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Abstract. In this paper, a multi-lane multi-population microscopic model,
which presents stop and go waves, is proposed to simulate traffic on a
ring-road. Vehicles are divided between human-driven and autonomous
vehicles (AV). Control strategies are designed with the ultimate goal
of using a small number of AVs (less than 5% penetration rate) to
represent Lagrangian control actuators that can smooth the multilane
traffic flow and dissipate the stop-and-go waves. This in turn may re-
duce fuel consumption and emissions. The lane-changing mechanism is
based on three components that we treat as parameters in the model:
safety, incentive and cool-down time. The choice of these parameters
in the lane-change mechanism is critical to modeling traffic accurately,
because different parameter values can lead to drastically different traf-
fic behaviors. In particular, the number of lane-changes and the speed
variance are highly affected by the choice of parameters. Despite this
modeling issue, when using sufficiently simple and robust controllers for
AVs, the stabilization of uniform flow steady-state is effective for any
realistic value of the parameters, and ultimately bypasses the observed
modeling issue. Our approach is based on accurate and rigorous math-
ematical models, which allows a limit procedure that is termed, in gas
dynamic terminology, mean-field. In simple words, from increasing the
human-driven population to infinity, a system of coupled ordinary and
partial differential equations are obtained. Moreover, control problems
also pass to the limit, allowing the design to be tackled at different
scales.
Finally, we explore collaborative driving by assuming that a fraction of
human drivers is instructed to drive smoothly to stabilize traffic. We
show that this approach also leads to dissipations of waves.
Keywords : autonomous vehicles, stop-and-go waves, multi-lane traffic,
hybrid models, mean-field.
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1 Introduction

Traffic flow displays various instabilities at high densities, and this is known as a con-
gested phase. Such instabilities may grow into persistent stop-and-go waves and travel
upstream to the flow of traffic. This phenomenon is especially observed on highways,
and was reproduced in experiments [37,22]. Waves may be generated by network fea-
tures (bottlenecks, ramps etc.) as well as by drivers’ behavior (lane changing, strong
breaking, etc.). These waves are responsible for traffic inefficiencies and increased fuel
consumption.

Traditional traffic management techniques include variable speed advisory and
variable speed limits. However, the technological advancements in terms of autonomy
allows the use of a Lagrangian approach using autonomous vehicles as Lagrangian
actuators that are sparse along the road network. A number of studies addressed
the problem of dampening waves to smooth traffic using autonomous vehicles, both
in simulation [8,38,18,44] as well as in experiments [46,36]. The achieved results also
showed that at low penetration (around 5%), traffic can be smoothed to a great extent
in terms of fuel economy (reduction up to 40%). The results from the experiments
were mostly in a confined setting and only used one lane, with controls designed from
first principles and control-theoretic methods, [6,10].

The present paper aims at designing rigorous mathematical models and con-
trol algorithms for a multi-lane setting in a ring road. More precisely, we design
a multi-population model with human-driven and autonomous vehicles. The micro-
scopic dynamics is described by a Bando-Follow-the-Leader model, proven to generate
stop-and-go waves and tuned to experimental data. The lane-changing mechanism is
mainly based on MOBIL [43] and includes: safety, incentive and cool-down time.
Safety poses constraints on acceleration/deceleration of vehicles, incentive is based
on the potential for higher acceleration in a new lane and cool-down time allows lane-
changing only after a certain amount of time from the last lane change. The resulting
dynamics is of a hybrid nature and heavily depends on the choice of parameters for
these three mechanisms.

In particular, we show in this article that the quantitative but also qualitative
behavior of the dynamics (stop-and-go waves or not; number of lane-change; speed
variance) highly depends on the parameters of the lane changing mechanism. Despite
the variability of traffic patterns, we show that we can still design simple control
algorithms, which are robust and can stabilize traffic with a low penetration rate
for any choice of parameters (in a physically relevant parameters’ space). Finally, we
show that a collaborative driving approach, where a minority of vehicles would have
”good human behavior”, would also bring some stability to the system.

The hybrid model and control strategies are based on accurate mathematical anal-
ysis. This in turn allows a limiting procedure, called mean-field, with the population of
human-driven cars sent to infinity. The limiting controlled dynamics couples a partial
differential equation for the human-driven car density with a controlled hybrid sys-
tem for the autonomous vehicles. Optimal control problems are also compatible with
the limiting procedure, and thus control strategies can be designed for the limiting
dynamics and used for the microscopic model.

1.1 Existing traffic models in the literature

A multilane model is typically composed of two components : longitudinal dynamics
for each lane and a lane-change mechanism. Due to the different scales that can
be represented in vehicular traffic, one can also classify traffic models by modelling
longitudinal dynamics for each lane into two typical categories: micro-models and
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macro-models. For general discussions about traffic models at different scales, we
refer to the survey papers [32,4,2].

a) Micro-model
There are many different micro scale traffic models. We show several continuous time
models here that are well-understood and used regularly: the Intelligent Driver Model
(IDM), the Bando model, and the Follow The Leader (FTL) model. For the IDM,
the longitudinal dynamics for a lane are written:ẋi = vi,

v̇i = a

(
1−

(
vi
v0

)δ
−
(
s∗(vi,∆vi)

si

)2)
,

where s∗(vi, ∆vi) = s0 + viT + vi∆vi
2
√
ab

, given model parameters v0, s0, T, a, b.

For the Bando model, the longitudinal dynamics for a lane are written:ẋi = vi,

v̇i = α

(
V (∆xi)− vi

)
,

where V (·) is the optimal velocity function that depends on the space headway,
∆xi = xi+1 − xi, in front of the ith vehicle (see (1)).

For the FTL model, the longitudinal dynamics for a lane are written:{
ẋi = vi,

v̇i = β vi+1−vi
(xi+1−xi−lv)2

Not all models recreate stop and go traffic waves. Regarding this phenomena, the
IDM or a combination of the Bando model and FTL, so called “Bando-FTL model”,
are used. For the Bando-FTL, the longitudinal dynamics for a lane are written:{

ẋi = vi,

v̇i = α(V (xi+1 − xi)− vi) + β vi+1−vi
(xi+1−xi−lv)2 ,

where vi is the velocity of the ith car and xi is its location. The constant α is the
weight for the Bando model and β is the weight of the Follow-the-leader model. V is
still the optimal velocity function given by

V (x) = Vmax

tanh(x−lvd0
− 2) + tanh(2)

1 + tanh(2)
. (1)

where lv is the length of the car, and d0 is the minimal distance for the optimal
velocity model (see Table 1). The Bando-FTL model is primarily studied in this
paper. This model has been used in the past, for instance in [10,7], and has several
advantages :

– the FTL model represents the competing dynamics between drivers and deals with
the safety issues by applying a large braking value when a vehicle is too close to
the leading vehicle. This portion is at the origin of the stop and go waves.

– the Bando model enables realistic uniform flow steady-states: for the density of
cars on the road, there is a unique uniform flow equilibrium (h, v∗(h)), where h
is the equilibrium headway and v∗(h) is the equilibrium speed, which decreases
with h.
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– Because the FTL portion already incorporates a safety criteria, given reasonable
initial conditions, the Bando-FTL model usually does not require an additional
fail/safe condition. The model is also generally more robust than the widely used
Intelligent Driver’s Model (IDM) [42].

Moreover, if we consider N vehicles on a multilane ring-road with only human-driven
vehicles, the Bando-FTL model reads:ẋ

j
i = vji , i = 1, . . . , nj ,

v̇ji = α(V (xji+1 − x
j
i )− v

j
i ) + β

vji+1−v
j
i

(xj
i+1−x

j
i−lv)2

,

where j is the lane number, nj is the number of vehicles in lane j, and we set
vjnj+1 := vj1 and xjnj+1 := xj1 to take into account the ring-road geography. To take

into account physical limitations of real cars, we also cap the acceleration to 2.5 m·s−2
and the deceleration to 4 m·s−2. It has been shown that this model produces stop
and go waves in lane j if [7]

α

2
+

L2β

(nj)2
< V ′

(
nj

L

)
. (2)

where V ′ is the derivative of function V (x) in equation (1), and L is the length of
the road.

b) Macro-model
In this paper we consider a micro-model, which gives us a better understanding of
the dynamics and behavior of individual cars, and thus a more accurate measure of
fuel consumption. However, when the number of cars becomes high, the analysis for
optimization and optimal control can become computationally unfeasible. Therefore
many macroscopic models (macro-model) have been derived to study the behavior
of traffic flow at a larger scale. In these models, the dynamics are distributed and
represented by partial differential equations. The first models were scalar, such as
the celebrated but limited Lighthill-Whitham-Richards model, where the density of
cars on the road is the only variable and the speed is a decreasing function of density
[28,34]. These models regained interest with the emergence of more realistic second-
order models [3,25,12]. These models included two equations where both the density
and speed were included as variables. The first equation often represents a transport
density, while the second equation represents the effect from acceleration. Second
order macro-models can also represent traffic waves more easily. One can cite in
particular the study of ”jamitons” waves [13]. A harder question when dealing with
macro-models is the question of the interactions between the AVs and the regular
traffic flow. While for micro-models, this interaction is relatively easy to represent
accurately (one only needs to give the AV a different acceleration law than the other
vehicles), the interaction between the AVs and the rest of the traffic flow in a macro-
model raises several issues:

– Should the AVs also obey there own macro-model and, if so, how are the two
macro-models coupled?

– Should the AVs be represented as individual cars and how should the microscale
and macroscale be coupled?

One proposition to interact these two models is in the form of an ODE-PDE system,
which is given in [9]. Several works were even developed to show that this system
makes sense mathematically (i.e. are well-posed) and exhibits the expected behavior
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[26,27,20]. For the above reasons, we restricted ourselves to a micro-model in this pa-
per, even though a macro-scale model may be promising to design efficient controllers
that can dissipate stop-and-go waves. Another approach consists of trying to obtain
”the best of each scale” by starting from a microscopic model and using a mean-field
limit to obtain a PDE that represents the well-designed behavior of the microscopic
system at a larger scale. The last section of this paper is devoted to this approach.

c) Lateral dynamics and lane-change mechanism
Regarding the Bando-FTL model, we include a lane changing mechanism suggested
by Treiber et al. in [43]. Several models of lane changing dynamics have been explored
[48], such as 1. Gipps-type lane changing [16,47,21], and 2. Utility theory based lane
changing [1,39]. In Gipps-type lane changing, the driver’s behavior is governed by
maintaining a desired speed and being in the correct lane for an intended maneuver.
These types of lane changes depend on parameters corresponding to an incentive and
an acceptable level of risk for a collision, where some differentiate between coopera-
tive and forced lane changes. Characteristics distinguishing utility theory based lane
changing are a hierarchical decision-making process, desirability versus necessity, and
the consideration of multiple driver types (driver behavior heterogeneity).

A regular vehicle changes lane if and only if

– It is safe to do so: changing lane does not imply a huge braking for the vehicle
behind.

– It has an acceleration incentive: the expected acceleration after changing lane is
higher than the expected acceleration from not changing lane.

– A certain amount of time has passed from the time of the vehicle’s last lane change
to the current time. We refer to this as the lane change “cooldown time.”

In mathematical form, if we denote i as the vehicle changing lane and j as the potential
new lane, we have

ãji > ai +∆I (incentive),

ãji > −∆s, ãjfol(i) > −∆s (safety),

t > t0 + τ (cooldown time).

(3)

Here ai is the acceleration of the vehicle changing lane in the original lane, ãi is
the expected acceleration in the new lane, ãjfol(i) is the expected acceleration of its
follower in the new lane, ∆I is a constant representing the threshold incentive and
∆s represents the threshold safety. For the cooldown time equation, t0 represents the
last time a lane change occurred for the considered vehicle, and shows that the time
of the next lane change should be greater by a threshold value τ .

There are two main advantages to using acceleration, instead of speed, to model
lane-change: (1) the lane-change decision-making process is dramatically simplified;
(2) one can readily calculate accelerations with an underlying microscopic longitudi-
nal traffic model, see [48]. We also point out that the lane-change mechanisms lead to
discrete dynamics of the vehicles. The presence of both continuous dynamics and dis-
crete dynamics of vehicles motivate us to consider a hybrid system, see [5,15,17,31,40].

A natural question is to wonder about the influence of the lane-changing mech-
anisms on the stability of the system and whether such a model reduces stop and
go waves when adding the lane-changing mechanisms, or on the contrary, whether
it produces even stronger stop and go waves. We show in the next section that the
model heavily depends on the parameters of the lane-changing mechanisms. Besides
this, the possible behaviors are extensive. As the lanes are coupled, there are scenarios
where one lane can produce stop and go waves while another lane does not.
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2 Strong influence of the lane-changing parameters on the traffic
behavior

In this section we study the effect of the threshold parameters ∆I and ∆s and we
show that different values of these parameters can lead to radically different behaviors
for the traffic flow. To illustrate this phenomena, we fix a given initial condition where
all lanes have the same number of cars (in this case 24 cars for the middle lane of
length 240m, see Table 1 for a summary of the parameters used), and all the cars are
initially located within 1m from their steady-state location (the steady-state location
corresponds to a uniform spacing). Then we perform traffic simulations over 1000s
with ∆I ranging from 0.6 to 3 m·s−2 and ∆s ranging from 0.5 to 5 m·s−2. Note
that in our model, the maximum acceleration allowed by the car is 2.5m·s−2 and the
maximum deceleration allowed by the car is 4m·s−2. The explanation for the choice
of the range on ∆I and ∆s is as follows: requiring an incentive ∆I of 3m·s−2 to
change lane means that you can only change lane when your lane is decelerating and
you can accelerate strongly in the neighboring lane, whereas a safety threshold ∆s of
5m·s−2 means that we do not require any safety since the vehicles cannot brake more
strongly anyway. We expect that the higher the request on the incentive is, the lower
the number of lane changes. Similarly the higher the security threshold (hence the
lower security required), the higher the number of lane changes. These expectations
were confirmed in Figure 1, where we plot the number of lane changes over the total
length of the simulation for each combination of parameters ∆I and ∆s.

Fig. 1. Number of lane changes without control in the system given different threshold
values for incentive and safety
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In Figure 2, for each simulation, we compute the speed variance for each lane and
at each time-step, and find the average of the value over 1000 s and across the three
lanes. We see that in some cases the speed variance is close to 0, which suggests that
the system reached equilibrium. In other cases the speed variance has a high value,
suggesting that the system still undergoes some stop and go waves.

Fig. 2. Speed variance and average speed of the system without control given different
threshold values for incentive and safety

These speculations seems to be clear when looking at the instantaneous speed
variance over time for Fig 3 with parameter values ∆s = 4 m·s−2, ∆I = 0.6 m·s−2
and ∆s = 0.5 m·s−2 ∆I = 3 m·s−2 respectively. We see that for ∆s = 4 m·s−2 and
∆I = 0.6 m·s−2, the system approaches a uniform flow after 200 s, while for ∆s = 0.5
m·s−2 and ∆I = 3 m·s−2, it does not and stop and go waves persist in the system.

3 Using autonomous vehicles to smooth stop and go waves.

Traffic flow is very particular in that a single individual can have a global effect on
the entire dynamic of the flow. This is found in both micro and macro models and
can be understood from a simple example: a single individual can be a bottleneck and
thus influence the traffic across the entire system. Given this, the section serves to
investigate the following: is it possible to dissipate and prevent stop and go waves by
simply adding a single AV that follows a prescribed acceleration? And if so, what pre-
scribed acceleration should be given to these cars in order to smooth traffic efficiently?

When adding an AV to the system, the equations are modified as follows: the lane
of the AV is denoted by j and the car’s number is denoted by 1. From this, we have

ẋ1(t) = v1(t),

v̇1(t) = u(t)(t),
(4)

where u is a control law that can be chosen. Using AVs to smooth traffic flow
has already been studied in both theory and experiments in a single lane context
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Fig. 3. Speed variance and average speed over time for different threshold values Up left:
speed variance with incentive threshold = 0.6m.s−2 and safety threshold = 4m.s−2, Up
right: the average speed per lane with the same incentive and safety thresholds. Down left:
speed variance with incentive threshold = 3m.s−2 and safety threshold = 0.5m.s−2, Down
right: the average speed per lane with the same incentive and safety thresholds.

[10]. In particular, from [10], the author uses two very simple controllers, one propor-
tional and one slightly proportional integral controller. From the theoretical analysis
and experiments, the author demonstrated the efficiency of such simple controllers
to smooth stop and go waves in a single lane ring-road, with a reduction of fuel con-
sumption of up to 40%. However, when the traffic is multi-lane, the problem becomes
more difficult for several reasons:

– The lane-changes add complexity to the dynamics of the system and impacts the
stability of the stop and go waves, potentially making them harder to smooth.

– The AV only belongs to one lane but can dissipate and prevent waves on all
three lanes. Hence, on two lanes, the lane-changes are represented by the coupling
between waves.

– The model is very sensitive to errors from the parameters, as shown in the previous
section, and these errors could lead to simulations that are far from the ground
truth.



Will be inserted by the editor 9

The controller we use in our setting is a proportional controller where the ideal
command is given as follows:

u(t) = −k (v1 − vtarget) ,

vtarget = v∗
(
nj + lv
Lj

)
,

(5)

where lv is the average length of a car, k is a constant design parameter, Lj is the
length of lane j and nj is the total number of cars in the j-th lane. Recall that v∗(h)
is the steady-state speed of the system corresponding to the steady-state headway h.
vtarget is the speed of the uniform flow steady-state we would like to reach. This ideal
command does not take into account to prevent the AV from crashing into another
car. To tackle this, one could add a safety mechanism where the AV would brake if
it is too close to its leader. However, even with a safety mechanism, the AV can still
get stuck in stop and go waves. This is because vtarget would be too high compared to
the current velocity of the cars in front of the AV. The AV would then try to increase
its speed until it is too close to the vehicle in front, then it would brake, and then
increase its speed again, thus maintaining a stop and go wave. Due to this, we add
the following features to our control:

– (quasi-stationary steady-state strategy) As mentioned, we are trying to make the
AV not get stuck in a stop and go wave as it tries to reach an ideal steady-state
speed that is higher than the speed of its leader. To deal with this, we start by
stabilizing a smaller speed, and then we slowly raise the stabilizing speed to the
ideal steady state speed. In control literature, this is referred to as following a
continuous path of a steady-state. This is only possible because adding the AV
allows the number of possible steady-states to go from a single steady-state to a
continuous range. In mathematical terms, the control law becomes

u(t) = −k(vN+1 − v̄d(t)), (6)

where vd is given byvd(t) =vmin + (v̄ − vmin)
t

ttr
, for t ∈ [0, ttr],

vd(t) =v̄∗(h∗),
(7)

ttr is the time of transition and v∗(h∗) is the ideal steady-state speed.

– (safety mechanism) When the AV starts to get close to its leading vehicle we
change the target speed to the speed of the leading vehicle for safety.

a) Lateral controller
In a multilane framework, another interesting means of control for the AV is having
the ability to change lanes, and this is referred to as a lateral controller. Given the
results from [10], traffic can be stabilized with one AV per lane in the case that the
AVs cannot change lanes. However, if AVs can change lanes and have good lateral
controllers, then traffic can be stabilized in multilane ring-roads with potentially even
a single AV. Our lateral controller is the following: the AV changes lane if and only if

– the safety conditions (3) are satisfied (just like for a regular vehicle).
– the speed variance in another lane averaged on the last t1 seconds, is higher than

the speed variance in the AV’s lane, also averaged on the last t1 seconds. This
difference has to be larger than a threshold (noted c1 in Table 1).
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Parameter Value Description

N 24 number of vehicles per lane
J 3 number of lanes
lv 4.5 length of a car [m]
d0 2.5 minimal distance for optimal velocity model
β 20 weight FTL
α 0.5 weight OV
dt 0.02 timestep size for the simulation
tf 1000 final time of the simulation [s]

max-dec 4 maximum deceleration [m·s−2]

max-acc 2.5 maximum acceleration [m·s−2]
iter-lc 50 iteration for lane changing, dependent on dt
τ 5 cool down duration after lane change [s]
k 1 constant in control law AV
c1 0.5 speed variance threshold for AV changing lane
d1 10 time to average speed variance for AV changing lane [s]
d2 10 AV cool down duration after lane change [s]

Table 1. Parameters used for the simulations

– the AV has not been changing lanes in the last t2 seconds.

We denote the AV’s lane by j0, and the last time the AV changed lane as t0 (t0 = 0
if the AV never changed lane). From this, we have

– t > t1 and there exists j ∈ {1, ..., 3} \ {j0} such that

∫ t

t−t1

1

N

n∑
i=1

(vji )
2(s)− 1

N2

(
n∑
i=1

vji (s)

)2

ds

> c1 +

∫ t

t−t1

1

N

n∑
i=1

(vj0i )2(s)− 1

N2

(
n∑
i=1

vj0i (s)

)2

ds.

(8)

– t > t2 + t0.
– the safety condition (3) is satisfied with i = i0 and j = j0.

The main difference between the regular vehicles and the AV is that the incentive for
the AV is to go in the lane with the highest speed variance. This is different to an in-
centive that is based on acceleration. Averaging and threshold values are included to
account for the stochastic nature of the measurements, and to avoid the AV changing
lanes constantly, which could destabilize the system.

b) Results
In this section we show that, similar simple controllers not only manage to smooth
stop and go waves in a multi-lane setting, but also hold a large range of parameters
∆I and ∆s. We run two batches of simulations with a fixed initial condition and
different parameters of ∆I and ∆s. The first batch in the experiment is similar to the
previous section in that there are no AVs. In the second batch of the experiment, we
turn an AV on. The AV is initially in the middle lane. In Figure 4, for simulations with
and without the AV respectively, we represent the speed variance averaged over time
and the three lanes, for each pair of parameters ∆I and ∆s. We can see that the two
figures very roughly follows the same trend, but the speed variance when adding the
AV is four times smaller. Note that the reduction of speed variance and dissipation
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of waves is effective over all the range of parameters ∆I and ∆s. Moreover, there is
a single AV in this simulation, therefore the penetration rate (fraction of AV in the
total traffic) is below 2%. To illustrate what is going on, we represent in Figure 5 the
speed variance over time in all three lanes, where ∆I = 3 m·s−2 and ∆s = 0.5 m·s−2,
both with and without a controller. As expected, we see that the AV is stabilizing
mostly one lane that reaches uniform flow, but despite the very weak coupling of the
lanes (due to the very small number of lane changes), it is still enough to roughly
dissipate the waves that form in the other lanes. On the other hand, when there is
no AV, the speed variance remains high. Note that the y-axis in the figure with the
control only goes to 4.5 m·s−1 while the axis of the figure without the control goes
to 9 m·s−1.

Fig. 4. Speed variance for different safety and incentive thresholds. Left: without control,
Right: with control.

Fig. 5. Speed variance over time for different threshold parameters. Left: without control,
Right: with control.
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4 Collaborative driving

Collaborative driving (CD), also combined with autonomy [11,45], is an important
emerging aspect of Intelligent Transportation Systems (ITS). CD promises to highly
impact traffic inefficiencies, including dissipation of stop-and-go waves. CD is often
times based on communication with various possible approaches proposed in the lit-
erature [19,23,29,30,33,35], and needs to take into account human behavior [24,41].

Here, we take the simple approach of assuming that a fraction of the human drivers
is instructed to target specific preferred speed while keeping a smooth and safe driving.
This represents an offline centralized control mechanism, with decentralized human
actuators. The target speed may be communicated daily or four times of day. More
precisely, denoting S the number of vehicles in collaborative driving and I the rest of
the vehicles in the lane, we have

ẋi = vi, i = 1, . . . , n,

v̇i = αi(V (xi+1 − xi)− vi) + βi
vi+1 − vi

(xi+1 − xi − lv)2
,

(9)

where n is the number of vehicles, αi = α and βi = β if i ∈ I, αi = αS and βi = βS if
i ∈ S, with α and β such that (2) holds and αS and βS satisfy the opposite inequality

α

2
+
L2β

(n)2
> V ′

(n
L

)
. (10)

We present here numerical simulations suggesting that such a collaborative behavior
allows to recover some stability of the flow and decreases speed variance and car ac-
celerations, and hence energy consumption.

In Figure 6 we present simulations where the proportion of cars p varies from
no collaborative behavior to 100% of drivers following this collaborating behavior.
As expected, when p = 0 (no collaborative behavior) the system has a large speed
variance, while when p = 1 the system is stable and hence the speed variance is close
to 0. However, what is interesting to see is that as soon as p > 0, that is to say
as soon as some vehicles starts to have a collaborative behavior, the global speed
variance of the system diminishes. In Figure 6 we ran simulations on a single lane
ring-road of 258m with 25 cars during 1000s an starting close to the steady-state
equilibrium with random initial conditions. Among the 25 cars the number of cars
with a collaborative behavior was 25 (p = 1), 12 (p = 0.48), then 8 (p = 0.32), 6
(p = 0.24), 5 (p = 0.20), 4 (p = 0.16), 3 (p = 0.12), 2 (p = 0.08), 1 (p=0.04), 0
(p = 0). For each of these proportions we ran 40 simulations for which we computed
the instantaneous spatial speed variance between cars averaged over the last 100s
of the simulation, and then averaged it over the 40 simulations. This observation
is an incentive to look more in details at collaborating behaviors. For instance, in
these simulations the cars with collaborative behaviors are as evenly distributed in
the traffic, and it would be interesting to see if there is any difference when they are
clustered.
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Fig. 6. Speed variance with respect to proportion of cars with a collaborative behavior

5 Going further and mean-field models

In this subsection, we go further and talk about the mean-field models on vehicular
traffic.

Microscopic models describe the details of the traffic flow by studying each indi-
vidual vehicle’s microscopic properties like its position and velocity. The trajectories
of the vehicles are predicted by means of ordinary differential equations (ODEs).
Macroscopic models, assume a sufficiently large number of vehicles on the road and
treats vehicular traffic as fluid flow. In particular, the evolution of the traffic density
µ is governed by partial differential equations (PDEs). Thus, by capturing and pre-
dicting the main phenomenology of microscopic dynamics, macroscopic models can
provide an overall and statistical view of traffic. One can also use a coupled ODE-
PDE system to model the dynamics of a small number of AVs and a large number of
regular vehicles on a single lane. This is clearly a combination of the microscopic and
macroscopic models using multiple scales together.

The relationship between the two different scale models, microscopic and macro-
scopic models, can be both formally and rigorously established via mean-field ap-
proach by taking the number of vehicles N to go to infinity. Let (xi, vi) be the
position-velocity vector of the i-th vehicle and µ be the density distribution of in-
finitely many vehicles in the space of position and velocity. The dynamics of the
finitely many vehicles can be described by{

ẋi = vi,

v̇i = H ∗ µN (xi, vi), i = 1, . . . , N,
(11)
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where H : R × R+ 7→ R is a convolutional kernel and µN (t) = 1
N

N∑
i=1

δ(xi(t),vi(t)) is a

probability measure. The dynamics of the infinitely many vehicles can be described
by

∂tµ+ v · ∇xµ = ∇v · [(H ∗ µ)µ]. (12)

Furthermore, one can rigorously derive the mean-field limit of the finite-dimensional
ODE system (11), and the infinite dimensional mean-field limit (12) (a Vlasov-Poisson
type PDE), see [14]. We also want to point out that the above mean-field approach is
different with the so called ”mean-field games” approach. For the mean-field games
approach, one assumes many agents with perfect knowledge of the system and gives
a strategy to solve a game, then passes it to the limit as in the mean-field approach.

For the multi-lane and multi-class traffic that includes AVs and regular vehicles,
one can only consider a mean-field limit for the dynamics of the regular vehicles
compared to the finitely many AVs governed by control dynamics. The lane changing
maneuvers of the infinitely many regular vehicles lead to a source term of the Vlasov-
Poisson type PDE. The limit process from a finite-dimensional controlled ODE system
to an infinite-dimensional controlled coupled ODE-PDE system can be established in
generalized Wasserstein distance. Additionally, one can also consider optimal control
problems associated to the controlled ODE and coupled ODE-PDE systems where
the cost functions represent, for instance, fuel consumption. Moreover, we have the
following theorem, see [14].

Theorem 51 The optimal solution to the optimal control problem of the ODE system
converges to the optimal solution of the optimal control problem of the coupled ODE-
PDE system as the number of regular vehicles N goes to infinity.

Note that Theorem 51 implies that one can design controls in the microscopic level
and be able to pass the limit to get the control in the mean-field limit level.

6 Conclusion

In this paper, we presented a hybrid multi-lane micro-model for traffic flow in a
ring-road. This model exhibits stop and go waves, and we show that the safety and
inventive thresholds in lane changing conditions highly impact the behavior of the
system. We use a single AV as a means of control for dissipating stop and go waves,
and we show that even simple controllers can be very efficient in reducing traffic,
whatever the thresholds of the lane changing conditions. Additionally, this can be
shown to be a very good basis to derive a controller for mean-field models, when we
consider a mean-field limit for the dynamics of infinitely many regular vehicles and
control dynamics for finitely many AVs.
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