adding Gaussian noise independently to each data point. We then attempt to denoise the data using 413 
different denoising methods: no denoising, simple boxcar smoothing of responses to nearby conditions, and 414 
dimensionality reduction using principal component analysis (PCA). (A) Reference data. We illustrate the ground-415 
truth tuning curves as an image (top) and as line plots (bottom). Color is used to distinguish different units. (B) 416 
Denoising results. Each column shows results for a different denoising method. We show three example 417 
measurements (top row) and comparison to the ground truth (bottom row). (C) Quantitative assessment of bias, 418 
variance, and error. Same format as Fig 2C. 419 

 420 

Downstream impact of denoising 421 

 422 

The examples provided above demonstrate how bias can be formally studied in practical situations. 423 

However, users of denoising methods are probably not fundamentally interested in low-level data 424 

characteristics such as the amount of bias on individual data points, but are probably more interested in the 425 

impact that bias might have on downstream analysis results. To provide insight into this matter, we conduct 426 

an example downstream analysis in which we take simulations of noisy anatomical MRI data (as in Fig 2), 427 

and assess the quality of tissue segmentations obtained after applying different denoising methods (Fig 5). 428 
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 429 

 430 
 431 

Fig 5. Example downstream effects of denoising anatomical data. Here, we perform post-hoc analyses on 432 
the results of the denoising methods illustrated in Fig 2 (code available at https://osf.io/hswaq/). Specifically, we 433 
simulate an example noisy measurement, apply different denoising methods, and calculate a tissue segmentation 434 
using FSL’s FAST. The images depict a zoomed-in view of a superior section of a single sagittal slice. The first 435 
row shows the original data and the second row shows segmentation results (black, dark gray, and light gray 436 
indicate cerebrospinal fluid, gray matter, and white matter, respectively). 437 

 438 

As expected, segmentation results based on the raw data are poor, with numerous speckles and inaccurate 439 

labels of gray and white matter (Fig 5, second column). The atlas-based method improves the robustness 440 

of the segmentation, reducing speckles, but produces fairly inaccurate segmentation topology (Fig 5, fourth 441 

column). Simple Gaussian smoothing yields very robust results (Fig 5, third column), and in fact, the overall 442 

topology of the segmentation appears reasonably matched to the segmentation based on the ground truth 443 

(Fig 5, first column). Finally, we see that anisotropic smoothing produces excellent results. An important 444 

insight from these results is that the quality of downstream analysis results for different denoising methods 445 

may not necessarily mirror the performance of these methods on low-level data metrics. For example, from 446 

the point of view of bias, Gaussian smoothing seems quite undesirable (see Fig 2C), but from the point of 447 

view of tissue segmentation, the results based on Gaussian smoothing are actually quite respectable. Thus, 448 

the decisions that one makes regarding denoising methods should take into account not only the potential 449 

impact on low-level data metrics like bias, but also the larger goals that one has for a set of data. 450 

  451 
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Discussion 452 

 453 

In this paper, we have described a simple framework for evaluating denoising methods, and we have 454 

provided examples that highlight important (and possibly surprising) observations about denoising. These 455 

examples were not intended to benchmark the performance of state-of-the-art methods, but rather to 456 

demonstrate insights into the nature of denoising. The main issues that we focus on—bias and variance—457 

are well-understood in statistics. We believe these issues need increased attention in experimental fields, 458 

especially in light of the increasing complexity of datasets and analysis pipelines. While developing 459 

denoising techniques to improve data quality is a worthwhile endeavor, we should approach such 460 

techniques with caution and strive to avoid introducing systematic bias to our measurements (see also the 461 

perspective by [29]). To summarize our viewpoint, we propose the following three action items. 462 

 463 

We should acknowledge bias 464 

 465 

As a first action item, we should acknowledge bias as a major potential concern when applying denoising 466 

methods. When making measurements, a presumption is that repeated measurements will help the 467 

researcher narrow the range of plausible values for the parameter of interest. In this context, systematic 468 

bias should be alarming. Some denoising methods might not introduce bias, and it might be possible to see 469 

that this is the case from a theoretical perspective. However, in general, denoising methods are likely bound 470 

to the bias-variance tradeoff: there is likely going to be a tradeoff between reduction of variance and 471 

introduction of bias. Even if one does not yet know exactly what the bias is for a given method, it is 472 

worthwhile to acknowledge and discuss what this potential bias might be. In a sense, it should not be 473 

surprising that bias should be a potential concern with denoising methods. Indeed, when presented with a 474 

denoising method, it is common to hear the reaction “How do you know you aren’t removing signal?”, which 475 

can be viewed as an informal expression of the issue of bias. 476 

An intuitive way to think about bias is through the concept of a prior. Denoising methods can be 477 

viewed as bringing priors to a set of data [12]. On the one hand, if we do not incorporate any priors, the 478 

data in their raw form are noisy but safe: they can be expected to provide the right answer on average 479 

(assuming that the noise is zero-mean). On the other hand, if we apply a denoising method, we are bringing 480 

in priors, or implicit assumptions, regarding the nature of the underlying system. The key question is 481 

whether the priors embodied by the denoising method are a good match to the system. If the priors are 482 

very well matched (e.g. Fig 2B, fourth column), little or no bias is introduced, and we can enjoy the reduced 483 

variance. If the priors are not well matched (e.g. Fig 3B, second column), bias is introduced, and the reduced 484 

variance may not be worth it. Whether a given denoising method is well matched to a system may vary 485 

across situations. For example, anisotropic smoothing (e.g. Fig 2B, fourth column) is likely inappropriate for 486 

structures consisting of point-like features; Gaussian smoothing (e.g. Fig 2B, second column) is actually a 487 
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good approach in situations where the measurement resolution is high compared to the scale of the 488 

underlying signal of interest. Analogous to the “No Free Lunch Theorem” in optimization [30], we should 489 

recognize that any given denoising method is not guaranteed to perform well in all situations. Accordingly, 490 

our goal should not only be to demonstrate that a given denoising method performs well in certain situations, 491 

but should also be to identify the range of situations within which the method performs well and the range 492 

within which the method fails. 493 

Illustrative examples of priors come in cases where there are literally no data. These cases 494 

conveniently expose the full nature of the prior embodied by a technique. For instance, suppose we delete 495 

a small region of a photograph and use an image inpainting technique to fill in the region. While we are 496 

likely to obtain a reasonable-looking image that generally conforms to natural image statistics, it is obvious 497 

that this is no substitute for actual measurement. Had there been a specific object in the deleted region, it 498 

is likely that the inpainting technique would miss this completely and instead fill the region with general 499 

texture priors [31]. In other words, the technique would likely incur massive bias. Or, as a different example, 500 

suppose we train a model to predict high-resolution details that typically accompany low-resolution 501 

measurements. This model might be quite effective within a certain data regime at predicting high-resolution 502 

details when only low-resolution data are available, but might make non-sensical predictions when exposed 503 

to novel data regimes that differ substantially from the training dataset [29]. 504 

 505 

We should study and quantify bias 506 

 507 

As a second action item, we should study the bias that may be present in a denoising technique, and 508 

quantify its magnitude in real-world situations. Carefully characterizing the bias of a method is useful for 509 

providing full transparency and enabling accurate risk assessment. Bias can be studied using different 510 

approaches. It might be possible to make a theoretical assessment as to whether a denoising technique is 511 

likely to incur bias and what this bias might be like. This is feasible for denoising techniques that are based 512 

on simple, clear principles. For example, although simple smoothing is a naive approach, one appealing 513 

feature is that we fully understand the risk of bias that it entails. In contrast, denoising techniques that derive 514 

their power from large amounts of training data (e.g. deep neural networks) or techniques that derive noise 515 

estimates from the data themselves are more difficult to assess from an a priori perspective. Alternatively, 516 

we can use empirical analyses to evaluate the bias in denoising techniques (like the examples shown in 517 

Figs 2–4). 518 

One of the take-home points of this paper is that different denoising metrics provide fundamentally 519 

different information: 520 

• One metric of denoising performance is variance. Examining variability of results across repeated 521 

measurements or independent splits of a dataset provides useful information. All else equal, we 522 

want less variance. 523 
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• A second metric of denoising performance is error. Assessing error is a widely used approach in 524 

image processing [32,33] where one seeks to minimize the error between a denoised output and a 525 

reference ground-truth image. Error can be quantified in various ways, such as mean squared error, 526 

peak signal-to-noise ratio, or structural similarity index [34,35]. Alternatively, error can be assessed 527 

through the use of cross-validation to assess generalization to unseen samples, which serve as an 528 

implicit ground truth. All else equal, we want less error. 529 

• A third metric of denoising performance is bias. Bias can be quantified by applying a denoising 530 

method to multiple independent measurements and carefully comparing the mean of the results to 531 

a ground-truth measure (as shown in Figs 2–4). All else equal, we want less bias. 532 

It is clear that variance, in and of itself, is an inadequate denoising metric since it is unaffected by (and 533 

therefore does not assess) bias. However, since error reflects the combined influence of bias and variance, 534 

could it be a good policy to use error as a denoising metric? Indeed, some perspectives imply that error is 535 

the ultimate criterion and anything that reduces error is desirable [26,39]. While we acknowledge that error 536 

is an extremely useful metric, we believe that it is valuable to isolate and quantify bias in addition to error. 537 

It is only by isolating bias that we can understand its prevalence and what downstream impact it may have 538 

on inferences made from a set of data. We make this suggestion under full acknowledgement that we 539 

ourselves have not fully implemented these ideas in the past. For example, we used cross-validated error 540 

to evaluate denoising performance in this study [40], but it would have been even more informative had we 541 

specifically assessed bias. 542 

Although we demonstrate ground-truth simulations in this paper, studying bias is not limited to such 543 

situations. On the one hand, ground-truth simulations can deliver many valuable insights [17,18]. However, 544 

ground-truth simulations are susceptible to the criticism that they may not capture the full complexity of real 545 

empirical data. Fortunately, it is possible to study bias in real data if one has access to a dataset in which 546 

many repeated measurements are available. One approach is to average across these measurements, 547 

treat the result as ground truth, and evaluate how well denoising methods can use single (or a few) 548 

measurements to recover the ground truth. Note that perfect recovery is not necessarily desired in this 549 

scenario since the ground-truth measure is still subject to some amount of measurement error. 550 

Denoising efforts, especially in the field of machine learning, often place great emphasis on 551 

improving predictive performance, in the sense of generating results that better approximate a target 552 

ground-truth measure. While this engineering mindset has obvious practical and commercial value [36] and 553 

can be quite effective in driving competition and therefore progress [37], it falls short as a means for 554 

assessing measurement accuracy. Specifically, predictive performance reflects a combination of bias and 555 

variance and therefore is insufficient in and of itself for studying bias. Unless predictive performance is 556 

perfect, there is a potential that bias exists for a given denoising technique. Emphasis on prediction can be 557 

viewed in terms of the divide between what has been termed ‘predictive modeling’ and ‘explanatory 558 

modeling’: “predictive modeling seeks to minimize the combination of bias and estimation variance, 559 
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occasionally sacrificing theoretical accuracy [i.e. correct identification of properties of the underlying system] 560 

for improved empirical precision” [38]. 561 

 562 

We should consider the risk of bias to one’s goals 563 

 564 

As a third action item, we should consider the risk of bias in the context of the broader goals of a given 565 

endeavor. All else being equal, we would argue that for everyday scientific measurements, we cannot risk 566 

using denoising methods that introduce bias, as this may lead to incorrect inferences from the data. 567 

However, adopting a more realistic perspective, we recognize that the bias that might be present in a given 568 

denoised dataset could be a relatively minor aspect of the data. Even if we know with certainty that a 569 

denoising method introduces bias, we might reasonably ask: how strongly does the bias affect the main 570 

issues at stake? We think that the best strategy is to consider each situation on a case-by-case basis and 571 

make a deliberate decision regarding the risk of bias. 572 

In some situations, bias might be acceptable. For instance, if the goal is to clean an audio or video 573 

signal for aesthetic purposes or for basic perceptual interpretation [34], then bias would seem to cause little 574 

harm and a reasonable stance is to simply resign and accept bias [32]. An example of this is a clinician who 575 

is visually inspecting an image. If a denoising method incurs a little bit of blurriness, this does not seem to 576 

pose a major problem (assuming the clinician is aware of the blurriness). Or, if a denoising method affects 577 

an aspect of a given dataset that does not have substantial impact on the main findings from the data (e.g., 578 

small changes in region identification might be unlikely to change the overall measured activity from a brain 579 

region), then bias would not seem to be a problem. 580 

In other situations, bias might be unappealing but must be accepted out of necessity. For example, 581 

if a dataset is too noisy to make inferences and additional measurements are not possible (e.g., due to the 582 

rarity of the data), it may be necessary to apply a denoising method in order to salvage the data and make 583 

some inferences, even if imperfect. Alternatively, it might be the case that implementing an unbiased 584 

analysis method might require an inordinate amount of time (either human time or computational time). In 585 

such cases, the user might need to use biased analysis methods out of practical necessity. 586 

But in many situations, bias may be unacceptable. For example, if a set of noisy data is being used 587 

to make a clinical diagnosis, it might be better to leave the data untouched and acknowledge that the data 588 

are inconclusive than to risk introducing an artifact or removing a true signal. Or, as another example, if a 589 

set of data is intended to critically test hypotheses about temporal characteristics of a system, one might 590 

avoid applying a denoising method that has access to multiple temporal measurements, as the method 591 

might potentially introduce biases in the temporal domain, and instead restrict the method to single 592 

measurements at a time.  593 

 594 

Concluding remarks 595 
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 596 

In this paper, we have emphasized bias as an important property that should be considered when 597 

evaluating denoising methods. In practice, how might one select which of several denoising methods to 598 

use? One approach is to establish a data regime for which one would like a method to perform well, 599 

determine which methods are unbiased (or nearly unbiased) in this regime, and then select from these 600 

methods the one that has the least variance. However, bias is just one of several factors that influence the 601 

larger goals for a set of data. As discussed above, bias might not have a major impact on a user’s end 602 

goals and the inferences that they wish to make. Additionally, there are other important considerations to 603 

take into account when considering an analysis method. These include the availability of a working 604 

implementation, the time required to incorporate a method into an existing pipeline, execution time, 605 

robustness across diverse types of data, and the clarity and interpretability of the procedures that underlie 606 

the method. Thus, our broader position is that the possibility of bias should be one of many factors that 607 

enters a user’s informed decision regarding the specific methods to apply to a set of research data. 608 

  609 
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