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Abstract. This contribution analyzes the widely used and well-known “intelligent driver model” (briefly IDM),
which is a second order car-following model governed by a system of ordinary differential equations.
Although this model was intensively studied in recent years for properly capturing traffic phenomena
and driver braking behavior, a rigorous study of the well-posedness has, to our knowledge, never
been performed. First it is shown that, for a specific class of initial data, the vehicles’ velocities be-
come negative or even diverge to −∞ in finite time, both undesirable properties for a car-following
model. Various modifications of the IDM are then proposed in order to avoid such ill-posedness. The
theoretical remediation of the model, rather than post facto by ad-hoc modification of code imple-
mentations, allows a more sound numerical implementation and preservation of the model features.
Indeed, to avoid inconsistencies and ensure dynamics close to the one of the original model, one
may need to inspect and clean large input data, which may result in practically impossible scenarios
for large-scale simulations. Although well-posedness issues might only occur for specific initial data,
this may happen frequently when different traffic scenarios are analyzed, and especially in presence
of lane-changing, on ramps and other network components as it is the case for most commonly used
micro-simulators. On the other side, it is shown that well-posedness can be guaranteed by straight-
forward improvements, such as those obtained by slightly changing the acceleration to prevent the
velocity from becoming negative.
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1. Introduction. The field of car following modeling historically goes back to the early
1950s’ (and probably before) [7, 12]. Most of the early work in this field focused on establishing
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the model equations, without paying much attention to the mathematical framework required
to characterize solutions to the resulting ordinary differential equations (ODEs) describing
the motion of the vehicles. The models are mainly classified into acceleration models for
longitudinal movement, lane-changing models for lateral movement and decisional models for
discrete-choice situations. Among all the car-following models introduced so far ([3, 5, 6,
25, 26] to just name a few) it is worth mentioning the Gazis-Herman-Rothery (GHR) model
[7] which determines the relative velocity between two-lane based vehicles, the Safe Distance
Model [13], the Optimal Velocity Model [4] in which the acceleration of the single vehicle is
controlled according to the velocity of the leading vehicle, and the Intelligent Driver Model
(IDM) which is subject of analysis in the present work. For a comprehensive overview of the
main car-following models we refer to [31, 22, 17].

The IDM has been introduced in [30] and is a deterministic time-continuous model describ-
ing the dynamics of the positions and velocities of every vehicle. Similarly to any car-following
model, the idea behind it is that drivers control their vehicles to react to the stimulus from
preceding vehicles. It aims to balance two different aspects, the necessity to keep safe separa-
tion with the vehicle in front and the desire to achieve “free flow” speed. This model presents
some peculiarities which made it subject of intense research in the last two decades. Indeed,
it is constructed to be collision-free, all the parameters can be interpreted and empirically
measured, the stability of the model can be calibrated to empirical data, and there exists an
equivalent macroscopic counterpart [15]. In literature we find many extensions of the origi-
nal IDM, each of which seeks to incorporate new realistic features. The Enhanced IDM [18]
presents an improved heuristic of the IDM useful for multi-lane simulations, which prevents
the model from “over-reactions” even when the driver of the leading vehicle suddenly brakes
with the maximum possible deceleration.

The Foresighted Driver Model (FDM) starts from the IDM and assumes that a driver acts
in a way that balances predictive risk (due to possible collisions along his route) with utility
(time required to travel, smoothness of the ride) [10].

Other extensions of the IDM aim to improve the driver safety and to respect the vehicle
capability [27], to strengthen the power of each vehicle in proportion to the immediately
preceding vehicle [19], and to incorporate the spatially varying velocity profile to account the
variation in different types of maneuvers through intersection [20]. Another natural extension
is given by Multi-anticipative IDM [33] which models the reaction of a driver to several vehicles
ahead just by summing up the corresponding vehicle-vehicle pair interactions with the same
weight coefficients.

More recently, stochastic versions of the IDM have been introduced: to describe a proba-
bilistic motion prediction applicable for long term trajectory planning [16], to study mecha-
nisms behind traffic flow instabilities, indifference regions of finite human perception thresh-
olds and external noise [32], and to incorporate context-dependent upper and lower bounds
on acceleration [29, 28].

Throughout the decades, most of the engineering community worked on improving the
ability of the models to capture specific behavioral phenomena, at the expense of the charac-
terization of the solutions. Thus, to this day, only a few articles use models, and corresponding
solutions, that are well characterized in terms of existence, uniqueness, and regularity. An
example of this practice is provided by the double integrator ẍ(t) = u ∈ U , where U is the

2



input set, used abundantly as a canonical example in numerous control articles. On the other
hand, when models have inherent flaws leading to unbounded or undefined solutions, as in the
case of unbounded acceleration, ad hoc methods have been traditionally applied post facto by
engineering the numerical implementations. For instance, in commonly used microsimulation
tools, such as SUMO [21], Aimsun [2] and others, unbounded quantities are clipped, leading to
“acceptable” numerical solutions. However, in the process, the fidelity to the original model is
compromised, and the numerical simulations may not represent any instantiation of the model.
Consequently, the properties of the considered continuous model might be lost as well. Finally,
the process of clipping can introduce additional issues, not necessarily present in the original
model, and prevent the definition of any theoretical models corresponding to the obtained
numerical simulations. The present article thus attempts to provide a full pipeline in which
the model is first mathematically well defined (including existence, uniqueness and regularity
characterization of the solutions), and then numerically implemented using appropriate nu-
merical differentiation schemes. The final achievement is a thorough correspondence between
theory and implementation. The well-posedness of car-following models is also fundamental
to model the traffic flow from the mean-field perspective, see [11, 14].

1.1. The aim of this contribution. The introduced IDM has two mathematical and mod-
elling drawbacks:

• The velocities of specific vehicles might become negative at specific times, which might
not be desirable from a modelling point of view.
• The velocities of specific vehicles might diverge to −∞ in finite time, so that the

solution of the system of ODE’s ceases to exist.
We will discuss these drawbacks and determine under which conditions on the initial datum
and parameters they can happen. We will present several improvements so that the solutions
exist on every finite time horizon.

1.2. Structure of this article. The paper is organized in the following way. In Section 2
we review the classical Intelligent Driver Model (IDM) and describe briefly the physical mean-
ing of the parameters involved. Well-posedness of the IDM for small time horizon is stated
in Theorem 2.7. In Section 3 we analyze peculiar and possibly pathological behaviors of
the model. Specifically, we provide explicit settings in which it produces negative velocities
(Example 3.1), negative velocities and blow-up of the solution in finite time (Example 3.2,
Example 3.4). Section 4 collects some of the main results of this work. Existence and unique-
ness of a solution for small times with lower bound on the distance which can be interpreted
as “collision free.” Section 5 is devoted to the exploration, analysis and comparison of adjust-
ments to the classic IDM in order to avoid the problems mentioned in Section 3 for general
initial data. To this end, we introduce modified versions of the IDM for which well-posedness
is proved: the projected IDM, the acceleration projected IDM, and the velocity regularized
acceleration IDM defined respectively in Definition 5.2, Definition 5.6, Definition 5.10. A
further and more drastic adjustment to the classic model is proposed in Definition 5.14 which
involves a discontinuous acceleration, and therefore is denoted as discontinuous improvement.
In Section 6 we present some well-posedness results for the many vehicle case (based on the
previous analysis in Section 5, and finally, in Section 7 we draw conclusions from our work
and mention possible research directions opened by this contribution.
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2. The intelligent driver model (IDM): Definitions and basic results. In this section we
introduce the intelligent driver model (IDM) as the following system of ordinary differential
equations. To this end, we require to define the acceleration function as follows:

Definition 2.1 (The IDM acceleration). Let T ∈ R>0 be fixed. For a parameter set
(a, b, vfree, τ, s0, l, δ) ∈ R3

>0 × (0, T ) × R2
>0 × R>1 we define the following IDM car-following

acceleration on the set

A := {(x, v, x`, v`) ∈ R4 : x` − x− l > 0},

Acc :

A → R

(x, v, x`, v`) 7→ a

(
1−

( |v|
vfree

)δ − (2
√
ab(s0+vτ)+v(v−v`)
2
√
ab(x`−x−l)

)2)
.

Remark 2.2 (Absolute values in the IDM Acceleration). It is worth mentioning that in most
literature the parameter δ is not precisely specified except that it is assumed to be positive.
However, as we will show, velocities can become negative, and this is why we assumed that
the acceleration term in Definition 2.1 involves the absolute value of the velocity so that

(2.1)
( |v|
vfree

)δ
is well defined for all v ∈ R and δ ∈ R>0. Obviously, this is only one choice, and it might be
more reasonable to replace it by

(2.2) sgn(v)
( |v|
vfree

)δ
so that this term contributes positive to the acceleration for negative velocities and indeed
counteracts a negative velocity. For δ ∈ 2N≥1 +1 (2.2) can actually be replaced by the version
without the absolute value and the same is true for δ ∈ 2N≥1 with the drawback that this part
of the acceleration will always remain negative as we also assume for now in Definition 2.1.

An analysis similar to the one in this paper can then be carried out with mentioning that
although in this case the solution’s velocity can diverge to −∞.

As we will require for the leader a specific acceleration, the “free-flow acceleration,” we define
as follows

Definition 2.3 (Free flow acceleration). For (a, vfree, δ) ∈ R2
>0 × R>1 the free flow accel-

eration is defined by

Accfront :

{
R2 → R
(x, v) 7→ a

(
1−

( |v|
vfree

)δ)
.

Having defined the acceleration function, we are ready to present Definition 2.4:

Definition 2.4 (The IDM). Given Definition 2.1, we call the following system of ordinary
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Figure 1. For t ∈ [0, T ] the leader x`(t) with its dynamics determined by the acceleration ulead(t) and the
follower x(t) with its dynamics governed by the classical IDM (acceleration Acc as in Definition 2.1). The
overall dynamics is stated in Definition 2.4. The follower approaches the leader. Will they collide?

differential equations in position x = (x`, x) : [0, T ]→ R2 and velocity v = (v`, v) : [0, T ]→ R2

(2.3)

ẋ`(t) = v`(t), t ∈ [0, T ],

v̇`(t) = ulead(t), t ∈ [0, T ],

ẋ(t) = v(t), t ∈ [0, T ],

v̇(t) = Acc(x(t), v(t), x`(t), v`(t)), t ∈ [0, T ],

(x`(0), x(0)) = (x`,0, x0),

(v`(0), v(0)) = (v`,0, v0),

with leading dynamics ulead : [0, T ]→ R the car-following IDM. (x0, x`,0, v0, v`,0) ∈ R2 ×R2
≥0

are initial positions and velocities.

This is schematically illustrated in Figure 1. We give a short overview of some of the meanings
of the parameters in the IDM.

Remark 2.5 (Meaning of the previously introduced parameters). The parameters a, b, vfree,
τ , s0, l and δ, introduced in Definition 2.1, are model parameters which have – according to
[30] – the following meaning:
acceleration a: the maximum vehicle acceleration;
comfortable braking deceleration b: a positive number;
desired velocity vfree: the velocity the vehicle would drive at in free traffic;
desired time headway τ : the minimum possible time to the vehicle in front;
minimum spacing s0: a minimum desired net distance;
the length of the vehicle l;
the acceleration exponent δ: Specifying how the acceleration decreases when approaching
the desired velocity vfree.
Table 1 shows some suggested values for the parameters already identified in [30].

For the system to be physically reasonable we require some additional assumptions on the
order of the initial position and other parameters for the acceleration functions. This is made
precise in the following Assumption 2.6.

Assumption 2.6 (Assumptions on input datum and more). We assume that

Leading velocity: ulead ∈ Ulead :=
{
u ∈ L∞((0, T )) : v`,0 +

∫ t
0 u(s) ds ≥ 0 ∀t ∈ [0, T ]

}
.

Input parameters for Acc: (a, b, vfree, τ, s0, l, δ) ∈ R3
>0 × (0, T )× R2

>0 × R>1.
Physical relevant initial datum: (x0, x`,0, v0, v`,0) ∈ R2 × R2

≥0 : x0 < x`,0 − l.
5



Table 1
According to [30] typical and physical meaningful variables for the IDM

Parameters Variable Suggested value

Maximum acceleration a 0.73 m/s2

Desired deceleration b 1.67 m/s2

Desired velocity vfree 120 km/h
Desired time headway τ 1.6 s
Minimum spacing s0 2 m
Length of the vehicle l 5 m
Acceleration exponent δ 4

The previous assumption on the involved datum enables it to prove the well-posedness on a
significantly small time horizon, i.e., that there exists a solution on the time horizon and that
this solution is unique:

Theorem 2.7 (Well-posedness of sufficiently small time horizon). Given N ∈ N≥0 and As-
sumption 2.6, there exists a small enough time T ∗ ∈ R>0 so that the IDM in Definition 2.4
admits a unique solution (x, x`) ∈W 2,∞([0, T ∗])2.

Proof. The right hand side of Definition 2.4 is around the initial datum in Assumption 2.6
locally Lipschitz-continuous. The existence and uniqueness on a small time horizon then
follows by the Picard-Lindelöf Theorem ([8, Chapter 4] or [9, Thm 1.3]).

3. Counterexamples. Given Theorem 2.7, the next natural questions consist of whether
the solution on the small time horizon can be extended to any finite time horizon and whether
the model remains reasonable. As it turns out, neither points hold if we do not restrict
our initial datum beyond Assumption 2.6. Of course, such unreasonable behavior appears
with specific initial datum, however this may in fact happen frequently when different traffic
scenarios are analyzed. Especially, such initial datum could happen in the presence of lane-
changing, on ramps and other network components as it is the case for most commonly used
micro-simulators. We present the shortcomings in the following.

3.1. Negative velocity. In this subsection, we show that the IDM can develop negative
velocities for the following vehicle, although the leading vehicle might drive with positive
speed. The reason for this is that if the following vehicle is too close to the leading vehicle,
it needs to slow down. Assume now that it actually has already zero velocity, it will need to
move backwards to make it to the “safety” distance s0 it aims for.

Example 3.1 (Negative velocity). Assume that x0 = x`,0 − l − ε for ε ∈ R>0 yet to be
determined and v0 = 0. Then, we compute the change of velocity for the following vehicle
and have for t ∈ [0, T ] according to Definition 2.4

v̇(t) = a

(
1−

( |v(t)|
vfree

)δ − (2
√
ab(s0+v(t)τ)+v(t)(v(t)−v`(t))

2
√
ab(x`(t)−x(t)−l)

)2)
.
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Figure 2. The IDM with parameters a = 1, b = 2, vfree = 1, τ = 1.6, l = 4, s0 = 2, d = 4 and datum
x0 = 0, x`,0 = l + 1.5 < l + s0, v0 = 0, v`,0 = 0. Left: vehicles’ positions, middle: vehicles’ velocities and
right: followers acceleration. The leader follows the free flow acceleration profile as in Definition 2.3. As the
initial distance between the two vehicles is smaller than s0, the following vehicle moves backwards to increase
the space.
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Figure 3. Continuation of Figure 2: The IDM with parameters a = 1, b = 2, vfree = 1, τ = 1.6, l =
4, s0 = 2, d = 4 and datum x0 = 0, x`,0 = l + 2 = l + s0, v0 = 0, v`,0 = 0. The leader follows the free
flow acceleration as in Definition 2.3. The initial distance between the two vehicles is large enough so that the
following vehicle does not attain negative velocity.

Plugging in t = 0 leads to

v̇(0) = a

(
1−

(
2
√
abs0

2
√
abε

)2)
= a

(
1−

(
s0
ε

)2)
.

Thus, whenever ε < s0, the following vehicle has – at least for small time horizon – a negative
speed, although the leading vehicle drives with arbitrary speed v` ∈ R. This is also detailed
in the following Figure 2 and in Figure 3 it is demonstrated that for larger spacing this does
not occur.

A more reasonable approach for avoiding this type of behavior is that the following car
just waits until the leading car has moved farther away. This can be achieved by adjusting
the model accordingly as done in Section 5.

3.2. Velocity exploding in finite time. In this subsection, we show that the solution can
cease to exist in finite time. We first present an example, with fixed parameters, to explain
the reasons behind this phenomenon. Then, we generalize the example and illustrate how this
phenomenon may occur for parameters in a whole region of the space.
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Example 3.2 (Negative velocity and a blow-up of the solution in finite time). Assume the
constants and initial data are as in Example 3.1, with 0 < ε < 1 and non-negative initial
velocity of the leading vehicle v`,0 ≥ 0. The leading vehicle’s position is given by

x`(t) = x`,0 + v`,0t+ u
2 t

2,

and the leading vehicle’s velocity by

v`(t) = v`,0 + ut.

Plugging this into the equations for the follower, we obtain the following system of ODEs

ẋ(t) = v(t)

v̇(t) = a

(
1−

(
|v(t)|
vfree

)δ
−
(
2
√
ab(s0+v(t)τ)+v(t)(v(t)−v`(t))

2
√
ab·(x`(t)−x`,0+ε−

∫ t
0 v(s) ds)

)2)
x(0) = x`,0 − l − ε
v(0) = 0.

Now we fix vfree = 1 = a, s0 = 16, b = 1
4a , τ = 8, v`,0 = 0, u = 0, δ = 4 and x`,0 = 0, which

gives

ẋ(t) = v(t)

v̇(t) = 1−
(
v(t)

)4 − ( (4+v(t))2

ε−
∫ t
0 v(s) ds

)2
.

We now show that there exists t̄ such that v(t̄) < −1. Assume, by contradiction, that
v(t) ≥ −1 on t ∈ [0, 1], then since ε < 1 for t ∈ [0, 1] we get

(3.1) v̇(t) ≤ 1−
(

(4+v(t))2

ε−
∫ t
0 v(s) ds

)2
≤ 1−

(
4
ε+1

)2 ≤ 1−
(
2
)2

= −3,

and by integration and by the previous assumption we have

−1 ≤ v0 +

∫ t

0
v̇(s) ds ≤ v0 − 3t

and therefore – plugging in for instance t = 1

−1 ≤
∫ 1

0
v̇(s) ds ≤ −3,

a contradiction.
Blow-up of the solution in finite time. Let t∗ ∈ (0, T ] denote the first time such that

v(t∗) < −1. Then, recalling the semi-group property of ODEs, we can consider the initial
value problem in ṽ : [t∗, T ]→ R

ṽ(t∗) = v(t∗) < −1

8
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Figure 4. Same parameters as in Figure 2, but x`,0 = l + 1 < l + s0. Left: Positions of the vehicles;
Middle: Velocities of the vehicles, Right: Acceleration of the follower. Velocity of the follower diverging to
−∞ around t ≈ 1.06. The solution ceases to exist for larger t.

˙̃v(t) = 1−
(
ṽ(t)

)4 − ( (4+ṽ(t))2

ε−
∫ t
0 ṽ(s) ds

)2
t ∈ [t∗, T ].

Estimating ˙̃v, we have

˙̃v(t) ≤ 1−
(
ṽ(t)

)4 ∀t ∈ [t∗, T ].

As the initial value ṽ(t∗) < −1 we obtain that ṽ is monotonically decreasing and we can thus
estimate

˙̃v(t) ≤ 1−
(
ṽ(t)

)2 ∀t ∈ [t∗, T ]

which can be solved explicitly to obtain

ṽ(t) ≤ v(t∗) exp(2t)+v(t∗)+exp(2t)−1
exp(2t)+1+v(t∗)(exp(2t)−1) .

However, the right hand side goes to −∞ when t→ 1
2 ln

(
−1+v(t∗)
1+v(t∗)

)
and thus, also the solution

for v ceases to exist for t ≥ t∗ + 1
2 ln

(
−1−v(t∗)
1+v(t∗)

)
. This is illustrated in Figure 4.

In this example, we chose very specific parameters for convenience. However, the same
behavior and divergence of the speed to −∞ in finite time can be shown for a rather general
range of parameters. This is presented in Example 3.4. To prove this, we start by showing
the following Lemma.

Lemma 3.3 (Sufficiently negative velocity in small time). Assume that the initial velocity of
the following vehicle v0 = 0, the initial velocity of the leading vehicle v`,0 > 0, and the initial
positions of the two vehicles are separated by l+ε for some ε ∈ (0, s0), i.e., x`,0−x0−l = ε < s0.
Choose parameters s0, τ and vfree such that − s0

1.01τ < −vfree, let δ > 1 and let vmax > 0 be an
upper bound for the vehicles’ velocities. Then there exists t∗∗ ∈ [0, T ], such that v(t∗∗) < −vfree.

Proof. We consider two different cases:
• If there exists t∗ ∈ [0, T ], such that v(t∗) < −vfree, then we chose t∗∗ = t∗.
• Otherwise, we assume that for every t ∈ [0, T ], v(t) ≥ −vfree which implies that v(t) > − s0

1.01τ ,
i.e.,

(3.2) s0 + v(t)τ > s0
101 > 0.
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By the definition of vmax and vfree, we have for every t ∈ [0, T ], v`(t) − v(t) ≤ vmax + vfree.
Furthermore, since v`(t) > 0 and v(t) < 0, we have v(t)(v(t)− v`(t)) > 0. Then one can find
an upper bound for the distance between the two vehicles. That is, for every t ∈ [0, T ],

(3.3) x`(t)− x(t)− l ≤ ε+ (vmax + vfree)t.

Therefore, for every t ∈ [0, T ],

v̇(t) = a

(
1−

( |v(t)|
vfree

)δ − (2
√
ab(s0+v(t)τ)+v(t)(v(t)−v`(t))

2
√
ab(x`(t)−x(t)−l)

)2)
(3.4)

≤ a
(

1−
(
2
√
ab(s0+v(t)τ)+v(t)(v(t)−v`(t))

2
√
ab(x`(t)−x(t)−l)

)2)
(3.5)

≤ a
(

1−
(

s0+v(t)τ
x`(t)−x(t)−l

)2)
(3.6)

≤ a
(

1−
(

s0+v(t)τ
ε+(vmax+vfree)t

)2)
(3.7)

≤ a
(

1−
( s0

101
ε+(vmax+vfree)t

)2)
.

Note that inequality (3.5) is true since |v(t)|vfree
is non-negative, inequality (3.6) is due to the

fact that for every t ∈ [0, T ], v(t)(v(t) − v`(t)) > 0, inequality (3.7) is because of the upper
bounded for the distance between the two vehicles given by inequality (3.3), and inequality
(2) is due to inequality (3.2).

Hence, for every t ∈ [0, T ],

v(t) ≤ a
∫ t

0

(
1−

( s0
101

ε+(vmax+vfree)s

)2)
ds

= a

(
t+

s20
1012(vmax+vfree)

(
1

ε+(vmax+vfree)t
− 1

ε

))
= at

(
1− s20

1012
1

ε(ε+(vmax+vfree)t)

)
.

Setting t = ε, we have,

v(ε) ≤ aε
(

1− s20
1012

1
ε(ε+(vmax+vfree)ε)

)
= a

1012ε(ε+(vmax+vfree)ε)−s20
1012(ε+(vmax+vfree)ε)

→ −∞ as ε→ 0.

Note that the upper bound for the velocity at time t = ε goes to negative infinity as ε goes
to zero. Therefore, for ε > 0 small enough, we have,

v(ε) ≤ −vfree.

Hence, there exists t∗∗ = ε ∈ [0, T ], such that v(t∗∗) < −vfree.
The previous Lemma guarantees that for properly chosen initial datum and velocity the fol-
lower’s velocity can become more negative than −v0, the negative free-flow velocity. This
enables us to prove that the solution ceases to exist in finite time. This result is related to
the famous example of a blow-up of solutions to the Riccati ODEs for specific initial datum
in finite time:
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Example 3.4 (Negative velocity and a blow-“down” of the velocity in finite time). Again,
we assume the parameters and initial data as in Lemma 3.3. Then by Lemma 3.3, there
exists t∗∗ ∈ [0, T ], such that v(t∗∗) < −vfree. Recall that δ > 1. For any time t such that
v(t) < −vfree,

v̇(t) ≤ a
(

1−
( |v(t)|
vfree

)δ)
< 0

Thus v is strictly decreasing on the time interval [t∗∗, T ]. In addition, we are going to show
that v ceases to exist in finite time and that there exists t1 > 0 such that lim

t→t1
v(t) = −∞.

Assume by contradiction that this is not the case. Then as v(T ) < −v0 the solution remains
strictly decreasing as long as it exists and as it does not reach −∞ in finite time it can be
extended on [0,+∞) and is strictly decreasing on [T,+∞). Therefore we have the following

(3.8)

∫ t

T

v̇(s)

1−
(
|v(s)|
vfree

)δ ds ≥ a(t− T ), ∀t ∈ [T,+∞).

As v is strictly decreasing we can perform a change of variable in the integral by setting
y = −v(s) to get

(3.9)

∫ −v(t)
−v(T )

1(
y

vfree

)δ
−1

dy ≥ a(t− T ), ∀t ∈ [T,∞).

Note that −v(T ) > v0. We denote η := −v(T )− vfree > 0, (3.9) implies

(3.10)

∫ +∞

vfree+η

1(
y

vfree

)δ
−1

dy ≥ a(t− T ), ∀t ∈ [T,∞).

Letting t→ +∞ this implies that

(3.11)

∫ +∞

vfree+η

1(
y

vfree

)δ
−1

dy =∞,

but because δ > 1 we have
∫ +∞
vfree+η

1(
y

vfree

)δ
−1

dy ∈ R, which gives a contradiction. Therefore,

v ceases to exist and diverges to −∞ in finite time.

As we have seen from the previous Example 3.4 the velocity can blow-up in finite time.
However, what is not clear is whether the position of the car can consequently also explode.
Thanks to the relation between position and velocity, i.e., x′(t) = v(t), t ∈ [0, T ] this is a
matter of whether v ∈ L1((0, t∗)) if t∗ is the time where the velocity goes to −∞. And indeed,
it can be shown that this holds true and the position remains bounded:

Corollary 3.5 (Boundedness of the position in the case of a blow-up of velocity). Let Assump-
tion 2.6, δ ∈ R>2 and assume that – as investigated in Example 3.4 – there exists a time
horizon t∗ ∈ R>0 so that

lim
t↗t∗

v(t) = lim
t↗t∗

ẋ(t) = −∞.

11



Then, the position at the time of the blow-up remains finite, i.e.

∃c ∈ R : lim
t↗t∗

x(t) = c

or equivalently stated
v ∈ L1((0, t∗)).

Proof. The proof consists of showing that the L1 mass of the velocity remains bounded.
To this end, we estimate the acceleration from above. Choose t1 ∈ [0, t∗] so that(

v(s)2 − v(s)v`(s) + 2
√
ab
(
s0 + v(s)τ

))2
> 0 ∧ v(s) ≤ −max

{
2vfree, 1

}
∀s ∈ [t1, t

∗).

Such a t1 always exists as v diverges to −∞ so that for s close enough to t∗ the quadratic
term in the previous estimate will always outnumber the affine linear term and v` is essentially
bounded. Then, recalling Definition 2.1 of the IDM we have for s ∈ [t1, t

∗)

v̇(t) ≤ −a
2

(
|v(t)|
vfree

)δ
.

Assuming δ ∈ R>2 divide by |v(t)|δ−1 (this is possible because v is strictly decreasing and
v(t1) < −1), and integrating between t1 and t ∈ [t1, t

∗), one has∫ t

t1

v̇(τ)
|v(τ)|δ−1dτ ≤ − a

2vδfree

∫ t

t1

|v(τ)| dτ,

(−v)2−δ(t)
δ−2 − (−v)2−δ(t1)

δ−2 ≤ − a
2vδfree

∫ t

t1

|v(τ)| dτ.
(3.12)

Dividing by −a/2vδfree < 0 and letting t→ t∗, this gives(
a

2vδfree

)−1
(−v)2−δ(t1)

δ−2 ≥ ‖v‖L1((t1,t∗)).(3.13)

Hence, ‖v‖L1((t1,t∗)) < +∞.

The previous estimate is particularly interesting as it illustrates that the model behaves still
“somehwat” reasonable (even in the case of a diverge of the velocity to −∞) and underlines
the fact that a change in the acceleration to prevent the velocity to diverge might be enough
to “improve” the model (compare Section 5).

4. Lower bounds on the distance in specific cases. In this section we state results
guaranteeing the minimal distance between leader and follower for the IDM.

Theorem 4.1 (Minimal “safety distance” for the IDM). Let Assumption 2.6 hold and par-
ticularly v` = 0. Assume that for an arbitrary time T ∈ R>0 the solution to the IDM exists.
Then, the IDM as in Definition 2.4 satisfies the following lower bound on the distance
if the initial relative velocity is positive, i.e., v`,0 − v0 ≥ 0

x`(t)− x(t)− l ≥ min

{
x`,0 − x0 − l,

√
as20
−B

}
> 0 ∀t ∈ [0, T ](4.1)

12



if the initial relative velocity is negative, i.e., v`,0 − v0 < 0

x`(t)− x(t)− l ≥ min

{
−A+
√
A2+4aBs20
2B ,

√
as20
−B

}
> 0 ∀t ∈ [0, T ](4.2)

with the constants A,B given as

A := −B · (x`,0 − x0 − l) + a
s20

x`,0−x0−l + 1
2

(
v`,0 − v0)2 > 0

B := ess- inf
s∈[0,T ]

ulead(s)− a.
(4.3)

Proof. We start with considering the difference of the change between leader’s acceleration
and follower’s acceleration to obtain for t ∈ [0, T ]

ẍ`(t)− ẍ(t) ≥ ulead(t)− a+ a
(
|v(t)|
vfree

)δ
+ a
(
2
√
ab(s0+v(t)τ)+v(t)(v(t)−v`(t))

2
√
ab
(
x`(t)−x(t)−l

) )2
≥ ulead(t)− a+ a

(
2
√
ab(s0+v(t)τ)+v(t)(v(t)−v`(t))

2
√
ab
(
x`(t)−x(t)−l

) )2
.

Let us first assume that v`,0 − v0 < 0. Then, we know that on a time horizon [0, t1), v`(t) −
v(t) < 0 and the distance of follower and leader decreases but there is still no over-taking,
i.e., x`(t)− x(t)− l > 0. Thus, we can continue the previous estimate to arrive at (recall that
v`(t) = 0 so that v(t) > 0 as v(t) > v`(t) for t ∈ [0, t1))

ẍ`(t)− ẍ(t) ≥ ess- inf
s∈[0,T ]

ulead(s)− a+ as20
1

(x`(t)−x(t)−l)2
.

Multiplying with ẋ`(t)− ẋ(t) < 0 leads to(
ẍ`(t)− ẍ(t)

)(
ẋ`(t)− ẋ(t)

)
≤
(

ess- inf
s∈[0,T ]

ulead(s)− a
)(
ẋ`(t)− ẋ(t)

)
+ as20

ẋ`(t)−ẋ(t)
(x`(t)−x(t)−l)2

and integrating over t ∈ [0, t1] gives

1
2(v`(t)− v(t))2 ≤ 1

2(v`,0 − v0)2 +
(

ess- inf
s∈[0,T ]

ulead(s)− a
)(
x`(t)− x(t)− x`,0 + x0

)
− as20

(
1

x`(t)−x(t)−l −
1

x`,0−x0−l

)
Defining A := −B · (x`,0 − x0 − l) + a

s20
x`,0−x0−l + 1

2

(
v`,0 − v0)2 > 0 and g(t) := x`(t)− x(t)− l

with B := ess- inf
s∈[0,T ]

ulead(s)− a. we have

1
2

(
g′(t)

)2 ≤ A+Bg(t)− as20
g(t) .

However, as the left hand side is quadratic, the following inequality needs to hold (recall that
g(t) > 0 on [0, t1))

0 ≤ Ag(t) +Bg(t)2 − as20.
13



Recalling that B < 0, we thus obtain as lower bound

g∗ :=
−A+
√
A2+4aBs20
2B > 0

which is greater zero as A > 0 and aBs20 < 0 by assumption.
However, this is only a lower bound for the first time the relative velocity is negative as

we needed to address the case where the initial relative velocity is negative. In the case where
v`,0 > v0 we will derive in the following a uniform lower bound. In both cases, assume that
there is another time t2, t3 ∈ (t1, T ) so that v`(t) − v(t) < 0∀t ∈ (t2, t3), we can assume that
v`(t2) = v(t2). Applying then the previous estimates once more, we obtain this time as lower
bound

x`(t)− x(t)− l ≥ −A2+
√
A2

2+4aBs20
2B ∀t ∈ (t2, t3)

with A2 := −B · (x`(t2) − x(t2) − l) + a
s20

x`(t2)−x(t2)−l > 0. Looking into the discriminant we
find that

A2
2 + 4aBs20 =

(
as20

x`(t2)−x(t2)−l +B(x`(t2)− x(t2)− l)
)2

so that we obtain for t ∈ (t2, t3)

x`(t)− x(t)− l ≥


x`(t2)− x(t2)− l if x`(t2)− x(t2)− l ≤

√
as20
−B

−a
s20

x`(t2)−x(t2)−l
B if x`(t2)− x(t2)− l ≥

√
as20
−B

.

Recalling that we can estimate from the previous (first) step and the fact that x`(t)−x(t)− l
is non-decreasing between t1 and t2

x`(t2)− x(t2)− l ≥ min
{
g∗, x`,0 − x0 − l

}
we obtain with the previous estimate that for any t ∈ [0, t3]

x`(t)− x(t)− l ≥ min
{
g∗, x`,0 − x0 − l,

√
as20
−B

}
.

However, this lower bound is independent of x`(t2) − x(t2) − l and we can thus iterated the
procedure by going to the next time where v`(t) − v(t) < 0 for some t ∈ (t3, T ]. However, in
these cases the previously derived bound remains as is.

Looking into the derived lower bound in more details, one can actually distinguish the
two cases v`,0 − v0 ≤ (≥ 0) and arrives as the obtained bounds. This concludes the proof.

Remark 4.2 (Comments on the derived “safety distance” and the “extreme” case B = 0).
We have not commented about the sign of A and B in (4.3). Clearly, assuming that B ≤ 0 is
reasonable as otherwise it holds

ess- inf
t∈[0,T ]

ulead(s) ≥ a,

meaning that the leader speeds up all the time at least with the maximal acceleration of the
follower, implying that the distance will always increase. Thus, assuming B ≤ 0 the term
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−A
2B is positive and

√
A2+4aBs20

2B negative but its absolute values is smaller than −A2B so that the
obtained lower bound in (4.2) is still positive.

The lower bound together with the corresponding simulations is illustrated for a specific
experimental setup in Figure 7. As the lower bound is not well-defined for B = 0, we compute
the limes of the lower bound. Recalling that A is also a function of B namely, A(B) =

−B · (x`,0 − x0 − l) + a
s20

x`,0−x0−l + 1
2(v`,0 − v0)2 we have

lim
B→0

−A(B)+
√
A(B)2+4aBs20
2B = lim

B→0

−A′(B)
2 +

A(B)A′(B)+2as20
2
√
A(B)2+4aBs20

=
as20

as20
x`,0−x0−l+

1
2(v`,0−v0)

2

.

Note that the obtained lower bound is always less or equal to the initial space headway,
x`,0−x0− l. Furthermore, negative relative initial velocity leads to smaller lower bound. But
in the case of positive initial relative velocity, the given lower bound is very conservative and
could be replaced by a stricter one. Altogether, even for B = 0 the obtained lower bound is
reasonable.

5. Improvements for the IDM. In this section, we present several improvements of the
IDM to fix the problems illustrated in Section 3 for general initial datum. Before doing this,
however, we present some other numerics on how the classical IDM behaves for specific data.
This will serve as a comparison to the proposed improvements later:

Example 5.1 (Some additional numerical results for the classical IDM). All examples – except
those which are physically unreasonable (compare Subsection 5.2) – will be tested on three
different scenarios:
1. As the set of parameters where one can observe a negative velocity of the follower in the

original IDM – see Example 3.1 and Figure 2.
2. As the set of parameters where one can observe that the velocity of the follower diverges

to −∞ in finite time in the original IDM – see Example 3.2 and Figure 4.
3. A heavy stop and go wave traffic situation with the leader’s acceleration satisfying ulead ≡
a · 1{t∈[0,T ]: sin(t/4)≥0.8} − a · 1{t∈[0,T ]: sin(t/4)≤−0.8}, a = 0.73, b = 1.67, vfree = 120

36 , τ =
1.6, l = 4, s0 = 2, d = 4 illustrated in Figure 5. The results for the original IDM are then
illustrated in Figure 6 and can serve as comparison.

5.1. Projection on nonnegative velocities and restricting the maximal deceleration. A
straight forward improvement consists of projecting the velocity to nonnegative values. This
is detailed in the following Definition 5.2:

Definition 5.2 (IDM with projection to nonnegative velocities). Given Assumption 2.6, we
replace the acceleration in Definition 2.1 and velocity for the IDM model in Definition 2.4 by

ẋ(t) = max{v(t), 0}, t ∈ [0, T ](5.1)

v̇(t) = Acc
(
x(t),max{v(t), 0}, x`(t), v`(t)

)
, t ∈ [0, T ](5.2)

and call the model the velocity projected IDM.
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Figure 5. The acceleration profile ulead of the leader. This is intended to specify a leader that repeats the
pattern “accelerate, constant velocity, decelerate, constant velocity”.
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Figure 6. The original IDM, with parameters x0 = 0, x`,0 = l + 1 < l + s0, v0 = 0 = v`,0 = 0. Both

vehicles start with 0 velocity, and the leader follows the acceleration profile in Figure 5. Left: the position of
both leader and follower, middle: the velocity of the follower and right: the acceleration of the follower. We
leave the velocity and acceleration profile of the leader out as it is fully determined by the given ulead.

Theorem 5.3 (Existence and uniqueness of solutions for small times). Given Assumption 2.6
the velocity projected IDM in Definition 5.2 admits on a sufficiently small time horizon T ∗ ∈
R>0 a unique solution (x, v) ∈W 1,∞((0, T ∗))2.

Proof. The proof is almost identical to the proof of Theorem 2.7 when recalling that the
right hand side is still locally Lipschitz-continuous. We do not go into details.

However, as we will see the model has some drawbacks:

Example 5.4 (The following vehicle waits for too long to start driving). Assume that the
constants and initial data as in Example 3.1 with ε < s0. Then, the leading vehicle’s trajectory
can be computed as

x`(t) = x`,0 + v`,0t+ u
2 t

2, t ∈ [0, T ],

and the leading vehicle’s velocity can be computed as

v`(t) = v`,0 + ut, t ∈ [0, T ].

Plugging this into the change of the vehicle’s velocity we obtain the following system of ODEs

ẋ(t) = max{v(t), 0}
16
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Figure 7. The original IDM with the same parameters as in Figure 6. Headway (in magenta) x`(t)−x(t)−l
is illustrated together with the lower “a priori” bound as derived in (4.1) in Theorem 4.1. Computing this
headway, we have for the numbers A,B as in (4.3) B = −0.73− 0.73 = −1.46, A = 1.46 · 1 + 0.73 4

1
= 4.38 and

s0 = 2, and thus as lower bound on the headway is – following (4.1) (recall that v`,0 − v0 = 0 so that this case

applied) min

{
x`,0 − x0 − l,

√
as20
−B

}
= 1 which is pictured in dotted yellow. As can be seen the lower bound is

always valid and for t = 0 even sharp.

v̇(t) = a

(
1−

(
max{v(t),0}

vfree

)δ
−
(
2
√
ab(s0+max{v(t),0}τ)+max{v(t),0}(max{v(t),0}−v`(t))

2
√
ab(x`(t)−x`,0+ε−

∫ t
0 max{v(s),0} ds)

)2)
x(0) = x`,0 − l − ε
v(0) = 0.

Note that

v̇(0) = a
(

1−
(
s0
ε

)2)
< 0,

therefore, there exists some small time interval [0, t1] such that for every t ∈ [0, t1], v(t) < 0.
During the time interval [0, t1], the distance between the two vehicles is

l + ε+ x`(t)− x`,0 = l + ε+ v`,0t+ u
2 t

2, t ∈ [0, t1].

Thus, for every t ∈ [0, t1],

v̇(t) = a

(
1−

(
s0

ε+v`,0t+
u
2 t

2

)2)
.

Note that v̇ : [0, t1] 7→ R is strictly increasing. Without loss of generality, we assume that the
initial velocity of the leading vehicle is v`,0 = 0 and the acceleration of the leading vehicle is
u = 2. Then for every t ∈ [0, t1],

v(t) =

∫ t

0
a
(

1−
(

s0
ε+s2

)2)
ds = at− 4as20

∫ t

0

(
1

s2+ε

)2
ds = at− 4as20

( √
εt

ε+t2
+arctan

(
t√
ε

)
2ε

3
2

)
.

In particular, as illustrated in Figure 8, we have that t1 increases as ε decreases. That is,
the smaller the initial distance between the two vehicles, the longer it takes the following
vehicle to recover its positive velocity. Another example illustrates the projected velocity
model numerically with regard to other scenarios:
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Figure 8. Velocity dependent on epsilon and time. The dark blue indicates values less or equal −5 and the
white area positive function values, so that the red curve separating the white and colored region can be seen
as the values where the velocity is actually zero. In particular, as the initial distance between two vehicles ε
increases, the time when the following vehicle recovers its positive velocity t1 decreases.
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Figure 9. The IDM with projection as in Definition 5.2 and same parameters as in Figure 2 with x0 =
0, x`,0 = l + 1.5 < l + s0. Left: the positions of the vehicles, middle: the velocity of the follower, and right:
the acceleration of the follower. The leader follows the free-flow acceleration as in (5.3). The follower stays
still and waits until there is a safe space to speed up.

Example 5.5 (Velocity projected IDM). As can be observed the actual velocity in all the
three different scenarios is bounded from below by zero and the solution exists on the entire
time horizon considered. However, the projection operator leads to the problem that the
follower waits too long until they speed up. This can be observed in particular in Figures 9
and 10 where the distance of the two vehicles after both have started speeding up (t ≈ 5) is
approximately around 8.5 which is quite far from the comfortable vehicle distance s0 and thus
leading to a too large distance. Here we use the free-flow acceleration as following

(5.3) v̇(t) = a− a
(
max{v(t),0}

vfree

)δ
∀t ∈ [0, T ].

Same can be observed in Figure 11 for smaller time.

5.2. Projection to nonnegative velocities with bounded deceleration. Another improve-
ment for this is projecting the acceleration to prevent it from becoming too negative. Then,
the corresponding model reads as
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Figure 10. The IDM with projection, with the same parameters as in Figure 2 and x0 = 0, x`,0 = l+0.5 <
l + s0, v0 = 0 = v`,0 = 0. Left: vehicles’ positions, middle: the follower’s velocity and right: the follower’s
acceleration. The leader follows the free flow acceleration as in (5.3). The follower stays still and waits until
there is a safe space to speed up.

0 20 40 60 80 100

0

50

100

150

200

t

(x
(t

),
x
`(
t)

)

leader
follower

0 20 40 60 80 100

0

1

2

3

t

v
(t

)

0 20 40 60 80 100

−0.5

0

0.5

t

a
(t

)

Figure 11. The IDM with projection as in Definition 5.2 and initial data x0 = 0, x`,0 = l+1 < l+s0, v0 =
v`,0 = 0. Left: the position of the vehicles, middle: the velocity of the follower and right: the acceleration of
the follower. The leader follows the acceleration profile in Figure 5. The velocities remain positive, however
the waiting time for the follower until speeding up is large.

Definition 5.6 (IDM with projection to nonnegative velocities and bounded deceleration).
Given Assumption 2.6, we replace the acceleration in Definition 2.1 and velocity for the IDM
model in Definition 2.4 by

ẋ(t) = max{v(t), 0}, t ∈ [0, T ]

v̇(t) = max{Acc(x(t),max{v(t), 0}, x`(t), v`(t)),−amin}, t ∈ [0, T ]

with a parameter amin ∈ R>0 be given and call the model the acceleration projected IDM.

Theorem 5.7 (Global existence and uniqueness of solutions). Given Assumption 2.6 the
acceleration projected IDM in Definition 5.6 admits for every T ∈ R>0 a unique solution
(x, v) ∈W 1,∞((0, T )).

Proof. The proof of existence and uniqueness for small time is almost identical to the proof
of Theorem 2.7 when recalling that the right hand side is still locally Lipschitz-continuous.
We do not go into details.

So it remains to show that we can find uniform estimates for (x(t), v(t)), t ∈ [0, T ].
Obviously,

v(t) ≥ v0 − amint ∀t ∈ [0, T ].
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Thanks to the structure of Acc (see Definition 2.1) we also obtain as a bound from above

v(t) ≤ v0 + at ∀t ∈ [0, T ].

As v is uniformly bounded on every finite time horizon, so is x and we are done.

However, although the previous change of the acceleration profile in Definition 5.6 looks
promising as according to Theorem 5.7 a solution exists on every finite time horizon, the
physical representation, the model itself is unreasonable as the car behind can overtake the
leading car – or differently put, the car behind can bump into the leading car without the
model noticing it. This is detailed in the following Example 5.8.

Example 5.8 (Physical unreasonability). As the deceleration of the following vehicle is
bounded from below by −amin, we can always chose an initial velocity of the follower which
leads to the fact that x`(t)− x(t)− l→ 0 in finite time.

In formulae, assume for simplicity that the leading vehicle has the following trajectory

x`(t) = x`0 + v`0t+ 1
2uleadt

2, t ∈ [0, T ].

with ulead ∈ R≥0 and (x`0, v`0) ∈ R×R>0. Then, we take the difference of the vehicles position
with car length l ∈ R>0 and have for t ∈ [0, T ]

x`(t)− x(t)− l

≤ x`0 + v`0t− l + 1
2uleadt

2 − x0 −
∫ t

0
max{v(s), 0} ds

≤ x`0 + v`0t− l + 1
2uleadt

2 − x0 −
∫ t

0
v(s) ds

≤ x`0 + v`0t− l + 1
2uleadt

2 − x0

−
∫ t

0
v0 +

∫ s

0
max{Acc(x(τ),max{0, v(τ)}, x`(τ), v`(τ)),−amin} dτ ds

≤ x`0 + v`0t− l + 1
2uleadt

2 − x0 − tv0 +

∫ t

0

∫ s

0
amin dτ ds

≤ x`0 − x0 − l + (v`0 − v0)t+ 1
2(ulead + amin)t2.

Obviously, for v0 sufficiently large, we obtain for small time that x`(t)−x(t) < l. An extreme
case for this is illustrated in Figure 12 where not only the vehicles get closer than l but the
follower (in blue) entirely overtakes the leader (in red).

5.3. Another velocity projection improvement. Another improvement which had been
mentioned in the literature in [24] (however, it goes back to a website of Martin Treiber which
is not available anymore, is shortly investigated in this section. Not the entire third part in
the IDM acceleration Definition 2.1 is projected, but only a specific part. This is detailed as
follows:

Definition 5.9 (Partially projected acceleration). Let Assumption 2.6 and Acc as in Defini-
tion 2.1 be given. Then, replacing in Definition 2.4 the acceleration of the follower in the
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Figure 12. Illustration of the improvement in Definition 5.6 and its physical unreasonability as shown in
Example 5.8. The parameters are a = amin = 1, b = 2, vfree = 1, τ = 1.6, l = 4, s0 = 2, d = 4 and datum
x0 = 0, x`,0 = l + 1.5, v0 = 5, v`,0 = 0. Left Vehicles’ positions, middle vehicles’ velocities, right vehicles’
acceleration. The follower overtakes the leader in finite time, although the follower breaks constantly.

following way

Accppa :


A → R

(x, v, x`, v`) 7→ a− a
(
|v|
v0

)δ
− a

(
s0+max

{
0,vτ+

v(v`−v)
2
√
ab

}
x`−x−l

)2

we call the resulting car following model the IDM with partially projected acceleration.

However, as can be seen it does not prevent negative velocity in the case that x` − x− l < s0
as the acceleration then becomes negative if the current follower’s speed is zero, i.e., v = 0.
Thus, we do not study it further.

5.4. Velocity regularized acceleration. Another improvement of the IDM is to add a
regularization term which will make the third term in the acceleration function Definition 2.1
of the IDM in Definition 2.4 become zero if the corresponding velocity approaches zero.

Definition 5.10 (IDM with velocity regularized acceleration). Given Assumption 2.6, we
replace acceleration in Definition 2.1 in Definition 2.4 by

Accvra :

A → R

(x, v, x`, v`) 7→ a

(
1−

( |v|
vfree

)δ − h(v)
(
2
√
ab(s0+vτ)+v(v−v`)
2
√
ab(x`−x−l)

)2)
with A as in Definition 2.1 and regularization h ∈W 1,∞(R;R≥0) be a monotonically increasing
function satisfying h(0) = 0 and – for a given ε ∈ R>0 – h(v) = 1 ∀v ∈ R≥ε. We call this the
velocity regularized acceleration IDM.

Theorem 5.11 (Existence and Uniqueness of solutions on arbitrary time horizon ). Given
Assumption 2.6 and in addition assume that

∃vmin ∈ R>0 : v`(t) ≥ vmin ∀t ∈ [0, T ] ∧ h(vmin) > 0

the velocity regularized IDM in Definition 5.10 admits on every finite time horizon T ∈ R≥0
a unique solution satisfying x ∈W 2,∞((0, T ))

x`(t)− x(t)− l ≥ min
{
x`,0 − x0 − l,

√
as20h(vmin)
−B ,

−A+
√
A2+4aBh(vmin)s

2
0

2B

}
∀t ∈ [0, T ]
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with

A := 1
2(v`,0 − v0)2 −B(x`,0 − x0 − l) + a

h(vmin)s
2
0

x`,0−x0−l

B := ess- inf
t∈[0,T ]

ulead(t)− a
(5.4)

and additionally

max{vfree, v0} = ẋ ≡ v = 0 on [0, T ].

If v0 > 0, it even holds

v(t) > 0 ∀t ∈ [0, T ].

Proof. To show the well-posedness it suffices to make sure that
• ∃C ∈ R>0 : x`,0 − x0 − l > 0 implies that x`(t) − x(t) − l ≥ C, ∀t ∈ [0, T ]. Take the

difference of the change of the leader’s acceleration and the follower’s to obtain and mimic
somewhat the proof of Theorem 4.1

ẍ`(t)− ẍ(t) ≥ ulead(t)− a+ ah(v(t))
(
2
√
ab(s0+v(t)τ)+v(t)(v(t)−v`(t))

2
√
ab
(
x`(t)−x(t)−l

) )2
assuming without loss of generality v`(t) − v(t) ≤ 0, i.e., v(t) ≥ v`(t) on a certain time
interval and as we have inf t v`(t) ≥ vmin > 0, h = 0

≥ ess- inf
s∈[0,t]

ulead(s)− a+ as20h
(
vmin

)(
1

x`(t)−x(t)−l

)2
and multiplying with v`(t)− v(t) = ẋ`(t)− ẋ(t) ≤ 0(

ẍ`(t)− ẍ(t)
)

(ẋ`(t)− ẋ(t)) ≤ ess- inf
s∈[0,t]

ulead(s)(ẋ`(t)− ẋ(t))(5.5)

− a(ẋ`(t)− ẋ(t)) + ah
(
vmin

)
s20

ẋ`(t)−ẋ(t)(
x`(t)−x(t)−l

)2 .(5.6)

Integrating over (0, t) leads to

1
2(ẋ`(t)− ẋ(t))2 ≤

(
ess- inf
s∈[0,t]

ulead(s)− a
)((

x`(t)− x(t)− l
)
−
(
x`,0 − x0 − l

))
+ 1

2(v`,0 − v0)2 − ah
(
vmin

)
s20

(
1

x`(t)−x(t)−l −
1

x`,0−x0−l

)
or in shorter notation g :≡ x` − x− l

1
2

(
g′(t)

)2 ≤ A+Bg(t)− ah(vmin)s
2
0

g(t)

with A,B as in (5.4). Following the identical steps as in the proof of Theorem 4.1, par-
ticularly noticing that the left hand side is always nonnegative while the right hand side
would go to −∞ if g → 0 we obtain the claimed lower bound on the distance.
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Figure 13. Different choices of the “saturation” function hε for ε ∈ {1, 0.5, 0.1} as suggested in (5.7).

• ẋ(t) ≥ 0 ∀t ∈ [0, T ]. We know by the Picard-Lindelöf theorem ([8, Chapter 4] or [9, Thm
1.3]) that there exists a solution on a significantly small time horizon [0, T ∗] with T ∗ ∈ R>0.
Assume that the velocity of a given vehicle ẋ becomes zero at a given time T ∗∗ ∈ R>0.
Then, by continuity of the velocity and due to the nonnegativity of the initial velocity there
exists a first time t ∈ [0, T ∗∗) so that v(t) = ẋ(t) = 0. Plugging this into the corresponding
acceleration we obtain at that time

ẍ(t) = v̇(t) = Accvra
(
x(t), ẋ(t), x`(t), ẋ`(t)

)
= Accvra

(
x(t), 0, x`(t), ẋ`(t)

)
= a > 0,

thanks to the assumption on h in Definition 5.10, namely h(0) = 0. This means that
whenever the velocity approaches zero, the derivative is strictly positive so that the velocity
can never become zero. Assume that for some t ∈ [0, T ] we have v(t) ≥ vfree. Then, by the
velocity regularized acceleration in Definition 5.10, we have v̇(t) < 0 and can conclude

v(t) ≤ max{vfree, v0} ∀t ∈ [0, T ].

This gives the claim.

Remark 5.12 (Proper choice of the regularization h). A proper choice for h consists for
ε ∈ R>0 of

(5.7) hε :

{
R → [0, 1]

v 7→ v
ε1R≥0

(v) · 1R≤ε(v) + 1R>ε(v).

This is illustrated in the following Figure 13. As can be seen this “saturation” function is
only continuous, resulting in an acceleration function which is not differentiable. Obviously,
this could be changed by smoothing hε. We do not go into details.

We illustrate the model in the following

Example 5.13 (Velocity regularized acceleration). As can be seen in Figures 14 to 16, with
this fix the spacing between the two vehicles is not getting large as had been observed in
Figures 9 to 11 but the follower speeds up immediately when there is enough safe distance to
do so. The clipping due to the function hε can be observed in particular in the acceleration
profile which is nonsmooth. In all Figures 14 to 16 we choose ε = 0.1.
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Figure 14. The IDM with velocity regularized acceleration as in Definition 5.10 and parameters as in
Figure 2. Initial data are x0 = 0, x`,0 = l + 1.5 < l + s0, v0 = v`,0 = 0. Left: the vehicles’ position, middle:
the vehicles’ velicities, and right: the vehicles acceleration. The leader follows the free flow acceleration. The
follower stays still and waits until there is a safe space to speed up.
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Figure 15. The IDM with velocity regularized acceleration, with initial gap equal 0.5 and same parameters
as in Figure 2. Both vehicles start with 0 velocity, and the leader follows the free flow IDM dynamics. Left:
x0 = 0, x`,0 = l + 0.5 < l + s0, v0 = 0 = v`,0 = 0. The follower stays still and waits until there is a safe space
to speed up. Right: the follower remains still in the initial phase.

5.5. A discontinuous improvement to prevent negative velocity. Our last potential
improvement for the IDM which had also been suggested a lot (see for instance [1]) is an
improvement which will become active only if the velocity becomes zero and the corresponding
acceleration at the time where the velocity is zero is negative. In this way, the following
improvement is the most natural one. We state it in the following Definition 5.14.

Definition 5.14 (IDM with discontinuous acceleration). Let Assumption 2.6 and Acc as in
Definition 2.1 be given. Then, replacing in Definition 2.4 the acceleration of the follower in
the following discontinuous way as

v̇(t) =


Acc(x(t), v(t), x`(t), v`(t)) if v(t) > 0

Acc(x(t), v(t), x`(t), v`(t)) if v(t) = 0 ∧ x`(t)− x(t)− l ≥ s0
0 if v(t) = 0 ∧ x`(t)− x(t)− l < s0

,(5.8)

we call this the discontinuous IDM.

Although one might expect that the introduction of the discontinuity in (5.8) might prohibit
a solution to exist for all times or also might destroy uniqueness, it actually does not as the
following Theorem 5.15 states:
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Figure 16. The IDM with velocity regularized acceleration, with initial gap equal 1. Both vehicles start
with 0 velocity, and the leader follows the acceleration profile in figure Figure 5. Left: x0 = 0, x`,0 = l + 1 <
l + s0, v0 = 0 = v`,0 = 0. Right: again, the velocity always stays nonnegative.

Theorem 5.15 (Well-posedness of the discontinuously fixed IDM in Definition 5.14). Given
Assumption 2.6 and assuming that the velocity of the leader is only zero at finitely many
intervals, the discontinuous improvement of the IDM as in Definition 5.14 admits a unique
solution on every finite time horizon T ∈ R>0 and satisfies

x ∈W 2,∞((0, T )) : ẋ = 0.

In addition, the lower bound on the distance between follower and leader as in Theorem 4.1
holds.

Proof. We consider several different cases:
• Assume that at t = 0 we have v(0) = c > 0. Obviously, for small time the solution of

the system is unique as the right hand side is locally Lipschitz-continuous then. Either,
v(t) > 0 ∀t ∈ [0, T ]. Then, there is nothing more to do as we never run into the discontinuity
or ∃t∗ ∈ (0, T ] : v(t∗) = 0. We distinguish two cases:
x`(t

∗)− x(t∗)− l ≥ s0: However, in this case the right hand side has not changed so that
the solution still exists and is unique. As at that time, the velocity is zero and
as the leading car never moves backwards (by the assumption on the leader’s
velocity/acceleration, we can never go into the third case where it would hold
x`(t)− x(t)− l < s0 but only back into the first case with strictly positive velocity.
In this case, the solution exists and is unique.

x`(t
∗)− x(t∗)− l < s0: Then, the velocity of the follower is zero and we can only switch

into the second case when the leader’s position x` increases, we are automatically
left with the case that either we stay in the third case or that we move back to the
second case. The second case, however, was already treated previously.

• Assume that we have v(0) = 0. Then, we are either in item one or two of the previous case
and are done.

As all of these changes only depend on the leader’s trajectory x` and velocity v` which is given
independent on the status of the follower, and we can conclude the existence and uniqueness
of a solution.

The lower bound on the distance follows by the argument that the distance between
follower and leader can only decrease if the followers velocity is not zero. However, then,
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Figure 17. The discontinuous improvement of the IDM, with initial gap equal 1.5 and same parameters as
in Figure 2. Both vehicles start with 0 velocity, and the leader follows the acceleration profile in figure Figure 5.
Left: x0 = 0, x`,0 = l + 1.5 < l + s0, v0 = 0 = v`,0 = 0. Right: again, the velocity always stays nonnegative.
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Figure 18. The discontinuous improvement of the IDM, with initial gap equal 0.5 and same parameters as
in Figure 2. Both vehicles start with 0 velocity, and the leader follows the acceleration profile in figure Figure 5.
Left: x0 = 0, x`,0 = l + 0.5 < l + s0, v0 = v`,0 = 0. Right: again, the velocity always stays nonnegative.

we are in the “classical” IDM model and can apply exactly the reasoning of the proof of
Theorem 4.1.

Example 5.16 (The discontinuous improvement). In Figures 17 to 19 we illustrate the dy-
namics of leader and follower for the discontinuous improvement proposed in Theorem 5.15.
Here, the velocity can become zero and stay zero for an amount of time dependent on the
leaders velocity/position, but remains nonnegative. If the spacing between the two cars is
large enough, the follower immediately speeds up and does not let the gap increase too much.

5.6. Comparisons among modifications. We herein summarize the strength and weak-
ness of each modification.

• The acceleration projected IDM in Definition 5.6 is the most straightforward modifica-
tion to fix the negative velocities. However as shown in Figures 9 and 10, it suffers from
the fact that the follower waits too long to start driving. It may also lead to physical
unreasonability issue with certain initial datum as we point out in Example 5.8.
• The velocity regularized IDM in Definition 5.10 is capable of preventing negative ve-

locity, and the follower speeds up immediately when it observes safe distance. However
in this modification one needs to specify the regularization functions h, which might
require extra parameter tuning.
• The discontinuous improvement of the IDM as in Definition 5.14 prohibits negative
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Figure 19. The discontinuous improvement of the IDM, with initial gap equal 1. Both vehicles start with
0 velocity, and the leader follows the acceleration profile in figure Figure 5. Left: x0 = 0, x`,0 = l + 1 <
l + s0, v0 = v`,0 = 0. Middle: again, the velocity always stays nonnegative. Right: acceleration

Table 2
The average distance between the leader and follower (and the variance reported in the parenthesis)

Average distance (variance) Item 1 Item 2 Item 3

acceleration projected IDM Definition 5.6 7.99 (1.19) 8.09 (3.55) 14.94 (54.99)
velocity regularized IDM Definition 5.10 7.76 (1.00) 7.24 (1.70) 12.81 (25.51)
discontinuous IDM Definition 5.14 7.75 (1.01) 7.31 (1.75) 12.39 (25.18)

velocities, without the need to introduce extra saturation functions.
In order to quantitatively compare the modifications, we compute the average distance (as

well as the variance) between the leader and follower over time in Table 2 on three different
scenarios we tested. As it turns out the differences between the latter two modifications
are minimal in all scenarios and both mean/variance. On the other hand, the acceleration
projected IDM has greater average distance and variance, verifying the potential issue that
with the modification, the following vehicle waits for too long to start driving, and reacts to
the leader’s velocity change in a slower manner.

6. Generalization to many cars. In the proposed framework, we have only studied the
case where we have one leader and one follower and the leader (in most cases) satisfies an
acceleration profile where their velocity is nonnegative. However, as this is somewhat arbitrary,
all proposed results and all “improvements” remain valid as long as the velocity of the follower
remains non-negative when we generalize this to more than two cars. We make this precise
in the following Definition 6.2 but first introduce the number of cars as well as some physical
reasonable assumption on the input datum:

Assumption 6.1 (Input datum for multiple cars). Let N ∈ N≥1 be given. We assume
that the parameters of the Acc satisfy what we have assumed in Assumption 2.6 as well as
the leaders acceleration ulead. Additionally, we assume for the initial datum (position and
velocity)

x0 ∈ RN : x0,i − x0,i+1 > l ∀i ∈ {1, . . . , N − 1} ∧ v0 ∈ RN≥0.

Definition 6.2 (The car-following model for many cars). Given Assumption 6.1, Defini-
tion 2.1 and Assumption 2.6. Then, for ulead ∈ Ulead the dynamics for the IDM with many
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Figure 20. The leader x1(t) with its dynamics determined by the acceleration ulead(t) and the following
cars x2(t), x3(t), x4(t), x5(t) with its dynamics governed by the classical IDM Definition 2.4. The overall
dynamics is stated in Definition 6.2.

vehicles N ∈ N≥1 read in (x,v) : [0, T ]→ RN × RN as

(6.1)

ẋ1(t) = v1(t), t ∈ [0, T ]

v̇1(t) = ulead(t), t ∈ [0, T ]

ẋi(t) = vi(t), i ∈ {2, . . . , N} t ∈ [0, T ]

v̇i(t) = Acc(xi(t),vi(t),xi−1(t),vi−1(t)), i ∈ {2, . . . , N} t ∈ [0, T ]

x(0) = x0,

v(0) = v0.

The system for many cars is illustrated in Figure 20. Having the definition, we obtain the
following general result on the well-posedness when applying the proper acceleration functions
– IDM improvements – introduced before:

Theorem 6.3 (Well-posedness of some of the previously discussed models). Let Assump-
tion 6.1 hold and consider as “improvement” of the IDM either the
• the velocity regularized acceleration in Definition 5.10 with the additional assumption

that there exists vmin ∈ R>0 such that v` = vmin on [0, T ] and v0 ∈ RN>0

• the discontinuous improvement in Definition 5.14.
Then, the system of 2N coupled initial value problems (N ∈ N≥1) admits a unique solution
on every given time horizon T ∈ R>0 and the solution satisfies for the velocity regularized
acceleration

x ∈W 2,∞((0, T );RN
)

: ẋ :≡ v > 0 on [0, T ]

and for the discontinuous improvement

x ∈W 2,∞((0, T );RN
)

: ẋ :≡ v = 0 on [0, T ].

Proof. The proof consists of recalling that the proofs of the corresponding improvements
all work for any leaders acceleration proposed in Assumption 6.1 as long as the correspond-
ing velocity would remain nonnegative/strictly positive. As the dynamics are only “one-
directionally” coupled, i.e. the dynamics of the follower depend on the leader but not vice
versa, we can use an inductive argument and first look on the dynamics for x1,x2. According
to Theorem 5.11 and Theorem 5.15 we obtain the well-posedness. However, additionally also
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that the velocity v2 is nonnegative/strictly greater than zero. As a next step, we can thus
consider the dynamics of x2,x3. As x2 satisfies the non-negativity/strict positivity of the ve-
locity we can again apply the stated well-posedness results for two vehicles as in Theorem 5.11
and Theorem 5.15. This procedure can be iterated until we have reached xN and we conclude
with the existence and uniqueness of solutions and the nonnegativity/strict positivity of the
velocities.

7. Conclusions and future work. In this contribution, we have demonstrated the ill-
posedness of the rather often used intelligent driver model (IDM) for specific initial datum
and have presented some improvements to avoid these problems. The proposed work builds a
solid foundation for future work on 1) Multi-lane traffic with lane-changing. The lane-changing
requires to know under which condition a car can change lane and how the well-posedness is
affected by the lane change. For optimizing lane-changing to smooth traffic and avoid stop
and go waves (thus saving energy) we will next consider a suitable hybrid optimal control
problem based on the proposed dynamics. 2) Signalized junctions/intersection modelled with
a form of the IDM also requires the proposed well-posedness in particular as a red traffic
light necessitates the vehicles in front of it to stop (velocity becomes zero). 3) Stability of
solutions with regard to the model parameters and comparison of stability for the different
suggested improvements. 4) Implementations of the models presented in this article. While
the numerical work presented above results from matlab [23] implementations and the use of
ODE45 and similar routines, it would be interesting to also theoretically study the discretization
of these equations with standard finite difference schemes to see what guarantees can be
provided for the numerical solutions (for example order of the numerical schemes, error bounds
on the numerical solution etc.). 5) It would also be of great interest for the improvements of
the IDM model presented here to validate them against field data, or to see if the resulting
microsimulation implementations (SUMO [21], Aimsun [2], etc.) match experimental data for
specific choices of numerical parameters. In particular, it would be interesting to measure
discrepancies with the prior IDM improvements in their implementation, and compare their
respective performances. 6) Finally, obtaining a general well-posedness result for the original
IDM when restricting specific parameters and input data would be important and will be
subject to further study to justify many already available simulation results a posteriori.
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