
Information and Software Technology 152 (2022) 107031

A
0

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Variability testing of software product line: A preference-based
dimensionality reduction approach
Thiago Ferreira a,∗, Silvia Regina Vergilio b, Marouane Kessentini c
a College of Innovation & Technology, University of Michigan-Flint, Flint, USA
b Computer Science Department, Federal University of Paraná, Curitiba, Brazil
c School of Engineering and Computer Science, Oakland University, Rochester, USA

A R T I C L E I N F O

Keywords:
Spl testing
Search-based software engineering
Preference-based algorithms
Dimensionality reduction

A B S T R A C T

Context: Multi- and many-evolutionary algorithms have been applied to derive products for the variability
testing of Software Product Lines (SPLs). This problem refers to the selection of an adequate product set to
test a SPL by optimizing some objectives related to the number of products to be tested, testing criteria to be
satisfied, and revealed faults. However, some problems emerge when the number of objectives to be optimized
increases, for example: the solutions generated by the optimization algorithms become incomparable, designing
a Pareto-front in this context requires a large number of solutions, and the visualization of such solutions
requires special techniques. Several techniques are proposed to tackle this problem, such as decomposition
and algorithms based on indicators. Among them, algorithms based on dimensionality reduction and user
preferences are widely used, but there are no studies in the literature investigating the usage of both in a
combined way.
Objective: In light of this, we introduce COR-NSGA-II (Confidence-based Objective Reduction NSGA-II).
COR-NSGA-II defines for each objective a confidence-level calculated with the user preferences provided
interactively. The objectives with higher values of confidence are removed from the next algorithm execution.
Method: For assessing the feasibility of COR-NSGA-II, experiments were conducted by using six different SPLs,
seven objectives, two types of reference points representing the user preferences, and two scenarios to simulate
different user profiles.
Results: COR-NSGA-II is evaluated against four algorithms explored in the literature for the problem, and
outperforms most of them according to R-HV and R-IGD. It takes less time to execute and generates a reduced
number of solutions, all of them satisfying the user preferences.
Conclusion: A qualitative analysis performed with 12 potential users shows that the task of selecting a solution
generated by COR-NSGA-II is easier than selecting a solution generated by the other algorithms.
1. Introduction

The Variability Testing of Software Product Line (VTSPL) refers
to selecting test configurations – products – usually derived from the
SPL variability model, such as the Feature Model (FM). Ideally, all
possible products should be tested, but this is many times impracticable
because the number of products grows exponentially with the number
of features [1]. In this way, only a set of the most representative
products should be selected, usually considering factors such as cost,
the number of revealed faults, and tested features.

In the literature, the VTSPL problem has been addressed in the
Search-based Software Engineering (SBSE) field [2], which applies
search-based techniques to solve different optimization problems from
the Software Engineering (SE) area. We can find many formulations

∗ Corresponding author.
E-mail addresses: thiagod@umich.edu (T. Ferreira), silvia@inf.ufpr.br (S.R. Vergilio), marouane@umich.edu (M. Kessentini).

for the VTSPL problem [3–12] where the authors suggest optimizing
distinct objectives (we identified at least seven objectives) and applying
different algorithms, mainly evolutionary ones. However, our recent
paper [13] investigated seven objective functions for this problem, and
the results showed that the optimization algorithms such as NSGA-
III and PCA-NSGA-II took up to 15 h to find suitable solutions on
large feature models such as Drupal [14]. Also, they generated many
solutions in the final Pareto-front, which could lead the user to spend
much time finding suitable solutions for his/her context. Consequently,
the user could even reject such solutions since they were generated
without his/her feedback.

Problems like this, impacted by three or more objectives are called
many-objective and are very common in SE where most of them are
vailable online 6 August 2022
950-5849/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2022.107031
eceived 15 September 2021; Received in revised form 28 July 2022; Accepted 30
 July 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:thiagod@umich.edu
mailto:silvia@inf.ufpr.br
mailto:marouane@umich.edu
https://doi.org/10.1016/j.infsof.2022.107031
https://doi.org/10.1016/j.infsof.2022.107031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107031&domain=pdf

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

c
w
N

a
M
N
N
p
t
A
t
I
a
f

2

2

p
p
t
f
t
F
m
a
c
S

a
F
m

naturally complex and many conflicting objective functions need to be
optimized at the same time, as pointed out by Mkaouer et al. [15].
However, a survey [16] reports that 50% of the proposed algorithms
address SE problems from only a bi-objective perspective, 30% consider
three objectives, and 20% of the existing studies address more than four
objectives. Multi-Objective Evolutionary Algorithms (MOEAs) are the
most applied [17].

As claimed by Mkaouer et al. [15], a possible reason why SE
problems have not been formulated as many-objective is due to the
challenges in building a many-objective solution. To aggregate some
objectives into one objective is a simple approach that could be used.
However, there is a loss of information in this approach due to, among
several reasons, the conflicting nature of the quality metrics used to
assess the algorithm’s performance. Then, as this approach and tradi-
tional MOEAs are not sufficient, there is a growing demand for scalable
SBSE approaches that address SE problems in which many objectives
are considered. In this perspective, improving the scalability of SBSE
approaches will increase their applicability in industry and real-world
settings.

However, some problems arise when the number of objectives in-
creases. Deb and Jain [18] state that selecting a solution gets harder
because most solutions become incomparable. Many solutions are re-
quired to generate a Pareto-front, and this generation process takes
much time and requires special techniques for visualizing the solu-
tions. Thus, several techniques are proposed to address such problems,
such as new preference ordering relations, decomposition (a general
approach to solving a problem by breaking it up into smaller ones
and solving each of the smaller ones separately, either in parallel or
sequentially), and so on. Among them, one of the most-used techniques
in the optimization field is dimensionality reduction, as described
in [19].

In the context of dimensionality reduction, Many-Objective Evo-
lutionary Algorithms (MaOEAs) are executed seeking to reduce the
number of objectives by removing the redundant ones, that is, objec-
tives where there may not exist any conflict among them. PCA-NSGA-
II [20] is an example of MaOEAs, applied in SE problems, including
to the VTSPL [13], which uses the concept of Principal Analysis Com-
ponent jointly with the NSGA-II algorithm for reducing the number of
objectives.

Li et al. [19] point out that dimensionality reduction approaches
have three main advantages: (i) to reduce computational load; (ii) to
help decision makers to better understand the many-objective problem
by pointing out the non-conflicting objectives; and (iii) to allow the
combination with other approaches. However, the authors also state
that if the addressed problem has just conflicting objectives, this one
may limit the application of the approach once these algorithms may
fail in reducing the number of objectives to be optimized or return a
solution set that does not cover the complete Pareto-front. From this
perspective, the combination of two or more approaches for tackling
many-objective problems would be very interesting. For example, to
take into account the user preferences, since human knowledge and
judgment can be used to guide the search to reach the best solutions.
However, as far as we know, there are no studies in the literature
combining both approaches in an interactive way (or in-the-loop).
Thus, this work intends to explore possible advantages of incorporating
the user preferences provided interactively during the search for the
reduction of objectives in many-objective optimization.

To achieve the above-mentioned goal, this work introduces an
algorithm called COR-NSGA-II (Confidence-based Objective Reduction
NSGA-II), which reduces the problem dimensionality guided by the
user preferences. The user preferences about the solutions are captured
interactively (or in-the-loop) by using an ordinal scale composed of
three items Non-preferred, No Opinion, and Preferred. Based on them, a
onfidence level for each objective is determined and used to decide
hich objectives should be removed from the next execution of the
2

SGA-II algorithm. p
COR-NSGA-II is evaluated for the VTSPL problem using six SPLs
nd a formulation with seven objectives. COR-NSGA-II is compared to
OEAs and MaOEAs used for the problem in the literature: NSGA-II,
SGA-III, R-NSGA-II, and PCA-NSGA-II. The results show that COR-
SGA-II is capable of guiding the search process to the objectives
referred by the users, by generating a small set of suitable solutions
hat incorporate the user preferences, and taking less time to execute.
qualitative analysis performed with a set of 12 potential users shows
hat for them, the selection of a solution generated by COR-NSGA-
I is easier than the selection of a solution generated by the other
lgorithms. In this way, the main contributions of this paper are as
ollows:

• Introduction of COR-NSGA-II, a preference-based dimensionality
reduction algorithm. It has some advantages concerning dimen-
sionality reduction algorithms and is also capable of performing
well in the presence of conflicting objectives, reducing the num-
ber of solutions to be visualized by guiding the search according
to user preferences captured interactively. Then this makes easier
the choice of a solution for the user.

• Evaluation results from the application of COR-NSGA-II to the
VTSPL problem show that it generates quality solutions regarding
the user preference indicators and spends less time to execute
in comparison with MOEAs and MaOEAs. This makes the use of
many-objective formulations easier in practice and contributes to
increase the scalability of SBSE approaches and their adoption for
real and complex problems.

• Implementation of COR-NSGA-II on Nautilus Framework [21], a
tool that allows practitioners developing and experimenting sev-
eral multi- and many-objectives evolutionary algorithms guided
(or not) by human participation in a few steps with a min-
imum required background in coding and search-based algo-
rithms. This makes easy the application of COR-NSGA-II to similar
SE problems and its use in future research.

The paper is organized as follows: Section 2 provides background
on the algorithms and quality indicators. Section 3 reviews the VT-
SPL problem, related work and problem formulation adopted in our
work. Section 4 introduces COR-NSGA-II. Section 5 describes evalua-
tion setup. Section 6 presents and analyses the obtained results; Sec-
tion 7 discusses main implication and future work; Section 8 highlights
the threats to validity; and Section 9 concludes.

. Background

.1. Software product line testing

A Software Product Line (SPL) can be defined as a set of common
roducts from a particular market segment or domain [22]. Such
roducts share some features, which represent functionality or a sys-
em capability that is relevant and visible to the end user [10]. The
eatures can be common to all products derived from the SPL, but
hey can also be variable being found in only some of them. Thus, the
eature Model (FM) diagram is used for managing such variability in
ost SPL methodologies. This diagram is represented as a hierarchical
rrangement through a tree, and it is used for representing all the SPL
ommonalities and variabilities, as shown in Fig. 1, that contains the
PL for the domain of Mobile Phone.
A product is given by a combination of features. Fig. 2(a) shows

n example of a valid product that can be derived from the FM of
ig. 1, and Fig. 2(b) an invalid one. The latter is invalid because Calls is
issing while being mandatory. Thus it should be present in all derived

roducts.

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

2

s
2
t
c
o
u

B
v
R
d
A
C

2

t
F
s
c
b

i
o
o
m
e

t
m
s
p
t

Fig. 1. Feature diagram of mobile phone.
Source: Adapted from [11].
Fig. 2. Example of products generated from the FM in Fig. 1.
f

2

w
j
o
m
a
P
o
O
i
P

p
t
r
t
t
t
a

o
t
f
M
l
c
a
i

.1.1. Pairwise testing in the FM context
In order to derive a set of products for the variability testing of SPLs,

ome studies in the literature are based on combinatorial testing [23–
6]. Pairwise testing is one of the most popular kinds of combinatorial
esting; therefore, it is also applied in our work. The goal of this testing
riterion is to generate a set of products that includes all the valid pairs
f features from the FM. Thus, the number of covered pairs can also be
sed for evaluating a set of products that were generated.
For instance, consider again the FM shown in Fig. 1. The pair (GPS,

asic) is invalid, and should not be required. Considering only the
ariabilities, we see that the product in Fig. 2(a) includes the pair (High
esolution, Camera) and does not include the pair (GPS, MP3). Thus, to
erive the pairs, we use the Combinatorial tool1 that implements the
utomatic Efficient Test Generator (AETG) algorithm, introduced by
ohen et al. [27].

.1.2. Mutation testing in the FM context
Another testing criterion that has been explored in the FM con-

ext [28–31] is mutation testing, a fault-based testing criterion. In the
M context, mutant FMs are generated with operators that describe pos-
ible faults that can be present in an FM. Hence, the goal of this testing
riterion is to generate a product that is capable of distinguishing the
ehavior of the FM being tested from its mutant version.
Essentially, the product 𝑝 is checked by an FM analyzer. The mutant

s considered dead in two situations: (i) if 𝑝 is valid according to the
riginal FM and invalid for the mutant; and (ii) 𝑝 is invalid for the
riginal FM and valid for the mutant. When both FMs, original and
utant ones, validate the same set of products, they are considered as
quivalent.
At the end of this process, a mutation score is calculated, given by

he number of dead mutants over the total of non-equivalent generated
utants. Similar to the pairwise coverage described in the previous
ection, the score can be used for evaluating the adequacy of a set of
roducts, or it can be used to improve an existing one. To illustrate this
esting criterion, consider Fig. 3.

1 http://161.67.140.42/CombTestWeb.
3

(

The figure shows that the operator changes a ‘‘requires’’ relation to
an excludes one, such as the one between High Resolution and Camera.
In this sense, the product in Fig. 2(a) kills the mutant, since it is valid
or the original FM and it is invalid for the mutant.

.2. Optimization algorithms

An optimization problem aims to find one or more feasible solutions
hich correspond to extreme values of one or more objectives (or ob-
ective functions) regarding the problem constraints [32]. The number
f objective functions to be optimized defines which category the opti-
ization problem belongs to. When an optimization problem involves
single-objective function, it is called Mono-objective Optimization
roblem. When the number of objectives to be optimized holds two
r three objective functions, the problem is called as Multi-objective
ptimization Problem (MOP). Finally, when the number of objectives
s four or more, the problem is called as Many-Objective Optimization
roblem (MaOP).
Different types of algorithms to solve MOPs and MaOPs have been

roposed in the literature [33]. Among them, it is possible to mention
he Evolutionary Algorithms (EAs) [34]. These algorithms can find
easonably good approximations of the true Pareto-front in a reasonable
ime. A Pareto-front is a set of solutions where they are in such a way
hat the values of each objective cannot be improved without sacrificing
he values of the other objective functions [35]. Some EAs are described
s follows.
Multi-Objective Evolutionary Algorithms (MOEAs) are those based

n Genetic Algorithm (GA) in which, by performing a stochastic op-
imization method, simulate the natural evolution process aiming to
ind solutions for MOPs. When the problem is a MaOP one, several
any-objective Evolutionary Algorithms (MaOEAs) are proposed in the
iterature to tackle such problems. Such algorithms include different
ategories, such as the algorithms based on dimensionality reduction
nd on user preferences. In this section, we describe the algorithms used
n this work.
NSGA-II [36] creates in each interaction a new set of solutions
the offspring) based on their parents, joins the offspring with the

http://161.67.140.42/CombTestWeb

Information and Software Technology 152 (2022) 107031T. Ferreira et al.
Fig. 3. Example of a mutant generated for FM in Fig. 1.
Fig. 4. Example of a normalized reference plane for a three-objective problem.
Source: Adapted from [38].

parents, and sorts them according to their dominance rank and crowd-
ing distance. Therefore, in each generation, the solutions that are
non-dominated when compared to the other ones survive to the next
generation. A solution 𝑋 dominates 𝑌 (𝑋 ≺ 𝑌) if 𝑋 is at least as good
as 𝑌 for all the objectives and strictly better than 𝑌 in at least one
objective. Otherwise, 𝑋 does not dominate 𝑌 [37]. When there are
several non-dominated solutions and the next generation cannot receive
all of them (since the number of desired solutions is defined a priori),
the solutions with the greatest crowding distance (more scattered in the
objective space) are selected to survive. Hence, this algorithm favors
both the solutions that have the best fitness values (convergence) and
the solutions that are more different (diversity). At the end of its
execution, the algorithm returns the set of non-dominated solutions.

NSGA-III [18] basically replaces the crowding distance used by
NSGA-II by a different one focused on a set of reference points 𝑍𝑟

(see Fig. 4). This mechanism helps to maintain the diversity among
the solutions. In a generation 𝑡 of NSGA-III, after the recombination,
mutation, and non-dominated sorting, all acceptable fronts and the last
front 𝐹𝑙 that could not be completely included in 𝑃𝑡+1 are included
in a set 𝑅𝑆𝑡. After that, the objective values and reference points are
first normalized to be in an identical range. An orthogonal distance is
computed between a member in 𝑅𝑆𝑡 and each of the reference lines
(joining the ideal point and a reference point). After that, the solution is
then associated with the reference point having the smallest orthogonal
distance. The niche count 𝜌 (defined as the number of solutions in
𝑆𝑡∕𝐹𝑙 that are associated with the reference point) is computed for each
reference point. Then, the reference point having the minimum niche
count is identified, and the solutions from the last front 𝐹𝑙, associated
with it, are included in the next population. At the final, the niche count
of the identified reference point is increased by one, and the procedure
is repeated to fill up the population 𝑃𝑡+1.

PCA-NSGA-II [20] applies an online dimensionality reduction us-
ing the PCA (Principal Component Analysis) method. This one is a
multivariate technique that analyzes data in which observations are
described by several inter-correlated quantitative dependent variables,
4

where the goal is to extract the important information from the data
and show the pattern of similarity of the observations and of the vari-
ables as points in maps [39]. Thus, PCA-NSGA-II identifies iteratively
redundant objectives in the NSGA-II solutions as follows. Supposing
we have 𝑀 objective functions to be optimized and 𝑁 population
members, the initial data matrix 𝑋 will be of size𝑀𝑥𝑁 . So, the method
converts this matrix into a correlation matrix, in which negative num-
bers mean the objectives are negatively correlated (conflicting) and the
positive ones mean the objective are positively correlated (redundant).
After that, the method computes eigenvalues and eigenvectors and
chooses non-redundant objectives by using a threshold cut (TC) value
and the contribution for all principal components. Finally, if the current
set of objectives has changed (it was reduced), the search of NSGA-II is
performed and the PCA method is applied again. Otherwise, it returns
the last Pareto-front found.

R-NSGA-II [40] requires one or more Reference Points (RPs), points
in the search space where the user would like to concentrate the
objectives. The RPs usually guide the search toward a Region of In-
terest (ROI), composed of non-dominated solutions preferred by the
user. Moreover, the crowding distance metric is modified, being called
‘‘preferred distance’’. The use of this metric implies giving a greater
emphasis to the solutions that are closer to the RPs provided. In order
to maintain the diversity of selected solutions close to the RPs, R-NSGA-
II applies a selection strategy called 𝜖-clearing in which, by using a
parameter named 𝜖, the preferred distance is calculated as follows:
(i) the normalized Euclidean distance of each boundary solution is
calculated for each RP. The solutions are ranked in ascending order
of distance. Thus, the solution with the smallest distance from RP is at
the top of the rank; and (ii) after the calculation for all RPs, there will
exist different rankings, one for each RP, and the preferred distance of
a given solution will be the minimum one assigned to it considering all
the rankings. Solutions with the smallest preferred distance values are
selected and preferred to compose the new population.

3. Variability testing of software product line

The Variability Testing of Software Product Line (VTSPL) has as goal
to ensure the products that can be derived from the variability model
(commonly the Feature Model) satisfy their requirements. However,
due to the complexity of the applications and the huge number of
features and products available, only the most representative set of
products is usually tested. The selection of the best products is an
optimization problem addressed by many studies in the literature,
mainly considering evolutionary algorithms. In this section, we describe
these studies and the problem formulation adopted in our work.

3.1. Related work

Different formulations are tackling the variability testing problem in
the literature by using combinatorial testing [41,42], as well as several

papers addressing many objective functions to be optimized. Below we

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

s
o
o
a
t
f
a
m
e
o
a
t
s
t
i

c
r
e
o
t
o
o
t
p
c
e
o
a
u
s

f

describe existing works that focus on optimization algorithms (those
more related to this work) grouped according to the kind of approach
they apply.

Single-objective algorithms. These works usually deal with the
election of products by using an aggregation function where the
ptimized objectives are combined into a single function. The work
f Wang et al. [3] propose a test case minimization approach. The
uthors use a GA and an aggregation function of the following factors:
he number of test cases, pairwise coverage, and capability to reveal
aults. In another work, Want et al. [4] propose a test case prioritization
pproach where it uses another aggregation function, including cost
easures, and compares GA with (1+1) EA and random search. Ensan
t al. [5] use a simple GA with an aggregation function comprised
f cost and error rate factors. Henard et al. [6] also uses a GA with
n aggregation function to handle the costs, pairwise coverage, and
he number of products. All of them are conflicting objectives in the
election of test products. In another work of the authors, mutation
esting is used to generate dissimilar products, that is, products that
nclude different features [7].
Multi-objective Evolutionary Algorithms (MOEAs). Due to the

haracteristic of the VTSPL problem, MOEAs have presented better
esults than single-objective algorithms, where they usually adopt
volutionary algorithms. Lopez-Herrejon et al. [8] propose a multi-
bjective approach considering pairwise coverage and the size of the
est suites. The approach of Matnei-Filho and Vergilio [9] considers
bjectives related to the mutation score, pairwise coverage, and number
f products. The obtained results show no significant differences be-
ween the MOEAs used algorithms. However, NSGA-II obtained the best
erformance regarding the MOEA’s quality attributes for the general
ase, compared to SPEA2 and IBEA. Strickler et al. [10], and Ferreira
t al. [11] explore the use of hyper-heuristic approaches with multi-
bjective algorithms. The objectives used include pairwise, number of
live mutants, number of products, and similarity of products. The
se of hyper-heuristics can help in the construction of more generic
olutions and ease the implementation of the algorithms.
Many-objective Evolutionary Algorithms (MaOEAs). These algo-

rithms deal better with the problem in the presence of three or more
objectives. In this category, most works apply preference-based algo-
rithms. Jakubovski Filho et al. [12] compared the NSGA-II algorithm
with the preference-based algorithms r-NSGA-II and R-NSGA-II. Three-
and four-objective formulations were used, including pairwise, number
of alive mutants, number of products, and similarity of products. The
results show that r-NSGA-II and R-NSGA-II outperformed NSGA-II.
Moreover, the authors conclude that R-NSGA-II was the best option in
most cases. More recently, Ferreira et al. [13] addressed the VTSPL
problem by using NSGA-III and PCA-NSGA-II, with a set of seven
objectives obtained from different approaches in the literature. The
results show that NSGA-III reaches the best results regarding the quality
indicators for all instances, but it takes longer to execute.

We observe that MOEAs and MaOEAs show the best results for the
VTSPL problem. NSGA-II is the MOEA that presented the best general
performance [9]. R-NSGA-II stands out among the preference-based al-
gorithms [12]. NSGA-III reaches the best results regarding some quality
indicators, but it takes a longer time compared to PCA-NSGA-II [13]. It
is difficult to point out the best algorithm. For instance, R-NSGA-II does
not provide an interactive way to provide the preferences and depends
on the RP provided. NSGA-III takes longer to execute and produces a
lot of solutions (requiring specific techniques to visualize and select
solutions). PCA-NSGA-II does not have a good performance when all the
objectives are not redundant. Using these algorithms in a combined way
can be beneficial in overcoming some of those limitations, which is our
work’s goal. We have not found studies in the literature exploring the
advantages of incorporating the user preferences provided interactively
during the search for the reduction of objectives in many-objective
optimization.
5

Moreover, a large number of objectives is used for the VTSPL
problem. The most used are the number of products (test cases),
pairwise coverage, mutation score (related to the capability to reveal
faults), similarity of products regarding the features they contain or
importance, and cost. In our work, we mapped all these objectives
explored in the literature and derived a set of seven objectives, which
are presented in the next section.

3.2. Problem formulation adopted

In this work, we adopt the formulation proposed by Jakubovski-
Filho et al. [12], and the set of objective functions is derived con-
sidering different approaches from the literature described in the last
section. Both the solution representation and the objective functions are
described as follows.

A solution in the VTSPL problem is defined as a subset of products
from all possible products that can be generated from a given FM. Since
it is a subset, a binary encoding is employed to represent a selection
where each gene represents a product. When the 𝑖th bit is equal to 1,
the product 𝑝𝑖 belongs to the solution. Otherwise, the 𝑖th bit is equal to
0.

We use the same convention to represent the features in a product,
that is, 1 means the corresponding feature is selected for the product,
otherwise, 0 means the feature is not selected. However, this represen-
tation is not part of the solution since several solutions have similar
products selected (and consequently similar features).

Let 𝑃 = {𝑝1, 𝑝2, 𝑝3,… , 𝑝𝑛} be a set of valid products being considered
or the addressed FM, and 𝑆 ⊆ 𝑃 be an solution, generated by an
algorithm, with |𝑆| means the selected products. To generate 𝑃 , we
use the framework FaMa [43], which also gives the total number of
products 𝑛. However, it is not possible to determine all the products
for huge FMs. In this case, the tester provides a desired value for 𝑛,
and 𝑛 valid products are generated at random.

We adopted a set of seven objective functions, as presented in
Table 1, which shows a description of the objectives and how they
are calculated. All objective functions are normalized in [0, 1], where
0 is the best value and 1 is the worst, that is, all of them should be
minimized.

To clarify how the objective functions are computed, we consider
an instance example with illustrative values for three features (𝐹1, 𝐹2,
and 𝐹3), in which all of them are non-mandatory ones. Their cost and
importance are described in Table 2, and a set of five possible products
that should be selected, shown in Table 3.

Now, consider that a solution 𝑆 = {𝑝3, 𝑝4} was selected to be
evaluated in which Products #3 and #4 were selected, the objective
functions are calculated as follows:

𝑁(𝑆) = 2
5
= 0.4

𝑀(𝑆) = 1.0 − 4
5
= 1.0 − 0.8 = 0.2

𝑃 (𝑆) = 1.0 − 3
3
= 1.0 − 1.0 = 0.0

𝑉 (𝑆) = 2
3
= 0.6

𝐶(𝑆) = 22
36

= 0.6

𝐹 (𝑆) = 1.0 − 3
3
= 1.0 − 1.0 = 0.0

𝐼(𝑆) = 1.0 − 11
18

= 1.0 − 0.6 = 0.4

(1)

Therefore, in this instance example, the vector of objective values
for the solution 𝑆 = {𝑝 , 𝑝 } is (0.4, 0.2, 0.0, 0.6, 0.6, 0.0, 0.4).
3 4

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

o
o
t
a
u
o
j
c

Table 1
Objective functions.
Objective Description Rationale

Number of products
𝑁(𝑆) = |𝑆|

|𝑃 |

Ratio between the number of products in 𝑆 and the number
𝑛 of considered valid products in 𝑃

The # of products can impact the cost of the
testing

Alive mutants
𝑀(𝑆) = 1.0 − 𝐾𝑀

𝐴𝑀

Where 𝐾𝑀 is the number of mutants killed by the products
of 𝑆, and 𝐴𝑀 is the total number of alive mutants

A higher mutation score can help the bug
identification

Uncovered pairs
𝑃 (𝑆) = 1 − 𝑃𝐶

𝑉 𝑃

Where 𝑃𝐶 is the number of pairs of features defining
products covered by the products of 𝑆, and 𝑉 𝑃 is the
number of valid pairs

It evaluates the iteration among features

Products similarity
𝑉 (𝑆) = 𝑅𝐹

𝑂𝐹

Where 𝑅𝐹 is the number of features that appears more than
once in 𝑆 and 𝑂𝐹 is the number of non-mandatory
(optional) features in the instance. It takes into account the
similarity between the products regarding the features they
have

Similar products could let some features uncovered
under testing

Products cost
𝐶(𝑆) =

∑

𝑝𝑖∈𝑆
𝑐𝑜𝑠𝑡(𝑝𝑖)

∑

𝑝𝑗 ∈𝑃
𝑐𝑜𝑠𝑡(𝑝𝑗)

Ratio of the cost of the selected products by the cost of all
valid products, where 𝑐𝑜𝑠𝑡(𝑝𝑖) returns the cost of a product
𝑝𝑖, estimated by summing the cost of its features

The development of expensive products impacts
the cost of the testing. In this objective, the lower
the value, the better.

Unselected features
𝐹 (𝑆) = 1.0 − 𝑁𝐹

𝑇𝐹

Where 𝑁𝐹 is the number of features of 𝑆 and 𝑇𝐹 represents
the number of features the FM under test has. It measures
how many features are in 𝑆

All features should be tested at least once

Unimportant features
𝐼(𝑆) = 1.0 −

∑

𝑝𝑖∈𝑆
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑝𝑖)

∑

𝑝𝑗 ∈𝑃
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑝𝑗)

Where 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑝𝑖) returns the importance of the product
𝑝𝑖, given by the sum of the importance of the features in 𝑝𝑖.
It returns the percentage of irrelevant features from the
user’s point of view

Allocating time and work to bring the most value
to the company. In this objective, the greater the
value, the better.
m
t
F
u

f
a
s
T
p
p
t
t
f
O
S
t

f
t
i
c
o
(
3
s
a
s
b

Table 2
Features from the instance example.
Features Cost Importance

F1 2 1
F2 4 2
F3 6 3

Table 3
Products from the instance example.
Features Killed mutants Covered pairs Cost Importance

𝑝1 [F1] [M1] [P2, P3] 2 1
𝑝2 [F1, F3] [M1, M5] [P2] 8 4
𝑝3 [F1, F2, F3] [M3] [P1, P2, P3] 12 6
𝑝4 [F2, F3] [M1, M2, M4] [P3] 10 5
𝑝5 [F2] [M1, M3] [P1] 4 2

Sum 36 18

4. Confidence-based objective reduction NSGA-II

COR-NSGA-II (Confidence-based Objective Reduction NSGA-II) is an
algorithm that combines the advantages of preference and dimension-
ality reduction-based algorithms to deal with many-objective problems.
It uses a confidence level for removing an objective from the next
execution of the NSGA-II algorithm. The latter was chosen as the
main search engine, especially for its good results in dealing with two
or three objectives. A confidence level is defined based on the user
preferences for each objective to be optimized, and these preferences
are provided for values closest to the lowest and the highest values for
each objective.

An overview of the algorithm is shown in Fig. 5. This shows that
nce a problem encoding (composed by a problem instance and a set
f objectives to be optimized) is provided, COR-NSGA-II runs NSGA-II
o find an approximate Pareto-front (composed by only non-dominated
nd non-duplicated solutions). Next, the solutions are shown to the
ser, and then s(he) has the opportunity to accept the found solutions
r to provide his/her preferences aiming to reduce the number of ob-
ectives to be optimized. During the interaction process, the following
omponents are taken into consideration:

• Objective Values: information for which the user is required to
provide his/her preferences.
6

• Non-preferred, No Opinion, Preferred: They are the preferences
the user needs to provide about the objective values. If no pref-
erences are provided, the default preference is No Opinion.

• Confidence-based Selection: the main method used for selecting
or choosing the next subset of objectives to be optimized. This
one takes into account the Objective Values and the preferences
provided by the user.

To illustrate this, consider that the user is visualizing the approxi-
ate Pareto-front shown in Fig. 6. In this figure, the circles represent
he possible locations where the user can provide his/her preferences.
or instance, if the user clicks on circle #1, he/she will be providing
ser preferences for Solution #5 regarding Objective #1.
Firstly, COR-NSGA-II requires that solutions belonging to the Pareto-

ront must be normalized in [0.0:1.0] before showing them to the user,
nd it assumes, initially, all objectives should be selected for the next
earch process, but some of them should be removed (or not included).
his initial assumption is important because if no user preferences are
rovided, the same objectives should be selected for the next search
rocess, and no one should be removed. In Fig. 6, considering 0.0 as
he lowest objective value and 1.0 the highest one, Solution #4 has
he lowest value for Objective #1, Solution #5 has the lowest value
or Objective #2, and Solution #3 the lowest value for Objective #3.
n the contrary, Solution #5 has the highest value for Objective #1,
olution #3 has the highest one for Objective #2, and Solution #1 has
he highest value for Objective #3.
COR-NSGA-II needs the user feedback about the objective values

ound by the search process (circles numbered from 1 to 15). However,
he user does not need to provide all of them but only those most
mportant ones from his/her point of view. For instance, the user
an provide his/her preferences just for the circles 4, 5, 11, and 12,
r, the user can provide his/her feedback just for the extreme values
objectives values equals to either 0.0 or 1.0) such as the circles 1, 2,
, 13, 14, and 15. Once the user feedback is provided, COR-NSGA-II
elects those closest to the lowest and highest values for each objective
nd defines a confidence level for removing the objective from the next
ubset (Section 4.1). The user feedback required by COR-NSGA-II must
e composed of:

User Feedback = [solution index | objective index | objective value |

preference]

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

S
N
o
t
o
d

4

w
t
l
(
w
t
𝑚
s
i
a

b
u
c

Fig. 5. COR-NSGA-II overview.
Fig. 6. Example of numbered objective values.

For instance, the user feedback [#1, #2, 0.0, Preferred] provided by
the user means s(he) provided Preferred for Objective #2 with 0.0 from
olution #1, while [#2, #1, 0.7, Non-preferred] means s(he) provided
on-preferred for Objective #1 with 0.7 from Solution #2. Concluding,
nce all preferences are provided, the COR-NSGA-II’s selection method
akes action and uses the provided preferences to select the next subset
f objectives to be optimized in the next execution. This method is
escribed in more detail in the next section.

.1. Confidence-based selection method

The Confidence-based Selection Method is responsible for defining
hich objectives should be removed from the next algorithm execu-
ion. The idea of this method is to calculate a removal confidence
evel for each objective and then, based on an input called 𝑚𝑖𝑛𝐶𝑜𝑛𝑓
which represents the minimum removal confidence level), the method
ill decide if a given objective should be removed or not. That is,
he objectives with the removal confidence levels greater or equal to
𝑖𝑛𝐶𝑜𝑛𝑓 are removed from the next algorithm execution. However,
ince the user preferences are provided as ‘‘Non-preferred’’, ‘‘No Opin-
on’’, and ‘‘Preferred’’, this method also translates all user preferences to
n ordinal scale described in Table 4 before applying the 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 .
The correlation between the user preferences and a value is required

ecause we have to define a priority among them. For instance, the
ser feedback [#1, #2, 0.0, Preferred], the user preference Preferred is
7

onverted to 1. So, in the case of more than one preference provided
Table 4
Ordinal scale for the required information.
Required information Non-preferred No Opinion Preferred

Value −1 0 1

for the same objective value, we can choose the one with the lowest
priority.

Algorithm 1 describes the procedure for selecting the next objec-
tives. The algorithm takes as input the current population 𝑃 , a set of
optimized objectives, 𝑂, and a set of user feedback 𝐹 .
Algorithm 1 Confidence-based Selection Method Algorithm
Input: The current population 𝑃

A set of optimized objectives 𝑂 = (𝑜1 , 𝑜2 ,… , 𝑜𝑚)
A set of user feedback 𝐹 = (𝑓1 , 𝑓2 ,… , 𝑓𝑖)

Output: A subset 𝑁 of objectives to be optimized
1: Let 𝑁 ⊂ 𝑂 be the next subset of objectives to be optimized
2: Let 𝑀𝑎𝑥𝐹 = (𝑚𝑎𝑥𝐹1 , 𝑚𝑎𝑥𝐹2 ,… , 𝑚𝑎𝑥𝐹𝑚) be the maximum feedback found by the

algorithm for the optimized objectives, in which ∀𝑚𝑎𝑥𝐹𝑖 ∈ 𝑀𝑎𝑥𝐹 ,𝑚𝑎𝑥𝐹𝑖 ← 𝑁𝐼𝐿
3: Let 𝑀𝑖𝑛𝐹 = (𝑚𝑖𝑛𝐹1 , 𝑚𝑖𝑛𝐹2 ,… , 𝑚𝑖𝑛𝐹𝑚) be the minimum feedback found by the algorithm

for the optimized objectives, in which ∀𝑚𝑖𝑛𝐹𝑖 ∈ 𝑀𝑖𝑛𝐹 ,𝑚𝑖𝑛𝐹𝑖 ← 𝑁𝐼𝐿
4: Let 𝑀𝑖𝑛𝑉 = (𝑚𝑖𝑛𝑉1 , 𝑚𝑖𝑛𝑉2 ,… , 𝑚𝑖𝑛𝑉𝑚) be the minimum values for the population 𝑃 .
5: Let 𝑀𝑎𝑥𝑉 = (𝑚𝑎𝑥𝑉1 , 𝑚𝑎𝑥𝑉2 ,… , 𝑚𝑎𝑥𝑉𝑚) be the maximum values for the population 𝑃 .
6: for all 𝑓 in 𝐹 do
7: i ← 𝑜𝑏𝑗_𝑖𝑛𝑑𝑒𝑥(𝑓)
8: distToMaxValue ← |𝑚𝑎𝑥𝑉𝑖 − 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑓)|
9: distToMinValue ← |𝑚𝑖𝑛𝑉𝑖 − 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑓)|
10: if distToMaxValue < distToMinValue then
11: if 𝑚𝑎𝑥𝐹𝑖 is 𝑁𝐼𝐿 or 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑓) > 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑚𝑎𝑥𝐹𝑖) then
12: 𝑚𝑎𝑥𝐹𝑖 ← 𝑓
13: else if 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑓) ← 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑚𝑎𝑥𝐹𝑖) then
14: if 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑓) < 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑎𝑥𝐹𝑖) then
15: 𝑚𝑎𝑥𝐹𝑖 ← 𝑓
16: end if
17: end if
18: else if distToMinValue < distToMaxValue then
19: if 𝑚𝑖𝑛𝐹𝑖 is 𝑁𝐼𝐿 or 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑓) < 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑚𝑖𝑛𝐹𝑖) then
20: 𝑚𝑖𝑛𝐹𝑖 ← 𝑓
21: else if 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑓) ← 𝑜𝑏𝑗_𝑣𝑎𝑙𝑢𝑒(𝑚𝑖𝑛𝐹𝑖) then
22: if 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑓) < 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑖𝑛𝐹𝑖) then
23: 𝑚𝑖𝑛𝐹𝑖 ← 𝑓
24: end if
25: end if
26: else if distToMinValue = distToMaxValue then
27: if 𝑚𝑖𝑛𝐹𝑖 is 𝑁𝐼𝐿 or 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑓) < 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑖𝑛𝐹𝑖) then
28: 𝑀𝑖𝑛𝐹𝑖 ← 𝑓
29: end if
30: if 𝑚𝑎𝑥𝐹𝑖 is 𝑁𝐼𝐿 or 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑓) < 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑎𝑥𝐹𝑖) then
31: 𝑚𝑎𝑥𝐹𝑖 ← 𝑓
32: end if
33: end if
34: end for
35: 𝑁 ← the objectives selected by Algorithm 2, given 𝑂, 𝑀𝑎𝑥𝐹 , 𝑀𝑖𝑛𝐹
36: return N

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

f
e
t
a
p
l

s

1
1

1
1

t
t
c
b

f
t
m
f
t
t

R

Table 5
Confidence level for removing an objective.

Highest value

Feedback Preferred No Opinion Non-preferred

Lowest value Preferred 0% 20% 0%
No Opinion 80% 50% 20%
Non-preferred 100% 80% 100%

In the first step (Lines 6–34), the algorithm goes through all user
eedback trying to select the minimum and maximum feedback for
ach objective. For instance, it tries to find the feedback values for
he most higher and lower objective values for each objective (again,
ll objectives are normalized in [0:1]). If two feedback values were
rovided for the same objective, the algorithm selects the one with a
ower value.
As soon as the maximum and minimum are selected, the objective

election procedure is called (Algorithm 2).
Algorithm 2 Objective Selection Algorithm
Input: A minimum confidence level (𝑚𝑖𝑛𝐶𝑜𝑛𝑓) value desired to remove an objective

A set of optimized objectives 𝑂 = (𝑜1 , 𝑜2 ,… , 𝑜𝑚)
A maximum feedback 𝑀𝑎𝑥𝐹 = (𝑚𝑎𝑥𝐹1 , 𝑚𝑎𝑥𝐹2 ,… , 𝑚𝑎𝑥𝐹𝑚) for all objectives
A minimum feedback 𝑀𝑖𝑛𝐹 = (𝑚𝑖𝑛𝐹1 , 𝑚𝑖𝑛𝐹2 ,… , 𝑚𝑖𝑛𝐹𝑚) for all objectives

Output: A subset 𝑁 of objectives to be optimized
1: Let 𝑁 ⊂ 𝑂 be the next subset of objectives to be optimized
2: Let 𝐿𝑜𝑤𝑒𝑠𝑡 = (𝑙𝑜𝑤𝑒𝑠𝑡1 , 𝑙𝑜𝑤𝑒𝑠𝑡2 ,… , 𝑙𝑜𝑤𝑒𝑠𝑡𝑚) be the confidence level for the solutions in

the lowest objective values in which ∀𝑙𝑜𝑤𝑒𝑠𝑡𝑖 ∈ 𝐿𝑜𝑤𝑒𝑠𝑡, 𝑙𝑜𝑤𝑒𝑠𝑡𝑖 ← 0
3: Let 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 = (ℎ𝑖𝑔ℎ𝑒𝑠𝑡1 , ℎ𝑖𝑔ℎ𝑒𝑠𝑡2 ,… , ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑚) be the confidence level for the solutions

in the highest objective values in which ∀ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑖 ∈ 𝐻𝑖𝑔ℎ𝑒𝑠𝑡, ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑖 ← 0
4: for 𝑜𝑖 to 𝑂 do
5: if 𝑚𝑎𝑥𝐹𝑖 is not 𝑁𝐼𝐿 then
6: ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑖 ← 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑎𝑥𝐹𝑖)
7: end if
8: if 𝑚𝑖𝑛𝐹𝑖 is not 𝑁𝐼𝐿 then
9: 𝑙𝑜𝑤𝑒𝑠𝑡𝑖 ← 𝑜𝑏𝑗_𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑚𝑖𝑛𝐹𝑖)
0: end if
1: if confidence(𝑙𝑜𝑤𝑒𝑠𝑡𝑖, ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑖) < 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 then
12: 𝑁 ← 𝑁 ∪ 𝑜𝑖
13: end if
14: end for
15: if 𝑁 is ∅ then
16: return a random objective from 𝑂
7: end if
8: return 𝑁

In this procedure, for each objective, the preferences provided by
he minimum and maximum feedback are defined, respectively, to
he lowest value and the highest one (Lines 4–9). After this step, the
onfidence level for removing this objective is calculated in Line 14
ased on the information described in Table 5.
The values in Table 5 are defined based on the fact that the

optimization algorithms try to minimize all objectives, and they are
normalized in [0:1]. In this table, the lowest value means 0 and the
highest one means 1. So, aiming to explain the table, consider that the
user provided Non-preferred for both the lowest and highest values for
a given objective. So, we assume with 100% of confidence level that
this objective must be removed because the solutions generated with
this objective tend not to be considered as good from the user’s point
of view. In the contrary, if both lowest and highest values are Preferred,
we have to keep the objectives once the algorithm with them may still
generate new good solutions. In another example, if the lowest value
is Non-preferred and the highest is Preferred, we assume the algorithm
tends to keep generating non-preferred solutions so we have to remove
the corresponding objective with a 100% of confidence level.

Finally, we have to remove just the objectives in which the confi-
dence level is greater than or equal to the 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 that was previously
defined by the user. However, if this method is carried out and all
objectives should be removed (for example, when the user defines that
the 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 is 0%), a random objective must be picked up for the next
algorithm execution.

To illustrate the method proposed, let us consider the example
8

shown in Fig. 7 where the addressed problem has three objectives to
Fig. 7. Example of application of the confidence level.

Table 6
Confidence level example.
Objectives Objective 1 Objective 2 Objective 3

Highest value No Opinion Non-preferred No Opinion
Lowest value No Opinion Preferred Non-preferred
Confidence level 50% 0% 80%

be optimized, and the non-repeated and non-dominated solutions are
composed of five solutions.

In this example, the user provided the following feedback. Preferred
or Solution #5 in Objective 2; Non-preferred for Solution #3 in Objec-
ive 3; and Non-preferred for Solution #3 in Objective 3. The selection
ethod aforementioned is performed by aiming to find the maximum
eedback provided by each objective. In this example, there is no more
han one feedback for the lowest and highest objective values. Then,
he 𝐿𝑜𝑤𝑒𝑠𝑡 and 𝐻𝑖𝑔ℎ𝑒𝑠𝑡 sets, and the confidence level (defined by the
values in Table 5) are show in Table 6.

Supposing that 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 defined by the user for removing an ob-
jective for the next execution is at least 80%, Objective 3 must be
removed once it is associated with a confidence level of 80%. However,
if 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 is defined as 50%, Objectives 1 and 3 must be removed from
the next execution.

This example shows another important property of this selection
method. If 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 is set to 100% (i.e., a very strict level), the
method will only remove the objectives where the user provides either
Non-preferred and Preferred for, respectively, the lowest and highest ob-
jective values, or Non-preferred for both. In an opposite way, if 𝑚𝑖𝑛𝐶𝑜𝑛𝑓
is 50% or less, if no user preferences are provided, the selection method
considers that this objective is not good (once the user does not express
his/her preferences about it), and it must be removed.

Finally, the confidence level described in this section is calculated
by the algorithm, not provided by the user since the user preferences
can be inconsistent after repeated sampling. Then, the only interaction
that the users do is to select a solution and to provide if this solution
is Preferred, Non-preferred, or No Opinion.

5. Empirical evaluation setup

COR-NSGA-II was implemented on Nautilus Framework [21] and
applied to the VTSPL problem. Moreover, COR-NSGA-II was compared
with MOEAs and MaOEAs used in the literature (see Section 2). To this
end, the following Research Questions (RQs) were derived:

Q1. Is COR-NSGA-II capable of reducing the problem dimension-
ality towards the user preferences? The goal of this RQ is to
evaluate if the Confidence-based selection method of
COR-NSGA-II is better than a random selection method. We
applied the latter merely as a ‘‘sanity check’’ because all optimiza-
tion algorithms should be capable of comfortably outperforming

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

R

R

4

Table 7
Characteristics of the FMs used in the experiments.
FM # of

products
(𝑛𝑡)

of selected
products
(𝑛)

Alive
mutants
(𝐴𝑀)

Valid
Pairs
(𝑉 𝑃)

of
features
(𝑛𝑓)

James [47] 68 68 106 75 14
CAS [48] 450 450 227 183 21
WS [49] 504 504 357 195 22
E-Shop [14] 1152 1152 94 202 22
Drupal [14] ≈2.09E9 11k 2194 1081 48
Smarthome [6] ≈3.87E9 11k 2948 1710 60

the random search for a well-formulated optimization problem.
In this RQ, we executed both algorithms and the user preferences
were provided by a simulated user (explained in more detail
in Section 5.2). The results were compared using Reduction
Efficiency, the Number of Preferred Objectives in the Last Subset,
and Reduction Capacity (see Section 5.3).

Q2. How are the results of COR-NSGA-II compared to those ob-
tained by multi- and many-objective evolutionary
algorithms? This RQ aims to compare the proposed algorithm
to those that use reference-set-based, preference-based, or dimen-
sionality reduction approaches for solving the VTSPL problem:
NSGA-II, NSGA-III, R-NSGA-II, and PCA-NSGA-II. To reach this
goal, the algorithm was executed using preferences provided by a
simulated user. A quantitative analysis was performed by using R-
HV, R-IGD, # of solutions generated (and the number of solutions
in the ROI), and the execution time.

Q3. Can COR-NSGA-II help users to find useful solutions? The goal
of this research question is to evaluate if the solutions generated
by COR-NSGA-II are more preferred than those generated by
the other multi- and many-objective evolutionary algorithms.
To this end, a set of potential users were invited and asked to
select a good solution from their point of view. The analysis
conducted is based on a qualitative questionnaire available in our
supplementary material [44].

5.1. Target feature models

This work uses six FMs widely used in related work [6,10–12,45,
6]. Table 7 shows information about the FMs: number of products (𝑛𝑡),
number of used products 𝑛, alive mutants (𝐴𝑀), valid pairs (𝑉 𝑃), and
number of features (𝑛𝑓). We can observe that the last two FMs contain
a larger number of features and products. Due to this, it is impractical
to use all the products in the population representation. For both FMs
𝑛 products were randomly selected from the total number of products
𝑛𝑡 that can be derived. Details about each FM can be found in our
supplementary material [44].

In this work, James, CAS, WS, and E-Shop are the smallest instances,
while Drupal and Smarthome are the largest ones. All FMs were used
for evaluating RQ1 and RQ2. E-Shop was chosen for answering RQ3,
because it is composed of a reasonable number of products to be
selected, and it has a suitable execution time for experiments where
the users need to express their preferences. Also, in our work, we used
the mutation operators of FMTS tool [30]2 which is responsible for
generating the mutants and giving a set of products, calculating the
mutation score and the number of alive mutants (AM).

5.2. Users

To evaluate our RQs, we used real and simulated users.

2 FMTS works with the framework Feature Model Analyzer (FaMa) [43],
which is responsible for handling constraints, and validating the mutants
and products. This tool supports the FODA notation [50], extended and
cardinality-based FMs.
9

Fig. 8. Simulated user representation.

Fig. 9. Example for user simulator evaluation.

Simulated users. A user simulator was developed for answering RQ1
and RQ2, aiming to represent a possible evaluation profile, as explored
in other works in the literature [51–53]. In this method, the user
simulator provides the preference for a given solution when required
by the algorithm. It is important to note that the main objective of
this simulator is not a faithful representation of a human being, but it
demonstrates the influence of a certain evaluation profile in the search
process. The user simulator requires a set of preferred objectives (a
subset of those to be optimized) and it supposes that the population
is normalized in [0:1] in which 0.0 means the best value and 1.0 is
the worse one for every objective. So, this one is grouped into three
main components: selection, evaluation, and stopping criteria briefly
summarized in Fig. 8.

The first component is responsible for selecting the items for evalu-
ation required by COR-NSGA-II. When this one is performed, for each
objective, all solutions from the non-dominated population that have
the best and the worst values are selected. After that, a set of random
solutions from this group (in this context, called items for evaluation)
is picked up to be evaluated later on by the user simulator.

In the second component, these items are evaluated. This one is re-
sponsible for evaluating the items proposed according to the preferred
objectives previously defined for the user simulator. The algorithm first
verifies if the objective index of the item for evaluation is part of the
preferred objectives. If it is not, this item is marked as Non-preferred.
Otherwise, it is marked as Preferred if the objective value is 0.0 or the
maximum and minimum objective values are the same, and as Non-
Preferred if the objective value is 1.0. In the last case, if no previous
conditions were reached, it is marked as No Opinion.

Finally, the third component is responsible for defining the stopping
criteria considered by the simulator. In this one, the used criteria
are the maximum number of interactions or the maximum number
of objectives is reached. To illustrate the user simulator, consider the
non-dominated population shown in Fig. 9.

In this example, the preferred objectives are #1 and #2. So the items
for evaluation are these ones:
𝐼𝑡𝑒𝑚1 = [solution: #3 | objective: #2 | 1.0]

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

𝐼

p
a

t
f
w
s
o
f
o

w
a
a
s

R
e
T
t

a
g
q
t
f

a
o
o
A
t
s

s
p
e
u
p
C
t

b
f
u
p

a
F
N
a
i
t

5

t
d
s
o
𝑃
r

I
R
i
t
R

a
a
t
c

d
(
i
I
i
t
l
A
t
F
i
q

P
F

s
a
f
t
o
o
R
T
d

Fig. 10. Participants’ experience.

𝑡𝑒𝑚2 = [solution: #1 | objective: #3 | 1.0]

𝐼𝑡𝑒𝑚3 = [solution: #5 | objective: #2 | 0.0]

Performing the evaluation component in this example, the user
references provided by the user simulator for 𝐼𝑡𝑒𝑚1, 𝐼𝑡𝑒𝑚2, and 𝐼𝑡𝑒𝑚3
re respectively, Non-preferred, Non-preferred, and Preferred.
The user simulator requires a set of preferred objectives. Based on

his, two scenarios were designed and evaluated in RQ1 and RQ2. The
irst scenario (called Scenario 2D) is responsible for simulating a user
ho prefers two objectives, and the second one (called Scenario 3D)
imulates a user who prefers three objectives. For Scenario 2D, Number
f Products and Alive Mutants objectives are randomly defined as pre-
erred ones. Regarding Scenario 3D, Alive Mutants, Similarity, and Cost
bjectives are selected as preferred ones.
The choice of these scenarios and the objectives selected for them

ere based on the correlation among the objectives, seeking to simulate
possible preferred set of objectives. For example, in Scenario 2D,
ll objectives are conflicting. Concerning to Scenario 3D, two of the
elected objectives are redundant ones: Similarity, and Cost.

eal users. For answering RQ3, we asked a group of potential users to
valuate the solutions generated by COR-NSGA-II and other algorithms.
hey were invited to assist in the solution generation process by stating
heir preferences about the found solutions.
Our study involved 12 participants, including 3 Master students

nd 7 Ph.D. students in Software Engineering and Optimization Al-
orithms, and 2 professors. The participants were asked to fill out a
uestionnaire where helped to collect background information, such as
heir role within the company, their programming experience, and their
amiliarity with software testing.
The experiment involved 7 male and 5 female participants, and

round 50% of them with high experience in software development and
ptimization algorithms (Fig. 10). In addition, all participants attended
ne lecture about the VTSPL problem and optimization algorithms.
t the end, a test with 5 questions was filled out aiming to evaluate
heir performance and understanding of the subject for suggesting good
olutions for an instance of an example problem.
Four groups with 3 participants were formed based on the pre-

tudy questionnaire and test results in order to ensure the groups had
articipants with almost the same average skills. For the test results,
ach question was weighted, where we tried to form groups in which all
sers had a similar average. At the end, all participants reached a good
erformance by selecting the correct answer to almost all questions.
onsequently, they were assigned randomly to each group since all of
hem were at the same level.
We asked every participant to define a set of preferred objectives

ased on his/her preferences. Then, the algorithms were executed by
ollowing the sequence described in each group. For each algorithm, the
ser was required to select/provide a good solution based on his/her
10

references previously defined. In this scenario, a questionnaire was
Table 8
Groups organization.
Group 1 Group 2 Group 3 Group 4

Manual selection NSGA-II R-NSGA-II COR-NSGA-II
NSGA-II R-NSGA-II COR-NSGA-II Manual selection
R-NSGA-II COR-NSGA-II Manual selection NSGA-II
COR-NSGA-II Manual selection NSGA-II R-NSGA-II

provided and the participants were asked to justify their evaluation
about his/her decisions and these justifications are reviewed by the
organizers of the study. Table 8 summarizes the group’s organization
nd the order in which the algorithms were executed in the groups.
or instance, the participants of Group 2 are invited to execute first
SGA-II, after R-NSGA-II and COR-NSGA-II, and at the end, to generate
solution for the problem instance by using manual selection. It is
mportant to notice that the algorithms were executed with the same
ooling. All questionnaires are available in [44].

.3. Quality indicators

To calculate the quality indicators, we used three sets of solu-
ions following optimization literature [54]: (i) 𝑃𝐹𝑎𝑝𝑝𝑟𝑜𝑥: set of non-
ominated solutions obtained by one algorithm execution; (ii) 𝑃𝐹𝑘𝑛𝑜𝑤𝑛:
et of non-dominated solutions of an algorithm obtained by the union
f all the 𝑃𝐹𝑎𝑝𝑝𝑟𝑜𝑥, removing the dominated and repeated ones; and (iii)
𝐹𝑡𝑟𝑢𝑒: formed by all sets 𝑃𝐹𝑘𝑛𝑜𝑤𝑛 obtained from different algorithms by
emoving dominated and repeated solutions.
However, some regular indicators, such as Hypervolume (HV) and

nverted Generational Distance (IGD), do not take into account the
P informed by the user. Considering the great importance of this
nformation when applying a preference-based algorithm, we decided
o use the Hypervolume indicator with R-Metric (R-HV) and IGD with
-Metric (R-IGD) following Li et al. [19].
The general idea of R-Metric is to pre-process the preferred solutions

ccording to a multi-criterion decision-making approach before using
standard metric to evaluate the performance of the obtained solu-
ions. Fig. 11 presents an illustration of the steps applied by R-Metric
alculation principle.
The first step is to filter the solutions by keeping only the non-

ominated and no-repeated ones (Prescreening). In the second step
Pivot Point Identification), a representative point is identified, reflect-
ng the general satisfaction of the solutions with respect to the RP.
n the third step (Trimming), only solutions located in the ROI are of
nterest to the user. The R-Metric defines the ROI as a set of solutions
hat is centered at the pivot point and with length 𝛿. Only solutions
ocated in this approximated ROI are valid for performance assessment.
fter this, in the fourth step (Solution Transfer), the trimmed points are
ransferred to a virtual position to be evaluated its proximity to the RP.
inally, the last step (R-Metric Calculation) applies the quality indicator
n the solutions processed by R-Metric. In our case, the HV and IGD
uality indicators [54].
Fig. 12 shows an example of the application of the R-Metric for five

areto-fronts, in which Fig. 12(a) shows the original Pareto-fronts and
ig. 12(b) the virtual ones after the application of the R-Metric.
It is possible to see that, for example, for the Pareto-front 𝑆3, the

olutions in this one are closest to the RP, then the solutions remain
lmost in the same position in the search space. However, for Pareto-
ront 𝑆5, its virtual position is more distant from RP provided by
he user. This will impact the quality attributes for this Pareto-front
nce the values are calculated by considering the virtual position. The
bjective of R-Metric is to evaluate the dissemination of solutions in the
OI and, at the same time, the proximity of these solutions to the RP.
o answer RQ1 and RQ2 we use R-HV and R-IGD, and other indicators
escribed as follows.

Information and Software Technology 152 (2022) 107031T. Ferreira et al.
Fig. 11. R-Metric steps.
Source: Adapted
from [55].
Fig. 12. R-Metric example.
r
p

R

• Hypervolume with R-Metric (R-HV): is calculated considering
the sets 𝑃𝐹𝑎𝑝𝑝𝑟𝑜𝑥 generated by all algorithms [54]. At the end, the
average of the results obtained by calculating the R-HV in each set
is returned. Thus, higher values of R-HV present the best results,
that is, results that contain a set of solutions closer to the RP and
also contain a greater number of solutions with good diversity
within the ROI.

• Inverted Generational Distance with R-Metric (R-IGD): IGD is
a convergence measure that corresponds to the average Euclidean
distance between the Pareto-front approximation provided by
an algorithm and a reference Pareto-front [19]. IGD needs an
approximated (or real) Pareto-front to be calculated. Thus, some
steps of R-Metric are performed on 𝑃𝐹𝑎𝑝𝑝𝑟𝑜𝑥 such as the steps pivot
identification and trimming procedure. The remaining solutions are
considered as trimmed 𝑃𝐹𝑎𝑝𝑝𝑟𝑜𝑥 and they are used to calculate
the R-IGD quality attribute. So, the lower R-IGD, the better the
results, that is, results that contain a set of solutions that are closer
to the trimmed 𝑃𝐹𝑎𝑝𝑝𝑟𝑜𝑥.

• Average Number of Solutions in the ROI: calculates how well
an algorithm can generate solutions in the ROI, that is, the main
idea of this quality attribute is to evaluate the algorithm’s ability
to obtain concentrated solutions that satisfy the user preferences.

• # of Targets in the Last Subset: counts the number of preferred
objectives in the last reduction. Ideally, this metric should return
the same number of preferred objectives defined by the user to
make sure the dimensionality reduction is moving towards user
preferences.

• Reduction Capacity: calculates the percentage in which the
reduction mechanism reached the preferred objectives. For in-
stance, if this metric indicates that it has 100%, it means, in all
executions, the algorithm reaches the preferred objectives defined
by the user. Otherwise, this metric scores 0%. So, greater value
are better.

• Reduction Efficiency: returns the number of reductions per-
formed until the final set of objectives includes just the pre-
ferred ones. A lower number is better since the algorithm has a
faster convergence, but 0 means the algorithm never reached the
preferred objectives.

• Execution Time: measures the time spent in milliseconds on gen-
11

erating the final Pareto-front set. However, for preference-based 0
algorithms such as COR-NSGA-II, the time spent on providing the
user preferences is also taken into consideration. Thus, a lower
number is better.

It is important to notice that COR-NSGA-II generates a non-
dominated population with the same number of objectives used in
the last reduction. So, it makes necessary to evaluate 𝑃𝐹𝑡𝑟𝑢𝑒 again
with the same objectives used at the beginning of the execution. To
cope with this, when COR-NSGA-II stops the reduction process, all
solutions in 𝑃𝐹𝑡𝑟𝑢𝑒 are re-evaluated with the same objectives described
in Section 3.2 and, so, it is possible to compare all algorithms once all
of them have solutions with the same set of objectives.

5.4. Definition of the Reference Points (RP)

A reference point is a tuple RP = (N, M, P, V, C, F, I) where the
sequence of elements represents either a value (or a point) in the
objective space in which the ROI should be generated, or a point in
which the algorithm should concentrate its search. So, in this tuple, 𝑁
is the value for the objective Number of Products,𝑀 is the value for Alive
Mutants, 𝑃 is the value for Uncovered Pairs, 𝑉 is the value for Similarity,
𝐶 is the value for Cost, 𝐹 is the value for Unselected Features, and 𝐼 is
the value for Unimportant Features.

Knowing this, two kinds of RPs were defined to be used by R-Metric
and R-NSGA-II algorithm in RQ2: (i) restricted, and (ii) compromised.
The former is responsible for representing a preference restricted to
a specific set of preferred objectives, and to the other non-preferred
objective ‘‘no preferences’’ are assigned. The latter is responsible for
also representing a preference for a specific set of preferred objectives,
but intermediate values for the other objectives are also defined. Thus,
two RPs were defined for each scenario described for Simulated Users
taking into account their preferred objectives.

Table 9 presents the RPs used to calculate the R-Metric and to
un R-NSGA-II. For Scenario 2D, the restricted RP aims to express
references for Number of Products and Alive Mutants with 0.0 value,
and no preferences (a value of 1.0) for the other objectives, while
in the compromised RP, 0.5 is used when there are no preferences.
Concerning Scenario 3D, the RP aims to express the preference for Alive
Mutants, Similarity, and Cost objectives with 0.0 value for the restricted
P and 1.0 for the non-preferred ones, while in the compromised RP,

.5 is defined for the non-preferred objectives.

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

𝑀

N
w
c
t
o
R
w
p

r
A
o
c
t
e
I

6

o

6

f
r
1
r
T
(

d
r
a

i
t
j
a
w

p
e
r
c

N
w
s
b

r
p
s
t
t
b
n
u
(
C
c

t
S
t
c
g

Table 9
Reference points.
Scenario Type Reference point

Scenario 2D Restricted (0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Compromised (0.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.5)

Scenario 3D Restricted (1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0)

Compromised (0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5)

Table 10
Parameter settings.
Parameter Algorithm Value

Population size All 112
Max evaluations All 134,400
Crossover operator All Single Point Crossover
Crossover probability All 0.9
Mutation operator All Bit Flip Crossover
Mutation probability All 0.005
𝜖 R-NSGA-II 0.001
of items for evaluation COR-NSGA-II 5
of reductions COR-NSGA-II 10

5.5. Parameter settings

We adopted the type and values for crossover and mutation prob-
abilities as defined in related work [12]. Then, we adopt the same
probability rates for all algorithms, being 90% for crossover probability
and 0.5% for mutation one. Regarding the population size and the
maximum number of evaluations (considered as a stopping criterion), a
tuning phase was performed and we tested two settings for these values:
112 and 238 for population size and 134,400 (or each solution is going
to be evaluated 1200 times) and 238k (or each solution is going to
be evaluated 1000 times) for a maximum number of evaluations. The
population size was defined based on the NSGA-III mechanism. The
latter uses a set of reference points on a hyper-plan where, by using
𝑝 divisions for each objective, the number of reference points (and
consequently the population size) is calculated by 𝐻 =

(𝑀+𝑝−1
𝑝

)

, where
is the number of objectives [18].
Other specific parameters were also tuned. For example, 𝜖 for R-

SGA-II, was evaluated with 0.0001 and 0.001 (the same in [12])
here this one controls the number of solutions inside the ROI. Con-
erning COR-NSGA-II, the minimum confidence level (80% and 100%),
he number of items for evaluation (5 and 10 items) and the number
f reductions (5 and 10 ones) were also evaluated. In addition to this,
-Metric requires a 𝛿, a parameter that specifies the ROI’s size. For this
ork, the value of 0.3 was used. This value is the same used in the
revious work for the addressed problem [12].
It is also important to notice that for RQ1 and RQ2, COR-NSGA-II

divides the maximum number of evaluations by the number of reduc-
tions. It means COR-NSGA-II is going to perform the same number of
evaluations of other algorithms no matter the number of reductions. For
example, suppose we have 900 as a maximum number of evaluations
and COR-NSGA-II performs 3 reductions where each one runs the
optimization algorithm for 300 evaluations.

Thus, 30 independent runs were performed using the combination
of the parameters. After tuning, the best parameter settings were se-
lected based on the best average values of R-HV and R-IGD. At the end,
the values chosen are displayed in Table 10.

With the best configuration of parameters chosen, 30 independent
uns of each algorithm were performed for answering RQ1 and RQ2.
t the end, the set of non-repeated and non-dominated solutions was
btained. As a statistical test, Kruskal–Wallis [56] with 95% signifi-
ance level was considered where the bold values in the tables represent
he best ones, and light gray cells represent values that are statistically
quivalent. Finally, the algorithms were executed in a machine with an
12

ntel(R) Core(TM) i7-5930K CPU 3.50 GHz with 40Gb RAM.
. Results

In this section we present and analyze the results in order to answer
ur RQs.

.1. RQ1: Sanity check

This RQ seeks to compare the results found by COR-NSGA-II to those
ound by a random dimensionality reduction algorithm (or simply, a
andom algorithm). The results found by COR-NSGA-II with 80% and
00% of minimum confidence level are presented, and concerning the
andom algorithm, the results are shown with 5 and 10 reductions.
o ease understanding, we present the results of both experiments
Scenarios 2D e 3D) in separated tables.
Related to Scenario 2D, Table 11 shows the mean values and stan-

ard deviations for each column for COR-NSGA-II and random algo-
ithm for Scenario 2D (Number of Product and Alive Mutants objectives
s preferred ones).
Table 11 shows COR-NSGA-II reaches the best performance in all

nstances in which it can converge to the target objectives in 100% of
he executions. On the contrary, the random algorithm always reaches
ust one objective in the last execution, and in most cases, this one is not
preferred objective. So, we can conclude that the random algorithm
as the worst for this scenario.
Regarding the minimum confidence level used by COR-NSGA-II, the

erformance was similar (statistically equivalent) for most instances,
xcept for James and CAS. In these ones, the COR-NSGA-II algo-
ithm with 80% of minimum confidence level reached the best results,
onverging to the preferred objective in fewer reductions.
Then, we can observe that the sanity check has passed (i.e., COR-

SGA-II outperforms the random algorithm by a large degree). Besides,
e can assume that the confidence level of 80% is better for this
cenario once it slightly scores a better performance compared to 100%,
y converging towards the preferred objectives quickly.
Table 12 shows the results for COR-NSGA-II and random algorithm

egarding Scenario 3D (Alive Mutants, Similarity, and Cost objectives as
referred ones). COR-NSGA-II reaches the best performance in all in-
tances in which it can converge to the preferred objectives in 100% of
he executions. The random algorithm obtained a performance similar
o that one obtained in Scenario 2D. It presented the worst performance
y reducing the set to just one objective and this, in most cases, was
ot the preferred objective. Concerning the minimum confidence level
sed by COR-NSGA-II in this scenario, the performance was also similar
statistically equivalent) for most instances, except again for James and
AS. In these instances, COR-NSGA-II with 80% of confidence level
onverged to the preferred objective with fewer reductions.
Summarizing the results found in this scenario, we can observe that

he sanity check has also passed. Besides, we can also assume (such
cenario 2D) that the minimum confidence level of 80% is better for
he addressed problem once it slightly scores a better performance
ompared to 100% (by converging to preferred objectives quickly, in
eneral, when compared to the other).

Key findings: COR-NSGA-II passes the sanity check. It is capable
of reducing the problem dimensionality towards the user preferences
in all cases for both scenarios.

6.2. RQ2: Comparing COR-NSGA-II to MOEAs and MaOEAs

To answer RQ2, Table 13 shows the number of times that the algo-
rithms generated the best results for each quality indicator considering
all instances. However, the comprehensive results can be found in our
supplementary material [44].

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

t
q
p

Table 11
COR-NSGA-II vs. random algorithm in Scenario 2D.

Algorithm Reduction
efficiency

Size of the
last subset

of Targets in
the Last Subset

Reduction
capacity

James

random-10 0.00 ± 0.00 1.00 ± 0.00 0.27 ± 0.45 0.00% ± 0.00
random-5 0.00 ± 0.00 1.03 ± 0.18 0.40 ± 0.50 0.00% ± 0.00
cor-nsga-ii-0.8 1.70 ± 0.47 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00
cor-nsga-ii-1.0 2.03 ± 0.32 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00

CAS

random-10 0.00 ± 0.00 1.00 ± 0.00 0.27 ± 0.45 0.00% ± 0.00
random-5 0.00 ± 0.00 1.00 ± 0.00 0.33 ± 0.48 0.00% ± 0.00
cor-nsga-ii-0.8 1.53 ± 0.51 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00
cor-nsga-ii-1.0 1.63 ± 0.49 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00

WS

random-10 0.00 ± 0.0 1.00 ± 0.00 0.27 ± 0.45 0.00% ± 0.00
random-5 0.00 ± 0.00 1.07 ± 0.25 0.27 ± 0.45 0.00% ± 0.00
cor-nsga-ii-0.8 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00
cor-nsga-ii-1.0 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00

E-Shop

random-10 0.00 ± 0.00 1.00 ± 0.00 0.13 ± 0.35 0.00% ± 0.00
random-5 0.00 ± 0.00 1.03 ± 0.18 0.40 ± 0.50 0.00% ± 0.00
cor-nsga-ii-0.8 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00
cor-nsga-ii-1.0 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00

Drupal

random-10 0.00 ± 0.00 1.00 ± 0.00 0.40 ± 0.50 0.00% ± 0.00
random-5 0.00 ± 0.00 1.00 ± 0.00 0.20 ± 0.41 0.00% ± 0.00
cor-nsga-ii-0.8 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00
cor-nsga-ii-1.0 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00

Smarthome

random-10 0.00 ± 0.00 1.00 ± 0.00 0.27 ± 0.45 0.00% ± 0.00
random-5 0.00 ± 0.00 1.00 ± 0.00 0.47 ± 0.51 0.00% ± 0.00
cor-nsga-ii-0.8 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00
cor-nsga-ii-1.0 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ±

0.00
Table 12
COR-NSGA-II vs. random algorithm in Scenario 3D.

Algorithm Reduction
efficiency

Size of the
last subset

of Targets in
the Last Subset

Reduction
capacity

James

random-10 0.00 ± 0.00 1.00 ± 0.00 0.53 ± 0.51 0.00% ± 0.00
random-5 0.00 ± 0.00 1.00 ± 0.00 0.40 ± 0.50 0.00% ± 0.00
cor-nsga-ii-0.8 1.83 ± 0.53 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 2.07 ± 0.25 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00

CAS

random-10 0.00 ± 0.00 1.00 ± 0.00 0.43 ± 0.50 0.00% ± 0.00
random-5 0.00 ± 0.00 1.00 ± 0.00 0.47 ± 0.51 0.00% ± 0.00
cor-nsga-ii-0.8 1.20 ± 0.41 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.33 ± 0.48 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00

WS

random-10 0.00 ± 0.00 1.00 ± 0.00 0.43 ± 0.50 0.00% ± 0.00
random-5 0.00 ± 0.00 1.00 ± 0.00 0.40 ± 0.50 0.00% ± 0.00
cor-nsga-ii-0.8 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00

E-Shop

random-10 0.00 ± 0.00 1.00 ± 0.00 0.37 ± 0.49 0.00% ± 0.00
random-5 0.00 ± 0.00 1.00 ± 0.00 0.43 ± 0.50 0.00% ± 0.00
cor-nsga-ii-0.8 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00

Drupal

random-10 0.00 ± 0.00 1.00 ± 0.00 0.37 ± 0.49 0.00% ± 0.00
random-5 0.00 ± 0.00 1.00 ± 0.00 0.57 ± 0.50 0.00% ± 0.00
cor-nsga-ii-0.8 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00

Smarthome

random-10 0.00 ± 0.00 1.00 ± 0.00 0.33 ± 0.48 0.00% ± 0.00
random-5 0.00 ± 0.00 1.07 ± 0.25 0.50 ± 0.57 0.00% ± 0.00
cor-nsga-ii-0.8 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
Regarding COR-NSGA-II, NSGA-II and NSGA-III, Table 13 shows
hat COR-NSGA-II generates the best results for all scenarios and most
uality indicators. Just for Scenario 3D and the largest instances, the
erformance of COR-NSGA-II are slightly worst, but it takes a reduced
13
time to execute and generates a lower number of solutions in the ROI.
The table also presents that COR-NSGA-II can outperform the R-NSGA-
II algorithm in all scenarios. Specifically for Scenario 3D and the largest
instances, the results found by COR-NSGA-II is slightly worst (similar to

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

p
(
w
o
g

Table 13
COR-NSGA-II vs. MOEAs and MaOEAs.

Algorithm R-HV R-IGD # of Sol. # of Sol.
in the ROI

Execution
time (ms)

2D

COR-NSGA-II 7 9 12 12 12

NSGA-II 4 3 0 0 0

NSGA-III 1 4 0 0 0

3D

COR-NSGA-II 8 7 6 10 12

NSGA-II 4 5 0 2 0

NSGA-III 0 0 6 0 0

Algorithm R-HV R-IGD # of Sol. # of Sol.
in the ROI

Execution
time (ms)

2D
COR-NSGA-II 8 10 12 12 12

R-NSGA-II 4 4 0 0 0

3D COR-NSGA-II 8 8 12 12 12

R-NSGA-II 4 4 0 0 0

Algorithm R-HV R-IGD # of Sol. # of Sol.
in the ROI

Execution
time (ms)

2D
COR-NSGA-II 9 11 12 11 12

PCA-NSGA-II 3 3 0 1 0

3D COR-NSGA-II 8 8 10 10 12

PCA-NSGA-II 4 4 2 2 0

those found when it compared to NSGA-II and NSGA-III). However, it
maintains spending less Execution Time (around 5 h on average lesser
than R-NSGA-II), and generating a lower number of solutions in the ROI
(around 100 solutions on average lesser than R-NSGA-II). More details
in [44].

Finally, Table 13 describes that COR-NSGA-II reaches the best val-
ues for all scenarios when compared to PCA-NSGA-II. Considering the
Execution Time, it is important to notice that the proposed algorithm
reaches the lowest execution time where, in some cases, this one can
be less than half of the time spent by other algorithms.

Key findings: COR-NSGA-II reaches, in general, fewer solutions
in the ROI and these ones have a good performance when compared
to those found by the other algorithms. On the one hand, COR-
NSGA-II outperforms the other algorithms in most instances. On the
other hand, its performance is slightly decreased when the Compro-
mised RP and Scenario 3D with redundant objectives (not necessarily
together) are considered.

6.3. RQ3: Evaluating The solutions

RQ3 evaluates the usefulness of the COR-NSGA-II solutions ac-
cording to the user preferences compared to those found MOEAs and
MaOEAs. For answering this RQ, the users were required to run Nau-
tilus [21] and pick a solution up from the population generated by COR-
NSGA-II, R-NSGA-II, and NSGA-II (the best algorithms found in RQ2).
Also, they were required to, manually, provide a solution (Nautilus also
supports this process).

Before performing the experiment, the users were required to select
at most 4 objectives (out of 7) as preferred ones. This was required
seeking to guarantee COR-NSGA-II will perform some reduction. Fig. 13
shows the preferred objectives from the user’s point of view.

On the one hand, 11 users (91% of them) selected Cost as the
referred objective, followed by Number of Products selected by 10 users
or 83.3%). On the other hand, Unselected Features and Uncovered Pairs
ere less preferred by the users. Details about the set of preferred
bjectives selected by the participants and the final set of objectives
enerated by COR-NSGA-II are shown in [44].
14
Fig. 13. Preferred objectives from the user’s point of view.

Table 14
COR-NSGA-II’s results for each participant.
Part. # of Preferred

Objectives
of
Reductions

Size of the Last
Subset

of targets in
the Last Subset

#1 2 3 3 2
#2 2 2 2 2
#3 3 2 3 3
#4 2 4 2 2
#5 4 1 4 4
#6 4 1 3 3
#7 4 1 3 3
#8 4 1 5 4
#9 4 1 5 4
#10 4 1 6 4
#11 4 2 5 4
#12 4 2 4 4

Table 14 presents detailed information for each participant about
the # of Preferred Objectives, # of Reductions performed by COR-
NSGA-II, Size of the Last Subset (or the # of objectives optimized during
the last algorithm execution), and # of Targets in the Last Subset (or
preferred objectives during the last algorithm execution).

Table 14 shows that 3 users selected 2 objectives, 1 user selected
3 objective as preferred, and 8 ones selected 4 objectives. The partic-
ipants #2, #3, #4, #5, and #12 selected a solution when in the last
execution, the set of objectives optimized contained just the preferred
ones (Size and # of Targets in the Last Subset are the same). However,
the participants #1, #8, #9, #10, and #11 were able to pick a solution
up before COR-NSGA-II reaches this convergence.

After interacting with Nautilus and selecting a good solution for
each algorithm, we asked the users in a post-survey to describe how
difficult was the selection of this solution. Fig. 14 shows the feedback
captured from the questionnaire. This figure describes that 8 users
have chosen the option ‘‘Easy’’ and ‘‘Very Easy’’ for COR-NSGA-II, 4
for the NSGA-II and R-NSGA-II algorithms. In the last position, the
manual selection appears as the most difficult (8 users). Analyzing the
motivation, some participants claimed COR-NSGA-II generated fewer
solutions and other ones claimed COR-NSGA-II took less execution time
compared to the other algorithms. With this, we asked the users to rank
the algorithm based on his/her preferences where 1 means the best one
and so on. The information is displayed in Fig. 15.

Fig. 15 shows that COR-NSGA-II was ranked as the best algorithm
by 10 users (or around 83%). NSGA-II was ranked as the best 2 times.
As expected, the manual selection received the lowest score in this
experiment, being ranked in the last position by 9 users (around 80%).
However, aiming to verify the dependence on the execution order,
Table 15 shows the best algorithm by group.

Two users from Group 4 selected the NSGA-II algorithm as the best
one. In such a group, COR-NSGA-II was the first algorithm evaluated.
We suppose that the results found by COR-NSGA-II influenced the

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

i

r
i

d
o
o
t
t
t
n
d
t
t
s
S
t
f
w
3
5

I
t
i
i
h
c
C
D
n
p
i
o
t
i
o
t
o
i
t
f
s

t
o
B
c
i
s
s
h
u
t
t
o
d
s

Fig. 14. Easiest algorithms from the user’s point of view.

Fig. 15. Best algorithms from the user’s point of view.

Table 15
Best algorithm by group.
Group 1 Group 2 Group 3 Group 4

COR-NSGA-II COR-NSGA-II COR-NSGA-II COR-NSGA-II
NSGA-II

user decision about the solutions generated by the other algorithms,
i.e., they used the solution selected by applying COR-NSGA-II to guide
his/her preferences in the following algorithms and this can be a
motivation for the other algorithms appear as good as COR-NSGA-
II. However, more experiments must be performed to validate our
hypothesis. A fact that can corroborate this hypothesis is that we asked
the users if the execution order in each group (described in Table 8)
mpacted their responses. Around 58.3% answered positively.

Key findings: COR-NSGA-II can help the user to find useful solu-
tions for the addressed problem since 10 out of 12 users defined that
the solutions found by COR-NSGA-II were the best ones compared to
other algorithms and it was also easy to select them.

7. Implications and future work

As presented in the previous section, COR-NSGA-II can generate
fewer solutions, taking less execution time for searching them, but
maintaining the quality attributes in a competitive way. However, in
this section, we discuss some implications of our experimental study
results.

As expected in RQ1, the random dimensionality reduction algo-
ithm was the worst one for the addressed problem once it does not take
15

nto account the user preferences. In all cases, this one ends the search o
process simply because it reached the minimum number of objectives
(in case, a single one). On the contrary, COR-NSGA-II reached the
preferred objectives, on average, in the second reduction. As in this
experiment a user simulator was used and this one is responsible
for selecting randomly solutions in the Pareto-front, the number of
reductions could be less if a kind of smart mechanism were used in this
task. Also, the execution time they take to execute should be evaluated
in future experiments.

In RQ2, in most cases, COR-NSGA-II found better results for the ad-
ressed problems. However, it is possible to notice a slightly decreasing
f the values regarding R-HV and R-IGD when the number of preferred
bjectives increases. We suppose that the presence of redundant objec-
ives in this set can affect the algorithm performance. In addition to
his, we also suppose that if the set of preferred objectives has almost
he same size as the original set of objectives, the performance must
ot be competitive since COR-NSGA-II may not perform multiple re-
uctions. New experiments should be performed in the future to verify
his assumption with different scenarios. Although this can happen,
he difference between COR-NSGA-II and the other algorithms remains
mall and it is a good trade-off. For example, considering R-NSGA-II in
cenario 3D, the performance of COR-NSGA-II was around 3% worse
han the former for the Smarthome instance (the largest one). However,
or the same context, R-NSGA-II took 8 h on average to find a solution,
hile COR-NSGA-II, with its dimensionality reduction mechanism, took
.2 h on average, i.e., a reduction in the execution time of more than
0%.
This is another important finding of our experiment. COR-NSGA-

I took less time in all instances and compared with algorithms, and
he difference among the algorithms increases when the instance size
ncreases as well. This becomes COR-NSGA-II an important algorithm
n the context of where the number of products to be selected is
uge. However, future experiments might confirm these results spe-
ially because this RQ uses a simulated user. Also, the performance of
OR-NSGA-II remains good when the Compromised RP is considered.
ifferent from Restricted RP, the former considers 0.5 in the RP for the
on-preferred objectives (that is, although a small value, it still is a user
reference for this objective). However, COR-NSGA-II does not take
nto account this concept, that is, for the algorithm, if an objective to be
ptimized is not preferred, it is simply discarded. So, more research in
he future should evaluate the performance of the proposed algorithm
n the context where there are some small preferences for non-preferred
bjectives and some random reference points were provided. Moreover,
he use of COR-NSGA-II is recommended in the context where all
bjectives should be optimized, but some of them are preferred. If,
n the user’s point of view, all objectives have the same preferences,
raditional MOEAs and MaOEAs should be applied. In addition to this,
uture experiments should be performed to verify, in case all objectives
hould be removed, if to find the closest value to 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 could
perform better.

Finally, concerning to RQ3, two unexpected situations were iden-
ified during the performance of the experiments. The first situation
ccurs when a user selected two redundant objectives as preferred.
ecause of this, the manual mechanism for selecting a solution was
onsidered by this user better than the optimization algorithms used
n this experiment (although the user took more than 20 min to pick a
olution up in using the manual mechanism). Another finding was that
ome users took more than 10 min exploring the Pareto-front, providing
is/her preferences. Since the experiment did not set a limit for the
sers to express his/her preferences in COR-NSGA-II, some users spent
ime providing his/her preferences as much as they can. Thus, seeking
o improve this process, it is necessary in a future work, to study a kind
f limit for the number of preferences and, also, to propose a way to
eal with redundant objectives in the set of preferred ones. Future work
hould also apply some techniques for data visualization or usability in

rder to improve the selection of user preferences.

Information and Software Technology 152 (2022) 107031T. Ferreira et al.

d
c
o
R
R
v
b
f
m
t
d
i
t
p
e
t
f
H
D
n
f
a
G
a
c
a
i
t

h
t
t
a
d

o
s
e
w
r
s
a
p
s
H
f
g
s
m
n

a
9
a
t

8. Threats to validity

Internal Validity. Regarding RPs used in RQ2, the results are
ependent on the reference points used. These ones were selected
onsidering our previous knowledge about the Pareto-front and the set
f preferred objectives. So, aiming to mitigate this threat, two kinds of
Ps were considered in which the non-preferred objectives in the first
P do not have any preferences, while for the second one compromised
alues (0.5 to be exact) are provided to non-preferred objectives. To
etter evaluate the impact of the provided RPs, we need to conduct
uture experiments, even with random RPs. Furthermore, the experi-
ents with users showed that the algorithm is highly dependent on
he context in which it is applied and the set of preferred objectives
efined by the user, especially because the participants do not work
n the system on which the FMs were based. Hence, all users received
he same information and, before performing the tests, all of them took
art in a preliminary test to learn how to use the tool, and prevent any
ffects of ignorance on their usage. We use the tool FMTS to calculate
he objective values of our problem. FMTS makes use of the FaMa
ramework to deal with resource model constraints and derive products.
owever, FaMa has some limitations to work with large FMs such as
rupal and Smarthome. To mitigate this threat, the user can set a
umber 𝑛 of products to be used for selection. Other representations
or the problem can be used in the future, as well as other analyzers
nd tools for setting ‘‘n’’ more accurately, such as SAT solver and
lencoe [57], respectively. The randomly selected ‘‘n’’ products could
lso be a threat to validation. To mitigate this in our experiments, we
onsidered ‘‘n’’ values that are proportional to the number of products
nd, at the end, the mutation score value was around 97% for each FM,
.e., 3% of mutants were discarded considering the percentage found for
he smaller FMs determined using the complete set of products.
Construct Validity. We used questionnaires to assess the compre-

ension of the solution selection process and the participants’ answers
o these questionnaires were evaluated by comparing the answers with
he quality metrics for them. This design choice avoided as much
s possible any subjective evaluation. Thus, the questionnaires were
efined to be complex enough without being too obvious.
External Validity. We tested COR-NSGA-II in six different instances

f SPL Testing. Even though these instances are evaluated in other
tudies of the literature, we cannot state that this is enough to gen-
ralize the results. Besides, the cost and importance (both of them
ere randomly defined), and the size of the instances may not reflect
eal-world FMs. To minimize this threat, we tried to evaluate FMs of
everal sizes (including two with more the 11k products to be selected)
nd domains. Regarding the larger instances, we consider that 11k of
roducts to be selected were adequate proportionally to the mutation
core (around 97%) chosen for the experiments performed in this work.
owever, a greater number for large SPLs should be evaluated in a
uture experiment. It is expected to have a similar performance and
ood results with acceptable time. Regarding the definition of the
cenarios, the selection of the objective should be a threat. Aiming to
inimize it, we tried to select them based on redundancy or conflicting
ature.
Conclusion Validity. The parameter settings used by the algo-

rithms can be a threat. The number of evaluations is the same for
everyone, even COR-NSGA-II that applies dimensionality reduction.
Different values, especially in the larger instances, could result in
different, perhaps better, capacity of reducing towards user preferences.
To address the stochastic nature of the evolutionary algorithms, all the
algorithms were performed 30 times for each instance and reference
points to answer RQ1 and RQ2, while capturing the arithmetic mean
nd standard deviation of the metrics. Also, Kruskal–Wallis test with
5% significance level was used to compare the results found by the
lgorithms. This test is quite robust and it has been extensively used in
16

he past to conduct similar analyses.
9. Concluding remarks

This work presented COR-NSGA-II, an algorithm that reduces the
number of objectives to be optimized towards the user needs based on
a confidence level for each objective optimized. As main characteristics,
COR-NSGA-II is an algorithm that requires the user preferences inter-
actively (or in-the-loop) and reduces the number of objectives during
the solution generation process. The algorithm shows to the user the
current set of non-dominated solutions and, at this point, the user can
express his/her preferences about them by using an ordinal scale. For
assessing the feasibility of COR-NSGA-II, multiple experiments were
performed using six different FMs, two types of reference points, five
algorithms, and two scenarios.

We compared COR-NSGA-II to a random dimensionality objective
algorithm and concluded that the proposed algorithm is, in fact, ca-
pable of guiding the search process to the objectives preferred by the
users. Also, the results found by COR-NSGA-II were compared to those
found by MOEAs and MaOEAs. By using several quality indicators, we
observed that COR-NSGA-II, in most instances and scenarios, obtained
the best results or results statistically equivalent to the algorithms
evaluated, even when the Compromised RP is considered. In this sense,
we can conclude that COR-NSGA-II, indeed, generates a small set of
good solutions taking less time to execute and, mainly, incorporating
the user preferences. Besides, a group of users was invited to optimize
a problem instance and, the great majority of the users, answered that
it is easier to pick a solution up generated by COR-NSGA-II, and chose
this algorithm as the best compared with the other ones.

Hence, considering the evaluation done in this work and the an-
swers found for the research questions, we can conclude that COR-
NSGA-II is capable of quickly generating a small set of solutions that
satisfy the user preferences, still keeping the solutions as good as
those generated by MOEAs and MaOEAs used in the VTSPL literature.
Future work include (i) to perform more empirical study to evaluate
the scalability of COR-NSGA-II in other FMs used in the industry; (ii)
to evaluate COR-NSGA-II in an environment in which the number of
reductions is limited; (iii) to study new values for confidence level
for removing an objective and increase the feedback options used by
COR-NSGA-II; (iv) to apply COR-NSGA-II to other SE problems; and (v)
to extend COR-NSGA-II with other optimization algorithms as search
engine.

CRediT authorship contribution statement

Thiago Ferreira: Conceptualization, Methodology, Formal analysis,
Investigation, Data curation, Software, Writing – original draft, For-
mal analysis, Validation, Writing – review & editing. Silvia Regina
Vergilio: Conceptualization, Data curation, Validation, Investigation,
Methodology, Writing – review & editing, Supervision, Project ad-
ministration, Funding acquisition. Marouane Kessentini: Validation,
Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I have shared the link to our data/code in the paper

Acknowledgments

This work is supported by CAPES, Brazil and CNPq, Brazil, grants:
307762/2015-7 and 305968/2018-1.

Information and Software Technology 152 (2022) 107031T. Ferreira et al.
References

[1] M.B. Cohen, M.B. Dwyer, J. Shi, Coverage and adequacy in software product
line testing, in: Proceedings of the 15th International Symposium on Software
Testing and Analysis (ISSTA’ 06), ACM, Portland, USA, 2006, pp. 53–63.

[2] M. Harman, B.F. Jones, Search-based software engineering, Inf. Softw. Technol.
43 (2001) 833–839.

[3] S. Wang, S. Ali, A. Gotlieb, Minimizing test suites in software product lines
using weight-based genetic algorithms, in: Proceedings of the 15th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO ’13),
ACM, Amsterdam, The Netherlands, 2013, pp. 1493–1500.

[4] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, M. Liaaen, Multi-objective
test prioritization in software product line testing: An industrial case study, in:
Proceedings of the 18th International Software Product Line Conference (SPLC
’14), ACM, Florence, Italy, 2014, pp. 32–41.

[5] F. Ensan, E. Bagheri, D. Gašević, Evolutionary search-based test generation for
software product line feature models, in: Proceedings of the 25th International
Conference on Advanced Information Systems Engineering (CAiSE ’13), Springer,
Valencia, Spain, 2012, pp. 613–628.

[6] C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y.L. Traon, Multi-objective test
generation for software product lines, in: Proceedings of the 17th International
Software Product Line Conference (SPLC ’13), ACM, Tokyo, Japan, 2013, pp.
62–71.

[7] C. Henard, M. Papadakis, Y. Le Traon, Mutation-based generation of software
product line test configurations, in: Proceedings of the 6th International Sym-
posium on Search Based Software Engineering (SSBSE ’14), Springer, Fortaleza,
Brazil, 2014, pp. 92–106.

[8] R.E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, E. Alba, Multi-objective
optimal test suite computation for software product line pairwise testing, in:
Proceedings of the 29th IEEE International Conference on Software Maintenance
(ICSM ’13), IEEE, Eindhoven, The Netherlands, 2013, pp. 404–407.

[9] R.A. Matnei-Filho, S.R. Vergilio, A mutation and multi-objective test data
generation approach for feature testing of software product lines, in: Proceedings
of the 29th Brazilian Symposium on Software Engineering (SBES’15), IEEE
Computer Society, Belo Horizonte, Brazil, 2015, pp. 21–30.

[10] A. Strickler, J.A. Prado Lima, S.R. Vergilio, A. Pozo, Deriving products for
variability test of feature models with a hyper-heuristic approach, Appl. Soft
Comput. 49 (2016) 1232–1242.

[11] T. do Nascimento Ferreira, J.A.P. Lima, A. Strickler, J.N. Kuk, S.R. Vergilio, A.
Pozo, Hyper-heuristic based product selection for software product line testing,
IEEE Comput. Intell. Mag. 12 (2) (2017) 34–45.

[12] H.L. Jakubovski-Filho, T. do Nascimento Ferreira, S.R. Vergilio, Preference based
multi-objective algorithms applied to the variability testing of software product
lines, J. Syst. Softw. 151 (2018) 194–209.

[13] T. do Nascimento Ferreira, S.R. Vergilio, M. Kessentini, Applying many-objective
algorithms to the variability test of software product lines, in: Proceedings of the
5th Brazilian Symposium on Systematic and Automated Software Testing (SAST
’20), Natal, Brazil, 2020, pp. 11–20.

[14] J. Parejo, A. Sánchez, S. Segura, A. Ruiz-Cortés, R. Lopez-Herrejon, A. Egyed,
Multi-objective test case prioritization in highly configurable systems: A case
study, J. Syst. Softw. 122 (2016) 287–310.

[15] M.W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. Ó Cinnéide, High dimen-
sional search-based software engineering: Finding tradeoffs among 15 objectives
for automating software refactoring using NSGA-III, in: Proceedings of the
16th Annual Conference Companion on Genetic and Evolutionary Computation
(GECCO ’14), ACM, Vancouver, Canada, 2014, pp. 1263–1270.

[16] A.S. Sayyad, H. Ammar, Pareto-Optimal search-based software engineering (POS-
BSE): A literature survey, in: Proceedings of the 2nd International Workshop on
Realizing Artificial Intelligence Synergies in Software Engineering (RAISE ’03),
IEEE, San Francisco, USA, 2013, pp. 21–27.

[17] T.E. Colanzi, W.K. Assunção, S.R. Vergilio, P.R. Farah, G. Guizzo, The symposium
on search-based software engineering: Past, present and future, Inf. Softw.
Technol. 127 (2020) 106372.

[18] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: Solving problems
with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2014) 577–601.

[19] B. Li, J. Li, K. Tang, X. Yao, Many-objective evolutionary algorithms: A survey,
ACM Comput. Surv. 48 (1) (2015) 13.

[20] K. Deb, D. Saxena, Searching for Pareto-optimal solutions through dimensionality
reduction for certain large-dimensional multi-objective optimization problems, in:
Proceedings of the 8th IEEE Congress on Evolutionary Computation (CEC ’06),
Vancouver, Canada, 2006, pp. 3352–3360.

[21] T. do Nascimento Ferreira, S.R. Vergilio, M. Kessentini, Nautilus: An interactive
plug and play search based software engineering framework, IEEE Softw. (2020).

[22] F.J. Van der Linden, K. Schmid, E. Rommes, Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering, Springer Science &
Business Media, 2007.

[23] G. Perrouin, S. Sen, J. Klein, B. Baudry, Y. Le Traon, Automated and scalable
t-wise test case generation strategies for software product lines, in: Proceedings
of the 3rd IEEE International Conference on Software Testing, Verification and
Validation (ICST ’10), IEEE, Paris, France, 2010, pp. 459–468.
17
[24] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, Y. Le Traon,
Bypassing the combinatorial explosion: Using similarity to generate and prioritize
t-wise test configurations for software product lines, IEEE Trans. Softw. Eng. 40
(7) (2014) 650–670.

[25] S. Oster, M. Zink, M. Lochau, M. Grechanik, Pairwise feature-interaction testing
for SPLs: Potentials and limitations, in: Proceedings of the 15th International
Software Product Line Conference (SPLC ’11), ACM, Munich, Germany, 2011, p.
6.

[26] E. Uzuncaova, S. Khurshid, D. Batory, Incremental test generation for software
product lines, IEEE Trans. Softw. Eng. 36 (3) (2010) 309–322.

[27] D.M. Cohen, S.R. Dalal, J. Parelius, G.C. Patton, The combinatorial design
approach to automatic test generation, IEEE Softw. 13 (5) (1996) 83–88.

[28] D. Reuling, J. Bürdek, S. Rotärmel, M. Lochau, U. Kelter, Fault-based product-
line testing: Effective sample generation based on feature-diagram mutation, in:
Proceedings of the 19th International Software Product Line Conference (SPLC
’15), ACM, Nashville, Tennessee, 2015, pp. 131–140.

[29] P. Arcaini, A. Gargantini, P. Vavassori, Generating tests for detecting faults in
feature models, in: Proceedings of the 8th IEEE International Conference on
Software Testing, Verification and Validation (ICST ’15), IEEE, Graz, Austria,
2015, pp. 1–10.

[30] J.M. Ferreira, S.R. Vergilio, M.A. Quináia, A mutation approach to feature testing
of software product lines, in: Proceedings of the 25th International Conference on
Software Engineering and Knowledge Engineering (SEKE’13), Knowledge Systems
Institute Graduate School, Boston, USA, 2013, pp. 232–237.

[31] C. Henard, M. Papadakis, G. Perrouin, J. Klein, Y. Le Traon, Assessing software
product line testing via model-based mutation: An application to similarity
testing, in: Proceedings of the 6th IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW ’13), IEEE, Luxembourg,
2013, pp. 188–197.

[32] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Vol. 16,
John Wiley & Sons, 2001.

[33] E.K. Burke, G. Kendall, Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques, Springer, 2005.

[34] A. Zhou, B. Qu, H. Li, S. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective
evolutionary algorithms: A survey of the state of the art, Swarm Evol. Comput.
1 (1) (2011) 32–49.

[35] R. Akbari, R. Hedayatzadeh, K. Ziarati, B. Hassanizadeh, A multi-objective
artificial bee colony algorithm, Swarm Evol. Comput. 2 (2012) 39–52.

[36] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[37] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, L. Salomon, Performance indicators
in multiobjective optimization, European J. Oper. Res. 292 (2) (2021) 397–422.

[38] H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, part II: Handling con-
straints and extending to an adaptive approach, IEEE Trans. Evol. Comput. 18
(4) (2014) 602–622.

[39] H. Abdi, L.J. Williams, Principal component analysis, Wiley Interdiscip. Rev.
Comput. Stat. 2 (4) (2010) 433–459.

[40] K. Deb, J. Sundar, U. Bhaskara, S. Chaudhuri, Reference point based multi-
objective optimization using evolutionary algorithms, Int. J. Comput. Intell. Res.
2 (3) (2006) 27–286.

[41] C.H.P. Kim, D.S. Batory, S. Khurshid, Reducing combinatorics in testing product
lines, in: Proceedings of the Tenth International Conference on Aspect-Oriented
Software Development, 2011, pp. 57–68.

[42] C.H.P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros, M.
d’Amorim, SPLat: Lightweight dynamic analysis for reducing combinatorics in
testing configurable systems, in: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, 2013, pp. 257–267.

[43] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, A. Jimenez, Fama frame-
work, in: Proceedings of the 12th International Software Product Line Conference
(SPLC ’08), IEEE, Limerick, Ireland, 2008, p. 359.

[44] T. do N. Ferreira, S.R. Vergilio, M. Kessentini, Supplementary material, 2021,
https://nautilus-framework.github.io/cor-nsga-ii/.

[45] T. do Nascimento Ferreira, J.N. Kuk, A. Pozo, S.R. Vergilio, Product selection
based on upper confidence bound MOEA/D-DRA for testing software product
lines, in: Proceedings of the 18th IEEE Congress on Evolutionary Computation
(CEC ’16), IEEE, Vancouver, Canada, 2016, pp. 4135–4142.

[46] H.L. Jakubovski-Filho, T. do Nascimento Ferreira, S.R. Vergilio, Multiple ob-
jective test set selection for software product line testing: Evaluating different
preference-based algorithms, in: Proceedings of the XXXII Brazilian Symposium
on Software Engineering (SBES ’18), ACM, Sao Carlos, Brazil, 2018, pp. 162–171.

[47] D. Benavides, S. Trujillo, P. Trinidad, On the modularization of feature models,
in: Proceedings of the 1st European Workshop on Model Transformation (CMT
’06), Bilbao, Spain, 2005, p. 134.

[48] S. Weißleder, D. Sokenou, B. Schlingloff, Reusing state machines for automatic
test generation in product lines, in: Proceedings of the 1st Workshop on
Model-Based Testing in Practice (MoTiP ’08), Berlin, Germany, 2008, pp. 19–28.

[49] D. Beuche, M. Dalgarno, Software product line engineering with feature models,
Overload J. 78 (2007) 5–8.

http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb1
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb2
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb3
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb4
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb5
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb6
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb7
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb8
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb9
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb10
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb11
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb12
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb14
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb15
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb16
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb17
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb18
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb19
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb19
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb19
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb21
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb21
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb21
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb22
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb23
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb24
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb25
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb26
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb26
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb26
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb27
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb28
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb29
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb30
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb31
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb32
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb33
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb33
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb33
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb34
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb35
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb36
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb37
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb38
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb39
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb39
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb39
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb40
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb43
https://nautilus-framework.github.io/cor-nsga-ii/
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb45
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb46
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb49
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb49
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb49

Information and Software Technology 152 (2022) 107031T. Ferreira et al.
[50] K.C. Kang, J. Lee, P. Donohoe, Feature-oriented project line engineering, IEEE
Softw. 19 (4) (2002) 58–65.

[51] A.A. Araújo, M. Paixão, Machine learning for user modeling in an interactive
genetic algorithm for the next release problem, in: Proceedings of the 6th
International Symposium on Search Based Software Engineering (SSBSE ’14),
Springer, Fortaleza, Brazil, 2014, pp. 228–233.

[52] M. Shackelford, D.W. Corne, A Technique for Evaluation of Interactive
Evolutionary Systems, Springer, 2004, pp. 197–208.

[53] T. do Nascimento Ferreira, A.A. Araújo, A.D. Basílio-Neto, J.T. de Souza,
Incorporating user preferences in ant colony optimization for the next release
problem, Appl. Soft Comput. 49 (2016) 1283–1296.
18
[54] E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications, (Ph.D. thesis), Citeseer, 1999.

[55] K. Li, K. Deb, X. Yao, R-metric: Evaluating the performance of preference-based
evolutionary multiobjective optimization using reference points, IEEE Trans.
Evol. Comput. 22 (6) (2017) 821–835.

[56] R. Kuhn, R. Kacker, Y. Lei, J. Hunter, Combinatorial software testing, Computer
42 (8) (2009) 94–96.

[57] R. Heradio, D. Fernandez-Amoros, J.A. Galindo, D. Benavides, Uniform and
scalable SAT-sampling for configurable systems, in: Proceedings of the 24th ACM
Conference on Systems and Software Product Line (SPLC ’20), ACM, Montreal,
Canada, 2020, pp. 1–11.

http://refhub.elsevier.com/S0950-5849(22)00150-1/sb50
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb50
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb50
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb51
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb52
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb53
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb54
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb54
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb54
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb55
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb56
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb56
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb56
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57
http://refhub.elsevier.com/S0950-5849(22)00150-1/sb57

	Variability testing of software product line: A preference-based dimensionality reduction approach
	Introduction
	Background
	Software product line testing
	Pairwise testing in the FM context
	Mutation testing in the FM context

	Optimization algorithms

	Variability testing of software product line
	Related work
	Problem formulation adopted

	Confidence-based objective reduction NSGA-II
	Confidence-based selection method

	Empirical evaluation setup
	Target feature models
	Users
	Quality indicators
	Definition of the Reference Points (RP)
	Parameter settings

	Results
	RQ1: Sanity check
	RQ2: Comparing COR-NSGA-II to MOEAs and MaOEAs
	RQ3: Evaluating The solutions

	Implications and future work
	Threats to validity
	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

