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Abstract

Experimental datasets are growing rapidly in size, scope, and detail, but the value of these datasets is
limited by unwanted measurement noise. It is therefore tempting to apply analysis techniques that attempt
to reduce noise and enhance signals of interest. In this paper, we draw attention to the possibility that
denoising methods may introduce bias and lead to incorrect scientific inferences. To present our case, we
first review the basic statistical concepts of bias and variance. Denoising techniques typically reduce
variance observed across repeated measurements, but this can come at the expense of introducing bias
to the average expected outcome. We then conduct three simple simulations that provide concrete
examples of how bias may manifest in everyday situations. These simulations reveal several findings that
may be surprising and counterintuitive: (i) different methods can be equally effective at reducing variance
but some incur bias while others do not, (ii) identifying methods that better recover ground truth does not
guarantee the absence of bias, (iii) bias can arise even if one has specific knowledge of properties of the
signal of interest. We suggest that researchers should consider and possibly quantify bias before deploying

denoising methods on important research data.
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Introduction

Modern science has witnessed major advances in the application of computational analyses to large
datasets [1,2]. This has led to a ‘big data’ revolution in which datasets of increasing size, scope, and detail
are being amassed [3-5]. In the field of neuroscience, advances in electrophysiological, optical, and
magnetic resonance techniques are enabling measurement of the structure and function of animal and
human brains at higher resolution, with greater coverage, and over longer temporal durations. However, a
major challenge in these measurements is the presence of noise, which we define as unwanted variability
across repeated measurements from the same individual. Such noise can originate from a variety of
sources and can be both structured (e.g., imaging artifacts, head motion, physiological noise, variations in
cognitive performance) and unstructured (e.g., thermal noise, optical shot noise). Depending on the goals
of a given experiment, many of these types of noise are undesirable to the researcher.

Developing methods for removing noise from data has been a long-standing objective in
neuroscience. High levels of noise in experimental data hinder scientific inferences; thus, there is a
temptation to apply denoising methods to such data. Indeed, there are many interesting recently proposed
approaches for denoising, including low-rank methods [6-8], methods based on data-driven noise
derivation [9-11], methods that exploit the power of deep neural networks [12—-15], and self-supervised
methods [16]. In surveying the literature, we find extensive discussion and consideration of denoising
methods and how they fare in specific scientific paradigms. However, we think that, aside from a few notable
exceptions [17,18], there has been insufficient emphasis on the issue of statistical bias.

Bias, in the statistical sense, is defined as the discrepancy between the average expected outcome
of a given experiment (and its associated analysis) and the ground-truth parameter being estimated (a more
formal treatment is provided later). In expositions of denoising methods, the possibility of bias is often not
even mentioned or discussed, let alone quantified and assessed. Coming to clarity on this methodological
issue is especially important in the context of modern datasets. This is because increasing sizes of datasets,
increasing levels of noise (due to increased spatial resolution, temporal resolution, and acquisition speeds),
and increasing complexity of data analysis pipelines all tend to obscure or make more difficult the
assessment of bias. A critical message of this paper is that bias is risky: while a method might improve the
correspondence between a noisy dataset and a ground-truth measure, this might come at the cost of
introducing systematic biases into the data and lead to incorrect scientific inferences.

We write this article with two goals in mind. First, we wish to draw attention to—or perhaps rekindle
interest in—the basic statistical concepts of bias and variance. Our presentation is general in order to isolate
the essential principles at stake. We attempt to provide a concise distillation of the concepts of bias and
variance that is easy to understand for non-statisticians. Second, we wish to communicate several
simulations that illustrate how these concepts and principles can be applied in concrete scientific
paradigms. We design these examples based on our experience in neuroimaging, and we make freely

available the underlying data and code to promote transparency (files available at https://osf.io/weg87/).



64
65
66
67
68
69
70
71

The examples are not intended to establish general methodological findings (for that, more extensive
analyses are necessary), but rather to provide important insights into the nature of denoising. We
acknowledge that the ideas and principles we convey may already be apparent to expert practitioners.
Thus, perhaps the primary audience of this paper are researchers who are interested in—but have not fully
developed their stance towards—strategies for denoising data. Ultimately, we hope this article spurs
method developers to consider and potentially quantify bias in candidate denoising methods and users to

consider the risk of bias when applying denoising methods to important research data.
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Materials and methods

Simulation framework

All simulations (as depicted in Figs 2—4) use a common analytical framework. We first design a ground truth
based on either empirical or synthetic data. We then generate simulated data by adding randomly
generated noise to the ground truth. This produces a set of measurements, each of which may contain
multiple data points (e.g. different voxels, different time points). Next, we apply various denoising methods.
Each method is applied independently to each measurement and produces a set of analysis results. Finally,
for each method, we compute quantitative metrics that assess the performance of the method. Three
metrics are computed and are detailed below.

Bias is quantified by computing, for each data point, the absolute deviation between the mean
across analysis results and the ground truth, normalized by the standard error across analysis results (this
normalization can be viewed as a form of studentization, in which a quantity is normalized by a measure of
error, producing units that are easy to interpret). Note that computing the absolute value is important, since
a denoising method might overestimate and underestimate the ground truth in different parts of a dataset
and it should be penalized for doing so. We summarize the results by calculating the median absolute
deviation across data points. The values are in normalized units, and low values are desirable, as they
indicate low deviations from ground truth. Data points for which the standard error across analysis results
is 0 are ill-defined and are ignored in the calculation (e.g. Fig 3B, right column, time = 0 s).

It is important to note that our metric of bias is not, strictly speaking, the same as the idealized
theoretical definition of statistical bias (see Equation 1). The theoretical definition would require computing
expectation over an infinite (or very large) number of simulations; in contrast, our metric is suitable for
computation in finite data regimes and takes into account the limited number of simulations through
normalization by standard error (with the underlying idea that running more simulations to reduce standard
error is always desirable, if computational resources are available). One issue with the metric is that non-
zero values are obtained even for unbiased measurements (thus, the metric can be viewed as the “apparent
bias”). Therefore, to provide a suitable comparison, we perform Monte Carlo simulations (assuming a
Gaussian noise distribution) to determine the value that is expected for the case of unbiased
measurements; this value is plotted as ‘Baseline’ in Figs 2—4. Note that this baseline value can be computed
analytically as tinv(0.75,v) which indicates the inverse of the cumulative distribution function associated
with Student’s t-distribution, evaluated at 75% and v degrees of freedom. For example, in the case of 10
measurements, tinv(0.75,9) = 0.70 indicating that half of a set of samples drawn from a t-distribution with 9

degrees of freedom are expected to have an absolute value less than or equal to 0.70.
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Variance is quantified by computing, for each data point, the standard error across analysis results.
We summarize the results by calculating the median standard error across data points. The values are in
the units of the original data, and low values are desirable, as they indicate high reliability of analysis results.

Erroris quantified by computing Pearson’s correlation between each analysis result and the ground
truth. (Note that correlation allows flexibility for scaling and offset; while a non-flexible metric such as mean
squared error is technically more correct, correlation is appealing for its interpretable units and is likely
sufficient in most cases.) We summarize the results by calculating the mean correlation observed across
analysis results. Intuitively, this metric assesses how well a denoising method recovers ground truth.
Correlation values range from —1 to 1. High values are desirable, as they indicate high similarity of analysis

results to the ground truth.

Simulation 1: Anatomical data

In this simulation, we use as ground truth the pre-processed 0.8-mm Ti-weighted anatomical volume
acquired from Subject 1 from the Natural Scenes Dataset (NSD) [19]. The intensity values in this volume
range approximately from 0 to 1400 (see Fig 2A, middle). Also from NSD, we use the brain mask calculated
for the subject and the tissue segmentation provided by FreeSurfer (see Fig 2A, bottom). We map the 1-
mm MNI T1-weighted atlas provided with FSL (https://fsl.fmrib.ox.ac.uk/fsl/) to the subject-native anatomical
space using linear interpolation (see Fig 2A, top). We generate a set of 10 measurements by adding noise
drawn from a Gaussian distribution with mean zero and standard deviation 300 (noise drawn independently
for each voxel). We evaluate four denoising methods: (1) No denoising refers to using the measurements
as-is. (2) Gaussian smoothing refers to spatially smoothing a given measurement using a 3D isotropic
Gaussian kernel with a full-width-half-maximum (FWHM) of 3 mm. (3) MNI atlas prior refers to averaging a
given measurement with the MNI atlas (mapped to subject-native space). Before averaging, a scale and
offset is applied to the atlas such that the mean of the data within gray matter (as indicated by the tissue
segmentation) and the mean of the data within white matter are matched to the corresponding gray- and
white-matter means in the MNI atlas. (4) Anisotropic smoothing refers to applying nonlinear anisotopic
diffusion-based smoothing [20] as implemented in Segmentator [21]. The diffusion-based smoothing is run
for 20 iterations. For all denoising methods, quantitative metrics of performance (as described previously)

are computed using voxels within the brain mask.

Simulation 2: Response timecourses

In this simulation, we use as ground truth a synthetic hemodynamic response function (HRF) generated by
evaluating a double-gamma function as implemented in SPM’s spm_hrf.m

(https://www fil.ion.ucl.ac.uk/spm/). The parameters [6 16 1 1 2 0] are used; these are the defaults, except
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for the fifth parameter, which is set to create a strong undershoot. The double-gamma function is convolved
with a 1-s boxcar, sampled at a rate of 1 s, and then scaled to peak at 1. The resulting HRF represents a
hypothetical fMRI response timecourse to a 1-s stimulus (see Fig 3A, top). We generate a set of 10
measurements by adding temporally correlated Gaussian noise with mean zero and standard deviation 0.2
(this was accomplished by generating zero-mean Gaussian noise with standard deviation 0.2 and
convolving the noise with a 5-s boxcar scaled to have a Euclidean norm of 1). We evaluate three denoising
methods: (1) No denoising refers to using the measurements as-is. (2) Basis restriction refers to projecting
the measurements onto a set of basis functions and then reconstructing the measurements. For basis
functions, we take the library of 20 canonical HRFs obtained from the Natural Scenes Dataset [19]
(getcanonicalhrflibrary.m), predict the response to a 1-s stimulus, perform principal components analysis
on the 20 timecourses, and extract the top three principal component timecourses (see Fig 3A, bottom). (3)
Parametric fit refers to fitting each measurement using a double-gamma model (same as used to generate
the data). Specifically, we use nonlinear optimization (MATLAB Optimization Toolbox’s Isgnonlin.m) to
determine the optimal parameters for a double-gamma function (as implemented in SPM’s spm_hrf.m) such
that when convolved with a 1-s boxcar, the result best approximates the measurement in a least-squares

sense. The initial seed for the optimization is set to [6 16 1 1 6 0], which are the defaults in spm_hrf.m.

Simulation 3: Tuning curves

In this simulation, we use as ground truth a synthetic set of tuning curves associated with several
hypothetical units (these units can be thought of as individual neurons or voxels). We construct tuning
curves that represent the response of 10 units to 50 conditions—these conditions can be viewed as different
points along some hypothetical stimulus dimension. We fix the dimensionality of the representation to be
exactly 4. This is accomplished by creating 4 Gaussian functions spaced equally along the stimulus
dimension, and then generating tuning curves for each unit by weighting and summing these Gaussian
basis functions using a set of randomly generated weights (random numbers are drawn from a uniform
distribution between 0 and 1 and then cubed). Each unit’s tuning curve is scaled to peak at 1, and to aid
visibility, units are arranged in sorted order according to the center-of-mass of each tuning curve (see Fig
4A). We generate a set of 30 measurements by adding noise drawn from a Gaussian distribution with mean
zero and standard deviation 0.6. (For visibility, only 10 of these 30 measurements are shown in Fig 4B,
bottom row.) We evaluate three denoising methods. (1) No denoising refers to using the measurements as-
is. (2) Boxcar smoothing refers to smoothing each unit's measured tuning curve using a boxcar kernel with
width 3 and integral 1 (this is simply a moving average with window size 3). (3) PCA refers to reducing the
dimensionality of each measurement to a specific target rank, a method also referred to as Truncated SVD
[22]. Variants of this method can be found in the literature [6,7]. Specifically, given a measurement X (10

units x 50 conditions), we perform singular value decomposition to obtain X = USVT where U (10 x 10) has
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loadings in the columns, S (10 x 50) has singular values in decreasing order on the diagonal and zeros
elsewhere, and V (50 x 50) has timecourse components in the columns. We then perform low-rank
reconstruction of the measurement using n = 2, 3, 4, 6, or 8 components (referred to as PCA2, PCA3,
PCA4, PCA6, and PCA8) by computing the reconstructed measurement X* = U*S*V*T where U* contains
the first n columns of U, $* contains the upper-left n x n elements of §, and V* contains the first n columns
of V.

Tissue segmentation

To provide an example of the downstream impact of denoising, we carry out post-hoc analyses on the
results of the first simulation (anatomical data). First, we generate a noisy measurement using a noise level
of standard deviation 100. We then apply the four denoising methods (as previously described) to the
measurement. Given that a typical goal in anatomical imaging is to identify different anatomical structures,
we attempted to segment the data produced by each denoising method. Specifically, we take each result,
perform skull stripping using FSL's BET (Brain Extraction Tool), and then use FSL's FAST (FMRIB'’s
Automated Segmentation Tool) [23] to obtain a tissue segmentation. In Fig 5, we show the hard

segmentation output (‘seg’) which provides labels for cerebrospinal fluid, gray matter, and white matter.
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Results

A brief review of bias and variance

We start by briefly reviewing some basic statistical concepts [24,25]. Suppose we are interested in
estimating a certain population parameter by performing measurements of this parameter. There are two
distinct aspects of the quality of our measurements: bias and variance. Bias refers to the discrepancy, if
any, between the average expected outcome of our measurements and the population parameter. All else
being equal, we want bias to be zero (or low), since we want our measurements to cluster around the true
value of the population parameter. Variance refers to the variability of our measurements. All else being
equal, we want variance to be low, since this helps us narrow down a range of plausible values for the
population parameter.

A simple example helps illustrate these concepts. Fig 1 depicts a 2 x 2 crossing of different
measurement scenarios. The columns differ in the amount of measurement bias. The left column
corresponds to unbiased measurement, in which measurements, on average, equal the ground-truth
parameter, whereas the right column corresponds to biased measurement, in which measurements, on
average, are higher than the ground-truth parameter. The rows differ in the amount of measurement
variance. The top row corresponds to low-variance measurement, in which measurements cluster tightly
together, whereas the bottom row corresponds to high-variance measurement, in which measurements are

spread far apart.
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Fig 1. Bias and variance in measurement. In each of the four depicted simulations, 2 is the ground-truth value
and 30 measurements are simulated by drawing values from a Gaussian distribution. In the left column, the
Gaussian distributions have a mean of 2 (unbiased), whereas in the right column, the distributions have a mean
of 4 (biased). In the top row, the Gaussian distributions have a variance of 0.3 (low variance), whereas in the
bottom row, the distributions have a variance of 8 (high variance). The inset indicates the mean squared error
(MSE) between the measurements and the ground truth. Bias can be estimated as the discrepancy between the
mean of the measurements and the ground truth. Variance can be estimated as the variability across the

measurements. Code available at https://osf.io/6x8kq/.

A common approach for assessing how well a measurement procedure captures the population
parameter is to compute mean squared error (MSE), which refers to the average squared deviation of the
measurements from the population parameter. It is important to note that this error metric reflects separate
contributions of bias and variance. Specifically, mean squared error is equal to the sum of two separate
terms, a squared-bias term and a variance term:

MSE = BIAS? + VARIANCE (1)
To see why this is the case, we first define bias as the difference between the average expected
measurement and the ground-truth value:
BIAS = E[9] — y )

10
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where y indicates the ground-truth value, y indicates a single measurement, and E is the expectation
operator indicating the average over an infinite number of repeated measurements. We compute the
squared bias as follows:

BIAS? = y? — 2yE[9] + (E[9])* (3)
Note that squared bias is always non-negative. Next, we define variance as the average squared deviation

of the measurements around their mean:

VARIANCE = E[(J — E[ﬁ])z]
= E[9? — 29E[9] + (E[9])?]
= E[9?] — 2E[9]E[9] + (E[9])?
= E[9?] — (E[9])* “)

Finally, we define mean squared error as the average squared deviation of the measurements from the
ground-truth value:
MSE = E[(y — )]
=E[y* - 2y9 +9?]

=y? — 2yE[y] + E[y°] (5)
Adding some terms and grouping, we obtain:
MSE = (¥ — 2yE[9] + (E[yD?) + (E[¥°] — (E[yD?) (6)
By substituting from Equations 3 and 4, we see:
MSE = BIAS? + VARIANCE (7)

Insights and implications for denoising

Having reviewed the concepts of bias and variance, we highlight some important insights. First, we remind
ourselves of the classic distinction between reliability and accuracy. Even though a procedure might provide
highly reliable measurements (low variance), this does not necessarily imply that that the measurements
are accurate. This is because the measurements might have systematic deviation (bias) from the ground-
truth parameter (e.g., see upper-right panel of Fig 1). Second, we observe that assessing error relative to
ground truth does not provide specific information regarding bias. Error, as discussed earlier, reflects the
combination of both bias and variance. Hence, a situation in which error is low is compatible with the
existence of bias (e.g., in Fig 1, the upper-right panel exhibits lower error than the lower-left panel but has
substantial bias).

We now transition to the topic of denoising. A common situation that an experimentalist may face
is one in which a set of measurements are corrupted by high levels of noise but are at least expected to
converge, across repeated experiments, to the true signal. This situation can be characterized as high
variance and unbiased (Fig 1, lower left). To reduce noise, the experimentalist might try applying a
denoising technique to the data. In doing so, there are two general types of outcomes. One outcome is that

variance is reduced while the absence of bias is maintained (see arrow labeled ‘Denoising without bias’

1"
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that begins in the lower-left panel and ends in the upper-left panel). This is a great outcome. A different
outcome is that variance is reduced but bias is introduced (see arrow labeled ‘Denoising with bias’ that
begins in the lower-left panel and ends in the upper-right panel). This is a less desirable outcome, as
repeated experiments converge to an incorrect signal. Reduction of variance but introduction of bias is an
instance of the classic bias-variance tradeoff [25]. From a certain perspective, one might argue that
introducing bias is desirable if this reduces overall error [26]. However, we feel that this is risky and warrants

careful consideration (see Discussion).
Examples of bias and variance in denoising

While we have described theoretical considerations to take into account when assessing a denoising
method, it may be unclear how much these considerations actually matter in practical situations. To provide
more concrete insights, we construct three denoising simulations based on our experience with
neuroimaging data. The goal of these simulations is to provide examples of how the performance of different
denoising methods can be formally evaluated. In each example, we start with a ground truth, generate noisy
measurements based on this ground truth, apply different denoising methods to each measurement, and
calculate metrics that quantify the performance of the denoising methods. We generally follow the theory
presented earlier, but use versions of the metrics that are more suitable and interpretable for practical data
scenarios. Specifically, we quantify bias as the median absolute deviation between the mean across
analysis results and the ground truth and express this in units of standard error; we quantify variance as
the median standard error across analysis results; and we quantify error as the average correlation between
each analysis result and the ground truth (see Methods). Please note that the denoising methods
demonstrated in the examples are not intended to be realistic methods that one might want to use in practice
(e.g., Gaussian smoothing is obviously a naive approach; averaging with an MNI atlas is obviously a very
crude approach). This is because the point of the examples is not so much to determine the best state-of-
the-art denoising method, but rather to demonstrate how bias and variance can be formally studied.

In the first simulation, we use as ground truth a high-quality 0.8-mm isotropic anatomical MRI scan
of a human brain (Fig 2A) and simulate noisy measurements of this ground truth by adding Gaussian noise.
(Real noise in MRI data is better characterized according to Rician and/or other types of distributions, and
may have complex spatial variations across the image [27,28]. Here we use the simplifying assumption of
Gaussian noise, and acknowledge that results may vary in interesting ways for other types of noise.) As
expected, the raw data (‘No denoising’) follow the ground truth, in the sense of lacking bias, but suffer from
high variance (Fig 2B, first column). The method of spatial smoothing (‘Gaussian smoothing’) reduces
variance, but incurs major deviations from ground truth (Fig 2B, second column). This is not surprising since
the smoothing kernel used has a relatively large full-width-half-maximum of 3 mm, which will obviously
remove fine-scale features of the convoluted cerebral cortex. The method of averaging a given

measurement with a pre-existing atlas (‘MNI atlas prior’) provides some variance reduction, but also

12
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introduces some bias (Fig 2B, third column). This makes sense, since the atlas is generally expected to
provide good guesses for tissue intensity, but may bias the measurement in parts of the individual’s brain
that deviate from the atlas. Finally, the method of applying anisotropic smoothing (‘Anisotropic smoothing’)
greatly reduces variance and, appealingly, introduces very little bias, if any (Fig 2B, fourth column). Our
interpretation is that the assumption embodied by anistropic smoothing—namely, that true structures are
locally contiguous and have homogeneous signal intensity—is well matched to the anatomical structure of
the brain, at least at the current spatial resolution.

The quantitative summary plots (Fig 2C) provide interesting insights. Anisotropic smoothing
reduces variance but does not incur appreciable bias (arrow 1). In contrast, other methods such as
Gaussian smoothing reduce variance but incur substantial bias (arrow 2). Thus, a bias-variance tradeoff
does not necessarily occur in all situations. We also see that error is not a perfect metric to discriminate
amongst methods, as both anisotropic smoothing (location 3) and Gaussian smoothing (location 4) yield
comparable levels of correlation between analysis results and ground truth. Finally, there is a general
relationship between reducing variance and increasing similarity to ground truth (arrow 5). This makes
sense since denoising methods should, in theory, reduce unwanted measurement noise and generally push

results towards the ground truth.

13
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Fig 2. Denoising anatomical data. In this simulation (code available at https://osf.io/qxp8y/), we generate noisy
measurements by starting with a ground-truth Ti-weighted anatomical volume and adding Gaussian noise
independently to each voxel. We then attempt to denoise the data using different denoising methods: no
denoising, simple Gaussian spatial smoothing, averaging with a group-average atlas prior, and performing
anisotropic diffusion. The images depict a zoomed-in view of the posterior section of a single axial slice, and the
same color map and range is used for all images. (A) Reference volumes. We illustrate the ground-truth
anatomical volume (middle), the MNI atlas used in one of the denoising methods (top), and the tissue
segmentation obtained from FreeSurfer, showing gray and white matter (bottom). (B) Denoising results. Each
column shows results for a different denoising method. We show three example measurements (top row), the
mean across measurements (middle row), and detailed plots for a small line of voxels (bottom row). (C)
Quantitative assessment of bias, variance, and error. Bias is quantified as the median absolute difference
between the average measurement and the ground truth, where the difference is normalized by the standard
error across measurements. Variance is quantified as the median standard deviation across measurements. Error
is quantified as the correlation between each measurement and the ground truth, averaged across
measurements. The gray vertical line indicates the bias value associated with the case of unbiased measurement
(assuming Gaussian noise).
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In the second simulation, we use as ground truth a synthetic hemodynamic response function (Fig
3A, top) and simulate noisy measurements of this ground truth by adding temporally correlated Gaussian
noise. As expected, the raw data (‘No denoising’) follow the ground truth, in the sense of lacking bias, but
suffer from high variance (Fig 3B, first column). The method of reconstructing the measurements using a
small set of basis functions (‘Basis restriction’) greatly reduces variance but incurs major deviations from
the ground truth (Fig 3B, second column). The discrepancy can be traced to the fact that the basis functions
do not have much dynamics around the time of the undershoot (see blue arrow). The method of fitting a
parametric function to the data (‘Parametric fit') provides variance reduction and, appealingly, introduces
very little bias, if any (Fig 3C, third column). This makes sense, since the parametric function used to fit the
data is the same function that was used to generate the ground truth. If a different parametric function were
used, these results of course may no longer hold.

The quantitative summary plots (Fig 3C) bear out the above observations. Basis restriction is very
effective at reducing variance but is highly biased (location 1). Nonetheless, on balance, the bias-variance
tradeoff is such that error is reduced compared to no denoising (location 2). However, there is even a better
method: parametric fitting is essentially unbiased (location 3) and performs the best at achieving results
that are similar to the ground truth (location 4). Interestingly, even though parametric fitting has more
variance across analysis results than basis restriction, parametric fitting yields results that better match
ground truth (arrow 5). This can be understood as the consequence of the undesirable bias that is induced

by basis restriction.

15



367
368

369
370
371
372
373
374
375
376

377
378
379
380
381
382
383
384
385
386
387

A Ground truth B No denoising Basis restriction Parametric fit

15
i}
1 _c
05 ‘g GE’ —\ N _
S o
0 S =
N_— == Z A\ | ] \ L\ |
05 c©
-0
-1 £ . A . N I N S N\_
0 10 20 30 40 50
Time (s)
Basis functions
06 2 2 Individual measurements 2
04 e} 15 15 == Mean and standard error 5
c = — Ground truth
o2 1 1 1
0.2 n +
ST o5 05 05
0 gg 0 0 0
2 S N— N—"
-0.2 \/— o ‘5-,
[&) 05 05 0.5
0.4 - - E
10 20 30 40 50 ! ] 10 20 30 40 50 ! ] 10 20 30 40 50 ! 0 10 20 30 40 50
Time (s) Time (s) Time (s) Time (s)
C Baseline 0.96 @ Parametric fit 0.96 @ Parametric fit
0.25 < ) . <
g 094 Basis reosmc“on g 094 PYS - Overall summary
—_ No denoisin =3 5 Basis restriction
@ ] 9 E E
= 02 o 092 o 092 No denoising -
s 3 3 High variance but unbiased
2 09 2 09
®© 0.15 S >
@ £ £ Basis restriction -
] = = A .
S 5 088 5 088 Low variance but biased
g 01 g s
3 @ Parametric it s 086 kS 086 Parametric fit - -
0.05 . o £ 084! @ Nodenoising S e No denoising ¢ Low variance and little bias
Basis restriction 8 : 8 -
)
0 0.82 0.82
0 2 4 6 8 0 2 4 6 8 0 005 01 015 02
Bias (normalized units) Bias (normalized units) Variance (raw units)

Fig 3. Denoising response timecourses. In this simulation (code available at https://osf.io/6jhmr/), we generate
noisy measurements by starting with a ground-truth hemodynamic response function (HRF) and adding
temporally correlated Gaussian noise. We then attempt to denoise the data using different denoising methods:
no denoising, reconstruction using a restricted set of basis functions, fitting using a parametric model. (A)
Reference timecourses. We illustrate the ground-truth HRF (top) and the temporal basis functions used in one of
the denoising methods (bottom). (B) Denoising results. Each column shows results for a different denoising
method. We show three example measurements (top row) and comparison to the ground truth (bottom row). (C)

Quantitative assessment of bias, variance, and error. Same format as Fig 2C.

In the third simulation, we use as ground truth a synthetic set of tuning curves (10 units, 50
conditions) whose dimensionality is fixed to 4 (Fig 4A) and simulate noisy measurements of this ground
truth by adding Gaussian noise. As expected, the raw data (‘No denoising’) follow the ground truth, in the
sense of lacking bias, but suffer from high variance (Fig 4B, first column). The method of boxcar smoothing
substantially reduces variance and, appealingly, does not incur any appreciable bias (Fig 4B, second
column). This makes sense given that the width of the boxcar used is 3, which is relatively small compared
to the intrinsic smoothness of the ground-truth tuning curves. The method of dimensionality reduction using
principal components analysis (PCA) yields variance reduction at the expense of bias, with the specific
bias-variance tradeoff controlled by the number of dimensions. Specifically, if dimensionality is aggressively
reduced, more variance reduction is achieved but more bias is introduced (e.g., Fig 4B, sixth column). If
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dimensionality is reduced less aggressively, less variance reduction is achieved but less bias is introduced
(e.g., Fig 4B, third column).

The quantitative summary plots (Fig 4C) provide additional insight. The bias-variance tradeoff in
PCA is clearly visible: there is a continuous progression from PCAG6 to PCA2 in terms of increasing amounts
of bias and decreasing amounts of variance (arrow 1). Compared to PCA8, PCA6 does not incur
appreciable bias; this suggests that preserving six dimensions is sufficient to retain all (or nearly all) of the
underlying signal in the noisy measurements. The method of boxcar smoothing clearly outperforms PCA,
as it greatly reduces variance and does not induce bias (location 2), and, moreover, achieves the best
match to ground truth (location 3). Interestingly, the number of dimensions in PCA that maximizes similarity
to ground truth is 3 (location 4), which is not the same as the true dimensionality of the underlying
representation. This may seem counterintuitive at first, but can be understood as the simple consequence
of the mixing of bias and variance when quantifying similarity to ground truth. That is, even though retaining
only 3 dimensions is guaranteed to discard some of the true signal and incur bias (since the ground-truth
dimensionality is 4), the reduction of variance afforded by retaining only 3 dimensions apparently improves
the overall similarity to ground truth. Perhaps the most important insight is that reducing dimensionality to
4 already starts to introduce noticeable levels of bias (location 5). This is due to the fact that in the presence
of measurement noise, the dimensions identified by PCA will start to deviate from the true dimensions that
underlie the ground-truth representation. In other words, noise inevitably corrupts all of the PCA-identified
dimensions, not just the ones that are discarded [6]. Hence, there is no guarantee that using 4 dimensions

will retain all of the relevant signal contained in a given measurement.
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Fig 4. Denoising tuning curves. In this simulation (code available at https://osf.io/abk9m/), we generate noisy
measurements by starting with a ground-truth collection of tuning curves whose underlying dimensionality is fixed
at 4 and adding Gaussian noise independently to each data point. We then attempt to denoise the data using
different denoising methods: no denoising, simple boxcar smoothing of responses to nearby conditions, and
dimensionality reduction using principal component analysis (PCA). (A) Reference data. We illustrate the ground-
truth tuning curves as an image (top) and as line plots (bottom). Color is used to distinguish different units. (B)
Denoising results. Each column shows results for a different denoising method. We show three example
measurements (top row) and comparison to the ground truth (bottom row). (C) Quantitative assessment of bias,

variance, and error. Same format as Fig 2C.
Downstream impact of denoising

The examples provided above demonstrate how bias can be formally studied in practical situations.
However, users of denoising methods are probably not fundamentally interested in low-level data
characteristics such as the amount of bias on individual data points, but are probably more interested in the
impact that bias might have on downstream analysis results. To provide insight into this matter, we conduct
an example downstream analysis in which we take simulations of noisy anatomical MRI data (as in Fig 2),

and assess the quality of tissue segmentations obtained after applying different denoising methods (Fig 5).
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Fig 5. Example downstream effects of denoising anatomical data. Here, we perform post-hoc analyses on
the results of the denoising methods illustrated in Fig 2 (code available at https://osf.io/hswaq/). Specifically, we
simulate an example noisy measurement, apply different denoising methods, and calculate a tissue segmentation
using FSL’s FAST. The images depict a zoomed-in view of a superior section of a single sagittal slice. The first
row shows the original data and the second row shows segmentation results (black, dark gray, and light gray
indicate cerebrospinal fluid, gray matter, and white matter, respectively).

As expected, segmentation results based on the raw data are poor, with numerous speckles and inaccurate
labels of gray and white matter (Fig 5, second column). The atlas-based method improves the robustness
of the segmentation, reducing speckles, but produces fairly inaccurate segmentation topology (Fig 5, fourth
column). Simple Gaussian smoothing yields very robust results (Fig 5, third column), and in fact, the overall
topology of the segmentation appears reasonably matched to the segmentation based on the ground truth
(Fig 5, first column). Finally, we see that anisotropic smoothing produces excellent results. An important
insight from these results is that the quality of downstream analysis results for different denoising methods
may not necessarily mirror the performance of these methods on low-level data metrics. For example, from
the point of view of bias, Gaussian smoothing seems quite undesirable (see Fig 2C), but from the point of
view of tissue segmentation, the results based on Gaussian smoothing are actually quite respectable. Thus,
the decisions that one makes regarding denoising methods should take into account not only the potential

impact on low-level data metrics like bias, but also the larger goals that one has for a set of data.
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Discussion

In this paper, we have described a simple framework for evaluating denoising methods, and we have
provided examples that highlight important (and possibly surprising) observations about denoising. These
examples were not intended to benchmark the performance of state-of-the-art methods, but rather to
demonstrate insights into the nature of denoising. The main issues that we focus on—bias and variance—
are well-understood in statistics. We believe these issues need increased attention in experimental fields,
especially in light of the increasing complexity of datasets and analysis pipelines. While developing
denoising techniques to improve data quality is a worthwhile endeavor, we should approach such
techniques with caution and strive to avoid introducing systematic bias to our measurements (see also the

perspective by [29]). To summarize our viewpoint, we propose the following three action items.
We should acknowledge bias

As a first action item, we should acknowledge bias as a major potential concern when applying denoising
methods. When making measurements, a presumption is that repeated measurements will help the
researcher narrow the range of plausible values for the parameter of interest. In this context, systematic
bias should be alarming. Some denoising methods might not introduce bias, and it might be possible to see
that this is the case from a theoretical perspective. However, in general, denoising methods are likely bound
to the bias-variance tradeoff: there is likely going to be a tradeoff between reduction of variance and
introduction of bias. Even if one does not yet know exactly what the bias is for a given method, it is
worthwhile to acknowledge and discuss what this potential bias might be. In a sense, it should not be
surprising that bias should be a potential concern with denoising methods. Indeed, when presented with a
denoising method, it is common to hear the reaction “How do you know you aren’t removing signal?”, which
can be viewed as an informal expression of the issue of bias.

An intuitive way to think about bias is through the concept of a prior. Denoising methods can be
viewed as bringing priors to a set of data [12]. On the one hand, if we do not incorporate any priors, the
data in their raw form are noisy but safe: they can be expected to provide the right answer on average
(assuming that the noise is zero-mean). On the other hand, if we apply a denoising method, we are bringing
in priors, or implicit assumptions, regarding the nature of the underlying system. The key question is
whether the priors embodied by the denoising method are a good match to the system. If the priors are
very well matched (e.g. Fig 2B, fourth column), little or no bias is introduced, and we can enjoy the reduced
variance. If the priors are not well matched (e.g. Fig 3B, second column), bias is introduced, and the reduced
variance may not be worth it. Whether a given denoising method is well matched to a system may vary
across situations. For example, anisotropic smoothing (e.g. Fig 2B, fourth column) is likely inappropriate for

structures consisting of point-like features; Gaussian smoothing (e.g. Fig 2B, second column) is actually a
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good approach in situations where the measurement resolution is high compared to the scale of the
underlying signal of interest. Analogous to the “No Free Lunch Theorem” in optimization [30], we should
recognize that any given denoising method is not guaranteed to perform well in all situations. Accordingly,
our goal should not only be to demonstrate that a given denoising method performs well in certain situations,
but should also be to identify the range of situations within which the method performs well and the range
within which the method fails.

lllustrative examples of priors come in cases where there are literally no data. These cases
conveniently expose the full nature of the prior embodied by a technique. For instance, suppose we delete
a small region of a photograph and use an image inpainting technique to fill in the region. While we are
likely to obtain a reasonable-looking image that generally conforms to natural image statistics, it is obvious
that this is no substitute for actual measurement. Had there been a specific object in the deleted region, it
is likely that the inpainting technique would miss this completely and instead fill the region with general
texture priors [31]. In other words, the technique would likely incur massive bias. Or, as a different example,
suppose we train a model to predict high-resolution details that typically accompany low-resolution
measurements. This model might be quite effective within a certain data regime at predicting high-resolution
details when only low-resolution data are available, but might make non-sensical predictions when exposed

to novel data regimes that differ substantially from the training dataset [29].
We should study and quantify bias

As a second action item, we should study the bias that may be present in a denoising technique, and
quantify its magnitude in real-world situations. Carefully characterizing the bias of a method is useful for
providing full transparency and enabling accurate risk assessment. Bias can be studied using different
approaches. It might be possible to make a theoretical assessment as to whether a denoising technique is
likely to incur bias and what this bias might be like. This is feasible for denoising techniques that are based
on simple, clear principles. For example, although simple smoothing is a naive approach, one appealing
feature is that we fully understand the risk of bias that it entails. In contrast, denoising techniques that derive
their power from large amounts of training data (e.g. deep neural networks) or techniques that derive noise
estimates from the data themselves are more difficult to assess from an a priori perspective. Alternatively,
we can use empirical analyses to evaluate the bias in denoising techniques (like the examples shown in
Figs 2-4).
One of the take-home points of this paper is that different denoising metrics provide fundamentally
different information:
e  One metric of denoising performance is variance. Examining variability of results across repeated
measurements or independent splits of a dataset provides useful information. All else equal, we

want less variance.
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e A second metric of denoising performance is error. Assessing error is a widely used approach in
image processing [32,33] where one seeks to minimize the error between a denoised output and a
reference ground-truth image. Error can be quantified in various ways, such as mean squared error,
peak signal-to-noise ratio, or structural similarity index [34,35]. Alternatively, error can be assessed
through the use of cross-validation to assess generalization to unseen samples, which serve as an
implicit ground truth. All else equal, we want less error.

e A third metric of denoising performance is bias. Bias can be quantified by applying a denoising
method to multiple independent measurements and carefully comparing the mean of the results to
a ground-truth measure (as shown in Figs 2—4). All else equal, we want less bias.

It is clear that variance, in and of itself, is an inadequate denoising metric since it is unaffected by (and
therefore does not assess) bias. However, since error reflects the combined influence of bias and variance,
could it be a good policy to use error as a denoising metric? Indeed, some perspectives imply that error is
the ultimate criterion and anything that reduces error is desirable [26,39]. While we acknowledge that error
is an extremely useful metric, we believe that it is valuable to isolate and quantify bias in addition to error.
It is only by isolating bias that we can understand its prevalence and what downstream impact it may have
on inferences made from a set of data. We make this suggestion under full acknowledgement that we
ourselves have not fully implemented these ideas in the past. For example, we used cross-validated error
to evaluate denoising performance in this study [40], but it would have been even more informative had we
specifically assessed bias.

Although we demonstrate ground-truth simulations in this paper, studying bias is not limited to such
situations. On the one hand, ground-truth simulations can deliver many valuable insights [17,18]. However,
ground-truth simulations are susceptible to the criticism that they may not capture the full complexity of real
empirical data. Fortunately, it is possible to study bias in real data if one has access to a dataset in which
many repeated measurements are available. One approach is to average across these measurements,
treat the result as ground truth, and evaluate how well denoising methods can use single (or a few)
measurements to recover the ground truth. Note that perfect recovery is not necessarily desired in this
scenario since the ground-truth measure is still subject to some amount of measurement error.

Denoising efforts, especially in the field of machine learning, often place great emphasis on
improving predictive performance, in the sense of generating results that better approximate a target
ground-truth measure. While this engineering mindset has obvious practical and commercial value [36] and
can be quite effective in driving competition and therefore progress [37], it falls short as a means for
assessing measurement accuracy. Specifically, predictive performance reflects a combination of bias and
variance and therefore is insufficient in and of itself for studying bias. Unless predictive performance is
perfect, there is a potential that bias exists for a given denoising technique. Emphasis on prediction can be
viewed in terms of the divide between what has been termed ‘predictive modeling’ and ‘explanatory

modeling’: “predictive modeling seeks to minimize the combination of bias and estimation variance,
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occasionally sacrificing theoretical accuracy [i.e. correct identification of properties of the underlying system]
for improved empirical precision” [38].

We should consider the risk of bias to one’s goals

As a third action item, we should consider the risk of bias in the context of the broader goals of a given
endeavor. All else being equal, we would argue that for everyday scientific measurements, we cannot risk
using denoising methods that introduce bias, as this may lead to incorrect inferences from the data.
However, adopting a more realistic perspective, we recognize that the bias that might be present in a given
denoised dataset could be a relatively minor aspect of the data. Even if we know with certainty that a
denoising method introduces bias, we might reasonably ask: how strongly does the bias affect the main
issues at stake? We think that the best strategy is to consider each situation on a case-by-case basis and
make a deliberate decision regarding the risk of bias.

In some situations, bias might be acceptable. For instance, if the goal is to clean an audio or video
signal for aesthetic purposes or for basic perceptual interpretation [34], then bias would seem to cause little
harm and a reasonable stance is to simply resign and accept bias [32]. An example of this is a clinician who
is visually inspecting an image. If a denoising method incurs a little bit of blurriness, this does not seem to
pose a major problem (assuming the clinician is aware of the blurriness). Or, if a denoising method affects
an aspect of a given dataset that does not have substantial impact on the main findings from the data (e.g.,
small changes in region identification might be unlikely to change the overall measured activity from a brain
region), then bias would not seem to be a problem.

In other situations, bias might be unappealing but must be accepted out of necessity. For example,
if a dataset is too noisy to make inferences and additional measurements are not possible (e.g., due to the
rarity of the data), it may be necessary to apply a denoising method in order to salvage the data and make
some inferences, even if imperfect. Alternatively, it might be the case that implementing an unbiased
analysis method might require an inordinate amount of time (either human time or computational time). In
such cases, the user might need to use biased analysis methods out of practical necessity.

But in many situations, bias may be unacceptable. For example, if a set of noisy data is being used
to make a clinical diagnosis, it might be better to leave the data untouched and acknowledge that the data
are inconclusive than to risk introducing an artifact or removing a true signal. Or, as another example, if a
set of data is intended to critically test hypotheses about temporal characteristics of a system, one might
avoid applying a denoising method that has access to multiple temporal measurements, as the method
might potentially introduce biases in the temporal domain, and instead restrict the method to single

measurements at a time.

Concluding remarks
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In this paper, we have emphasized bias as an important property that should be considered when
evaluating denoising methods. In practice, how might one select which of several denoising methods to
use? One approach is to establish a data regime for which one would like a method to perform well,
determine which methods are unbiased (or nearly unbiased) in this regime, and then select from these
methods the one that has the least variance. However, bias is just one of several factors that influence the
larger goals for a set of data. As discussed above, bias might not have a major impact on a user’s end
goals and the inferences that they wish to make. Additionally, there are other important considerations to
take into account when considering an analysis method. These include the availability of a working
implementation, the time required to incorporate a method into an existing pipeline, execution time,
robustness across diverse types of data, and the clarity and interpretability of the procedures that underlie
the method. Thus, our broader position is that the possibility of bias should be one of many factors that

enters a user’s informed decision regarding the specific methods to apply to a set of research data.
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