Information and Software Technology 152 (2022) 107031

Contents lists available at ScienceDirect INFORMATION
AND

SOFTWARE

TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

Variability testing of software product line: A preference-based o’
dimensionality reduction approach

Thiago Ferreira ", Silvia Regina Vergilio , Marouane Kessentini ©

2 College of Innovation & Technology, University of Michigan-Flint, Flint, USA
b Computer Science Department, Federal University of Parand, Curitiba, Brazil
¢ School of Engineering and Computer Science, Oakland University, Rochester, USA

ARTICLE INFO ABSTRACT
Keywords: Context: Multi- and many-evolutionary algorithms have been applied to derive products for the variability
Spl testing testing of Software Product Lines (SPLs). This problem refers to the selection of an adequate product set to

Search-based software engineering
Preference-based algorithms
Dimensionality reduction

test a SPL by optimizing some objectives related to the number of products to be tested, testing criteria to be
satisfied, and revealed faults. However, some problems emerge when the number of objectives to be optimized
increases, for example: the solutions generated by the optimization algorithms become incomparable, designing
a Pareto-front in this context requires a large number of solutions, and the visualization of such solutions
requires special techniques. Several techniques are proposed to tackle this problem, such as decomposition
and algorithms based on indicators. Among them, algorithms based on dimensionality reduction and user
preferences are widely used, but there are no studies in the literature investigating the usage of both in a
combined way.

Objective: In light of this, we introduce COR-NSGA-II (Confidence-based Objective Reduction NSGA-II).
COR-NSGA-II defines for each objective a confidence-level calculated with the user preferences provided
interactively. The objectives with higher values of confidence are removed from the next algorithm execution.
Method: For assessing the feasibility of COR-NSGA-II, experiments were conducted by using six different SPLs,
seven objectives, two types of reference points representing the user preferences, and two scenarios to simulate
different user profiles.

Results: COR-NSGA-II is evaluated against four algorithms explored in the literature for the problem, and
outperforms most of them according to R-HV and R-IGD. It takes less time to execute and generates a reduced
number of solutions, all of them satisfying the user preferences.

Conclusion: A qualitative analysis performed with 12 potential users shows that the task of selecting a solution
generated by COR-NSGA-II is easier than selecting a solution generated by the other algorithms.

1. Introduction for the VTSPL problem [3-12] where the authors suggest optimizing
distinct objectives (we identified at least seven objectives) and applying

The Variability Testing of Software Product Line (VTSPL) refers different algorithms, mainly evolutionary ones. However, our recent

to selecting test configurations — products - usually derived from the paper [13] investigated seven objective functions for this problem, and

SPL variability model, such as the Feature Model (FM). Ideally, all the results showed that the optimization algorithms such as NSGA-

possible products should be tested, but this is many times impracticable Il and PCA-NSGA-II took up to 15 h to find suitable solutions on
because the number of products grows exponentially with the number

of features [1]. In this way, only a set of the most representative
products should be selected, usually considering factors such as cost,
the number of revealed faults, and tested features.

In the literature, the VTSPL problem has been addressed in the
Search-based Software Engineering (SBSE) field [2], which applies
search-based techniques to solve different optimization problems from
the Software Engineering (SE) area. We can find many formulations

large feature models such as Drupal [14]. Also, they generated many
solutions in the final Pareto-front, which could lead the user to spend
much time finding suitable solutions for his/her context. Consequently,
the user could even reject such solutions since they were generated
without his/her feedback.

Problems like this, impacted by three or more objectives are called
many-objective and are very common in SE where most of them are

* Corresponding author.
E-mail addresses: thiagod@umich.edu (T. Ferreira), silvia@inf.ufpr.br (S.R. Vergilio), marouane@umich.edu (M. Kessentini).

https://doi.org/10.1016/j.infsof.2022.107031

Received 15 September 2021; Received in revised form 28 July 2022; Accepted 30 July 2022
Available online 6 August 2022

0950-5849/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:thiagod@umich.edu
mailto:silvia@inf.ufpr.br
mailto:marouane@umich.edu
https://doi.org/10.1016/j.infsof.2022.107031
https://doi.org/10.1016/j.infsof.2022.107031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107031&domain=pdf

T. Ferreira et al.

naturally complex and many conflicting objective functions need to be
optimized at the same time, as pointed out by Mkaouer et al. [15].
However, a survey [16] reports that 50% of the proposed algorithms
address SE problems from only a bi-objective perspective, 30% consider
three objectives, and 20% of the existing studies address more than four
objectives. Multi-Objective Evolutionary Algorithms (MOEAs) are the
most applied [17].

As claimed by Mkaouer et al. [15], a possible reason why SE
problems have not been formulated as many-objective is due to the
challenges in building a many-objective solution. To aggregate some
objectives into one objective is a simple approach that could be used.
However, there is a loss of information in this approach due to, among
several reasons, the conflicting nature of the quality metrics used to
assess the algorithm’s performance. Then, as this approach and tradi-
tional MOEAs are not sufficient, there is a growing demand for scalable
SBSE approaches that address SE problems in which many objectives
are considered. In this perspective, improving the scalability of SBSE
approaches will increase their applicability in industry and real-world
settings.

However, some problems arise when the number of objectives in-
creases. Deb and Jain [18] state that selecting a solution gets harder
because most solutions become incomparable. Many solutions are re-
quired to generate a Pareto-front, and this generation process takes
much time and requires special techniques for visualizing the solu-
tions. Thus, several techniques are proposed to address such problems,
such as new preference ordering relations, decomposition (a general
approach to solving a problem by breaking it up into smaller ones
and solving each of the smaller ones separately, either in parallel or
sequentially), and so on. Among them, one of the most-used techniques
in the optimization field is dimensionality reduction, as described
in [19].

In the context of dimensionality reduction, Many-Objective Evo-
lutionary Algorithms (MaOEAs) are executed seeking to reduce the
number of objectives by removing the redundant ones, that is, objec-
tives where there may not exist any conflict among them. PCA-NSGA-
II [20] is an example of MaOEAs, applied in SE problems, including
to the VTSPL [13], which uses the concept of Principal Analysis Com-
ponent jointly with the NSGA-II algorithm for reducing the number of
objectives.

Li et al. [19] point out that dimensionality reduction approaches
have three main advantages: (i) to reduce computational load; (ii) to
help decision makers to better understand the many-objective problem
by pointing out the non-conflicting objectives; and (iii) to allow the
combination with other approaches. However, the authors also state
that if the addressed problem has just conflicting objectives, this one
may limit the application of the approach once these algorithms may
fail in reducing the number of objectives to be optimized or return a
solution set that does not cover the complete Pareto-front. From this
perspective, the combination of two or more approaches for tackling
many-objective problems would be very interesting. For example, to
take into account the user preferences, since human knowledge and
judgment can be used to guide the search to reach the best solutions.
However, as far as we know, there are no studies in the literature
combining both approaches in an interactive way (or in-the-loop).
Thus, this work intends to explore possible advantages of incorporating
the user preferences provided interactively during the search for the
reduction of objectives in many-objective optimization.

To achieve the above-mentioned goal, this work introduces an
algorithm called COR-NSGA-II (Confidence-based Objective Reduction
NSGA-II), which reduces the problem dimensionality guided by the
user preferences. The user preferences about the solutions are captured
interactively (or in-the-loop) by using an ordinal scale composed of
three items Non-preferred, No Opinion, and Preferred. Based on them, a
confidence level for each objective is determined and used to decide
which objectives should be removed from the next execution of the
NSGA-II algorithm.

Information and Software Technology 152 (2022) 107031

COR-NSGA-II is evaluated for the VISPL problem using six SPLs
and a formulation with seven objectives. COR-NSGA-II is compared to
MOEAs and MaOEAs used for the problem in the literature: NSGA-II,
NSGA-III, R-NSGA-II, and PCA-NSGA-II. The results show that COR-
NSGA-II is capable of guiding the search process to the objectives
preferred by the users, by generating a small set of suitable solutions
that incorporate the user preferences, and taking less time to execute.
A qualitative analysis performed with a set of 12 potential users shows
that for them, the selection of a solution generated by COR-NSGA-
II is easier than the selection of a solution generated by the other
algorithms. In this way, the main contributions of this paper are as
follows:

+ Introduction of COR-NSGA-II, a preference-based dimensionality
reduction algorithm. It has some advantages concerning dimen-
sionality reduction algorithms and is also capable of performing
well in the presence of conflicting objectives, reducing the num-
ber of solutions to be visualized by guiding the search according
to user preferences captured interactively. Then this makes easier
the choice of a solution for the user.

Evaluation results from the application of COR-NSGA-II to the
VTSPL problem show that it generates quality solutions regarding
the user preference indicators and spends less time to execute
in comparison with MOEAs and MaOEAs. This makes the use of
many-objective formulations easier in practice and contributes to
increase the scalability of SBSE approaches and their adoption for
real and complex problems.

Implementation of COR-NSGA-II on Nautilus Framework [21], a
tool that allows practitioners developing and experimenting sev-
eral multi- and many-objectives evolutionary algorithms guided
(or not) by human participation in a few steps with a min-
imum required background in coding and search-based algo-
rithms. This makes easy the application of COR-NSGA-II to similar
SE problems and its use in future research.

The paper is organized as follows: Section 2 provides background
on the algorithms and quality indicators. Section 3 reviews the VT-
SPL problem, related work and problem formulation adopted in our
work. Section 4 introduces COR-NSGA-IIL. Section 5 describes evalua-
tion setup. Section 6 presents and analyses the obtained results; Sec-
tion 7 discusses main implication and future work; Section 8 highlights
the threats to validity; and Section 9 concludes.

2. Background
2.1. Software product line testing

A Software Product Line (SPL) can be defined as a set of common
products from a particular market segment or domain [22]. Such
products share some features, which represent functionality or a sys-
tem capability that is relevant and visible to the end user [10]. The
features can be common to all products derived from the SPL, but
they can also be variable being found in only some of them. Thus, the
Feature Model (FM) diagram is used for managing such variability in
most SPL methodologies. This diagram is represented as a hierarchical
arrangement through a tree, and it is used for representing all the SPL
commonalities and variabilities, as shown in Fig. 1, that contains the
SPL for the domain of Mobile Phone.

A product is given by a combination of features. Fig. 2(a) shows
an example of a valid product that can be derived from the FM of
Fig. 1, and Fig. 2(b) an invalid one. The latter is invalid because CaLLs is
missing while being mandatory. Thus it should be present in all derived
products.

T. Ferreira et al.

Legend

~—————@ Mandatory
—————0 Optional
— — — =B Requires

4~ — =% Excludes

L————- > Basic

Colour

Information and Software Technology 152 (2022) 107031

Mobile
Phone

/\

Screen Calls Media

[n..m] - Feature Group > GPS

with group

cardinality 1

[n,m] 1 [1.1]
1
I
1
1

Fig. 1. Feature diagram of mobile phone.
Source: Adapted from [11].

Mobile
Phone
Screen Calls Media

l l

High

Resolution Camera

a Valid Product

High
Resolution Camera MP3
T
L 1
Mobile
Phone
Screen Media
High
Resolution Camera

b Invalid Product

Fig. 2. Example of products generated from the FM in Fig. 1.

2.1.1. Pairwise testing in the FM context

In order to derive a set of products for the variability testing of SPLs,
some studies in the literature are based on combinatorial testing [23—
26]. Pairwise testing is one of the most popular kinds of combinatorial
testing; therefore, it is also applied in our work. The goal of this testing
criterion is to generate a set of products that includes all the valid pairs
of features from the FM. Thus, the number of covered pairs can also be
used for evaluating a set of products that were generated.

For instance, consider again the FM shown in Fig. 1. The pair (GPS,
Basic) is invalid, and should not be required. Considering only the
variabilities, we see that the product in Fig. 2(a) includes the pair (Hicu
Resorution, Camera) and does not include the pair (GPS, MP3). Thus, to
derive the pairs, we use the Combinatorial tool' that implements the
Automatic Efficient Test Generator (AETG) algorithm, introduced by
Cohen et al. [27].

2.1.2. Mutation testing in the FM context

Another testing criterion that has been explored in the FM con-
text [28-31] is mutation testing, a fault-based testing criterion. In the
FM context, mutant FMs are generated with operators that describe pos-
sible faults that can be present in an FM. Hence, the goal of this testing
criterion is to generate a product that is capable of distinguishing the
behavior of the FM being tested from its mutant version.

Essentially, the product p is checked by an FM analyzer. The mutant
is considered dead in two situations: (i) if p is valid according to the
original FM and invalid for the mutant; and (ii) p is invalid for the
original FM and valid for the mutant. When both FMs, original and
mutant ones, validate the same set of products, they are considered as
equivalent.

At the end of this process, a mutation score is calculated, given by
the number of dead mutants over the total of non-equivalent generated
mutants. Similar to the pairwise coverage described in the previous
section, the score can be used for evaluating the adequacy of a set of
products, or it can be used to improve an existing one. To illustrate this
testing criterion, consider Fig. 3.

1 http://161.67.140.42/CombTestWeb.

The figure shows that the operator changes a “requires” relation to
an excludes one, such as the one between Hicu ResorutioN and CAMERA.
In this sense, the product in Fig. 2(a) kills the mutant, since it is valid
for the original FM and it is invalid for the mutant.

2.2. Optimization algorithms

An optimization problem aims to find one or more feasible solutions
which correspond to extreme values of one or more objectives (or ob-
jective functions) regarding the problem constraints [32]. The number
of objective functions to be optimized defines which category the opti-
mization problem belongs to. When an optimization problem involves
a single-objective function, it is called Mono-objective Optimization
Problem. When the number of objectives to be optimized holds two
or three objective functions, the problem is called as Multi-objective
Optimization Problem (MOP). Finally, when the number of objectives
is four or more, the problem is called as Many-Objective Optimization
Problem (MaOP).

Different types of algorithms to solve MOPs and MaOPs have been
proposed in the literature [33]. Among them, it is possible to mention
the Evolutionary Algorithms (EAs) [34]. These algorithms can find
reasonably good approximations of the true Pareto-front in a reasonable
time. A Pareto-front is a set of solutions where they are in such a way
that the values of each objective cannot be improved without sacrificing
the values of the other objective functions [35]. Some EAs are described
as follows.

Multi-Objective Evolutionary Algorithms (MOEAs) are those based
on Genetic Algorithm (GA) in which, by performing a stochastic op-
timization method, simulate the natural evolution process aiming to
find solutions for MOPs. When the problem is a MaOP one, several
Many-objective Evolutionary Algorithms (MaOEAs) are proposed in the
literature to tackle such problems. Such algorithms include different
categories, such as the algorithms based on dimensionality reduction
and on user preferences. In this section, we describe the algorithms used
in this work.

NSGA-II [36] creates in each interaction a new set of solutions
(the offspring) based on their parents, joins the offspring with the

http://161.67.140.42/CombTestWeb

T. Ferreira et al.

Original FM

Screen Media
Applying the
Mutation

. .. Operator
Colour) Camera
Resolution
ry T

Information and Software Technology 152 (2022) 107031

Mutant FM
Screen Media
Colour High_ Camera
Resolution

The relationship between features is changed from requires to excludes.

Fig. 3. Example of a mutant generated for FM in Fig. 1.

41,
Reference

WA
71

Reference
Line
1 //
f.

' &

Normalized
Hyperplan

Ideal Point

Fig. 4. Example of a normalized reference plane for a three-objective problem.
Source: Adapted from [38].

parents, and sorts them according to their dominance rank and crowd-
ing distance. Therefore, in each generation, the solutions that are
non-dominated when compared to the other ones survive to the next
generation. A solution X dominates Y (X <Y) if X is at least as good
as Y for all the objectives and strictly better than Y in at least one
objective. Otherwise, X does not dominate Y [37]. When there are
several non-dominated solutions and the next generation cannot receive
all of them (since the number of desired solutions is defined a priori),
the solutions with the greatest crowding distance (more scattered in the
objective space) are selected to survive. Hence, this algorithm favors
both the solutions that have the best fitness values (convergence) and
the solutions that are more different (diversity). At the end of its
execution, the algorithm returns the set of non-dominated solutions.

NSGA-III [18] basically replaces the crowding distance used by
NSGA-II by a different one focused on a set of reference points Z"
(see Fig. 4). This mechanism helps to maintain the diversity among
the solutions. In a generation ¢ of NSGA-III, after the recombination,
mutation, and non-dominated sorting, all acceptable fronts and the last
front F, that could not be completely included in P are included
in a set RS,. After that, the objective values and reference points are
first normalized to be in an identical range. An orthogonal distance is
computed between a member in RS, and each of the reference lines
(joining the ideal point and a reference point). After that, the solution is
then associated with the reference point having the smallest orthogonal
distance. The niche count p (defined as the number of solutions in
S,/ F, that are associated with the reference point) is computed for each
reference point. Then, the reference point having the minimum niche
count is identified, and the solutions from the last front F;, associated
with it, are included in the next population. At the final, the niche count
of the identified reference point is increased by one, and the procedure
is repeated to fill up the population P,_;.

PCA-NSGA-II [20] applies an online dimensionality reduction us-
ing the PCA (Principal Component Analysis) method. This one is a
multivariate technique that analyzes data in which observations are
described by several inter-correlated quantitative dependent variables,

where the goal is to extract the important information from the data
and show the pattern of similarity of the observations and of the vari-
ables as points in maps [39]. Thus, PCA-NSGA-II identifies iteratively
redundant objectives in the NSGA-II solutions as follows. Supposing
we have M objective functions to be optimized and N population
members, the initial data matrix X will be of size MxN. So, the method
converts this matrix into a correlation matrix, in which negative num-
bers mean the objectives are negatively correlated (conflicting) and the
positive ones mean the objective are positively correlated (redundant).
After that, the method computes eigenvalues and eigenvectors and
chooses non-redundant objectives by using a threshold cut (TC) value
and the contribution for all principal components. Finally, if the current
set of objectives has changed (it was reduced), the search of NSGA-II is
performed and the PCA method is applied again. Otherwise, it returns
the last Pareto-front found.

R-NSGA-II [40] requires one or more Reference Points (RPs), points
in the search space where the user would like to concentrate the
objectives. The RPs usually guide the search toward a Region of In-
terest (ROI), composed of non-dominated solutions preferred by the
user. Moreover, the crowding distance metric is modified, being called
“preferred distance”. The use of this metric implies giving a greater
emphasis to the solutions that are closer to the RPs provided. In order
to maintain the diversity of selected solutions close to the RPs, R-NSGA-
IT applies a selection strategy called e-clearing in which, by using a
parameter named ¢, the preferred distance is calculated as follows:
(i) the normalized Euclidean distance of each boundary solution is
calculated for each RP. The solutions are ranked in ascending order
of distance. Thus, the solution with the smallest distance from RP is at
the top of the rank; and (ii) after the calculation for all RPs, there will
exist different rankings, one for each RP, and the preferred distance of
a given solution will be the minimum one assigned to it considering all
the rankings. Solutions with the smallest preferred distance values are
selected and preferred to compose the new population.

3. Variability testing of software product line

The Variability Testing of Software Product Line (VTSPL) has as goal
to ensure the products that can be derived from the variability model
(commonly the Feature Model) satisfy their requirements. However,
due to the complexity of the applications and the huge number of
features and products available, only the most representative set of
products is usually tested. The selection of the best products is an
optimization problem addressed by many studies in the literature,
mainly considering evolutionary algorithms. In this section, we describe
these studies and the problem formulation adopted in our work.

3.1. Related work
Different formulations are tackling the variability testing problem in

the literature by using combinatorial testing [41,42], as well as several
papers addressing many objective functions to be optimized. Below we

T. Ferreira et al.

describe existing works that focus on optimization algorithms (those
more related to this work) grouped according to the kind of approach
they apply.

Single-objective algorithms. These works usually deal with the
selection of products by using an aggregation function where the
optimized objectives are combined into a single function. The work
of Wang et al. [3] propose a test case minimization approach. The
authors use a GA and an aggregation function of the following factors:
the number of test cases, pairwise coverage, and capability to reveal
faults. In another work, Want et al. [4] propose a test case prioritization
approach where it uses another aggregation function, including cost
measures, and compares GA with (1+1) EA and random search. Ensan
et al. [5] use a simple GA with an aggregation function comprised
of cost and error rate factors. Henard et al. [6] also uses a GA with
an aggregation function to handle the costs, pairwise coverage, and
the number of products. All of them are conflicting objectives in the
selection of test products. In another work of the authors, mutation
testing is used to generate dissimilar products, that is, products that
include different features [7].

Multi-objective Evolutionary Algorithms (MOEAs). Due to the
characteristic of the VTSPL problem, MOEAs have presented better
results than single-objective algorithms, where they usually adopt
evolutionary algorithms. Lopez-Herrejon et al. [8] propose a multi-
objective approach considering pairwise coverage and the size of the
test suites. The approach of Matnei-Filho and Vergilio [9] considers
objectives related to the mutation score, pairwise coverage, and number
of products. The obtained results show no significant differences be-
tween the MOEAs used algorithms. However, NSGA-II obtained the best
performance regarding the MOEA’s quality attributes for the general
case, compared to SPEA2 and IBEA. Strickler et al. [10], and Ferreira
et al. [11] explore the use of hyper-heuristic approaches with multi-
objective algorithms. The objectives used include pairwise, number of
alive mutants, number of products, and similarity of products. The
use of hyper-heuristics can help in the construction of more generic
solutions and ease the implementation of the algorithms.

Many-objective Evolutionary Algorithms (MaOEAs). These algo-
rithms deal better with the problem in the presence of three or more
objectives. In this category, most works apply preference-based algo-
rithms. Jakubovski Filho et al. [12] compared the NSGA-II algorithm
with the preference-based algorithms r-NSGA-II and R-NSGA-II. Three-
and four-objective formulations were used, including pairwise, number
of alive mutants, number of products, and similarity of products. The
results show that r-NSGA-II and R-NSGA-II outperformed NSGA-IL
Moreover, the authors conclude that R-NSGA-II was the best option in
most cases. More recently, Ferreira et al. [13] addressed the VTSPL
problem by using NSGA-III and PCA-NSGA-II, with a set of seven
objectives obtained from different approaches in the literature. The
results show that NSGA-III reaches the best results regarding the quality
indicators for all instances, but it takes longer to execute.

We observe that MOEAs and MaOEAs show the best results for the
VTSPL problem. NSGA-II is the MOEA that presented the best general
performance [9]. R-NSGA-II stands out among the preference-based al-
gorithms [12]. NSGA-III reaches the best results regarding some quality
indicators, but it takes a longer time compared to PCA-NSGA-II [13]. It
is difficult to point out the best algorithm. For instance, R-NSGA-II does
not provide an interactive way to provide the preferences and depends
on the RP provided. NSGA-III takes longer to execute and produces a
lot of solutions (requiring specific techniques to visualize and select
solutions). PCA-NSGA-II does not have a good performance when all the
objectives are not redundant. Using these algorithms in a combined way
can be beneficial in overcoming some of those limitations, which is our
work’s goal. We have not found studies in the literature exploring the
advantages of incorporating the user preferences provided interactively
during the search for the reduction of objectives in many-objective
optimization.

Information and Software Technology 152 (2022) 107031

Moreover, a large number of objectives is used for the VTSPL
problem. The most used are the number of products (test cases),
pairwise coverage, mutation score (related to the capability to reveal
faults), similarity of products regarding the features they contain or
importance, and cost. In our work, we mapped all these objectives
explored in the literature and derived a set of seven objectives, which
are presented in the next section.

3.2. Problem formulation adopted

In this work, we adopt the formulation proposed by Jakubovski-
Filho et al. [12], and the set of objective functions is derived con-
sidering different approaches from the literature described in the last
section. Both the solution representation and the objective functions are
described as follows.

A solution in the VTSPL problem is defined as a subset of products
from all possible products that can be generated from a given FM. Since
it is a subset, a binary encoding is employed to represent a selection
where each gene represents a product. When the ith bit is equal to 1,
the product p; belongs to the solution. Otherwise, the ith bit is equal to
0.

We use the same convention to represent the features in a product,
that is, 1 means the corresponding feature is selected for the product,
otherwise, 0 means the feature is not selected. However, this represen-
tation is not part of the solution since several solutions have similar
products selected (and consequently similar features).

Let P = {p;,p,.p3,--..P,} be aset of valid products being considered
for the addressed FM, and S C P be an solution, generated by an
algorithm, with | S| means the selected products. To generate P, we
use the framework FaMa [43], which also gives the total number of
products n. However, it is not possible to determine all the products
for huge FMs. In this case, the tester provides a desired value for n,
and n valid products are generated at random.

We adopted a set of seven objective functions, as presented in
Table 1, which shows a description of the objectives and how they
are calculated. All objective functions are normalized in [0, 1], where
0 is the best value and 1 is the worst, that is, all of them should be
minimized.

To clarify how the objective functions are computed, we consider
an instance example with illustrative values for three features (F1, F2,
and F3), in which all of them are non-mandatory ones. Their cost and
importance are described in Table 2, and a set of five possible products
that should be selected, shown in Table 3.

Now, consider that a solution S = {p;,p,} was selected to be
evaluated in which Products #3 and #4 were selected, the objective
functions are calculated as follows:

N(S) = % =04

M(S)=10- g =10-08=02

P(S)=10- % =10-10=0.0

V(S) = % —06 a
22
cs) =206
) 36
F(S)=1.0—§=1.0—1.0=0.0
1

I(8)=10~ 2 =10-06=04

Therefore, in this instance example, the vector of objective values
for the solution .S = {ps, p4} is (0.4, 0.2, 0.0, 0.6, 0.6, 0.0, 0.4).

T. Ferreira et al.

Table 1
Objective functions.

Information and Software Technology 152 (2022) 107031

Objective

Description

Rationale

Number of products

— Isl
N(S)= 1P|

Ratio between the number of products in S and the number
n of considered valid products in P

The # of products can impact the cost of the
testing

Alive mutants
=10 XM
M(S)=10 Vi

Where KM is the number of mutants killed by the products
of S, and AM is the total number of alive mutants

A higher mutation score can help the bug
identification

Uncovered pairs

1 PC
P(S)=1-1¢

Where PC is the number of pairs of features defining
products covered by the products of .S, and V P is the
number of valid pairs

It evaluates the iteration among features

Products similarity
v(s)= 2t

Where RF is the number of features that appears more than
once in S and OF is the number of non-mandatory
(optional) features in the instance. It takes into account the
similarity between the products regarding the features they
have

Similar products could let some features uncovered
under testing

Products_cost ,
cost
cs) = 753 Ll

1y cp €st(p;)

Ratio of the cost of the selected products by the cost of all
valid products, where cost(p;) returns the cost of a product
p;, estimated by summing the cost of its features

The development of expensive products impacts
the cost of the testing. In this objective, the lower
the value, the better.

Unselected features

Where NF is the number of features of S and TF represents
the number of features the FM under test has. It measures

All features should be tested at least once

F(S)=1.0- %
how many features are in S

Unimportant features
I(S)=10— X, s importance(p;)

th" importance(p;)

user’s point of view

Where importance(p;) returns the importance of the product
p;» given by the sum of the importance of the features in p;.
It returns the percentage of irrelevant features from the

Allocating time and work to bring the most value
to the company. In this objective, the greater the
value, the better.

Table 2
Features from the instance example.
Features Cost Importance
F1 2 1
F2 4 2
F3 6 3
Table 3
Products from the instance example.
Features Killed mutants Covered pairs Cost Importance
P [F1] [M1] [P2, P3] 2 1
Py [F1, F3] [M1, M5] [P2] 8 4
P [F1, F2, F3] [M3] [P1, P2, P3] 12 6
Ps [F2, F3] [M1, M2, M4] [P3] 10 5
Ps [F2] [M1, M3] [P1] 4 2
Sum 36 18

4. Confidence-based objective reduction NSGA-II

COR-NSGA-II (Confidence-based Objective Reduction NSGA-II) is an
algorithm that combines the advantages of preference and dimension-
ality reduction-based algorithms to deal with many-objective problems.
It uses a confidence level for removing an objective from the next
execution of the NSGA-II algorithm. The latter was chosen as the
main search engine, especially for its good results in dealing with two
or three objectives. A confidence level is defined based on the user
preferences for each objective to be optimized, and these preferences
are provided for values closest to the lowest and the highest values for
each objective.

An overview of the algorithm is shown in Fig. 5. This shows that
once a problem encoding (composed by a problem instance and a set
of objectives to be optimized) is provided, COR-NSGA-II runs NSGA-II
to find an approximate Pareto-front (composed by only non-dominated
and non-duplicated solutions). Next, the solutions are shown to the
user, and then s(he) has the opportunity to accept the found solutions
or to provide his/her preferences aiming to reduce the number of ob-
jectives to be optimized. During the interaction process, the following
components are taken into consideration:

+ Objective Values: information for which the user is required to
provide his/her preferences.

» Non-preferred, No Opinion, Preferred: They are the preferences
the user needs to provide about the objective values. If no pref-
erences are provided, the default preference is No Opinion.

» Confidence-based Selection: the main method used for selecting
or choosing the next subset of objectives to be optimized. This
one takes into account the Objective Values and the preferences
provided by the user.

To illustrate this, consider that the user is visualizing the approxi-
mate Pareto-front shown in Fig. 6. In this figure, the circles represent
the possible locations where the user can provide his/her preferences.
For instance, if the user clicks on circle #1, he/she will be providing
user preferences for Solution #5 regarding Objective #1.

Firstly, COR-NSGA-II requires that solutions belonging to the Pareto-
front must be normalized in [0.0:1.0] before showing them to the user,
and it assumes, initially, all objectives should be selected for the next
search process, but some of them should be removed (or not included).
This initial assumption is important because if no user preferences are
provided, the same objectives should be selected for the next search
process, and no one should be removed. In Fig. 6, considering 0.0 as
the lowest objective value and 1.0 the highest one, Solution #4 has
the lowest value for Objective #1, Solution #5 has the lowest value
for Objective #2, and Solution #3 the lowest value for Objective #3.
On the contrary, Solution #5 has the highest value for Objective #1,
Solution #3 has the highest one for Objective #2, and Solution #1 has
the highest value for Objective #3.

COR-NSGA-II needs the user feedback about the objective values
found by the search process (circles numbered from 1 to 15). However,
the user does not need to provide all of them but only those most
important ones from his/her point of view. For instance, the user
can provide his/her preferences just for the circles 4, 5, 11, and 12,
or, the user can provide his/her feedback just for the extreme values
(objectives values equals to either 0.0 or 1.0) such as the circles 1, 2,
3, 13, 14, and 15. Once the user feedback is provided, COR-NSGA-II
selects those closest to the lowest and highest values for each objective
and defines a confidence level for removing the objective from the next
subset (Section 4.1). The user feedback required by COR-NSGA-II must
be composed of:

User Feedback = [solution index | objective index | objective value |
preference]

T. Ferreira et al.

Information and Software Technology 152 (2022) 107031

1 [
! o e . [N !
| Optimization Do Interaction i
1 [!
1 [!
Problem | Current Non-dominated 1 | L) i
Encoding i Solutions 0l Objective Reduction i
— - < .]
e Problem Instance | ! gl i | | e Objective Values '
o Setof Objectives i E ! | @ Preferences: i
! ! i o Non-preferred 1
|
i P! © No Opinion 1
! R H ! o Preferred '
| Due?cz\\;zd i ! | e Selection E
i s ; i o Confidence-based Selection !
! Solutions ol !
: i !
i " !

Last Found
Non-Dominated g
Solutions

[

Are the solutions
acceptable?

Fig. 5. COR-NSGA-II overview.

A Solution2 Solution 3 Solution 4 % Solution 5

1.0 (1) @ @

/ﬁ
®
®

Solution 1

0.8

0.7
0.6
0.5

®

0.4

Objective Values

0.3

0.2

01

0.0 @

Objective 1

Objective 2 Ob]e@e 3

Fig. 6. Example of numbered objective values.

[}

For instance, the user feedback [#1, #2, 0.0, Preferred] provided by
the user means s(he) provided Preferred for Objective #2 with 0.0 from
Solution #1, while [#2, #1, 0.7, Non-preferred] means s(he) provided
Non-preferred for Objective #1 with 0.7 from Solution #2. Concluding,
once all preferences are provided, the COR-NSGA-II’s selection method
takes action and uses the provided preferences to select the next subset
of objectives to be optimized in the next execution. This method is
described in more detail in the next section.

4.1. Confidence-based selection method

The Confidence-based Selection Method is responsible for defining
which objectives should be removed from the next algorithm execu-
tion. The idea of this method is to calculate a removal confidence
level for each objective and then, based on an input called minConf
(which represents the minimum removal confidence level), the method
will decide if a given objective should be removed or not. That is,
the objectives with the removal confidence levels greater or equal to
minConf are removed from the next algorithm execution. However,
since the user preferences are provided as “Non-preferred”, “No Opin-
ion”, and “Preferred”, this method also translates all user preferences to
an ordinal scale described in Table 4 before applying the minConf.

The correlation between the user preferences and a value is required
because we have to define a priority among them. For instance, the
user feedback [#1, #2, 0.0, Preferred], the user preference Preferred is
converted to 1. So, in the case of more than one preference provided

Table 4

Ordinal scale for the required information.
Required information Non-preferred No Opinion Preferred
Value -1 0 1

for the same objective value, we can choose the one with the lowest
priority.

Algorithm 1 describes the procedure for selecting the next objec-
tives. The algorithm takes as input the current population P, a set of
optimized objectives, O, and a set of user feedback F.

Algorithm 1 Confidence-based Selection Method Algorithm

Input:

The current population P

A set of optimized objectives O = (0,05, ...,0,,)

A set of user feedback F = (f, fa,....f;)

Output: A subset N of objectives to be optimized

1: Let N C O be the next subset of objectives to be optimized

2: Let MaxF = (maxF|,maxF,,...,maxF,) be the maximum feedback found by the
algorithm for the optimized objectives, in which VmaxF; € MaxF,maxF; < NIL

3: Let MinF = (minFy,minF,,...,minF,,) be the minimum feedback found by the algorithm
for the optimized objectives, in which VminF; € MinF,minF; <« NIL

4: Let MinV = (minVy, minV5, ..., minV,,) be the minimum values for the population P.

5: Let MaxV = (maxVy,maxVs,...,maxV,,) be the maximum values for the population P.

6: for all f in F do

7 i « obj_index(f)

8 distToMaxValue « |maxV; — obj_value(f)|

9: distToMinValue « |minV; — obj_value(f)|

10 if distToMaxValue < distToMinValue then

11 if maxF; is NIL or obj_value(f) > obj_value(maxF;) then

12

maxF; < f
13: else if obj_value(f) < obj_value(maxF;) then
14: if obj_feedback(f) < obj_feedback(maxF;) then
15: maxF; < f
16: end if
17: end if
18: else if distToMinValue < distToMaxValue then
19: if minF; is NIL or obj_value(f) < obj_value(minF;) then
20: minF; « f
21: else if obj_value(f) < obj_value(minF;) then
22: if obj_feedback(f) < obj_feedback(minF;) then
23: minF; « f
24: end if
25: end if
26: else if distToMinValue = distToMaxValue then
27: if minF; is NIL or obj_feedback(f) < obj_feedback(minF;) then
28: MinF; « f
29: end if
30: if maxF; is NIL or obj_feedback(f) < obj_feedback(maxF;) then
31: maxF; < f
32: end if
33: end if
34: end for

35: N « the objectives selected by Algorithm 2, given O, MaxF, MinF
36: return N

T. Ferreira et al.

Table 5
Confidence level for removing an objective.

Highest value

Feedback Preferred No Opinion Non-preferred
Lowest value Preferred 0% 20% 0%

No Opinion 80% 50% 20%

Non-preferred 100% 80% 100%

In the first step (Lines 6-34), the algorithm goes through all user
feedback trying to select the minimum and maximum feedback for
each objective. For instance, it tries to find the feedback values for
the most higher and lower objective values for each objective (again,
all objectives are normalized in [0:1]). If two feedback values were
provided for the same objective, the algorithm selects the one with a
lower value.

As soon as the maximum and minimum are selected, the objective
selection procedure is called (Algorithm 2).

Algorithm 2 Objective Selection Algorithm

A minimum confidence level (minConf) value desired to remove an objective

A set of optimized objectives O = (0,05, ...,0,,)

A maximum feedback MaxF = (maxF;,maxF,,...,maxF,,) for all objectives

A minimum feedback MinF = (minF;,minF,, ... ,minF,) for all objectives

Output: A subset N of objectives to be optimized

1: Let N c O be the next subset of objectives to be optimized

2: Let Lowest = (lowest|,lowest,, ..., lowest,,) be the confidence level for the solutions in
the lowest objective values in which Viowest; € Lowest, lowest; < 0

. Let Highest = (highesty, highest,, ..., highest,) be the confidence level for the solutions
in the highest objective values in which Vhighest; € Highest, highest; < 0

Input:

w

4: for o; to O do

5: if maxF; is not NIL then

6: highest; < obj_f eedback(maxF;)
7: end if

8: if minF; is not NIL then

9: lowest; « obj_feedback(minF;)
10: end if

11: if confidence(lowest;, highest;) < minConf then
12: N < Nuo;

13: end if

14: end for

15: if N is ¢ then

16: return a random objective from O
17: end if

18: return N

In this procedure, for each objective, the preferences provided by
the minimum and maximum feedback are defined, respectively, to
the lowest value and the highest one (Lines 4-9). After this step, the
confidence level for removing this objective is calculated in Line 14
based on the information described in Table 5.

The values in Table 5 are defined based on the fact that the
optimization algorithms try to minimize all objectives, and they are
normalized in [0:1]. In this table, the lowest value means 0 and the
highest one means 1. So, aiming to explain the table, consider that the
user provided Non-preferred for both the lowest and highest values for
a given objective. So, we assume with 100% of confidence level that
this objective must be removed because the solutions generated with
this objective tend not to be considered as good from the user’s point
of view. In the contrary, if both lowest and highest values are Preferred,
we have to keep the objectives once the algorithm with them may still
generate new good solutions. In another example, if the lowest value
is Non-preferred and the highest is Preferred, we assume the algorithm
tends to keep generating non-preferred solutions so we have to remove
the corresponding objective with a 100% of confidence level.

Finally, we have to remove just the objectives in which the confi-
dence level is greater than or equal to the minConf that was previously
defined by the user. However, if this method is carried out and all
objectives should be removed (for example, when the user defines that
the minConf is 0%), a random objective must be picked up for the next
algorithm execution.

To illustrate the method proposed, let us consider the example
shown in Fig. 7 where the addressed problem has three objectives to

Information and Software Technology 152 (2022) 107031

Solution 1 A Solution2 Solution 3 Solution 4 % Solution 5
10 (O« Non-preferred
0.9
0.8
w 07
]
= 06
et
2 o5
kst
L 04
o
© 03
0.2
01
0.0 Preferred Q
Objective 1 Objective 2 Objective 3
Fig. 7. Example of application of the confidence level.
Table 6

Confidence level example.

Objectives Objective 1 Objective 2 Objective 3
Highest value No Opinion Non-preferred No Opinion
Lowest value No Opinion Preferred Non-preferred
Confidence level 50% 0% 80%

be optimized, and the non-repeated and non-dominated solutions are
composed of five solutions.

In this example, the user provided the following feedback. Preferred
for Solution #5 in Objective 2; Non-preferred for Solution #3 in Objec-
tive 3; and Non-preferred for Solution #3 in Objective 3. The selection
method aforementioned is performed by aiming to find the maximum
feedback provided by each objective. In this example, there is no more
than one feedback for the lowest and highest objective values. Then,
the Lowest and Highest sets, and the confidence level (defined by the
values in Table 5) are show in Table 6.

Supposing that minConf defined by the user for removing an ob-
jective for the next execution is at least 80%, Objective 3 must be
removed once it is associated with a confidence level of 80%. However,
if minConf is defined as 50%, Objectives 1 and 3 must be removed from
the next execution.

This example shows another important property of this selection
method. If minConf is set to 100% (i.e., a very strict level), the
method will only remove the objectives where the user provides either
Non-preferred and Preferred for, respectively, the lowest and highest ob-
jective values, or Non-preferred for both. In an opposite way, if minConf
is 50% or less, if no user preferences are provided, the selection method
considers that this objective is not good (once the user does not express
his/her preferences about it), and it must be removed.

Finally, the confidence level described in this section is calculated
by the algorithm, not provided by the user since the user preferences
can be inconsistent after repeated sampling. Then, the only interaction
that the users do is to select a solution and to provide if this solution
is Preferred, Non-preferred, or No Opinion.

5. Empirical evaluation setup

COR-NSGA-II was implemented on Nautilus Framework [21] and
applied to the VTSPL problem. Moreover, COR-NSGA-II was compared
with MOEAs and MaOEAs used in the literature (see Section 2). To this
end, the following Research Questions (RQs) were derived:

RQ1. Is COR-NSGA-II capable of reducing the problem dimension-
ality towards the user preferences? The goal of this RQ is to
evaluate if the Confidence-based selection method of
COR-NSGA-II is better than a random selection method. We
applied the latter merely as a “sanity check” because all optimiza-
tion algorithms should be capable of comfortably outperforming

T. Ferreira et al.

Table 7
Characteristics of the FMs used in the experiments.
FM # of # of selected Alive Valid # of
products products mutants Pairs features
(n) (n) (AM) wpP) (nf)
James [47] 68 68 106 75 14
CAS [48] 450 450 227 183 21
WS [49] 504 504 357 195 22
E-Shop [14] 1152 1152 94 202 22
Drupal [14] ~2.09E9 11k 2194 1081 48
Smarthome [6] ~3.87E9 11k 2948 1710 60

the random search for a well-formulated optimization problem.
In this RQ, we executed both algorithms and the user preferences
were provided by a simulated user (explained in more detail
in Section 5.2). The results were compared using Reduction
Efficiency, the Number of Preferred Objectives in the Last Subset,
and Reduction Capacity (see Section 5.3).

RQ2. How are the results of COR-NSGA-II compared to those ob-
tained by multi- and many-objective evolutionary
algorithms? This RQ aims to compare the proposed algorithm
to those that use reference-set-based, preference-based, or dimen-
sionality reduction approaches for solving the VTSPL problem:
NSGA-II, NSGA-III, R-NSGA-II, and PCA-NSGA-II. To reach this
goal, the algorithm was executed using preferences provided by a
simulated user. A quantitative analysis was performed by using R-
HV, R-IGD, # of solutions generated (and the number of solutions
in the ROI), and the execution time.

RQ3. Can COR-NSGA-II help users to find useful solutions? The goal
of this research question is to evaluate if the solutions generated
by COR-NSGA-II are more preferred than those generated by
the other multi- and many-objective evolutionary algorithms.
To this end, a set of potential users were invited and asked to
select a good solution from their point of view. The analysis
conducted is based on a qualitative questionnaire available in our
supplementary material [44].

5.1. Target feature models

This work uses six FMs widely used in related work [6,10-12,45,
46]. Table 7 shows information about the FMs: number of products (»,),
number of used products n, alive mutants (AM), valid pairs (V P), and
number of features (nf). We can observe that the last two FMs contain
a larger number of features and products. Due to this, it is impractical
to use all the products in the population representation. For both FMs
n products were randomly selected from the total number of products
n, that can be derived. Details about each FM can be found in our
supplementary material [44].

In this work, James, CAS, WS, and E-Shop are the smallest instances,
while Drupal and Smarthome are the largest ones. All FMs were used
for evaluating RQ1 and RQ2. E-Shop was chosen for answering RQ3,
because it is composed of a reasonable number of products to be
selected, and it has a suitable execution time for experiments where
the users need to express their preferences. Also, in our work, we used
the mutation operators of FMTS tool [30]> which is responsible for
generating the mutants and giving a set of products, calculating the
mutation score and the number of alive mutants (AM).

5.2. Users
To evaluate our RQs, we used real and simulated users.
2 FMTS works with the framework Feature Model Analyzer (FaMa) [43],
which is responsible for handling constraints, and validating the mutants

and products. This tool supports the FODA notation [50], extended and
cardinality-based FMs.

Information and Software Technology 152 (2022) 107031

Random Best and Worst Solutions

Evaluation Preferred Objectives
. . Maximum Number of Reductions
Simulated Stopping
User Criteria E _—
Maximum Number of Objectives
Fig. 8. Simulated user representation.
Solution 1 A Solution 2 Solution 3 Solution 4 % Solution 5

1.0

0.9

0.8
w 07
E
2 o6
>
g os
5
15}
2L 04
3

0.3

0.2

0.1

Objective 1 Objective 2 Objective 3

Fig. 9. Example for user simulator evaluation.

Simulated users. A user simulator was developed for answering RQ1
and RQ2, aiming to represent a possible evaluation profile, as explored
in other works in the literature [51-53]. In this method, the user
simulator provides the preference for a given solution when required
by the algorithm. It is important to note that the main objective of
this simulator is not a faithful representation of a human being, but it
demonstrates the influence of a certain evaluation profile in the search
process. The user simulator requires a set of preferred objectives (a
subset of those to be optimized) and it supposes that the population
is normalized in [0:1] in which 0.0 means the best value and 1.0 is
the worse one for every objective. So, this one is grouped into three
main components: selection, evaluation, and stopping criteria briefly
summarized in Fig. 8.

The first component is responsible for selecting the items for evalu-
ation required by COR-NSGA-II. When this one is performed, for each
objective, all solutions from the non-dominated population that have
the best and the worst values are selected. After that, a set of random
solutions from this group (in this context, called items for evaluation)
is picked up to be evaluated later on by the user simulator.

In the second component, these items are evaluated. This one is re-
sponsible for evaluating the items proposed according to the preferred
objectives previously defined for the user simulator. The algorithm first
verifies if the objective index of the item for evaluation is part of the
preferred objectives. If it is not, this item is marked as Non-preferred.
Otherwise, it is marked as Preferred if the objective value is 0.0 or the
maximum and minimum objective values are the same, and as Non-
Preferred if the objective value is 1.0. In the last case, if no previous
conditions were reached, it is marked as No Opinion.

Finally, the third component is responsible for defining the stopping
criteria considered by the simulator. In this one, the used criteria
are the maximum number of interactions or the maximum number
of objectives is reached. To illustrate the user simulator, consider the
non-dominated population shown in Fig. 9.

In this example, the preferred objectives are #1 and #2. So the items
for evaluation are these ones:

Item| = [solution: #3 | objective: #2 | 1.0]

T. Ferreira et al.

W very low low normal high [very high none
Software 6
Development
Software Product
Line 9 2
Software Testing 1 4 1
Java 4 -
Optimization
Algorithms 2 3 -

0%

10%

20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 10. Participants’ experience.

Item, = [solution: #1 | objective: #3 | 1.0]
Item; = [solution: #5 | objective: #2 | 0.0]

Performing the evaluation component in this example, the user
preferences provided by the user simulator for Item;, Item,, and Item,
are respectively, Non-preferred, Non-preferred, and Preferred.

The user simulator requires a set of preferred objectives. Based on
this, two scenarios were designed and evaluated in RQ1 and RQ2. The
first scenario (called Scenario 2D) is responsible for simulating a user
who prefers two objectives, and the second one (called Scenario 3D)
simulates a user who prefers three objectives. For Scenario 2D, Number
of Products and Alive Mutants objectives are randomly defined as pre-
ferred ones. Regarding Scenario 3D, Alive Mutants, Similarity, and Cost
objectives are selected as preferred ones.

The choice of these scenarios and the objectives selected for them
were based on the correlation among the objectives, seeking to simulate
a possible preferred set of objectives. For example, in Scenario 2D,
all objectives are conflicting. Concerning to Scenario 3D, two of the
selected objectives are redundant ones: Similarity, and Cost.

Real users. For answering RQ3, we asked a group of potential users to
evaluate the solutions generated by COR-NSGA-II and other algorithms.
They were invited to assist in the solution generation process by stating
their preferences about the found solutions.

Our study involved 12 participants, including 3 Master students
and 7 Ph.D. students in Software Engineering and Optimization Al-
gorithms, and 2 professors. The participants were asked to fill out a
questionnaire where helped to collect background information, such as
their role within the company, their programming experience, and their
familiarity with software testing.

The experiment involved 7 male and 5 female participants, and
around 50% of them with high experience in software development and
optimization algorithms (Fig. 10). In addition, all participants attended
one lecture about the VTSPL problem and optimization algorithms.
At the end, a test with 5 questions was filled out aiming to evaluate
their performance and understanding of the subject for suggesting good
solutions for an instance of an example problem.

Four groups with 3 participants were formed based on the pre-
study questionnaire and test results in order to ensure the groups had
participants with almost the same average skills. For the test results,
each question was weighted, where we tried to form groups in which all
users had a similar average. At the end, all participants reached a good
performance by selecting the correct answer to almost all questions.
Consequently, they were assigned randomly to each group since all of
them were at the same level.

We asked every participant to define a set of preferred objectives
based on his/her preferences. Then, the algorithms were executed by
following the sequence described in each group. For each algorithm, the
user was required to select/provide a good solution based on his/her
preferences previously defined. In this scenario, a questionnaire was

10

Information and Software Technology 152 (2022) 107031

Table 8

Groups organization.
Group 1 Group 2 Group 3 Group 4
Manual selection NSGA-II R-NSGA-II COR-NSGA-II
NSGA-II R-NSGA-II COR-NSGA-II Manual selection
R-NSGA-II COR-NSGA-II Manual selection NSGA-II
COR-NSGA-II Manual selection NSGA-II R-NSGA-II

provided and the participants were asked to justify their evaluation
about his/her decisions and these justifications are reviewed by the
organizers of the study. Table 8 summarizes the group’s organization
and the order in which the algorithms were executed in the groups.
For instance, the participants of Group 2 are invited to execute first
NSGA-II, after R-NSGA-II and COR-NSGA-II, and at the end, to generate
a solution for the problem instance by using manual selection. It is
important to notice that the algorithms were executed with the same
tooling. All questionnaires are available in [44].

5.3. Quality indicators

To calculate the quality indicators, we used three sets of solu-
tions following optimization literature [54]: (i) PF, 0. St of non-
dominated solutions obtained by one algorithm execution; (ii) PFj,.n:
set of non-dominated solutions of an algorithm obtained by the union
of all the PF,,,,,, removing the dominated and repeated ones; and (iii)
PF,,,,: formed by all sets PF,,,,, obtained from different algorithms by
removing dominated and repeated solutions.

However, some regular indicators, such as Hypervolume (HV) and
Inverted Generational Distance (IGD), do not take into account the
RP informed by the user. Considering the great importance of this
information when applying a preference-based algorithm, we decided
to use the Hypervolume indicator with R-Metric (R-HV) and IGD with
R-Metric (R-IGD) following Li et al. [19].

The general idea of R-Metric is to pre-process the preferred solutions
according to a multi-criterion decision-making approach before using
a standard metric to evaluate the performance of the obtained solu-
tions. Fig. 11 presents an illustration of the steps applied by R-Metric
calculation principle.

The first step is to filter the solutions by keeping only the non-
dominated and no-repeated ones (Prescreening). In the second step
(Pivot Point Identification), a representative point is identified, reflect-
ing the general satisfaction of the solutions with respect to the RP.
In the third step (Trimming), only solutions located in the ROI are of
interest to the user. The R-Metric defines the ROI as a set of solutions
that is centered at the pivot point and with length é. Only solutions
located in this approximated ROI are valid for performance assessment.
After this, in the fourth step (Solution Transfer), the trimmed points are
transferred to a virtual position to be evaluated its proximity to the RP.
Finally, the last step (R-Metric Calculation) applies the quality indicator
in the solutions processed by R-Metric. In our case, the HV and IGD
quality indicators [54].

Fig. 12 shows an example of the application of the R-Metric for five
Pareto-fronts, in which Fig. 12(a) shows the original Pareto-fronts and
Fig. 12(b) the virtual ones after the application of the R-Metric.

It is possible to see that, for example, for the Pareto-front 53, the
solutions in this one are closest to the RP, then the solutions remain
almost in the same position in the search space. However, for Pareto-
front S5, its virtual position is more distant from RP provided by
the user. This will impact the quality attributes for this Pareto-front
once the values are calculated by considering the virtual position. The
objective of R-Metric is to evaluate the dissemination of solutions in the
ROI and, at the same time, the proximity of these solutions to the RP.
To answer RQ1 and RQ2 we use R-HV and R-IGD, and other indicators
described as follows.

T. Ferreira et al.

Information and Software Technology 152 (2022) 107031

. Pivot Point A . R-Metric
Prescreenin - f . - Trimmin > Solution Transfer —» R
g Identification g Calculation
Fig. 11. R-Metric steps.
Source: Adapted
from [55].
1.0 1.0
0.9 0.9
S4
S1 S5
0.8 E“ 0.8
S2
0.7 @ 2 0.7
. ST
o 06 T 06 ﬂ
g S3 x s3
§ 0.5 § 0.5
F o ” 5 (]
o 04 RP o 04 RP
03 03
0.2 S5 0.2
01 041
0.0 0.0
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10

Objective 1

a Original Pareto-fronts

Objective 1

b Virtual Pareto-fronts

Fig. 12. R-Metric example.

Hypervolume with R-Metric (R-HV): is calculated considering
the sets PF,,,.,, generated by all algorithms [54]. At the end, the
average of the results obtained by calculating the R-HV in each set
is returned. Thus, higher values of R-HV present the best results,
that is, results that contain a set of solutions closer to the RP and
also contain a greater number of solutions with good diversity
within the ROL

Inverted Generational Distance with R-Metric (R-IGD): IGD is
a convergence measure that corresponds to the average Euclidean
distance between the Pareto-front approximation provided by
an algorithm and a reference Pareto-front [19]. IGD needs an
approximated (or real) Pareto-front to be calculated. Thus, some
steps of R-Metric are performed on PF,,,.,, such as the steps pivot
identification and trimming procedure. The remaining solutions are
considered as trimmed PF,,,,, and they are used to calculate
the R-IGD quality attribute. So, the lower R-IGD, the better the
results, that is, results that contain a set of solutions that are closer
to the trimmed PF,

approx*

Average Number of Solutions in the ROI: calculates how well
an algorithm can generate solutions in the ROI, that is, the main
idea of this quality attribute is to evaluate the algorithm’s ability
to obtain concentrated solutions that satisfy the user preferences.
of Targets in the Last Subset: counts the number of preferred
objectives in the last reduction. Ideally, this metric should return
the same number of preferred objectives defined by the user to
make sure the dimensionality reduction is moving towards user
preferences.

Reduction Capacity: calculates the percentage in which the
reduction mechanism reached the preferred objectives. For in-
stance, if this metric indicates that it has 100%, it means, in all
executions, the algorithm reaches the preferred objectives defined
by the user. Otherwise, this metric scores 0%. So, greater value
are better.

Reduction Efficiency: returns the number of reductions per-
formed until the final set of objectives includes just the pre-
ferred ones. A lower number is better since the algorithm has a
faster convergence, but 0 means the algorithm never reached the
preferred objectives.

Execution Time: measures the time spent in milliseconds on gen-
erating the final Pareto-front set. However, for preference-based

11

algorithms such as COR-NSGA-II, the time spent on providing the
user preferences is also taken into consideration. Thus, a lower
number is better.

It is important to notice that COR-NSGA-II generates a non-
dominated population with the same number of objectives used in
the last reduction. So, it makes necessary to evaluate PF,,, again
with the same objectives used at the beginning of the execution. To
cope with this, when COR-NSGA-II stops the reduction process, all
solutions in PF,,,, are re-evaluated with the same objectives described
in Section 3.2 and, so, it is possible to compare all algorithms once all
of them have solutions with the same set of objectives.

5.4. Definition of the Reference Points (RP)

A reference point is a tuple RP = (N, M, P, V, C, F, I) where the
sequence of elements represents either a value (or a point) in the
objective space in which the ROI should be generated, or a point in
which the algorithm should concentrate its search. So, in this tuple, N
is the value for the objective Number of Products, M is the value for Alive
Mutants, P is the value for Uncovered Pairs, V is the value for Similarity,
C is the value for Cost, F is the value for Unselected Features, and I is
the value for Unimportant Features.

Knowing this, two kinds of RPs were defined to be used by R-Metric
and R-NSGA-II algorithm in RQ2: (i) restricted, and (ii) compromised.
The former is responsible for representing a preference restricted to
a specific set of preferred objectives, and to the other non-preferred
objective “no preferences” are assigned. The latter is responsible for
also representing a preference for a specific set of preferred objectives,
but intermediate values for the other objectives are also defined. Thus,
two RPs were defined for each scenario described for Simulated Users
taking into account their preferred objectives.

Table 9 presents the RPs used to calculate the R-Metric and to
run R-NSGA-IL. For Scenario 2D, the restricted RP aims to express
preferences for Number of Products and Alive Mutants with 0.0 value,
and no preferences (a value of 1.0) for the other objectives, while
in the compromised RP, 0.5 is used when there are no preferences.
Concerning Scenario 3D, the RP aims to express the preference for Alive
Mutants, Similarity, and Cost objectives with 0.0 value for the restricted
RP and 1.0 for the non-preferred ones, while in the compromised RP,
0.5 is defined for the non-preferred objectives.

T. Ferreira et al.

Table 9
Reference points.

Scenario Type Reference point
. Restricted (0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0)
Scenario 2D
Compromised (0.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.5)
. Restricted (1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0)
Scenario 3D
Compromised (0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5)

Table 10
Parameter settings.
Parameter Algorithm Value
Population size All 112
Max evaluations All 134,400
Crossover operator All Single Point Crossover
Crossover probability All 0.9
Mutation operator All Bit Flip Crossover
Mutation probability All 0.005
€ R-NSGA-II 0.001
of items for evaluation COR-NSGA-II 5
of reductions COR-NSGA-II 10

5.5. Parameter settings

We adopted the type and values for crossover and mutation prob-
abilities as defined in related work [12]. Then, we adopt the same
probability rates for all algorithms, being 90% for crossover probability
and 0.5% for mutation one. Regarding the population size and the
maximum number of evaluations (considered as a stopping criterion), a
tuning phase was performed and we tested two settings for these values:
112 and 238 for population size and 134,400 (or each solution is going
to be evaluated 1200 times) and 238k (or each solution is going to
be evaluated 1000 times) for a maximum number of evaluations. The
population size was defined based on the NSGA-III mechanism. The
latter uses a set of reference points on a hyper-plan where, by using
p divisions for each objective, the number of reference points (and
consequently the population size) is calculated by H = (M +p”_1), where
M is the number of objectives [18].

Other specific parameters were also tuned. For example, ¢ for R-
NSGA-II, was evaluated with 0.0001 and 0.001 (the same in [12])
where this one controls the number of solutions inside the ROI. Con-
cerning COR-NSGA-II, the minimum confidence level (80% and 100%),
the number of items for evaluation (5 and 10 items) and the number
of reductions (5 and 10 ones) were also evaluated. In addition to this,
R-Metric requires a §, a parameter that specifies the ROI’s size. For this
work, the value of 0.3 was used. This value is the same used in the
previous work for the addressed problem [12].

It is also important to notice that for RQ1 and RQ2, COR-NSGA-II
divides the maximum number of evaluations by the number of reduc-
tions. It means COR-NSGA-II is going to perform the same number of
evaluations of other algorithms no matter the number of reductions. For
example, suppose we have 900 as a maximum number of evaluations
and COR-NSGA-II performs 3 reductions where each one runs the
optimization algorithm for 300 evaluations.

Thus, 30 independent runs were performed using the combination
of the parameters. After tuning, the best parameter settings were se-
lected based on the best average values of R-HV and R-IGD. At the end,
the values chosen are displayed in Table 10.

With the best configuration of parameters chosen, 30 independent
runs of each algorithm were performed for answering RQ1 and RQ2.
At the end, the set of non-repeated and non-dominated solutions was
obtained. As a statistical test, Kruskal-Wallis [56] with 95% signifi-
cance level was considered where the bold values in the tables represent
the best ones, and light gray cells represent values that are statistically
equivalent. Finally, the algorithms were executed in a machine with an
Intel(R) Core(TM) i7-5930K CPU 3.50 GHz with 40Gb RAM.

12

Information and Software Technology 152 (2022) 107031

6. Results

In this section we present and analyze the results in order to answer
our RQs.

6.1. RQI1: Sanity check

This RQ seeks to compare the results found by COR-NSGA-II to those
found by a random dimensionality reduction algorithm (or simply, a
random algorithm). The results found by COR-NSGA-II with 80% and
100% of minimum confidence level are presented, and concerning the
random algorithm, the results are shown with 5 and 10 reductions.
To ease understanding, we present the results of both experiments
(Scenarios 2D e 3D) in separated tables.

Related to Scenario 2D, Table 11 shows the mean values and stan-
dard deviations for each column for COR-NSGA-II and random algo-
rithm for Scenario 2D (Number of Product and Alive Mutants objectives
as preferred ones).

Table 11 shows COR-NSGA-II reaches the best performance in all
instances in which it can converge to the target objectives in 100% of
the executions. On the contrary, the random algorithm always reaches
just one objective in the last execution, and in most cases, this one is not
a preferred objective. So, we can conclude that the random algorithm
was the worst for this scenario.

Regarding the minimum confidence level used by COR-NSGA-II, the
performance was similar (statistically equivalent) for most instances,
except for James and CAS. In these ones, the COR-NSGA-II algo-
rithm with 80% of minimum confidence level reached the best results,
converging to the preferred objective in fewer reductions.

Then, we can observe that the sanity check has passed (i.e., COR-
NSGA-II outperforms the random algorithm by a large degree). Besides,
we can assume that the confidence level of 80% is better for this
scenario once it slightly scores a better performance compared to 100%,
by converging towards the preferred objectives quickly.

Table 12 shows the results for COR-NSGA-II and random algorithm
regarding Scenario 3D (Alive Mutants, Similarity, and Cost objectives as
preferred ones). COR-NSGA-II reaches the best performance in all in-
stances in which it can converge to the preferred objectives in 100% of
the executions. The random algorithm obtained a performance similar
to that one obtained in Scenario 2D. It presented the worst performance
by reducing the set to just one objective and this, in most cases, was
not the preferred objective. Concerning the minimum confidence level
used by COR-NSGA-II in this scenario, the performance was also similar
(statistically equivalent) for most instances, except again for James and
CAS. In these instances, COR-NSGA-II with 80% of confidence level
converged to the preferred objective with fewer reductions.

Summarizing the results found in this scenario, we can observe that
the sanity check has also passed. Besides, we can also assume (such
Scenario 2D) that the minimum confidence level of 80% is better for
the addressed problem once it slightly scores a better performance
compared to 100% (by converging to preferred objectives quickly, in
general, when compared to the other).

& Key findings: COR-NSGA-II passes the sanity check. It is capable
of reducing the problem dimensionality towards the user preferences
in all cases for both scenarios.

6.2. RQ2: Comparing COR-NSGA-II to MOEAs and MaOEAs

To answer RQ2, Table 13 shows the number of times that the algo-
rithms generated the best results for each quality indicator considering
all instances. However, the comprehensive results can be found in our
supplementary material [44].

T. Ferreira et al.

Information and Software Technology 152 (2022) 107031

Table 11
COR-NSGA-II vs. random algorithm in Scenario 2D.
Algorithm Reduction Size of the # of Targets in Reduction
efficiency last subset the Last Subset capacity
random-10 0.00 + 0.00 1.00 + 0.00 0.27 + 0.45 0.00% =+ 0.00
James random-5 0.00 + 0.00 1.03 + 0.18 0.40 + 0.50 0.00% =+ 0.00
cor-nsga-ii-0.8 1.70 + 0.47 2.00 + 0.00 2.00 + 0.00 100.00% +
0.00
cor-nsga-ii-1.0 2.03 + 0.32 2.00 + 0.00 2.00 + 0.00 100.00% =+
0.00
random-10 0.00 + 0.00 1.00 + 0.00 0.27 + 0.45 0.00% =+ 0.00
CAS random-5 0.00 + 0.00 1.00 + 0.00 0.33 + 0.48 0.00% =+ 0.00
cor-nsga-ii-0.8 1.53 + 0.51 2.00 + 0.00 2.00 + 0.00 100.00% +
0.00
cor-nsga-ii-1.0 1.63 + 0.49 2.00 + 0.00 2.00 + 0.00 100.00% =+
0.00
random-10 0.00 + 0.0 1.00 + 0.00 0.27 + 0.45 0.00% =+ 0.00
WS random-5 0.00 + 0.00 1.07 + 0.25 0.27 + 0.45 0.00% =+ 0.00
cor-nsga-ii-0.8 1.00 + 0.00 2.00 + 0.00 2.00 + 0.00 100.00% +
0.00
cor-nsga-ii-1.0 1.00 + 0.00 2.00 + 0.00 2.00 + 0.00 100.00% =+
0.00
random-10 0.00 + 0.00 1.00 + 0.00 0.13 + 0.35 0.00% =+ 0.00
E-Shop random-5 0.00 + 0.00 1.03 + 0.18 0.40 + 0.50 0.00% =+ 0.00
cor-nsga-ii-0.8 1.00 + 0.00 2.00 + 0.00 2.00 + 0.00 100.00% +
0.00
cor-nsga-ii-1.0 1.00 + 0.00 2.00 + 0.00 2.00 + 0.00 100.00% =+
0.00
random-10 0.00 + 0.00 1.00 + 0.00 0.40 + 0.50 0.00% =+ 0.00
Drupal random-5 0.00 + 0.00 1.00 + 0.00 0.20 + 0.41 0.00% =+ 0.00
cor-nsga-ii-0.8 1.00 + 0.00 2.00 + 0.00 2.00 + 0.00 100.00% +
0.00
cor-nsga-ii-1.0 1.00 + 0.00 2.00 + 0.00 2.00 + 0.00 100.00% =+
0.00
random-10 0.00 + 0.00 1.00 + 0.00 0.27 + 0.45 0.00% =+ 0.00
random-5 0.00 + 0.00 1.00 + 0.00 0.47 + 0.51 0.00% =+ 0.00
Smarthome .
cor-nsga-ii-0.8 1.00 + 0.00 2.00 + 0.00 2.00 + 0.00 100.00% =+
0.00
cor-nsga-ii-1.0 1.00 + 0.00 2.00 + 0.00 2.00 + 0.00 100.00% =+
0.00
Table 12
COR-NSGA-II vs. random algorithm in Scenario 3D.
Algorithm Reduction Size of the # of Targets in Reduction
efficiency last subset the Last Subset capacity
random-10 0.00 + 0.00 1.00 + 0.00 0.53 + 0.51 0.00% =+ 0.00
James random-5 0.00 + 0.00 1.00 + 0.00 0.40 + 0.50 0.00% =+ 0.00
cor-nsga-ii-0.8 1.83 + 0.53 3.00 + 0.00 3.00 + 0.00 100.00% + 0.00
cor-nsga-ii-1.0 2.07 + 0.25 3.00 + 0.00 3.00 + 0.00 100.00% =+ 0.00
random-10 0.00 + 0.00 1.00 + 0.00 0.43 + 0.50 0.00% + 0.00
CAS random-5 0.00 + 0.00 1.00 + 0.00 0.47 + 0.51 0.00% =+ 0.00
cor-nsga-ii-0.8 1.20 + 0.41 3.00 + 0.00 3.00 + 0.00 100.00% =+ 0.00
cor-nsga-ii-1.0 1.33 + 0.48 3.00 + 0.00 3.00 + 0.00 100.00% + 0.00
random-10 0.00 + 0.00 1.00 + 0.00 0.43 + 0.50 0.00% =+ 0.00
ws random-5 0.00 + 0.00 1.00 + 0.00 0.40 + 0.50 0.00% + 0.00
cor-nsga-ii-0.8 1.00 + 0.00 3.00 + 0.00 3.00 + 0.00 100.00% + 0.00
cor-nsga-ii-1.0 1.00 + 0.00 3.00 + 0.00 3.00 + 0.00 100.00% =+ 0.00
random-10 0.00 + 0.00 1.00 + 0.00 0.37 + 0.49 0.00% + 0.00
E-Shop random-Sﬁ 0.00 + 0.00 1.00 + 0.00 0.43 + 0.50 0.00% =+ 0.00
cor-nsga-ii-0.8 1.00 + 0.00 3.00 + 0.00 3.00 + 0.00 100.00% + 0.00
cor-nsga-ii-1.0 1.00 + 0.00 3.00 + 0.00 3.00 + 0.00 100.00% + 0.00
random-10 0.00 + 0.00 1.00 + 0.00 0.37 + 0.49 0.00% + 0.00
Drupal random-5 0.00 + 0.00 1.00 + 0.00 0.57 + 0.50 0.00% =+ 0.00
cor-nsga-ii-0.8 1.00 + 0.00 3.00 + 0.00 3.00 + 0.00 100.00% =+ 0.00
cor-nsga-ii-1.0 1.00 + 0.00 3.00 + 0.00 3.00 + 0.00 100.00% + 0.00
random-10 0.00 + 0.00 1.00 + 0.00 0.33 + 0.48 0.00% =+ 0.00
Smarthome random—Sﬁ 0.00 + 0.00 1.07 + 0.25 0.50 + 0.57 0.00% + 0.00
cor-nsga-ii-0.8 1.00 = 0.00 3.00 + 0.00 3.00 + 0.00 100.00% =+ 0.00
cor-nsga-ii-1.0 1.00 + 0.00 3.00 + 0.00 3.00 + 0.00 100.00% =+ 0.00

Regarding COR-NSGA-II, NSGA-II and NSGA-III, Table 13 shows
that COR-NSGA-II generates the best results for all scenarios and most
quality indicators. Just for Scenario 3D and the largest instances, the
performance of COR-NSGA-II are slightly worst, but it takes a reduced

time to execute and generates a lower number of solutions in the ROL.
The table also presents that COR-NSGA-II can outperform the R-NSGA-
IT algorithm in all scenarios. Specifically for Scenario 3D and the largest
instances, the results found by COR-NSGA-II is slightly worst (similar to

13

T. Ferreira et al.

Table 13
COR-NSGA-II vs. MOEAs and MaOEAs.
Algorithm R-HV R-IGD # of Sol. # of Sol. Execution
in the ROI time (ms)
COR-NSGA-II 7 9 12 12 12
2D NSGA-II 4 3 0 0 0
NSGA-III 1 4 0 0 0
COR-NSGA-II 8 7 6 10 12
3D NSGA-I 4 5 0 2 0
NSGA-III 0 0 6 0 0
Algorithm R-HV R-IGD # of Sol. # of Sol. Execution
in the ROI time (ms)
COR-NSGA-II 8 10 12 12 12
» R-NSGA-II 4 4 0 0 0
3D COR-NSGA-II 8 8 12 12 12
R-NSGA-II 4 4 0 0 0
Algorithm R-HV R-IGD # of Sol. # of Sol. Execution
in the ROI time (ms)
COR-NSGA-II 9 11 12 11 12
» PCA-NSGA-II 3 3 0 1 0
3D COR-NSGA-II 8 8 10 10 12
PCA-NSGA-II 4 4 2 2 0

those found when it compared to NSGA-II and NSGA-III). However, it
maintains spending less Execution Time (around 5 h on average lesser
than R-NSGA-II), and generating a lower number of solutions in the ROI
(around 100 solutions on average lesser than R-NSGA-II). More details
in [44].

Finally, Table 13 describes that COR-NSGA-II reaches the best val-
ues for all scenarios when compared to PCA-NSGA-II. Considering the
Execution Time, it is important to notice that the proposed algorithm
reaches the lowest execution time where, in some cases, this one can
be less than half of the time spent by other algorithms.

& Key findings: COR-NSGA-II reaches, in general, fewer solutions
in the ROI and these ones have a good performance when compared
to those found by the other algorithms. On the one hand, COR-
NSGA-II outperforms the other algorithms in most instances. On the
other hand, its performance is slightly decreased when the Compro-
mised RP and Scenario 3D with redundant objectives (not necessarily
together) are considered.

6.3. RQ3: Evaluating The solutions

RQ3 evaluates the usefulness of the COR-NSGA-II solutions ac-
cording to the user preferences compared to those found MOEAs and
MaOEAs. For answering this RQ, the users were required to run Nau-
tilus [21] and pick a solution up from the population generated by COR-
NSGA-II, R-NSGA-II, and NSGA-II (the best algorithms found in RQ2).
Also, they were required to, manually, provide a solution (Nautilus also
supports this process).

Before performing the experiment, the users were required to select
at most 4 objectives (out of 7) as preferred ones. This was required
seeking to guarantee COR-NSGA-II will perform some reduction. Fig. 13
shows the preferred objectives from the user’s point of view.

On the one hand, 11 users (91% of them) selected Cost as the
preferred objective, followed by Number of Products selected by 10 users
(or 83.3%). On the other hand, Unselected Features and Uncovered Pairs
were less preferred by the users. Details about the set of preferred
objectives selected by the participants and the final set of objectives
generated by COR-NSGA-II are shown in [44].

14

Information and Software Technology 152 (2022) 107031

Number of o,
Products 10-83.3%
Alive Mutants 5-41.7%
Uncovered Pairs 2-16.7%
8
3 Similarity 6 - 50.0%
g
8
© Cost 11-91.7%
Unselected
Features 3-125.0%
Unimportant
Features 4-133.3%
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

of Participants

Fig. 13. Preferred objectives from the user’s point of view.

Table 14

COR-NSGA-II’s results for each participant.
of Preferred # of
Objectives Reductions

Size of the Last
Subset

Part. # of targets in

the Last Subset

#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12

N N N N N N N N U RN
NN - E AN N W
A UTONUTUTW W AN WN W
AR DR DA DRWWANWNN

Table 14 presents detailed information for each participant about
the # of Preferred Objectives, # of Reductions performed by COR-
NSGA-IL, Size of the Last Subset (or the # of objectives optimized during
the last algorithm execution), and # of Targets in the Last Subset (or
preferred objectives during the last algorithm execution).

Table 14 shows that 3 users selected 2 objectives, 1 user selected
3 objective as preferred, and 8 ones selected 4 objectives. The partic-
ipants #2, #3, #4, #5, and #12 selected a solution when in the last
execution, the set of objectives optimized contained just the preferred
ones (Size and # of Targets in the Last Subset are the same). However,
the participants #1, #8, #9, #10, and #11 were able to pick a solution
up before COR-NSGA-II reaches this convergence.

After interacting with Nautilus and selecting a good solution for
each algorithm, we asked the users in a post-survey to describe how
difficult was the selection of this solution. Fig. 14 shows the feedback
captured from the questionnaire. This figure describes that 8 users
have chosen the option “Easy” and “Very Easy” for COR-NSGA-II, 4
for the NSGA-II and R-NSGA-II algorithms. In the last position, the
manual selection appears as the most difficult (8 users). Analyzing the
motivation, some participants claimed COR-NSGA-II generated fewer
solutions and other ones claimed COR-NSGA-II took less execution time
compared to the other algorithms. With this, we asked the users to rank
the algorithm based on his/her preferences where 1 means the best one
and so on. The information is displayed in Fig. 15.

Fig. 15 shows that COR-NSGA-II was ranked as the best algorithm
by 10 users (or around 83%). NSGA-II was ranked as the best 2 times.
As expected, the manual selection received the lowest score in this
experiment, being ranked in the last position by 9 users (around 80%).
However, aiming to verify the dependence on the execution order,
Table 15 shows the best algorithm by group.

Two users from Group 4 selected the NSGA-II algorithm as the best
one. In such a group, COR-NSGA-II was the first algorithm evaluated.
We suppose that the results found by COR-NSGA-II influenced the

T. Ferreira et al.

W Very Easy

Easy Neutral Difficult [l Very Difficult
Manual

R-NSGA-II

NSGA-II

COR-NSGA-II
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fig. 14. Easiest algorithms from the user’s point of view.
W 2 3 4
COR-NSGA-II 2
R-NSGA-II 9 3
NSGA-II 5 4 1
Manual 2 9
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fig. 15. Best algorithms from the user’s point of view.
Table 15
Best algorithm by group.
Group 1 Group 2 Group 3 Group 4
COR-NSGA-II COR-NSGA-II COR-NSGA-II COR-NSGA-II
NSGA-II

user decision about the solutions generated by the other algorithms,
i.e., they used the solution selected by applying COR-NSGA-II to guide
his/her preferences in the following algorithms and this can be a
motivation for the other algorithms appear as good as COR-NSGA-
II. However, more experiments must be performed to validate our
hypothesis. A fact that can corroborate this hypothesis is that we asked
the users if the execution order in each group (described in Table 8)
impacted their responses. Around 58.3% answered positively.

& Key findings: COR-NSGA-II can help the user to find useful solu-
tions for the addressed problem since 10 out of 12 users defined that
the solutions found by COR-NSGA-II were the best ones compared to
other algorithms and it was also easy to select them.

7. Implications and future work

As presented in the previous section, COR-NSGA-II can generate
fewer solutions, taking less execution time for searching them, but
maintaining the quality attributes in a competitive way. However, in
this section, we discuss some implications of our experimental study
results.

As expected in RQ1, the random dimensionality reduction algo-
rithm was the worst one for the addressed problem once it does not take
into account the user preferences. In all cases, this one ends the search

15

Information and Software Technology 152 (2022) 107031

process simply because it reached the minimum number of objectives
(in case, a single one). On the contrary, COR-NSGA-II reached the
preferred objectives, on average, in the second reduction. As in this
experiment a user simulator was used and this one is responsible
for selecting randomly solutions in the Pareto-front, the number of
reductions could be less if a kind of smart mechanism were used in this
task. Also, the execution time they take to execute should be evaluated
in future experiments.

In RQ2, in most cases, COR-NSGA-II found better results for the ad-
dressed problems. However, it is possible to notice a slightly decreasing
of the values regarding R-HV and R-IGD when the number of preferred
objectives increases. We suppose that the presence of redundant objec-
tives in this set can affect the algorithm performance. In addition to
this, we also suppose that if the set of preferred objectives has almost
the same size as the original set of objectives, the performance must
not be competitive since COR-NSGA-II may not perform multiple re-
ductions. New experiments should be performed in the future to verify
this assumption with different scenarios. Although this can happen,
the difference between COR-NSGA-II and the other algorithms remains
small and it is a good trade-off. For example, considering R-NSGA-II in
Scenario 3D, the performance of COR-NSGA-II was around 3% worse
than the former for the Smarthome instance (the largest one). However,
for the same context, R-NSGA-II took 8 h on average to find a solution,
while COR-NSGA-II, with its dimensionality reduction mechanism, took
3.2 h on average, i.e., a reduction in the execution time of more than
50%.

This is another important finding of our experiment. COR-NSGA-
II took less time in all instances and compared with algorithms, and
the difference among the algorithms increases when the instance size
increases as well. This becomes COR-NSGA-II an important algorithm
in the context of where the number of products to be selected is
huge. However, future experiments might confirm these results spe-
cially because this RQ uses a simulated user. Also, the performance of
COR-NSGA-II remains good when the Compromised RP is considered.
Different from Restricted RP, the former considers 0.5 in the RP for the
non-preferred objectives (that is, although a small value, it still is a user
preference for this objective). However, COR-NSGA-II does not take
into account this concept, that is, for the algorithm, if an objective to be
optimized is not preferred, it is simply discarded. So, more research in
the future should evaluate the performance of the proposed algorithm
in the context where there are some small preferences for non-preferred
objectives and some random reference points were provided. Moreover,
the use of COR-NSGA-II is recommended in the context where all
objectives should be optimized, but some of them are preferred. If,
in the user’s point of view, all objectives have the same preferences,
traditional MOEAs and MaOEAs should be applied. In addition to this,
future experiments should be performed to verify, in case all objectives
should be removed, if to find the closest value to minConf could
perform better.

Finally, concerning to RQ3, two unexpected situations were iden-
tified during the performance of the experiments. The first situation
occurs when a user selected two redundant objectives as preferred.
Because of this, the manual mechanism for selecting a solution was
considered by this user better than the optimization algorithms used
in this experiment (although the user took more than 20 min to pick a
solution up in using the manual mechanism). Another finding was that
some users took more than 10 min exploring the Pareto-front, providing
his/her preferences. Since the experiment did not set a limit for the
users to express his/her preferences in COR-NSGA-II, some users spent
time providing his/her preferences as much as they can. Thus, seeking
to improve this process, it is necessary in a future work, to study a kind
of limit for the number of preferences and, also, to propose a way to
deal with redundant objectives in the set of preferred ones. Future work
should also apply some techniques for data visualization or usability in
order to improve the selection of user preferences.

T. Ferreira et al.

8. Threats to validity

Internal Validity. Regarding RPs used in RQ2, the results are
dependent on the reference points used. These ones were selected
considering our previous knowledge about the Pareto-front and the set
of preferred objectives. So, aiming to mitigate this threat, two kinds of
RPs were considered in which the non-preferred objectives in the first
RP do not have any preferences, while for the second one compromised
values (0.5 to be exact) are provided to non-preferred objectives. To
better evaluate the impact of the provided RPs, we need to conduct
future experiments, even with random RPs. Furthermore, the experi-
ments with users showed that the algorithm is highly dependent on
the context in which it is applied and the set of preferred objectives
defined by the user, especially because the participants do not work
in the system on which the FMs were based. Hence, all users received
the same information and, before performing the tests, all of them took
part in a preliminary test to learn how to use the tool, and prevent any
effects of ignorance on their usage. We use the tool FMTS to calculate
the objective values of our problem. FMTS makes use of the FaMa
framework to deal with resource model constraints and derive products.
However, FaMa has some limitations to work with large FMs such as
Drupal and Smarthome. To mitigate this threat, the user can set a
number n of products to be used for selection. Other representations
for the problem can be used in the future, as well as other analyzers
and tools for setting “n” more accurately, such as SAT solver and
Glencoe [57], respectively. The randomly selected ‘“n” products could
also be a threat to validation. To mitigate this in our experiments, we
considered “n” values that are proportional to the number of products
and, at the end, the mutation score value was around 97% for each FM,
i.e., 3% of mutants were discarded considering the percentage found for
the smaller FMs determined using the complete set of products.

Construct Validity. We used questionnaires to assess the compre-
hension of the solution selection process and the participants’ answers
to these questionnaires were evaluated by comparing the answers with
the quality metrics for them. This design choice avoided as much
as possible any subjective evaluation. Thus, the questionnaires were
defined to be complex enough without being too obvious.

External Validity. We tested COR-NSGA-II in six different instances
of SPL Testing. Even though these instances are evaluated in other
studies of the literature, we cannot state that this is enough to gen-
eralize the results. Besides, the cost and importance (both of them
were randomly defined), and the size of the instances may not reflect
real-world FMs. To minimize this threat, we tried to evaluate FMs of
several sizes (including two with more the 11k products to be selected)
and domains. Regarding the larger instances, we consider that 11k of
products to be selected were adequate proportionally to the mutation
score (around 97%) chosen for the experiments performed in this work.
However, a greater number for large SPLs should be evaluated in a
future experiment. It is expected to have a similar performance and
good results with acceptable time. Regarding the definition of the
scenarios, the selection of the objective should be a threat. Aiming to
minimize it, we tried to select them based on redundancy or conflicting
nature.

Conclusion Validity. The parameter settings used by the algo-
rithms can be a threat. The number of evaluations is the same for
everyone, even COR-NSGA-II that applies dimensionality reduction.
Different values, especially in the larger instances, could result in
different, perhaps better, capacity of reducing towards user preferences.
To address the stochastic nature of the evolutionary algorithms, all the
algorithms were performed 30 times for each instance and reference
points to answer RQ1 and RQ2, while capturing the arithmetic mean
and standard deviation of the metrics. Also, Kruskal-Wallis test with
95% significance level was used to compare the results found by the
algorithms. This test is quite robust and it has been extensively used in
the past to conduct similar analyses.

16

Information and Software Technology 152 (2022) 107031
9. Concluding remarks

This work presented COR-NSGA-II, an algorithm that reduces the
number of objectives to be optimized towards the user needs based on
a confidence level for each objective optimized. As main characteristics,
COR-NSGA-II is an algorithm that requires the user preferences inter-
actively (or in-the-loop) and reduces the number of objectives during
the solution generation process. The algorithm shows to the user the
current set of non-dominated solutions and, at this point, the user can
express his/her preferences about them by using an ordinal scale. For
assessing the feasibility of COR-NSGA-II, multiple experiments were
performed using six different FMs, two types of reference points, five
algorithms, and two scenarios.

We compared COR-NSGA-II to a random dimensionality objective
algorithm and concluded that the proposed algorithm is, in fact, ca-
pable of guiding the search process to the objectives preferred by the
users. Also, the results found by COR-NSGA-II were compared to those
found by MOEAs and MaOEAs. By using several quality indicators, we
observed that COR-NSGA-II, in most instances and scenarios, obtained
the best results or results statistically equivalent to the algorithms
evaluated, even when the Compromised RP is considered. In this sense,
we can conclude that COR-NSGA-II, indeed, generates a small set of
good solutions taking less time to execute and, mainly, incorporating
the user preferences. Besides, a group of users was invited to optimize
a problem instance and, the great majority of the users, answered that
it is easier to pick a solution up generated by COR-NSGA-II, and chose
this algorithm as the best compared with the other ones.

Hence, considering the evaluation done in this work and the an-
swers found for the research questions, we can conclude that COR-
NSGA-II is capable of quickly generating a small set of solutions that
satisfy the user preferences, still keeping the solutions as good as
those generated by MOEAs and MaOEAs used in the VTSPL literature.
Future work include (i) to perform more empirical study to evaluate
the scalability of COR-NSGA-II in other FMs used in the industry; (ii)
to evaluate COR-NSGA-II in an environment in which the number of
reductions is limited; (iii) to study new values for confidence level
for removing an objective and increase the feedback options used by
COR-NSGA-II; (iv) to apply COR-NSGA-II to other SE problems; and (v)
to extend COR-NSGA-II with other optimization algorithms as search
engine.

CRediT authorship contribution statement

Thiago Ferreira: Conceptualization, Methodology, Formal analysis,
Investigation, Data curation, Software, Writing — original draft, For-
mal analysis, Validation, Writing — review & editing. Silvia Regina
Vergilio: Conceptualization, Data curation, Validation, Investigation,
Methodology, Writing — review & editing, Supervision, Project ad-
ministration, Funding acquisition. Marouane Kessentini: Validation,
Writing — review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Data availability

I have shared the link to our data/code in the paper

Acknowledgments

This work is supported by CAPES, Brazil and CNPq, Brazil, grants:
307762/2015-7 and 305968/2018-1.

T. Ferreira et al.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M.B. Cohen, M.B. Dwyer, J. Shi, Coverage and adequacy in software product
line testing, in: Proceedings of the 15th International Symposium on Software
Testing and Analysis (ISSTA’ 06), ACM, Portland, USA, 2006, pp. 53-63.

M. Harman, B.F. Jones, Search-based software engineering, Inf. Softw. Technol.
43 (2001) 833-839.

S. Wang, S. Ali, A. Gotlieb, Minimizing test suites in software product lines
using weight-based genetic algorithms, in: Proceedings of the 15th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO ’13),
ACM, Amsterdam, The Netherlands, 2013, pp. 1493-1500.

S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, M. Liaaen, Multi-objective
test prioritization in software product line testing: An industrial case study, in:
Proceedings of the 18th International Software Product Line Conference (SPLC
’14), ACM, Florence, Italy, 2014, pp. 32-41.

F. Ensan, E. Bagheri, D. GaSevi¢, Evolutionary search-based test generation for
software product line feature models, in: Proceedings of the 25th International
Conference on Advanced Information Systems Engineering (CAiSE ’13), Springer,
Valencia, Spain, 2012, pp. 613-628.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y.L. Traon, Multi-objective test
generation for software product lines, in: Proceedings of the 17th International
Software Product Line Conference (SPLC ’13), ACM, Tokyo, Japan, 2013, pp.
62-71.

C. Henard, M. Papadakis, Y. Le Traon, Mutation-based generation of software
product line test configurations, in: Proceedings of the 6th International Sym-
posium on Search Based Software Engineering (SSBSE ’14), Springer, Fortaleza,
Brazil, 2014, pp. 92-106.

R.E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, E. Alba, Multi-objective
optimal test suite computation for software product line pairwise testing, in:
Proceedings of the 29th IEEE International Conference on Software Maintenance
(ICSM ’13), IEEE, Eindhoven, The Netherlands, 2013, pp. 404-407.

R.A. Matnei-Filho, S.R. Vergilio, A mutation and multi-objective test data
generation approach for feature testing of software product lines, in: Proceedings
of the 29th Brazilian Symposium on Software Engineering (SBES’15), IEEE
Computer Society, Belo Horizonte, Brazil, 2015, pp. 21-30.

A. Strickler, J.A. Prado Lima, S.R. Vergilio, A. Pozo, Deriving products for
variability test of feature models with a hyper-heuristic approach, Appl. Soft
Comput. 49 (2016) 1232-1242.

T. do Nascimento Ferreira, J.A.P. Lima, A. Strickler, J.N. Kuk, S.R. Vergilio, A.
Pozo, Hyper-heuristic based product selection for software product line testing,
IEEE Comput. Intell. Mag. 12 (2) (2017) 34-45.

H.L. Jakubovski-Filho, T. do Nascimento Ferreira, S.R. Vergilio, Preference based
multi-objective algorithms applied to the variability testing of software product
lines, J. Syst. Softw. 151 (2018) 194-209.

T. do Nascimento Ferreira, S.R. Vergilio, M. Kessentini, Applying many-objective
algorithms to the variability test of software product lines, in: Proceedings of the
5th Brazilian Symposium on Systematic and Automated Software Testing (SAST
’20), Natal, Brazil, 2020, pp. 11-20.

J. Parejo, A. Sénchez, S. Segura, A. Ruiz-Cortés, R. Lopez-Herrejon, A. Egyed,
Multi-objective test case prioritization in highly configurable systems: A case
study, J. Syst. Softw. 122 (2016) 287-310.

M.W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. O Cinnéide, High dimen-
sional search-based software engineering: Finding tradeoffs among 15 objectives
for automating software refactoring using NSGA-III, in: Proceedings of the
16th Annual Conference Companion on Genetic and Evolutionary Computation
(GECCO ’14), ACM, Vancouver, Canada, 2014, pp. 1263-1270.

A.S. Sayyad, H. Ammar, Pareto-Optimal search-based software engineering (POS-
BSE): A literature survey, in: Proceedings of the 2nd International Workshop on
Realizing Artificial Intelligence Synergies in Software Engineering (RAISE ’03),
IEEE, San Francisco, USA, 2013, pp. 21-27.

T.E. Colanzi, W.K. Assuncdo, S.R. Vergilio, P.R. Farah, G. Guizzo, The symposium
on search-based software engineering: Past, present and future, Inf. Softw.
Technol. 127 (2020) 106372.

K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems
with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2014) 577-601.

B. Li, J. Li, K. Tang, X. Yao, Many-objective evolutionary algorithms: A survey,
ACM Comput. Surv. 48 (1) (2015) 13.

K. Deb, D. Saxena, Searching for Pareto-optimal solutions through dimensionality
reduction for certain large-dimensional multi-objective optimization problems, in:
Proceedings of the 8th IEEE Congress on Evolutionary Computation (CEC ’06),
Vancouver, Canada, 2006, pp. 3352-3360.

T. do Nascimento Ferreira, S.R. Vergilio, M. Kessentini, Nautilus: An interactive
plug and play search based software engineering framework, IEEE Softw. (2020).
F.J. Van der Linden, K. Schmid, E. Rommes, Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering, Springer Science &
Business Media, 2007.

G. Perrouin, S. Sen, J. Klein, B. Baudry, Y. Le Traon, Automated and scalable
t-wise test case generation strategies for software product lines, in: Proceedings
of the 3rd IEEE International Conference on Software Testing, Verification and
Validation (ICST ’10), IEEE, Paris, France, 2010, pp. 459-468.

17

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Information and Software Technology 152 (2022) 107031

C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, Y. Le Traon,
Bypassing the combinatorial explosion: Using similarity to generate and prioritize
t-wise test configurations for software product lines, IEEE Trans. Softw. Eng. 40
(7) (2014) 650-670.

S. Oster, M. Zink, M. Lochau, M. Grechanik, Pairwise feature-interaction testing
for SPLs: Potentials and limitations, in: Proceedings of the 15th International
Software Product Line Conference (SPLC ’11), ACM, Munich, Germany, 2011, p.
6.

E. Uzuncaova, S. Khurshid, D. Batory, Incremental test generation for software
product lines, IEEE Trans. Softw. Eng. 36 (3) (2010) 309-322.

D.M. Cohen, S.R. Dalal, J. Parelius, G.C. Patton, The combinatorial design
approach to automatic test generation, IEEE Softw. 13 (5) (1996) 83-88.

D. Reuling, J. Biirdek, S. Rotdrmel, M. Lochau, U. Kelter, Fault-based product-
line testing: Effective sample generation based on feature-diagram mutation, in:
Proceedings of the 19th International Software Product Line Conference (SPLC
’15), ACM, Nashville, Tennessee, 2015, pp. 131-140.

P. Arcaini, A. Gargantini, P. Vavassori, Generating tests for detecting faults in
feature models, in: Proceedings of the 8th IEEE International Conference on
Software Testing, Verification and Validation (ICST ’15), IEEE, Graz, Austria,
2015, pp. 1-10.

J.M. Ferreira, S.R. Vergilio, M.A. Quinaia, A mutation approach to feature testing
of software product lines, in: Proceedings of the 25th International Conference on
Software Engineering and Knowledge Engineering (SEKE’13), Knowledge Systems
Institute Graduate School, Boston, USA, 2013, pp. 232-237.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y. Le Traon, Assessing software
product line testing via model-based mutation: An application to similarity
testing, in: Proceedings of the 6th IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW ’13), IEEE, Luxembourg,
2013, pp. 188-197.

K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Vol. 16,
John Wiley & Sons, 2001.

E.K. Burke, G. Kendall, Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques, Springer, 2005.

A. Zhou, B. Qu, H. Li, S. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective
evolutionary algorithms: A survey of the state of the art, Swarm Evol. Comput.
1 (1) (2011) 32-49.

R. Akbari, R. Hedayatzadeh, K. Ziarati, B. Hassanizadeh, A multi-objective
artificial bee colony algorithm, Swarm Evol. Comput. 2 (2012) 39-52.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197.
C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, L. Salomon, Performance indicators
in multiobjective optimization, European J. Oper. Res. 292 (2) (2021) 397-422.
H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part II: Handling con-
straints and extending to an adaptive approach, IEEE Trans. Evol. Comput. 18
(4) (2014) 602-622.

H. Abdi, L.J. Williams, Principal component analysis, Wiley Interdiscip. Rev.
Comput. Stat. 2 (4) (2010) 433-459.

K. Deb, J. Sundar, U. Bhaskara, S. Chaudhuri, Reference point based multi-
objective optimization using evolutionary algorithms, Int. J. Comput. Intell. Res.
2 (3) (2006) 27-286.

C.H.P. Kim, D.S. Batory, S. Khurshid, Reducing combinatorics in testing product
lines, in: Proceedings of the Tenth International Conference on Aspect-Oriented
Software Development, 2011, pp. 57-68.

C.H.P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros, M.
d’Amorim, SPLat: Lightweight dynamic analysis for reducing combinatorics in
testing configurable systems, in: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, 2013, pp. 257-267.

P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, A. Jimenez, Fama frame-
work, in: Proceedings of the 12th International Software Product Line Conference
(SPLC ’08), IEEE, Limerick, Ireland, 2008, p. 359.

T. do N. Ferreira, S.R. Vergilio, M. Kessentini, Supplementary material, 2021,
https://nautilus-framework.github.io/cor-nsga-ii/.

T. do Nascimento Ferreira, J.N. Kuk, A. Pozo, S.R. Vergilio, Product selection
based on upper confidence bound MOEA/D-DRA for testing software product
lines, in: Proceedings of the 18th IEEE Congress on Evolutionary Computation
(CEC ’16), IEEE, Vancouver, Canada, 2016, pp. 4135-4142.

H.L. Jakubovski-Filho, T. do Nascimento Ferreira, S.R. Vergilio, Multiple ob-
jective test set selection for software product line testing: Evaluating different
preference-based algorithms, in: Proceedings of the XXXII Brazilian Symposium
on Software Engineering (SBES ’18), ACM, Sao Carlos, Brazil, 2018, pp. 162-171.
D. Benavides, S. Trujillo, P. Trinidad, On the modularization of feature models,
in: Proceedings of the 1st European Workshop on Model Transformation (CMT
’06), Bilbao, Spain, 2005, p. 134.

S. WeiBleder, D. Sokenou, B. Schlingloff, Reusing state machines for automatic
test generation in product lines, in: Proceedings of the 1st Workshop on
Model-Based Testing in Practice (MoTiP ’08), Berlin, Germany, 2008, pp. 19-28.
D. Beuche, M. Dalgarno, Software product line engineering with feature models,
Overload J. 78 (2007) 5-8.

http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb19
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb19
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb19
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb21
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb21
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb21
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb26
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb26
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb26
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb33
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb33
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb33
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb39
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb39
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb39
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
https://nautilus-framework.github.io/cor-nsga-ii/
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb49
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb49
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb49

T. Ferreira et al.

[50]

[51]

[52]

[53]

K.C. Kang, J. Lee, P. Donohoe, Feature-oriented project line engineering, IEEE
Softw. 19 (4) (2002) 58-65.

A.A. Aratijo, M. Paixdo, Machine learning for user modeling in an interactive
genetic algorithm for the next release problem, in: Proceedings of the 6th
International Symposium on Search Based Software Engineering (SSBSE ’14),
Springer, Fortaleza, Brazil, 2014, pp. 228-233.

M. Shackelford, D.W. Corne, A Technique for Evaluation of Interactive
Evolutionary Systems, Springer, 2004, pp. 197-208.

T. do Nascimento Ferreira, A.A. Araijo, A.D. Basilio-Neto, J.T. de Souza,
Incorporating user preferences in ant colony optimization for the next release
problem, Appl. Soft Comput. 49 (2016) 1283-1296.

18

[54]

[55]

[56]

[57]

Information and Software Technology 152 (2022) 107031

E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications, (Ph.D. thesis), Citeseer, 1999.

K. Li, K. Deb, X. Yao, R-metric: Evaluating the performance of preference-based
evolutionary multiobjective optimization using reference points, IEEE Trans.
Evol. Comput. 22 (6) (2017) 821-835.

R. Kuhn, R. Kacker, Y. Lei, J. Hunter, Combinatorial software testing, Computer
42 (8) (2009) 94-96.

R. Heradio, D. Fernandez-Amoros, J.A. Galindo, D. Benavides, Uniform and
scalable SAT-sampling for configurable systems, in: Proceedings of the 24th ACM
Conference on Systems and Software Product Line (SPLC ’20), ACM, Montreal,
Canada, 2020, pp. 1-11.

http://refhub.elsevier.com/S0950-5849(22)00150-1/sb50
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb50
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb50
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb54
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb54
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb54
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb56
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb56
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb56
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57

	Variability testing of software product line: A preference-based dimensionality reduction approach
	Introduction
	Background
	Software product line testing
	Pairwise testing in the FM context
	Mutation testing in the FM context

	Optimization algorithms

	Variability testing of software product line
	Related work
	Problem formulation adopted

	Confidence-based objective reduction NSGA-II
	Confidence-based selection method

	Empirical evaluation setup
	Target feature models
	Users
	Quality indicators
	Definition of the Reference Points (RP)
	Parameter settings

	Results
	RQ1: Sanity check
	RQ2: Comparing COR-NSGA-II to MOEAs and MaOEAs
	RQ3: Evaluating The solutions

	Implications and future work
	Threats to validity
	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

