Information and Software Technology 152 (2022) 107037

Contents lists available at ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

An empirical study on ML DevOps adoption trends, efforts, and benefits e
analysis

Dhia Elhaq Rzig *", Foyzul Hassan ?, Marouane Kessentini "

a Computer and Information Science Department, University of Michigan - Dearborn, Dearborn, USA
b School Of Engineering And Computer Science, Oakland University, Rochester, USA

ARTICLE INFO ABSTRACT

Dataset link: Replication Package (Original dat Context: Machine Learning (ML), including Deep Learning(DL), based systems, have become ubiquitous in
a) today’s solutions to many real-world problems. ML-based approaches are being applied to solve complex

problems such as autonomous driving, recommendation systems, etc.

Keywords:
Mi’:;ine learning Objective: To improve the quality and deliverability of ML-based applications, the software development
DevOps community is adopting state-of-the-art DevOps practices within them. However, we currently lack knowledge

about the DevOps adoption trends, maintenance efforts and benefits among ML-based projects, and this work
attempts to remedy this knowledge-gap.

Methods: In this research work, we conducted a large-scale empirical analysis on 4031 ML projects, including
1116 ML Tools and 2915 ML Applied projects to quantify DevOps adoption, maintenance effort and benefits.
To characterize the development behaviors, we performed configuration-script-analysis and commit-change-
analysis on DevOps configuration files. To compare the characteristics of ML DevOps to those of traditional
software projects, we performed the same analysis on 4076 non-ML projects.

Results: Our analysis identified that ML projects, more specifically ML-Applied projects, have a slower, lower,
and less efficient adoption of DevOps tools in general. DevOps configuration files in ML-Applied projects
tended to experience more frequent changes than ML-Tool projects and were less likely to occur in conjunction
with build and bug fixes. It’s also evident that adopting DevOps in ML projects correlates with an increase
in development productivity, code quality, and a decrease in bug resolution time, especially in ML-Applied
projects which have the most to gain by adopting these tools.

Conclusion: We identified the characteristics and improvement scopes of ML DevOps, such as the slower
adoption of DevOps in certain ML projects, and the need for automatic configuration synchronization tools
for these projects. We also identified the improvements the productivity of ML teams and projects associated
with DevOps adoption, including better code quality, more frequent code sharing and integration and faster
issue resolution.

1. Introduction production systems and processes while maintaining their reliability
and efficiency in the context of continuously evolving ML projects.
Recently, Machine Learning (ML), including Deep Learning (DL), To improve the software delivery process, a closer collaboration

has become prevalent with many applications: Alzheimer’s disease between the development and operations teams, known as DevOps [6]

diagnosis [1], Blood glucose prediction in diabetics [2], Autonomous-
driving cars [3], Loan approval prediction [4], etc. The Worldwide
Developer Population and Demographic Study 2019 [5] estimates that
approximately 7 million developers have used ML in their development
activity, and expects another 9.5 million developers to use ML in
the next twelve months. Although ML-based approaches are becoming
widely adopted by the industry as well as the research community, one
major challenge remains: the integration of ML components in complex

* Corresponding author.

has become popular within the software engineering community. De-
vOps is a modern software engineering paradigm that brings changes
to production processes with the approach of automating the building,
testing, code analysis and deployment of software. A recent GitHub
study [7] discovered that highly-performing DevOps teams recover
from downtime 96 times faster, have a 5 times lower failure rate, and
a 46 times more frequent deployment rate. While DevOps practices
are slowly becoming more common and standardized for traditional

E-mail addresses: dhiarzig@umich.edu (D.E. Rzig), foyzul@umich.edu (F. Hassan), kessentini@oakland.edu (M. Kessentini).

https://doi.org/10.1016/j.infsof.2022.107037

Received 15 February 2022; Received in revised form 2 August 2022; Accepted 4 August 2022

Available online 18 August 2022
0950-5849/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
mailto:dhiarzig@umich.edu
mailto:foyzul@umich.edu
mailto:kessentini@oakland.edu
https://doi.org/10.1016/j.infsof.2022.107037
https://doi.org/10.1016/j.infsof.2022.107037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107037&domain=pdf

D.E. Rzig et al.

software products [8], the state of DevOps within ML-based projects,
the advantages, and the challenges it brings, still require more study
within the research community.

Recently, there have been many works focused on ML DevOps
support. MLFlow [9] and Amazon SageMaker [10] were designed to
improve the workflow of ML project development, which involves
the data collection, data preparation, model definition and training,
and results-testing [11]. Package managers such as Spack [12] and
EasyBuild [13] were conceived to allow the automatic rebuilding of
ML models. Container-based technology such as Docker [14] and Ku-
bernetes [15] has proven apt for shareable models. Aguilar et al. [16]
proposed Ease.ml/CI for continuous integration (CI) and data man-
agement within ML projects. Fursin et al. [17] proposed CodeReef
to perform benchmarking for ML projects and enable their reusable
automation. However, the majority of these tools are still premature,
require an important development effort, and can only be used in con-
junction with specific ML technologies or frameworks [17-19]. Prior
research [17] also identifies that workflows using these solutions are
not easy to put into practice. Moreover, very little is known about ML
projects’ DevOps adoption and the difficulty of maintaining correctly
functioning DevOps tools within them. This motivates our large-scale
study on DevOps tools’ adoption within ML projects, their maintenance
effort and goals, and the benefits they bring.

In order to obtain more information about these aspects, we defined
the following research questions:

(1) What are the current and historical adoption rates of DevOps
Tools for ML and Non-ML projects?

(2) What are the maintenance efforts and goals associated with
DevOps tools across the different project categories ?

(3) What are the advantages of adopting DevOps tools across the
different project categories?

In this empirical study, we conducted a large scale analysis on 4031
ML projects that we manually curated from the dataset by Gonzalez
et al. [20]. We also performed the same analysis on the 4076 Non-ML
projects from the same dataset [20] for comparative purposes.

Our main contributions through this paper can be summarized as
follows:

+ Characterization of the current and historical adoption of DevOps
tools within a subset of popular Open-source ML projects. In-
deed, we found that ML Tool projects, which are general purpose
projects meant for use by other developers, had similar current
and historical DevOps tools’ adoption to Non-ML projects, while
ML Applied projects, which are specific-purpose projects meant
for use by other developers and end-users, had a lower and slower
DevOps tools adoption in comparison

An empirical analysis of the development effort in regards to
employing DevOps tools for different types of ML projects. We
believe that more DevOps-related development effort is invested
within ML Tool projects than ML Applied projects, and that the
adoption of certain DevOps tools within these project categories
is linked to a larger effort invested by their development teams.
Characterization of the common goals behind the changes in
DevOps configuration files and their other accompanying changes
ML projects. We found that ML Tool and Non-ML projects achieve
more Bug fixes than ML Applied projects. Both in ML Tool and
Non-ML project, this increase in bug fixes is correlated with
their adoption of DevOps tools such as Test and Code analysis
tools, while this correlation was not found within ML Applied
projects. A small percentage of DevOps-altering commits were
found to have Build fixes as a goal, and the majority of them were
concerned with other miscellaneous changes.

An empirical analysis of the improvements in the development
process resulting from the usage of DevOps tools within ML
projects. Across all categories of projects, we found that the

Information and Software Technology 152 (2022) 107037

adoption of one or more DevOps tools was positively correlated
with an increase in commit frequency, merge frequency, code
quality, and a reduction of the average issue resolution duration.

The rest of this paper is organized as follows: We start by discussing
related works in Section 2. After that, in Section 3, we discuss the
methodology of our analysis, which includes data set selection, DevOps
tools classification, and the methods of analysis we used to answer
our Research Questions. Section 4 presents the results of the empirical
analysis within our study and Section 5 discusses the possible implica-
tions of our study. Finally, we discuss the threats to validity and our
conclusion in Section 6 and Section 7, respectively.

2. Related work

As DevOps became a modern software engineering paradigm, it
received growing attention from the research community [6,21-23].
Luz et al. [24] compared different approaches of adopting DevOps
and identified the main concerns of DevOps. They believe that col-
laboration is an important DevOps concern in addition to the more
common and equally important tool usage. However, this work mainly
focused on interview outcomes rather than an empirical analysis of
DevOps as adopted by the software projects. Moving on to guidance
on adopting DevOps, Leite et al. [6] analyzed DevOps within general-
purpose software projects from a multitude of facets. They developed
conceptual maps that described DevOps and linked them to engineering
and management perspectives.

MclIntosh et al. [25] analyzed Build files, a type of DevOps con-
figuration files, in order to estimate the effort invested by developers
to maintain functioning Build systems in 9 open-source and 1 closed
source projects. They found that the level of correlation between source
files and build files is linked to a project’s programming languages.
However, their work only covered a limited set of C and Java projects
and a handful of build tools, such as Make and ANT. This means
that their findings may not apply to projects with other programming
languages and other Build and DevOps tools.

However, none of these aforementioned works focus specifically
on ML projects or considered them as a specific project-category. We
consider this an oversight due to the fundamental differences between
ML and Non-ML software projects. While Non-ML projects are given
specific solutions in the form of an algorithm designed by their de-
velopers to solve a specific problem or set of problems, ML projects
are designed to come up with their own solutions, which may be
unknown to these projects developers. Indeed, ML projects attempt to
solve a problem by analyzing data, testing their findings, evaluating
their results, and iterating on these phases. Furthermore, they require
new development processes and practices such as data engineering and
model management [11,26,27], follow different collaboration strate-
gies between their collaborators [20,28], and may require different
approaches to existing software development processes in comparison
to traditional software, such as the example of Non-ML software testing
being ineffective on ML projects [29].

Lwakatare et al. [11] outlined some of the problems teams face
while attempting to integrate ML workflows within DevOps processes,
such as the inadequacy of existing code versioning tools for ML artifacts
management, and proposed alternative processes to employ DevOps in
ML projects. Yet, their work relied on existing literature and expert
knowledge when discussing DevOps adoption problems within ML
projects, and did not perform empirical analysis to validate the actual
factors behind ML projects’ success or failure at adopting DevOps.

To analyze ML project development aspects, the work of Gonzalez
et al. [20] conducted a large-scale empirical study of Open-source ML
Tools (700) and Applications (4524) hosted on GitHub. For compar-
ative purposes, they also analyzed 4101 Non-ML projects. Their work
provided insight into collaboration and autonomy rates in development
teams and identified ML Applied projects as the most autonomous,

D.E. Rzig et al.

Non-ML projects as less autonomous, and ML Tool projects as the least
autonomous. However, we uncovered problems with their data-set in
regards to the selection and classification of ML projects. Furthermore,
their work is more interested in analyzing development practices and
collaboration aspects of the projects rather than analyzing their DevOps
adoption and DevOps practices.

Focusing more on the intersection of DevOps and ML projects,
Karlas et al. [29] discussed the shortcomings and the lack of support
of existing CI tools of ML projects in practice. Their work proposed
implementation details that attempted to solidify and build on existing
theoretical concepts concerning CI systems for ML projects. However,
their work did not consider other aspects of DevOps processes such as
Code Analyzers, Build systems, Deployment Automation, etc.

In contrast to existing works, our goal within this paper is to analyze
the adoption rates and trends of all DevOps components such as Code
Analyzers, Build systems, Continuous Integration systems, etc., within
ML projects, to characterize their associated maintenance efforts, goals,
as well as the advantages they bring to the projects that adopt them.

3. Methodology

In this section, we discuss the different steps of our analysis which
includes: Data set selection, performed through a mix of automatic
and manual steps, DevOps tool classification, performed via a study
of existing research works around the types of these tools, and our
methods of analysis, which relied on different phases of exploration and
multi-pronged analyses to empower us to answer our different research
questions.

3.1. Data set collection

For this work, our goal was to analyze DevOps tools’ adoption
within a set of active and currently developed Machine Learning (ML)
software projects, referred to as ML projects, and a comparison set of
Software Projects that do not use ML, referred to as Non-ML projects.
However, preparing a data-set of ML projects and Non-ML projects is
effort-intensive, and not the goal of this work. Initially, we opted for
a recent dataset proposed by Gonzalez et al. [20] for our analysis.
This dataset was supposed to contain 5224 ML projects and 4101
non-ML projects for comparative purposes. However, we found several
problems with it such as the inclusion of toy projects, learning guides
and other types of projects that were supposedly manually removed
from it, as well as the misclassification between the two subsets of
ML projects. To resolve this problem, two authors re-curated the ML
projects by reading their descriptions on their main GitHub page, and
any websites linked to by that page. The resulting new dataset we used
within this work contained:

(1) 1116 ML Tool projects: frameworks and libraries such as Ten-
sorflow, which can be used by developers to solve a variety of
problems. These projects are generally only usable via an APIL

(2) 2915 ML Applied projects: Applications and libraries that use
ML components or libraries from the ML Tool projects, to solve
a specific problem. FaceSwap is an example of an application
and Document-Classifier-LSTM is an example of a library. These
projects may offer a combination of a UI and an APL

(3) 4076 Non-ML projects: A comparison set of classic software
projects that do not use ML. These projects may offer a com-
bination of a UI and an API.

In addition, we used the GitHub API [30] in order to collect the
following information about each project in our set: Age In days,
Number of Stars, Number of Forks, Team size, Number of Pull Requests
open, Number of Pull Requests merged, Number of Pull Requests
rejected, Number of Core Pull Requests Open, Number of Core Pull
Requests Merged, Number of Core Pull Requests Rejected, and Number
of Issues open. The project properties with Core in their name refer

Information and Software Technology 152 (2022) 107037

to those managed by core developers and other project insiders, for
example, Number of Core Pull Requests Open refers to the Number of
PRs opened by project insiders. Vasilescu et al. [31] chose these data-
points as representative characteristics of each project and its activity,
and their works’ validation by the research community indicate the
validity of their variable selection.We especially note that the Age
In days, Number of Stars, Number of Forks, Team size, are used as
numerical estimators of the size of the projects in our work, similar
to other works [31-33]. We collected these project properties to enrich
the data-set and facilitate the statistical analyses within this work such
as ANCOVA [34,35].

3.2. DevOps tools classification

DevOps has many competing definitions, consequentially, there is
no consensus on how to determine whether or not a project is employ-
ing DevOps. Prior research [24,36-38] on DevOps and DevOps tools
also identified the same challenge. To circumvent this problem, we
used the adoption of DevOps tools as an indicator of the adoption of
DevOps, and we focused on analyzing these tools and their usage within
our chosen project-set. DevOps tools are defined by Leite et al. [6] as
the tools pursuing human collaboration across different departments,
enabling continuous delivery, and maintaining software reliability. We
opted for this definition as it is similar to those found within other
research works concerning DevOps and DevOps tools [39-41]. Initially,
we considered the list of DevOps tools determined by Leite et al. [6].
However, since this list was formed by analyzing traditional software,
we wanted to expand the number of tools within our analysis to avoid
missing any DevOps tools that are more popular with ML projects.
To expand our list of DevOps tools to consider within this work, we
followed the method outlined in Section 3.3.1, to discover new DevOps
tools in-use within our projects but not described within previous
works. We classified the different tools we found into 6 categories:

(1) Build Tools: Responsible for generating packages meant for
deployment, also referred to as builds. They are also generally
responsible for generating other artifacts and providing feedback
to developers using only the source code as input.

(2) Continuous Integration (CI) Tools: Responsible for the orches-
tration of several steps that ensure the development pipeline and
automation of development tasks such as package generation,
automated test execution, and deployment to both development
and production environments.

(3) Deployment Automation Tools: Make use of certain outputs
of the continuous delivery process. They are employed in the
deployment stages in order to allow frequent and reliable de-
ployment processes.

(4) Monitoring and Logging Tools: Responsible for tracking non-
functional properties, such as performance, availability, scalabil-
ity, resilience, and reliability.

(5) Test Tools: Validate the functionality of software, and identify
possible errors, or missing requirements.

(6) Code Analysis Tools: Static code analyzers that perform several
operations, such as code coverage, static error detection, etc.

The Code Analysis category was proposed by Yin & Filkov et al. [42],
and Leite et al. [6] coined the first 4 categories and while they
considered Test tools as a part of the Build category, we opted to
consider them as a separate category due to the difference in their
respective goals, as detailed within the definitions above. We did not
consider Source code management tools in our analysis because the
projects in our dataset were all collected from GitHub. Furthermore,
our analysis in Section 3.3.1 did not uncover any ML-specific tools. To
further verify the absence of usage of these tools, we performed an
automatic search for the configuration files of some ML-specific tools
such as MLFlow [9], Amazon SageMaker [10] and Spack [12], and
we found no evidence of their usage within the two categories of ML
projects we considered

D.E. Rzig et al.

Information and Software Technology 152 (2022) 107037

__ :r""_"__i RQ1: Current
! ! — : |Z Y 4 DevOps Adoption
|
1 — E = ! p i N Rates
' 4 : s i) | File Name; ; Performed |
1 . TSN - ' Analysis 1 "% ! RQ1 : Historical
: GitHub Linguist™~.____._______. / iDevOps Config| ! P projects s DevOps DevOps Adoption
! Analysis I Performedon - ! L
: ! Topi00omi | \ ,‘ 1 | File name and k=——p config. files Trends
1 H H 1 ; | (“Performed on .
:cleane nd i andTop 10'00 ' Manual | ! path Patterns _;I D i ' ;ig?;fr:@;: : l RQ2: [?evOps
1 Non-ML projects ! Inspection [Crom— i Buildfile: | -7 frasirler it S Adoption
{ Cloned e] L % ! Analysis | ' Y i | Effort and Change
Bl e o {1 — @
; ey) il estfite . est tools ClE ;ﬂ i Commit Analysis | Q3: _ev ps
! Automatic Test- 1 import Patterns Ve ! | ' | Adoption
! File Selection H i H { "Performed on 1 1 | Advantages
R i Testfile | _6855 projects _1, N\
Phase 1: File, Name and Import pattern collection H Analysis | sonarqub& ! RQ3: DevOps
L ' Code Quality == .~ -
Phase 2: File-System-based analysis Analysis H P
_______________ ! | Advantages

Phase 3: Repository and Commit-based Analysis

Fig. 1. Overview of our approach.

3.3. Methods of analysis

The overview of our analysis is illustrated in Fig. 1.

3.3.1. Phase 1: File, name and import pattern collection

DevOps configuration files are written in a variety of domain spe-
cific languages (DSL). For example, the Maven build specification is
written in an XML format, while the Gradle build specification is
written in a Groovy-based DSL language. On the other hand, Docker
uses a DSL that can only be parsed and recognized by the Docker tool.
As a result, static program analysis techniques developed for certain
programming languages or DSLs might not be sufficient to detect a
large pool of DevOps tools. This lead us to use the configuration
file name and path patterns to detect DevOps configuration files. We
adapted this method from prior works which employed this approach
for IaC and Build artifact files [25,43,44]. But first, in order to establish
the set of DevOps tools to consider in this work, we considered the list
of tools proposed by Leite et al. [6] as a starting point. However, upon
realizing its limitations, as discussed within Section 3.2, we performed
a semi-automatic classification of DevOps configuration files on the top
1000 ML projects and 1000 Non-ML projects based on their GitHub
project popularity.® First, performed an automatic classification of the
files within the repositories of the aforementioned projects using the
GitHub Linguist tool [45]. Then, a co-author manually verified the
resulting classification, and extracted from it the possible DevOps con-
figuration files by ignoring files with known extensions or names, such
as source code and readme files. Libraries.io [46] was then consulted
to find the tools corresponding to these configuration files and verify if
they corresponded to DevOps tools. Finally, these tools’ documentation
were examined to extract configuration file name and path patterns
that correspond to them. These patterns are then used within the phase
described in Section 3.3.2. However, no such patterns were found for
testing tools as they do not rely on specific configuration files. To detect
these tools, we identified the testing files within the aforementioned
repositories, using the name and path pattern-based method proposed
by Zhu et al. [47] Then, the import or import-equivalent (e.g., include,
using, etc.) statements within these files were manually checked by
2 co-authors and cross-referenced with the Libraries.io [46] dataset
to determine if the modules being imported were testing tools and
frameworks. These patterns are used within the phase described in
Section 3.3.2. Overall, we identified 93 DevOps tools via this phase.
Fig. 2 presents a subset of the tools we identified and processes we used
to identify them during our analysis, with a full list available at [48]

1 The project popularity criteria used was a combination of the number of
stars and number of watchers.

3.3.2. Phase 2: File system analysis

Having extracted the file name and path patterns for Build, Con-
tinuous Integration, Deployment Automation, Code Analysis and Mon-
itoring and Logging Tools, import-equivalent statements of the Test
tools, we used these patterns to verify their adoption within a certain
repository. We considered the existence of a configuration file matching
the file name and path patterns of a specific DevOps tool as indicative
of that tool’s usage within the project. For example, a pom.xml file in
the project repository indicates that Maven is being used as a Build tool
within that project and a .travis.yml indicated that the project adopted
Travis CI for Continuous Integration. Using the GitPython [49], and
PyGitHub [30] libraries, we created a tool that allowed us to access
and clone the remote source codes of these projects into a local file
system. Then, we analyzed the files of each project and attempted to
match them with the aforementioned patterns to detect if the tools
corresponding to these patterns were adopted within each project.
For the specific case of testing tools, we analyzed the test code files,
detected per the method specified by Zhu et al. [47], for the import
statements specific to the test file’s possible testing tools, which are
language specific. For example, if a test file has the . py extension, it is
identified as a Python file. It is then scanned for the import statements
of Python testing tools identified within Section 3.3.1. For example, if
the statement import pytest is found, the project that contains the
test file is assumed to be using the PyTest tool. In a software system,
a build script is responsible for collecting the necessary dependencies,
thus analyzing build scripts can provide important information regard-
ing their usage within a project. For example, Fan et al. [50] relied
on build-script analysis to find dependency related errors related to
building projects. In addition to the two previously described methods,
we relied on the analysis of build scripts and considered a project’s
dependency on a tool to be indicative of its use within it. For example, if
a project specified a dependency on Codecov within its Maven pom.xml
file, we considered the project to be using the Codecov tool. We used
this method to detect the usage of DevOps tools of all categories. The
categories of DevOps tools and the methods we used to identify the
tools of those categories, as well as a subset of the DevOps tools we
considered, and their corresponding file name and path patterns or
import patterns are illustrated in Fig. 2. To determine the different
variables that contribute to DevOps adoption within different project
categories, We performed an ANCOVA [35] analysis, a type of GLM
regression for models with categorical and continuous variables, using
DevOps adoption as a dependent variable and the additional data we
collected, detailed in Section 3.1, as covariates. This phase allowed us
to answer part of RQ1 regarding the current adoption of DevOps of
the different project categories, the project’s properties linked to its
DevOps adoption, and the most popular DevOps tools of each type in
the different project categories we specified. We also used this phase
to extract the different DevOps configuration files used within the
different phases described in Section 3.3.3.

D.E. Rzig et al.

| DevOps

Information and Software Technology 152 (2022) 107037

h 4

Tools

—p» Build Tools

Identified via File
System analysis

P Test Tools —

Identified via
Build and
Test files

analysis

4 |

Code Analyzer
Tools

Identified via
Build file and
File system
analysis

ey -
ToolName | U
_Prog. Language

Deployment Identified via Build file and
Automation Tools || File system analysis

Continuous Identified via Build file and
Integration Tools | File system analysis

> Monitoring
and Logging Tools

Identified via Build file and
File system analysis

Fig. 2. Subset of DevOps tools, their categories, and their corresponding configuration file name patterns or import statements used to detect their usage.

3.3.3. Phase 3: repository and commit-based analysis

Repositories and their commits contain valuable information about
a project’s development and maintenance efforts [51]. DevOps tools are
meant to be configured and updated via their configuration files, hence,
commits affecting these files contain insight into the usage trends and
practices of DevOps tools. We extracted the DevOps configuration files
via the steps discussed in Section 3.3.2. We performed our analysis on
the Main branch of the different repositories, using the PyDriller [52]
tool and Github GraphQL API [53] to obtain additional data not stored
in the Git repository, such as the CI status following a commit. While
Test files were analyzed within Section 3.3.2 to extract information
about a project’s testing framework, which we considered a type of
DevOps tool, test files are not considered DevOps configurations files
within the scope of this analysis. This is because Test code is very
similar to source code and test file changes are highly coupled with
source-file changes [54,55]. In contrast, DevOps configuration files are
used to configure the different DevOps tools used within a project,
such as Continuous Integration tools. We used this commit-based anal-
ysis to answer RQ1 regarding DevOps historical adoption trends via
analyzing our projects’ commits, where we assumed the date of the
first commit within a project to be the date of its creation, and the
date of the addition of the first DevOps configuration file within a
project to be an indicator of when it adopted DevOps. We also an-
swered RQ2 using commit-based analysis via the sub-phases detailed in
Section 3.3.3.1, Section 3.3.3.2, and RQ3 using commit-based analysis
and repository-based analysis via the sub-phase Section 3.3.3.3.

3.3.3.1. Phase 3-a: DevOps adoption effort. To obtain a better idea
about the configuration and maintenance efforts of DevOps tools, we
analyzed the commits that modified one or more DevOps configuration
files. We calculated the Commit Ratio metric, which is similar to the
amount of commits metric, used by a number of works to estimate
activity within a project [56], but adapted to the context of a specific
type of files, to estimate the portion of commits that affect DevOps
configuration files. This metric is defined as follows:
Commit Ratio:

NofCDeUOps
NofC

CommitRatio =

NofCpeyops is the total number of commits that involved DevOps
configuration file(s) and NofC is the total number of commits.

To estimate the size of an update per-file-type within a project, We
calculated the Average Normalized Code Churn of Source and DevOps
configuration files, a commonly used metric [56] that was also previ-
ously used in the context of build artifacts [25], and that is superior to
other metrics such as Lines of Code (LOC) [57]. This metric is defined
as follows:

Average Normalized Code Churn:

N BFilesChanged (T ype, Proj.)

Y . . .
=!'" NBFilesExist(Type, Proj.
Avg.Norm.Ch.(T ype, Proj.) = iles Exisi(T ype, Proj.)
NbO f DevMonths
NbOfDevMonths is the number of development months.?

N BFilesChanged(T ype, Project) is the number of either Source code
or DevOps configuration files of that changed during a development
period, N BFilesExisted(Type, Project) is the number of files of a
certain type, source code file or DevOps configuration file, that existed
during a development period.

For each project category, we performed 2 ANCOVA [35] analyses,
using Commit Ratio as a dependent variable for the first analysis
and Normalized Code Churn for the second analysis, and using the
covariates presented within Section 3.1. In total, this was 6 ANCOVA
analyses. We also performed 2 ANOVA analyses to detect any statistical
differences concerning these metrics between the different project cat-
egories. We used this sub-phase and its associated analyses and metrics
to answer RQ2 regarding DevOps adoption efforts.

3.3.3.2. Phase 3-b: DevOps change goals. While the Normalized Code
Churn and Commit Ratio metrics inform us on the properties of DevOps
configuration files changes, they do not reveal the underlying causes of
the changes occurring to these DevOps configuration files. To approx-
imate the change goals of DevOps configuration files, we selected the
projects that adopted at least a Build and a CI tool, then analyzed their
commits that affected their DevOps configuration file(s). We analyzed

2 We considered a development month to be 30 days within this work.

D.E. Rzig et al.

commits from 851 ML Applied projects, 586 ML Tool projects, and 1942
Non-ML projects. We classified the commits’ main change goal between
4 different alternates:

» Bug Fix: A bug fix is done to remedy a programming bug or
error. However, identifying bug-fixing commits in a Git commit-
history is a challenging task [58]. To identify this type of commit,
we adopted the approach proposed by Ray et al. by scanning
commit messages for the keywords (“error”, “bug”, “fix”, “issue”,
“mistake”, “incorrect”, “fault”, “defect”, “flaw”, “type”) [59].
CI Build Fix: CI Build fix refers to code changes that aim to
fix integration failures such as compilation failures, dependency
issues, unit test failures, etc. that are reported by CI systems, and
also referred to as Build Breakages. To detect these commits, we
adopted an approach proposed by Hassan & Wang et al. [60],
and that is similar to the approach used by Hyunmin et al. [61]
to detect a build-failure resolution. Based on this approach, if a
commit changes the CI build status from Build failure or Build error
to Build success, we consider the commit a CI-fixing commit. We
used the GraphQL Github API [53] to detect the CI build status.
Bug and CI Fix: A commit that meets the criteria of a Bug Fix
commits and CI fix commit is considered to be attempting to fix
both types of problems.

Other changes: We considered commits that contain neither a
bug fix nor a CI fix as commits with the main goal of other mis-
cellaneous changes. These commits may add new functionality,
refactor existing code, etc.

Finally, in order to make these measures project-specific, we calcu-
lated the percentage of each of the aforementioned commit types out
of all the commits of a project.

For each project category, we performed an ANCOVA [35] analysis,
using the four goals, Bug and CI fix, Bug fix, CI fix, and Other changes,
as dependent variables for the analysis, and using the same covariates
as the ANCOVA analysis done within Section 3.3.1 in addition to the
adoption of different DevOps Tool types, such as Build Tool Adoption,
CI Tool adoption, etc. In total, this was 3 ANCOVA analyses. We used
this sub-phase and its associated analyses to answer RQ2 regarding
DevOps change goals

3.3.3.3. Phase 3-c: DevOps adoption advantages. Having gained an idea
about the properties and goals of the changes performed on DevOps
configuration files, we wanted to develop an understanding of the
advantages associated with adopting DevOps Tools. To achieve this, we
used the metrics of Commit Frequency, Merge Frequency, and Average
Issue duration, which also rely on commit-based analysis , and Code
Quality, through the widely-used tool SonarQube [62] which relies on
repository-based analysis.

DevOps encourages more code sharing via frequent commits and
merges, hence Average Commit Frequency and Average Merging Com-
mits Frequency are correlated directly to is principles of DevOps. These
two metrics are calculated as follows:

Average Commit Frequency:

N Bo f Commits

AverageCommitFrequency = ———————
§ a4 Y N Bof DevMonths

N BofCommits is the total number of commits within a project and
N BofDevMonths is the total number of development months within

a project.
Average Merging Commits Frequency:
NBof MergingC it
AverageM ergingCommit Frequency = of Merging Commits
N BofDevMonths

N Bof MergingCommits is the total number of merging commits within
a project and N Bof DevMonths is the total number of development
months within a project.

A reduced issue duration is also an expected result of adopting De-
vOps, since it is claimed to increase the speed and productivity of teams

Information and Software Technology 152 (2022) 107037

in relation to resolving software issues, making Average Issue Duration
a good metric to evaluate this claim. This metric is calculated as :
Average Issue Duration :

ZL Duration(1 ssue;, Project 4)
Total N Bl ssues(Project 4)

Avgl ssueDuration(Project 4) =

Duration(1Issue;, Project4) is the duration of an issue i for a project
A, n Total N Blssues(Project ,) indicates the number of issues for that
project.

Finally, DevOps is associated with an improvement in the quality of
the development process, and possibly that of the code-base as well. We
used the Maintainability and Reliability code quality metrics as gener-
ated by SonarQube to evaluate the quality of the projects within our set.

Prior works [63-65] used similar metrics and tools to analyze
the effectiveness of adopting CI within a number of projects, giving
confidence to their effectiveness.

For each project category, we performed 4 ANCOVA [35] analyses,
using Average Commit Frequency as a dependent variable for the first
analysis, Average Merging Commits Frequency for the second analysis,
Average Issue Duration for the third analysis, and Code Quality for the
fourth analysis. We used the same covariates as the ANCOVA analysis
done within Section 3.3.1. In total, this was 12 ANCOVA analyses.
We also performed 4 ANOVA analyses to detect any statistical differ-
ences concerning these metrics between the different project categories.
We used this sub-phase and its associated analyses to answer RQ3
regarding DevOps adoption advantages.

4. Results

4.1. Adoption rates of DevOps tools

Research Question 1: What are the current and historical adop-
tion rates of DevOps Tools for ML and Non-ML projects?

4.1.1. DevOps’ current adoption rates
DevOps Tools Adoption rates

64.07%63.30%
=

36.63% 40.41
35.43% 36.02% B
7

24.01%

4 19.11%)

16.04% B18.18% 17.29%
H

13.38%g 11.70% o
B8.86% [6.66%8I6.28%
17 0.00% _‘ :
B o oom | 8117

Cltools Deployment Monitoring Analyzer Test
Automation and Logging
ML Applied EMLTool ENon ML

10%

R R R

/.

mE 7

/. |BE (/.
7 B 7
7 EE |7
/. jER |/
7 EE 7
/. jER (/.
7 BE |2
JEE (/.

7 | jme 7
/. | |EN [
7 B 2
/. IBE (/.
7 B £
7 EE |7
7 BE 7
2 EE 7
/. jEE (/.
7 BE |7
7 EER

[NNNNNNNNNE

0% ol iB
Build Tools

Fig. 3. DevOps tools current adoption rates.

Adopting DevOps tools and practices within software projects has
numerous advantages to the productivity of a development team and
the quality of their processes. Since their growth in popularity, DevOps
tools are progressively being embraced by independent developers and
companies alike. Following our analysis, we were able to confirm this
with the high adoption rates of 63.30% for Non-ML projects, and
64.07% for the ML Tool projects. However, ML Applied projects have
shown a lower adoption rate of only 40.41%. Focusing on the different
DevOps tools categories, ML Tool projects generally had the highest
adoption rates across the majority of tool types, with Non-ML projects
following as a close second, and Applied projects trailing as the third.
Details concerning these rates are illustrated within Fig. 3. To identify

D.E. Rzig et al.

the factors behind adoption of DevOps, we performed an ANCOVA [35]
analysis, a type of GLM regression for models with categorical and
continuous variables, for each project category. We used DevOps adop-
tion as a dependent variable and the additional data we collected
concerning each project, detailed in Section 3.1, as covariates. The
project-specific data points were: Age In days, Number of Stars, Number
of Forks, Team size, Number of Pull Requests open, Number of Pull
Requests merged, Number of Pull Requests rejected, Number of Core
Pull Requests Open, Number of Core Pull Requests Merged, Number of
Core, Pull Requests Rejected, and Number of Issues open.

Table 1

ANCOVA analysis of DevOps adoption within Applied projects (Only statistically
significant® variables are shown).

Source Sig. Partial Details

Eta

Squared
Intercept <.001 .007 Intercept of the model
Age In days <.001 .027 A project’s age
Team size <.001 .008 A project’s team-size
N_Pr Merged <001 008 Number of Pull requests

merged

N_Pr_Core_Merged <.001 .006 Number of Pull requests

by core developers merged

R Squared = .119 (Adjusted R Squared = .116).
aStatistically significant variables have a Sig.(P-value) less than 0.05.

Using the results of the ANCOVA analysis illustrated within Table 1,
we found that for ML Applied projects, the most important statistically-
significant factors that contribute to DevOps adoption within them
were the Age of a project and its Team size. This is indicated via the
Partial Eta Square statistic which informs us which variables have the
largest effect on the dependent variable, which is a project’s adoption
of DevOps in our case. Hence, older and larger ML Applied projects are
more likely to adopt DevOps. Similar results were found when perform-
ing ANCOVA on ML Applied projects while considering as dependent
variables each DevOps tool category, except Analyzer and Test tools
where only Team size was a determining variable of their adoption of
DevOps. No statistically significant contributor was determined behind
the adoption of monitoring and logging tools by ML Applied projects,
most likely due to their low adoption by this project category.

Table 2

ANCOVA analysis of DevOps adoption within Tool projects (Only statistically significant
variables are shown).

Source Sig. Partial Details

Eta

Squared
Intercept <.001 131 Intercept of the model
Age In days <.001 .023 Age of the project
N_Stars .036 .004 Number of stars of project
N_Forks .016 .006 Number of forks of project
N_Pr Open 020 005 Number of pull requests open

of project

Information and Software Technology 152 (2022) 107037

comparison to independent developers. It is also important to note that
ML Tool projects show more variance within their team sizes than their
ML Applied counterparts, as illustrated within Fig. 4, signaling that
a lack of correlation between Team size and DevOps adoption is not
due to limitations related to sample size, but rather the properties of
ML Tool projects. Focusing on the different categories of DevOps tools,
Age was also a key variable in determining whether an ML Tool project
adopts Build, CI or Deployment tools, while surprisingly, Team size was
the key predictor of Code Analysis tools adoption. Finally, no predictors
of Monitoring tools’ adoption by ML Tools projects was found.
60

50

10
0

[ML Applied @ MLTool P4 NonML

20 i///%

Fig. 4. Variance of team size (Outliers removed).
Table 3
ANCOVA analysis of DevOps adoption within Non-ML projects (Only statistically
significant variables are shown).

Source Sig. Partial Details
Eta
Squared
Intercept <.001 .106 Intercept of the model
Team size .003 .002 Size of the project’s team
Age In days .006 .002 Age of the project
N_Forks .010 .002 Number of forks of projects
Number of pull
N_Pr Open 051 1000 umber of pull requests open

of project

R Squared = .060 (Adjusted R Squared = .057).

Considering Non-ML projects, it is clear through Table 3 that they
show similar results regarding the factors contributing to DevOps adop-
tion to those of ML Tool projects. A Non-ML project’s age, pull-request
based development activity, popularity as measured by its number
of forks, and its team size are significant contributing factors to its
adoption of DevOps. Focusing on the different categories of DevOps
tools, two or more of the aforementioned projects’ characteristics were
among the main predictors of the adoption of a specific DevOps tools
category, indicating no major difference between the predictors of
DevOps adoption in-general and the adoption of a specific category of
DevOps tools by Non-ML projects.

Table 4
Summary of ANCOVA analyses results for DevOps adoption.

R Squared = .096 (Adjusted R Squared = .087).

For ML Tool projects, as illustrated within Table 2, Age was statisti-
cally significant correlated to their DevOps adoption. Furthermore, the
Number of stars and Number of forks also had a significant correlation
to their DevOps adoption. It is important to note that while Team
size was significantly correlated to DevOps adoption of ML Applied
projects, this correlation was not found within Tool projects. Around
50% of ML Tool projects before our re-categorization process were
backed by major organization such as Microsoft and IBM [20], and after
this process, and we estimate that 30% of these projects are backed
by such organizations. This makes all the more surprising the lack
of correlation between team-size and DevOps adoption for ML Tool
projects, especially considering these organization are more likely to
have larger resource and to adopt best practices such as DevOps in

Category ~ Most important Interpretation
variables affecting
DevOps adoption
ML Age In days, Team An ML Applied projects’ DevOps adoption is
Applied Size, N_Pr Merged, linked to its age, team size and reliance on
N_Pr_Core Merged PR-based development as measured through
its number of pull requests merged
ML Tool Age In days, N_Stars, An ML Tool projects’ DevOps adoption is
N_Forks, N_Pr_Open linked to its age, popularity as measured
with its number of stars and forks, and its
Number of PRs open
Non-ML Team Size, Age In days, A Non-ML projects’ DevOps adoption is

N_Forks, N_Pr Open linked to its team size, age, popularity as
measured with its number of forks and
reliance on PR-based development as
measured through its number of pull

requests open

A summary of our findings is illustrated in Table 4. We found that
an ML Applied project’s age and team size are more likely to affect its’

D.E. Rzig et al. Information and Software Technology 152 (2022) 107037

DevOps adoption more so than that of a Tool or Non-ML project. Similar Table 6
characteristics related to a project’s size, popularity, as measured by its ~ Usage rates of code analysis tools (Tools with 1% or more usage rates).
number of stars and forks, and its reliance on PR-based development, Tool name Project category Adoption percentage
are the important factors that affect whether or not it adopts DevOps, ML Applied 2.02%
Pylint ML Tool 4.75%

regardless of whether or not it is an ML project. One important outlier

. . . . Non-ML 0.17%

is that an ML Tool projects’ team size does not affect its DevOps >

adoption outcome. Based on observations by Karla$ et al. [29], Renggli . xt ?Pplhed (1)'223//"
. ow 00 .

et al. [16], Lwakatare et al. [11,66], Amershi et al. [67], and Arpteg Non-ML 0390/2

et al. [68], we attribute the lower adoption of DevOps by ML Applied -

. he diff b diti 1 soff . d ML Applied 1.78%
prOJ.ects to the differences between traditional so tw.a.re prOJect§ and ML Flakes ML Tool 3.32%
projects, and a lack of DevOps tools that were specifically designed for Non-ML 0.05
small scale ML projects. ML Applied 1.58%

ESLint ML Tool 1.34%
4.1.2. Most popular DevOps tools Non-ML 2.55%

In addition to exploring the adoption rates of DevOps tools and the ML Applied 3.50%
factors affecting their adoption, we were interested in exploring which Coverage ML Tool 7.89%
tools were currently popular across the different types of projects. Non-ML 0.29%
Tables 5-9 illustrate the adoption rates for the DevOps tools that have ML Applied 2.64%
at least 1% adoption rate by one or more categories of projects. We Codecoy x]‘ T;{‘L’l g'zng

. . . . on- .
believe knowing which tools are popular for each project category can . i
help guide future research regarding DevOps practices within them. For) ML Applied 0.48%

1 h d lvsi ithin ML . hould f CodeClimate ML Tool 1.08%
e;l(amp e, researcCl on lCo e anla ysis w1;1 in p;OJECtS shou loc:us (c)ln Non-ML 0.27%
the Coverage and Pylint tools since they are the most popular Code

. 8 . Y y pop ML Applied 1.58%
analysis tools within them. Clang ML Tool 6.00%
Table 5 Non-ML 0.37
Usage rates of build tools (Tools with 1% or more usage rates).

Tool name Project category Adoption percentage
Table 7
ML Applied 9.88% . o
setuptools ML Tool 18.91% Usage rates of Test Tools (Tools with 1% or more usage rates).
Non-ML 0.74% Tool name Project category Adoption percentage
ML Applied 0.41% ML Applied 1.03%
Rake ML Tool 1.34% testthat ML Tool 2.78%
Non-ML 1.72% Non-ML 0.12%
ML Applied 1.30% ML Applied 2.81%
QMake ML Tool 1.25% Pytest ML Tool 6.45%
Non-ML 2.21% Non-ML 0.39%
ML Applied 2.78% ML Applied 1.34%
Maven ML Tool 5.38% JUnit ML Tool 2.42%
Non-ML 1.67% Non-ML 2.04%
ML Applied 16.78% ML Applied 0.34%
MakeFile ML Tool 30.73% Cassert ML Tool 1.08%
Non-ML 3.68% Non-ML 0.37%
ML Applied 2.81%
JUnit ML Tool 3‘76ZA) Table 8
Non-ML 1.64% Usage rates of Continuous Integration Tools (Tools with 1% or more usage rates).
ML Applied 2.02% Tool name Project category Adoption percentage
Gradle ML Tool 2.06% -
Non-ML 2.77% ML Applied 17.94%
- Travis ML Tool 33.24%
ML Applied 2.06% Non-ML 10.30%
Clang ML Tool 6.63% -
Non-ML 0.65% ML Applied 0.58%
Jenkins ML Tool 1.97%
ML Applied 1.72% Non-ML 0.05%
Ant ML Tool 5.02% -
Non-ML 0.54% ML Applied 2.44%
AppVeyor ML Tool 6.09%
Non-ML 0.76%

4.1.3. DevOps’ historical adoption rates

We analyzed the historical adoption trends of DevOps tools to get a
better understanding of the evolution of their adoption rates over time.
The results of our analysis are illustrated in Fig. 5. When analyzing

Table 9
Usage rates of Deployment Automation Tools (Tools with 1% or more usage rates).

) A . Tool name Project category Adoption percentage
the growth of Non-ML projects overall in comparison to that of Non- VL Aoolied 17
. . o s pplie 17%
ML projects with one or more DevOps tools, it is clear that they both Docker ML Tool 15.59%

have similar trends over time, signaling a healthy adoption growth of Non-ML 1.67%
DevOps among this type of projects.

ML Applied 0.10%
Focusing on ML project types, both ML Tool projects’ growth and Chef ML Tool 0.36%
ML Applied projects’ have seen a near exponential increase starting Non-ML 0.64%

from 2017.The explosion in the projects’ total amount can be attributed
to the advances in ML fields and gains in their popularity. Focusing on
the amount of ML Tool projects with DevOps tools, it shows similar

D.E. Rzig et al.

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%

10.00%

0.00% = e R
7/6/2009 1/7/2011 7/10/2012 1/11/2014 7/15/2015 1/15/2017 7/19/2018 1/20/2020
——ML Applied Project ML Tool Projects ——Non ML Projects
== =ML Applied DevOps adoption ML Tool DevOps Adoption - - -Non ML Devops Adoption

Fig. 5. Historical project amounts and their DevOps tools’ adoption (normalized to
percentages).

growth trends as the total number of the ML Tool projects. This
similarity in growth trends is also observed for Non-ML projects growth.
However, while ML Applied projects have seen a similar in amount
to ML Tool projects due to analogous reasons, their DevOps adoption
growth has stalled in comparison. DevOps tools’ in ML Applied projects
had a slower and lower adoption rate overall in comparison to both
Non-ML and ML Tool projects, and we were able to partially link them
to the smaller team sizes of these projects in Section 4.1.1 to their
lower DevOps adoption. Overall, these results indicate that the current
adoption rates are consistent with the historical rates across project
categories, and there are no abrupt changes of DevOps adoption.

Finding 1: ML Tool projects and Non-ML projects have signifi-
cantly higher current and historical DevOps tools’ adoption rates
than ML Applied projects. This adoption is most influenced by a
project’s age, team-size or both factors, depending on the project’s
category.

4.2. DevOps maintenance efforts and goals

Research Question 2: What are the maintenance efforts and goals
associated with DevOps tools across the different categories of
projects ?

Having determined the historical and current adoption rates, we
wanted to investigate the differences in the effort that developers
are putting into maintaining their DevOps configuration files and the
correct functioning of DevOps tools within their repositories, and to
explore the different goals of updates to DevOps configuration files.

4.2.1. Ratio of DevOps configuration files’ updates

We used the Commit Ratio metric to estimate the share of updates
that affect DevOps tools out of all the updates that affect a repository.
As illustrated by Fig. 6, Tool projects tend to update their DevOps
configuration files less overall, while Applied and Non-ML projects had
higher and similar ratios of updates. The projects with the highest
DevOps commits ratio are generally those with the majority of their
updates affecting their Build, CI or Deployment automation files. One
such example is the ML Applied project ROSETTE-API/ROSETTE-ELASTICSEARCH-
PLUGIN, With 78.46% of its commits modifying its Maven and Travis file.
The majority of these updates are comprised of version or dependency
and configuration changes for the project overall or its docker image
and the plug-ins it provides. Another example is the CrariryCare/Ivy
repo, which has frequent commits which almost always change its

Information and Software Technology 152 (2022) 107037

25.00%

22.37% 22.22%

20.00%

15.00%

10.00%

5.00%

0.00%

[J ML Applied @ ML Tool Non ML

Fig. 6. Commit ratios of DevOps configuration files.

Travis CI and Docker file. Upon closer inspection, we identified that
this project’s Docker and Travis files are mostly changed to fix CI
and Deployment problems. These examples and our statistical findings
stand in contrast with the concept of “write-once-and-forget-it” for
DevOps configuration files and indicate that they evolve frequently for
different aspects of software maintenance.

Table 10

ANCOVA analysis of Commit Ratio for Applied projects (Only statistically significant
variables are shown).

Source Sig. Partial Details
Eta
Squared
Intercept <.001 .022 Intercept of the model
CI .006 .007 Adoption of CI tool(s)
Build * CI Adoption of Build, CI
* Analyzer -007 -007 and CA tool(s)
l}ulld * Deployment 024 005 Adoption of Build, DA
* Test and Test tool(s)
Build * Analyzer Adoption of Build, Code
* Test 035 004 Analysis and Test tool(s)
CI * Deployment Adoption of CI, DA
* Analyzer 045 004 and CA tool(s)
B -
CI * Deployment 045 004 Adoption of CI, DA

* Analyzer * Test , CA and Test tool(s)

R Squared = .098 (Adjusted R Squared = .063).

To further investigate whether these project-specific trends are a
widespread phenomenon, we performed, the ANCOVA analysis illus-
trated in Table 10, we found that CI adoption, and the adoption of CI,
Build and Test tools at the same time to be among the strongest factors
leading to a higher commit ratio in Applied projects.

However, after performing the same analysis on the other two
project categories, we found no statistically significant link between the
adoption of specific DevOps tool categories and the commit ratio in
ML Tool and Non-ML projects. This allows us to deduce that specific
categories of DevOps tools, such as CI, Build and Testing tools in
ML Applied projects need more frequent updates in comparison to
other types of tools. Yet, ML Tool and Non-ML projects do not show
this correlation. A summary of our ANCOVA analyses is found within
Table 11

Finally, we were able verify the statistical dissimilarity between
the different projects categories via the one-way ANOVA test [69],
a test developed to allow the comparison of the means of three or
more different groups based on one property. The p-value obtained
was 0.032 implying significant statistical difference between the three
groups regarding their Commit Ratios.

4.2.2. DevOps coding efforts

To estimate the effort that developers put into DevOps configuration
files in comparison to Source files between different commits, we
used the Average Normalized Code Churn metric. As illustrated by

D.E. Rzig et al.

Table 11
Summary of ANCOVA analyses results for DevOps Commit-ratio.
Category Most important variables Interpretation
affecting DevOps churn
ML Applied CIL, Build * CI * Analyzer, An ML Applied projects’ adoption
Build * Deployment * Test, of certain DevOps tool categories
Build * Analyzer * Test, CI or a combination of these
* Deployment * Analyzer, categories is linked to an increase
CI * Deployment * in its DevOps configuration files
Analyzer * Test commit-ratio
ML Tool None An ML Tool projects’ DevOps
configuration files commit-ratio is
not linked to its adoption of a
tool of a certain DevOps category.
Non-ML None A Non-ML projects’ DevOps

configuration files commit-ratio is
not linked to its adoption of a
tool of a certain DevOps category.

0.6

05

o
=

Normalized Code Churn
o o
o @

0.14
0.12

0.1

0.07 0.07 0.08,

04

0.01 0.03

000,60
ML Applied ML Tool Non-ML

Project Category

BN DevOps Code Churn
[Source Code Chum

Fig. 7. Average Normalized Code Churn (Outliers removed with IQR [70]).

the results in Fig. 7, a comparatively higher relative churn of DevOps
configuration files is noted in ML Tool projects in comparison to ML
Applied projects. This is made clearer with the higher quartiles and
median values of this metric for ML Tool DevOps churn in comparison
to those of ML Applied projects. Non-ML projects had a bigger churn
overall on both file-types, yet its DevOps churn shows a more even
distribution across its value range, reflecting more diverse DevOps
maintenance practices within these projects. With a more detailed
analysis, we identified that both Source and DevOps churn values are
generally high at the beginning of a project’s history, matching the
intuition regarding changes being done to a large number of files as
the project’s initial code and configuration are being defined across a
variety of them. These rates tended to quickly drop in value during
the following months. Regarding DevOps Churn specifically, it tended
to increase across all project categories whenever a new DevOps tool
was added to a project, and it can take several development periods
to drop again. This signifies a possible adoption barrier due to the time
and effort required to establish and configure correctly working DevOps
tools in a project.

Focusing on some interesting cases, the ML Applied project with the
highest Avg. Normalized DevOps Churn and Source code churn was the
INDIX/WHATTHELANG project with the respective values of 1.0 and 0.43.
This project provides a language prediction application usable via a
CLI or an APL It employs Travis CI For continuous integration. Within
this repository, 23 total commits over the period of one month were
made. The only DevOps file within this project was a .travis.yml file,
and it was updated more than once during that month, but not all of the
source files were updated during this period following their creation.

The ML Tool project with the highest Avg. Normalized DevOps
Churn and Source code churn was the YINCHUANDONG/SENTIMENT-ANALYSIS
project with values of 1.0 and 0.2 respectively. It is a Deep Learning

Information and Software Technology 152 (2022) 107037

Workflow for Sentiment Analysis, and the only DevOps tool it uses is
Docker for Deployment Automation. It also has a relatively low activity
with 36 commits over the duration of one month, during which the
Docker file was frequently updated. These two specific cases aside,
ML projects of both types had DevOps churn values close to their
Source churns. This implies that DevOps configuration files require
development effort similar to that of Source files, along with the ac-
companying time and resource investments. Our intuition is confirmed
within the ANCOVA analyses of DevOps code churn across the different
project categories, which are illustrated and discussed in the following
paragraphs.

Table 12

ANCOVA analysis of DevOps Code Churn for Applied projects (Only statistically
significant variables are shown).

Source Sig. Partial Details
Eta
Squared
Intercept <.001 .022 Intercept of the model
Team Size <.001 .021 Project’s team size
Age In Days <.001 .011 Project’s age
N Pr Merged 021 005 Number of Pull requests
merged
CI .031 .004 Adoption of CI tool(s)
- .
?eployment Analyzer 032 004 Adoption of DA, CA and
* Test Test tool(s)
Build * Deployment 037 004 Adoption of Build, DA,
* Analyzer * Test : : CA and Test tool(s)
Analyzer * Test 041 004 Adoption of CA and Test
tool(s)
N_Pr_Core_Merged .048 .004 Number of Pull requests

by core developers merged

R Squared = .213 (Adjusted R Squared = .182).

Focusing on ML Applied projects, the results of which are illustrated
in Table 12, we found that their adoption of a DevOps tool, or a
combination of tools, such as Build or CI tools, is strongly correlated
with an increase in their DevOps churn. Furthermore, the varying effect
size values (represented by the Partial Eta Square) imply that different
DevOps tools have different effort-requirements, with CI Tools being
the ones that are most effort-intensive for ML Applied projects.
Table 13

ANCOVA analysis of DevOps Code Churn for Tool projects (Only statistically significant
variables are shown).

Source Sig. Partial Details
Eta
Squared
Age In Day <.001 .019 Age of the project
Intercept <.001 .018 Intercept of the model
Build * CI Adoption of Build, DA,
.001 .
* Deployment * Analyzer <00 005 CI, and CA tools
CI .002 .004 Adoption of CI Tools
Build * CI .002 .004 Adoption of Build, CI,
* Analyzer and CA Tools
Deployment * Test 006 .003 Adoption of DA and Test
tools
N_issues_Open .007 .003 Number of Issues open
Gl * Analyzer 020 002 Adoption of CI and CA
tools
Build * CI .021 .002 Adoption of Build, CI
* Deployment and DA tools
Build * Test 042 002 Adoption of Build

and Test tools

R Squared = .106 (Adjusted R Squared = .090).

Moving on to ML Tool projects, the ANCOVA of which is illustrated
in Table 13, we also found that their adoption of one or more DevOps
tools is correlated with an increase in their DevOps churn. In their case,

D.E. Rzig et al.

the adoption of Build, Deployment Automation, Continuous Integra-
tion, and Code Analysis tools at the same time had the largest effect
size, and thus the highest consequential increase in DevOps Churn. This
implies that an ML Tool project’s adoption of multiple DevOps tools
categories at the same time is more likely to result in an increase of its
DevOps configuration files churn and this increase is likely to be more
substantial than that resultant of the adoption of DevOps tools of one
category.

Table 14

ANCOVA analysis of DevOps Code Churn for Non-ML projects (Only statistically
significant variables are shown).

Source Sig. Partial Details

Eta

Squared
Intercept <.001 .082 Intercept of the model
?mld * Analyzer 009 011 Adoption of Build, CA
* Test and Test tools
Age In Days .010 .011 Age of the project
Build .031 .008 Adoption of Build Tools
N_Pr_Open .040 .007 Number of Pull requests opened
Team Size .043 .007 Size of the project’s team
CI .049 .006 Adoption of CI Tools

R Squared = .148 (Adjusted R Squared = .091).

Finally, focusing on Non-ML projects’ ANCOVA, illustrated in
Table 14, we find similar results to those of ML Applied and ML Tool
projects, establishing that the phenomena of increased DevOps config-
uration files Churn is true across project categories. It is interesting to
note that the adoption of a different mix of DevOps categories, more
specifically Build, Code Analysis and Test tools, which is different from
that of ML Tool projects’, is the variable with the largest effect size
and hence the biggest effect on DevOps Churn of Non-ML projects. It is
especially interesting that Test tools are within this group of category,
as they do not rely on any specific configuration file. As mentioned in
Section 3.3.3, we do not consider Test files as DevOps configuration

files.
Table 15
Summary of ANCOVA analyses results for DevOps Churn.

Category Most important variables affecting Interpretation
DevOps churn

ML Applied Team Size, Age In days, An ML Applied projects’ Team
N_Pr_Merged, CI, Deployment * Size, Age, reliance on PR-based
Analyzer * Test, Build * development, and its adoption of
Deployment * Analyzer * Test, certain DevOps tool categories or
Analyzer * Test, a combination of these categories
N_Pr_Core_Merged, are linked to an increase in its

DevOps configuration files churn

ML Tool Build * CI * Deployment * An ML Tool projects’ DevOps
Analyzer, Build * CI * Analyzer , configuration files churn is not
Deployment * Test, linked to its adoption of certain
N_Issues_Open, CI * Analyzer, DevOps tool categories, and its
Build * CI * Deployment, Build * number of issues open.
Test

Non-ML Build * Analyzer * Test, Age In A Non-ML projects’ DevOps

days, Build, N_Pr_Open, Team
Size, CI

configuration files churn is linked
to its adoption of certain DevOps
tool categories, its age, its
reliance on PR-based
development, and its team size.

The summary of our ANCOVA analyses in relation to DevOps churn
is within Table 15. Notably, across all project categories, the number
of issues does not seem to affect DevOps code churn, signaling a lack
of correlation between the reporting of issues within a project and the
churn of DevOps configuration files. Applying the one-way ANOVA test
across the different categories, we obtain a p-value of 3.61e—18 for the
Source Code Churn and 6.49¢—18 for the DevOps Code Churn, implying
significant statistical difference between the three groups of projects.

11

Information and Software Technology 152 (2022) 107037

4.2.3. DevOps change goals

After uncovering the efforts invested by developers in DevOps con-
figuration files, we wanted to explore the goals developers were trying
to achieve by changing one or multiple DevOps configuration files. To
achieve this, we analyzed the different commits that affect DevOps
configuration files and determined the commits’ main goals, within
1437 ML projects and 1942 Non-ML projects which adopted Build and
CI Tools, via a process detailed in Section 3.3.3.2. The results are
illustrated in Fig. 8.

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%
0.00%

£ 0.00%

b

3

2 83.33% 100.00%

000% 1178% 2923% 58.33% > °
0.00%

= ‘ 0.00% 0.46% 1.06%

g

g

= 88.89% 100.00%

0.00% 7.14% 30.77% 53.85% >)
0.00%

Z 0.00%

S

g

009 90.91% 100.00%
0.00% 7.69% 43.9690000% - ?

M Build and Bug Fix
Only Build Fix

M Only Bug Fix
Code Improvement

Fig. 8. Goals of DevOps-changing commits (Outliers points hidden, 3 quartile-values
shown if different).

In a typical development cycle, bugs and problems may be detected
directly by the developer through local unit testing, or be reported
externally by either customers or testers. In a project that adopts CI
tools, program bugs, test failures, DevOps tools’ misconfigurations and
other problems may be detected and reported by the CI system.

Table 16
ANCOVA analysis of bug-fix commit goal for Applied projects.

Source Sig. Partial Eta Details

Squared
CI * Deployment a Adoption of CI, DA
* Analyzer [X] 068 004 and CA Tools
Intercept .087° .004 Intercept of the model
Build * CI 1122 .003 Adoption of Build and

CI Tools

R Squared = .059 (Adjusted R Squared = .007).
aMarks statistically non-significant variables, table is shown for illustrative purposes.

For ML Applied projects, the lower percentages of bug-fixes shown
in Fig. 8 may imply that these projects are experiencing less build
breakages and bugs. But in reality, the ANCOVA analysis for ML Ap-
plied projects in Table 16 indicates that there is no correlation between
the adoption of Test and Code Analysis tools and a reduction in the
percentages of these fixes. This indicates that ML Applied projects are
not using these tools efficiently in order to remedy the bugs that may
arise in their code. In addition, we did not find any correlation between
team size or other covariates considered and bug-fixes. This implies
that this misuse of Test and Code Analysis tools is present within the
majority ML Applied projects, regardless of a project’s properties.

Moving on to ML Tool projects, as illustrated within Table 17, a
clear correlation is found between the adoption of Build, Code Analysis
and Test tools within a project and bug-fixing commits being performed
within it. Since the goals of Code Analysis and Test tools is to allow
developers to find bugs and issues with their code-base, we interpret
the increase of bug-fixing commits of ML Tool projects that adopted
them as a sign of efficient use of these tools by these projects.

Concerning Non-ML projects, as shown in Table 18, a correlation
is found between the adoption of Build, CI, Code analysis, Test and

D.E. Rzig et al.

Table 17
ANCOVA analysis of bug-fix commit goal for Tool projects (Only statistically significant
variables are shown).

Source Sig. Partial Eta Details
Squared
Intercept <.001 .060 Intercept of the model
R - :
?mld Analyzer 016 012 Adoption of Build, CA
* Test and Test tools

R Squared = .136 (Adjusted R Squared = .062).

Table 18
ANCOVA analysis of bug-fix commit goal for Non-ML projects (Only statistically
significant variables are shown).

Source Sig. Partial Eta Details

Squared
Analyzer <.001 .006 Adoption of CA tool(s)
Intercept .005 .004 Intercept of the model
Deployment * Test .020 .003 Adoption of DA tool(s)
Build * CI .025 .003 Adoption of Build, CI tool(s)
Build * Analyzer .033 .003 Adoption of Build, CA tool(s)
Build * Test .047 .00 Adoption of Build, Test tool(s)

R Squared = .045 (Adjusted R Squared = .023).

Deployment Automation tools within a project and bug-fixing commits
being performed within it. Similar to ML Tool projects, we interpret
the increase of bug-fixing commits of Non-ML projects that adopted the
different categories of DevOps tools, especially those designed to allow
bug-detection as a sign of efficient use of these tools by these projects.
Across all projects categories, no correlation between Build fix
percentage and Code Analysis tool adoption or any other variable was
found within the ANCOVA analysis. This indicates that Build failures
and the corresponding Build fixes are not affected by variability within
projects or project categories, and that there is no evidence that the
adoption of a specific tool or tool type such as code analyzers will
influence build failures and subsequent build-fixes. A summary of the
analyses we performed for DevOps change goals is within Table 19.

4.2.4. Interpretation of results

Using these findings, it is evident that developers working on ML
Applied projects make numerous updates to their DevOps configuration
files that are also smaller than those of ML Tools project. By compari-
son, developers behind ML Tool projects overall did a smaller number
of updates to their DevOps configuration files, that were larger in size.
Non-ML projects had frequencies of DevOps-files updates similar to
those of ML Applier projects, with a bigger variance in update-size in
comparison to both ML categories. The frequency and size of updates,
measured through the commit-ratio and DevOps code churn of ML
Applied DevOps updates was linked to their adoption of certain DevOps
tools categories, while no such correlations were found for ML Tool
and Non-ML projects. The majority of DevOps updating commits of all
projects categories had concerns that are not immediately related to the
CI infrastructure which are in turn configured by DevOps configuration
files. However, through the ANCOVA analyses we performed, we found
that the adoption of Code Analysis, Test and other DevOps tools by
ML Tool and Non-ML projects correlates with an increase in their bug-
fixes. This signals that these tools are being efficiently used within
these projects to detect bugs and the large effect size in the ANCOVA
model signify this effect has important consequences on the number of
bug-fixing commits. However, while adopting these tools is linked with
larger and more frequent updates to DevOps configuration files within
ML Applied projects, it is not linked with an increase in bug-fixing
commits. This hints at a less efficient adoption of these tools which
requires more frequent updates with more effort but no noticeable
results on bug-fixes within ML Applied projects

12

Information and Software Technology 152 (2022) 107037

Finding 2: While ML Applied DevOps configuration files updates
are more frequent, they are smaller in size than those of ML Tool
DevOps configuration files, are less concerned with CI Build fixes,
and imply that DevOps tools are being used less efficiently within
these projects.

4.3. DevOps adoption advantages

Research Question 3: What are the advantages of adopting
DevOps tools across the different types of projects?

4.3.1. Commit frequency

Among the goals of the adoption of DevOps tools and practices
within software projects is to increase the rate at which developers
share their code with other stakeholders within their teams, which
in-turn is measured with the frequency of commits that developers
make during a specific development period. As illustrated in Fig. 9,
the projects that adopted 1 or more specific types of DevOps tools
had generally higher monthly commit frequencies. This was especially
true for projects that adopted CI, Deployment Automation and Testing
tools, where the increase in commit frequencies was significant across
all types of projects. In addition, ML Tool projects tend to see more
frequent commits than ML Applied projects, which in turn have more
frequent commits than Non-ML projects.

When statistically analyzing the Commit frequency through AN-
COVA for ML Applied projects, as illustrated in Table 20, it is clear
that DevOps tool adoption has a significant and important effect on
the increase of monthly commit averages, especially since DevOps
adoption is the variable with the largest effect size within the ANCOVA
model.

For ML Tool projects, the ANCOVA analysis in Table 21, shows that
DevOps tools adoption by these projects also has an important effect
on the increase of their monthly commit averages. However, the size
of a project’s team and the number of open issues it has seem to have
a larger effect than its DevOps adoption on its commit averages.

For Non-ML projects, the ANCOVA analysis in Table 22, shows
that DevOps tools adoption by Non-ML projects positively affects its
monthly commit averages. However, the size of a project’s team and
other variables related to its pull requests have a larger effect than its
DevOps adoption on its commit averages.

The summary of our findings through the ANCOVA analysis linked
to the average monthly Commits metric is illustrated in Table 23.
Applying the one-way ANOVA test on this metric across the different
categories, we obtain a p-value of s 7.29e—13, implying significant
statistical difference regarding the average monthly commit frequency
metric between the three groups of projects.

4.3.2. Merging frequency

Increasing the rate at which developers merge their code with other
code branches, thus increasing their code integration, is also a crucial
goal of DevOps practices and tools. Merges are represented with merg-
ing commits in a Git repository, and the frequency of branch merges is
measured with the frequency of merging commits that developers make
within a specific development period. As represented in Fig. 10, the
projects that adopted a specific type or more of DevOps tools had gener-
ally higher monthly merge commit frequencies. This was especially true
for projects that adopted Analyzer, CI, and Deployment Automation
tools, where the increase in merge frequencies was significant across all
types of projects. ML Tool projects tend to have more frequent merges
than Applied projects, which in turn have more frequent commits than
Non-ML projects.

D.E. Rzig et al.

50
“
E
10 ‘ f
0
ML Tool

ML Applied
Project Category

- Project hat 60 ot have Anslyzer tol(s)
= Project ayzor tools)

Avg. Monthly Commits (Comits)

ML Applied

Project Category
- Project that do not have Buid tool(s)
I3 Project that have Buid too(s)

Projct th

ML Applied
Project Category

= Projectthat do not have Ci 0ols)
= st have i tol(s)

Information and Software Technology 152 (2022) 107037

JJ

ML Applied Non-ML
Project Category

- Proctthat do not have Test toa(s)
B3 Projectthat have Test too(s)

ML Applied
Project Category

= Projcttha do not have Deployment 0ols)
= Projct that have Desloyment tools)

Fig. 9. Commit frequency in correlation to project type and DevOps tool adoption (Outliers removed with IQR [70]).

Table 19
Summary of ANCOVA analyses results for DevOps change goals.
Category Most important variables Interpretation
affecting DevOps bug-fix
commit
ML Applied None An ML Applied projects’ adoption of certain DevOps tool
categories or a combination of these categories is not linked
to an increase in its Bug fixes
ML Tool Build * Analyzer * Test An ML Tool projects’ commits which modify DevOps-files
and fix bugs increase when Build, Code Analysis, and Test
tools are adopted by them. This implies that these tools are
being efficiently used to find and subsequently fix bugs.
Non-ML Deployment * Test, Build * CI, A Non-ML projects’ commits which modify DevOps-files and

Build * Analyzer, Build * Test

fix bugs increase when combination of Build, Code Analysis,
Test, Deployment, CI tools are adopted by them. This implies
that the tools from these categories which facilitate
bug-locating are being efficiently used to find and
subsequently fix bugs.

2

2
2
z

ML Applied

Non-ML ML Applied ML Tool Non-ML ML Applied
Pr

-
=

ML Tool Non-ML ML Applied ML Tool Non-ML ML Applied ML Tool Non-ML.

Project Category

- Project hat 6o nothave i 0ols)
3 Project hat have Ci toa(s)

Project Category

Fig. 10. Merging commit frequency in correlation to project type and DevOps tool adoption (Outliers removed with IQR [70]).

Table 20
ANCOVA analysis of Commit frequency for ML Applied projects (Only statistically
significant variables are shown).

Table 21
ANCOVA analysis of Commit frequency for ML Tool projects (Only statistically
significant variables are shown).

Source Sig. Partial Eta Details
Squared
Intercept <.001 .043 Intercept of the model
DevOps <.001 .013 DevOps tool(s) adoption
N_Pr_Rejected <001 .004 Number of Pull requests
rejected
N_Pr_Core_Rejected .002 .003 Number of Pull reque§ s
by core developers rejected
Age In Days .003 .003 Project’s age
Team size .004 .003 Project’s team size
N_Stars .013 .002 Number of stars
N Pr Core Open 036 002 Number of Pull requests
by core developers opened
N_issues_Open .044 .001 Number of issues opened

R Squared = .185 (Adjusted R Squared = .182).

To examine the relationship between DevOps tools’ adoption and
the frequency of merge commits, we built ANCOVA models for the
different project categories. For ML Applied projects, this model is
represent in Table 24. Similar to the results found within Section 4.3.1
it is clear that adopting DevOps tools has a statistically-significant
and important effect on the increase of monthly merge averages for
ML Applied projects. DevOps adoption is the variable with the largest
effect size within the ANCOVA model, indicating that DevOps adoption

13

Source Sig. Partial Eta Squared Details

Team size <.001 .061 Size of the project’s team
Intercept <.001 .037 Intercept of the model
N_issues_Open <.001 .011 Number of Pull requests opened
DevOps .018 .005 Adoption of DevOps tool(s)
N_Forks .029 .005 Number of Forks

R Squared = .198 (Adjusted R Squared = .189).

has the highest positive influence on Merge commit rates within ML
Applied projects.

Moving on to ML Tool projects, Table 25 shows that adopting
DevOps tools also has a statistically-significant and important effect on
the increase of monthly merge averages for ML Tool projects. However,
it is important to note that an ML Tool project’s team-size has a much
larger effect on Merge commit rates within ML Tool projects.

Through the ANCOVA analysis on Non-ML projects, shown in
Table 26, it seems that DevOps adoption has no effect on Non-ML merge
rates. To better investigate this contradiction with existing findings
regarding DevOps tool adoption on merge frequency [7], we performed
a detailed analysis on the effects of the adoption of the different
categories of DevOps tool categories, such as Build Tools, CI Tools, etc.,
on Non-ML merge frequency, which is illustrated within Table 27.

In this model, the statistically significant variable with the second
largest effect size is the adoption of CI tools, Analyzer tools and Test
tools, implying that these specific tool categories are more likely to

D.E. Rzig et al.

Table 22
ANCOVA analysis of Commit frequency for Non-ML projects (Only statistically
significant variables are shown).

Source Sig. Partial Eta Details
Squared
Team size <.001 .015 Project’s team size
Intercept <.001 .007 Intercept of the model
N_Pr_Core_Rejected <.001 .005 Number of Pull reque.sts
by core developers rejected
N_Pr Rejected <001 003 Nl..lrnber of Pull requests
rejected
N_Pr Merged 004 002 Number of Pull requests
merged
DevOps .006 .002 Adoption of DevOps tool(s)
N_Pr_Core Merged 016 002 Number of Pull requests

by core developers merged

R Squared = .057 (Adjusted R Squared = .054).

increase the merge frequency of Non-ML projects, versus the adoption
of any combination of tools, which apparently has no effect on the
number of monthly merges.

The summary of our ANCOVA analyses in relation to the Average
Monthly Merging Commits metric is detailed in Table 28. Applying
the one-way ANOVA test on the Average Monthly Merging Commits
metric across the different project categories, we obtain a p-value of
s 1.61e—13, implying that there is a significant statistical difference
between the three groups of projects.

4.3.3. Issue duration

Allowing the quick resolution of problems and shortening down-
time are also some of the purported goals of adopting DevOps within
a software project. To measure the effectiveness of teams at resolving
such problems, we used the average issue duration metric to approxi-
mate the duration an issue takes to be resolved after it is opened within
a specific project, in accordance to a project’s category and its adoption
of one or more types of DevOps tools. As illustrated in Fig. 11, adopting
any type of DevOps tools corresponds to a quicker resolution of issues,
especially the adoption of Analyzer, CI, Deployment Automation and
Testing tools. Furthermore, ML Tool projects tend to have quicker
resolution of issues than Applied projects, which in turn have a quicker
resolution then Non-ML projects.

When analyzing the effect of the adoption of DevOps tools on
issue durations of ML Applied projects, as illustrated in the ANCOVA
analyses in Table 29, it is clear that it has a statistically significant and
important effect on decreasing the average issue durations across all
project categories. However, the number of issues open and the age of
the project seem to have larger effects than DevOps adoption.

Moving on to the ANCOVA analysis regarding issue durations of ML
Tool projects illustrated in Table 30, it is clear that it has an important
effect on decreasing the average issue durations. However, similar to
ML Applied projects, the number of issues open and the age of the
project seem to have larger effects than DevOps adoption.

By observing the ANCOVA analysis of the issue durations of Non-ML
projects illustrated in Table 31, it is clear that it has an important effect
on decreasing average issue durations. However, other factors, such as
the number of pull requests open and the age of the project seem to
have larger effects than DevOps adoption.

A summary regarding the ANCOVA analyses linked to the average
issue duration metric is illustrated in Table 32. Applying the one-way
ANOVA test on the Average Monthly Merging Commit metric across
the different categories, we obtain a p-value of s 1.02e—174, implying
significant statistical difference between the three groups of projects.

14

Information and Software Technology 152 (2022) 107037

4.3.4. Code quality

In addition to positively influencing the code sharing rates and issue
resolution durations, DevOps is also posed as a method of improving
the quality of development processes of a project as well as its code
base. To evaluate the validity of this claim, we used the state-of-the-
art tool SonarQube [62] via the method described in Section 3.3.3.3 in
order to evaluate the quality of the projects within our dataset. We were
able to successfully generate code quality reports for 2566 ML Applied
projects, 969 ML Tool projects and 3320 Non-ML projects, forming re-
spectively 88.02%, 86.82% and 81.45% of the total number of projects
from their categories. SonarQube was unable to process some projects
due to problems such as software incompatibility, as the free version
is not compatible with C and C++ projects, missing dependencies,
internal memory management issues, among other reasons.

Through the ANCOVA analyses within Table 33, it is clear that an
ML Applied project’s reliability is correlated and most improved by its
DevOps adoption. It is also interesting to note that a project’s age, team
size, and number of issues have a significant effect on improving a
project’s reliability. Longer-lived projects with larger teams, who are
more capable at keeping track of bugs, are more likely to have better
Reliability metrics. Focusing on ML Applied project’s Maintainability,
it is clear through Table 34 that DevOps adoption is the only project
property that is statistically correlated to this quality metric. Overall,
through these two analyses, it is clear that DevOps adoption is the
number one factor influencing an ML Applied project’s code quality.

Moving on to ML Tool projects, it is clear through Table 35 that
DevOps is the only statistically significant variable that affects these
projects Reliability metric. However, no such correlation was found
concerning the Maintainability metric, as no statistically significant
variables were found within its ANCOVA analysis. This allows us to
deduce that DevOps adoption only affects certain aspect of an ML Tool
project’s code quality, yet it is the only variable that seems to affect it,
regardless of an ML Tool project’s team size, age, etc.

Concerning Non-ML projects, it is clear through Table 36 that De-
vOps is the single biggest contributor to a project’s improved Reliability
metric. In addition, a project’s number of issues open, age, number of
forks and Team size all correlate to this metric, signaling that multiple
factors can influence a Non-ML project’s reliability. However, it is also
important to note that no statistically significant variables were found
within the ANCOVA analyses of the Maintainability metric.

A summary regarding the ANCOVA analyses linked to the reliability
and maintainability metrics is illustrated in Table 37. Applying the one-
way ANOVA test on these two metrics across the different categories,
we obtain a p-value of 5.22e—6 for Reliability, and 0.98 for Maintain-
ability. This is surprising as it implies significant statistical difference
between the three groups of projects for the first metric, but similarity
regarding the second metric, even though both are code quality metrics.

4.3.5. Interpretation of results

Using these five metrics and their associated statistical analyses,
it is evident that employing DevOps tools of different categories has
mostly correlated with an increase in the frequency of code commits,
an increase in the merges across different branches, a reduced duration
leading up to issue resolution, and an increase in code quality across
the three different types of projects. These advantages are especially
prevalent when using CI and Deployment automation tools across all
categories of projects.

Focusing more on ML Applied projects, it is evident that employing
DevOps tools has an important and generally positive effect on the
development activities, issue resolution, and code quality within these
projects, thus signaling that while these projects may have a harder
time employing DevOps tools, as per the findings in Section 4.2, they
also have the most to gain from using DevOps tools within their code
bases.

D.E. Rzig et al. Information and Software Technology 152 (2022) 107037

Table 23
Summary of ANCOVA analysis results of Commit frequency.
Category Most important variables affecting Interpretation
Commit Frequency
ML Applied DevOps, N_Pr_Rejected, An ML Applied projects’ adoption of DevOps has
N_Pr_Core_Rejected, Age In Days, Team the largest effect on its monthly commits. Other
Size, N_Stars, N_Pr_Core_Open, factors such as its Number of rejects PRs and
N_issues_Open Team-size also affect this metric.
ML Tool Team Size, N_issues_Open, DevOps, An ML Tool project’s adoption of DevOps has an
N_Forks important effect on its monthly commits, however,

other factors such as its Team-size have a larger
effect on this metric.

Non-ML Team Size, N_Pr_Core_Rejected, A Non-ML project’s adoption of DevOps has an
N_Pr_Rejected, N_Pr_Merged, DevOps, important effect on its monthly commits, however,
N_Pr_Core_Merged other factors such as its Team-size have a larger

effect this metric.

dabdadiabiidi,

ML Applied ML Tool Non-ML ML Applied ML Tool Non-ML ML Applied ML Applied ML Tool Non-ML ML Applied ML Tool Non-ML
Project Category Project Category Project Category

- ot hat do Buid ools) - roject that ol - Projocttha do not have Deployment ooi(s)
= Project thatha = Project that have Ci too 3 Projoctthat have Deployment tol(s)

Analyzer ool(s) - rcjectt
ols) = Projecty

Fig. 11. Average issue duration in correlation to project type and DevOps tool adoption (Outliers removed with IQR [70]).

Table 24 Table 27
ANCOVA analysis of Merge Commit frequency for Applied projects (Only statistically Detailed ANCOVA analysis of Merge Commit frequency for Non-ML projects (Only
significant variables are shown). statistically significant variables are shown).
Source Sig. Partial Eta Squared Details Source Sig. Partial Details
Intercept <.001 .018 Intercept of the model Eta Squared
DevOps <.001 .011 Adoption of DevOps tool(s) Team size <.001 .042 Size of the project’s team
Age In Days .005 .003 Age of the project CI * Analyzer ool o12 Adoption of CI, CA
N_Stars .016 .002 Number of stars * Test . . and Test tools
N_Pr_Merged .019 .002 Number of Pull Requests merged
- Build * CI * <001 006 Adoption of Build, CI,
R Squared = .258 (Adjusted R Squared = .255). Deployment * Analyzer . B DA and CA tools
Build * CI Adoption of Build, CI
* Analyzer <.00l -006 and CA Tools
Table 25

ANCOVA analysis of Merge Commit frequency for Tool projects (Only statistically R Squared = .144 (Adjusted R Squared = .135).
significant variables are shown).

Source Sig. Partial Eta Squared Details
Table 28
Team Size <.001 .047 Size of the project’s team))
Intercept <001 022 Intercept of the model Summary of ANCOVA analyses results for Merging Colmmlts frequency.
DevOps .021 .005 Adoption of DevOps tool(s) Category Most important Interpretation

R Squared = .143 (Adjusted R Squared = .133).

Table 26

ANCOVA analysis of Merge Commit frequency for Non-ML projects (Only statistically
significant variables are shown).

variables affecting
Merging Commit
Frequency

ML Applied DevOps, Age In days, An ML Applied projects’ adoption of
N_Stars, N_Pr_Merged DevOps has the largest effect on its
monthly merging commits. Other factors
such as its number of stars and Number

Source Sig. Partial Details of Pull requests merged also affect this
Eta Squared metric.
Team size <.001 .052 Size of the project’s team ML Tool Team size, DevOps An ML Tool project’s adoption of
Age In days <.001 .006 Age of the project DevOps has an important effect on its
Intercept <.001 .004 Intercept of the model monthly commits, however, Team-size
N_Forks <.001 .003 Number of forks has a larger effect this metric.
N Stars X <.001 -003 Number of stars X Non-ML Team size, CI * An Non-ML project’s adoption of certain
N_Pr Rejected <.001 003 Number of pull requests rejected Analyzer * Test, Build DevOps tool categories at the same time,
* CI * Deployment * such as adoption CI, Code Analysis and
N_Pr_Core_Rejected .003 .002 Number of pull reque_Sts Analyzer, Build * CI * Test tools, has an important effect on its
by core developers rejected Analyzer monthly merging commits. However, its
y: y ging s
R Squared = .086 (Adjusted R Squared = .083). Team-size has a larger effect this metric.
r "

ML Tool and Non-ML projects that employ DevOps show mostly similar
improvements in comparison to their non-DevOps counterparts, how-
ever, the improvements are not as drastic as those of the Applied ML

projects.

Finding 3: All categories of projects that employ DevOps show
improvements in their development, code quality and issue res-
olution metrics in comparison to their non-DevOps counterparts,
especially in the case of ML Applied projects, supporting the claim
that DevOps tools can improve the development processes of most

15 projects they are used in.

D.E. Rzig et al.

Information and Software Technology 152 (2022) 107037

Table 29 Table 32
ANCOVA analysis of Average Issue duration for Applied projects (Only statistically Summary of ANCOVA analyses results for Average Issue Duration.
significant variables are shown). Category Most important variables Interpretation
Source Sig. Partial Details affecting Issue Duration
Eta Squared ML Applied N_issues_Open, Age In days, An ML Applied projects’ DevOps
N_issues_Open <.001 .033 Number of issues open DevOps, N_Pr_Rejected,N_Pr adoption helps it reduce its issue
Intercept <.001 032 Intercept of the model _Core_Rejected, Team size, duratlonj however, othe.r factors
N_Pr_Core_Open, N_Pr_Merged, such as its numbers of issues
Age In days <.001 -021 Project’s age N_Pr_Core_Merged open and its age have a larger
DevOps <.001 .012 Adoption of DevOps tool(s) effect on these durations.
. Number of pull requests ML Tool N_issues_Open, Age In days, An ML Tool project’ DevOps
N_Pr_Rejected <.001 007 rejected N_Pr_Core_Open, DevOps, adoption helps it reduce its issue
Numb oull N N_Pr_Open duration, however, other factors
N_Pr_Core_Rejected <.001 .006 bum er; pll'l reque.s St d such as its numbers of issues open
y core developers rejecte and number of PRs open have a
Team size .003 .003 Project’s team size larger effect on these durations.
N Pr Core Open 004 003 Number of pull requests Non-ML N_?r_Open, Age In days, A Nor}-ML pro_|e§ct DevO?s '
opened by core developers N_issues_Open, N_Pr_Core_Open, adoption helps it reduce its issue
Number of pull requests Team size, N_Pr_Rejected, duration, however, other factors
N_Pr_Merged .009 .003 merged DevOps, N_Stars, such as its age and number of
N_Pr_Core_Rejected, N_Forks PRs open have a larger effect on
N_Pr_Core_Merged 033 .002 Number of pull requests these durations.
by core developers merged
R Squared = .096 (Adjusted R Squared = .092).
Table 33
ANCOVA analysis of Reliability for ML Applied projects.
Table 30 Source Sig. Partial Details
ANCOVA analysis of Average Issue duration for Tool projects (Only statistically Eta Squared
significant variables are shown). Intercept 0.000 0.435 Intercept of the model
Source Sig. Partial Details DevOps <0.001 0.08 Adoption of DevOps
Eta Age In days 0.002 0.004 Age of a project
Eta N_issues_Open 0.006 0.006 Number of Issues Open
Team size 0.011 0.003 Age of a project
Intercept <.001 .095 Intercept of the model
N_issues_Open <.001 .022 Number of issues open R Squared = .065 (Adjusted R Squared = .059).
Age In days <.001 .017 Age of the project
Number of pull requests
N_Pr_Core_Open 019 006 opened by core developers Table 34
ANCOVA analysis of Maintainability for ML Applied projects.
DevOps .045 .004 Adopttlon ?f DlelvOps tool(s) Source Sig. Partial Details
N_Pr_Open .046 .004 Number of pull requests open Eta Squared
R Squared = .094 (Adjusted R Squared = .083). Intercept 0.000 0.992 Intercept of the model
DevOps <0.001 0.004 Adoption of DevOps

Table 31
ANCOVA analysis of Average Issue duration for Non-ML projects (Only statistically
significant variables are shown).

R Squared = .011 (Adjusted R Squared = .004).

Source Sig. Partial Details Table 35
Eta Squared ANCOVA analysis of Reliability for ML Tool projects.
Number of Pull " Source Sig. Partial Details
N_Pr_Open <.001 101 umber of Full requests Eta Squared
opened
) . - Intercept 0.000 0.479 Intercept of the model
Age Tn days <.001 076 Age of the project DevOps 0.001 0.013 Adoption of DevOps
. Number of Issues .
N_issues_Open <.001 .057 opened by core developers R Squared = .089 (Adjusted R Squared = .077).
Intercept <.001 .049 Intercept of the model
N_Pr Core Open <001 043 Number of Pull requests Table 36
opened by core developers ANCOVA analysis of Reliability for Non-ML projects.
Team size <.001 .027 Size of the project’s team Source Sig. Partial Details
Eta Squared
N_Pr_Rejected <001 .012 Number of Pull requests
rejected Intercept 0.000 0.476 Intercept of the model
DevOps <.001 .008 Adoption of DevOps tool(s) DevOps 0.000 0.010 Adoption of DevOps
N_issues_Open 0.000 0.009 Number of Issues Open
N_Stars <.001 .007 Number of stars of project Age In days 0.000 0.005 Age of a project
. Number of Pull requests NBForks 0.013 0.002 Number of Forks
N_Pr_Core_Rejected <.001 -006 by core developers rejected Team size 0.005 0.002 Size of project’s team
N_Forks .001 .003 Number of forks of a project R Squared = .059 (Adjusted R Squared = .055).

R Squared = .327 (Adjusted R Squared = .325).

16

D.E. Rzig et al.

Information and Software Technology 152 (2022) 107037

Table 37
Summary of ANCOVA analyses results for Reliability and Maintainability.
Category Most important variables affecting Most important variables Interpretation
Reliability affecting Maintainability
ML Applied DevOps, Age In days, N_issues _Open, DevOps An ML Applied project’s DevOps adoption, age, and Number of issues open are the
Team size most important factors that affect its code quality
ML Tool DevOps None An ML Tool project’s DevOps adoption is the only statistically significant factors
affecting its code quality
Non-ML DevOps, N_issues Open, Age In days, None A Non-ML project’s DevOps adoption, Number of issues open, age, Number of forks

NBForks, Team size

and Team size are the most important factors that influence its code quality

5. Implications of the proposed study

In this section, we discuss the implications of our empirical analysis.
The following is a list of actionable items we identified:

+ Our analysis on DevOps adoption rates and trends, detailed in
Section 4.1, identified that ML Applied projects were slow in
adopting DevOps. They also had a lower adoption across different
DevOps tool categories such as Build, CI and Code Analyzer.
While analyzing the exact reasons behind the barriers to adoption
of DevOps tools is by ML projects is not within this work’s scope,
our results shed a light on the necessity for researchers to study
the barriers to adopting DevOps in ML projects and identify
possible improvement scopes. These may include ML DevOps
task automation, DevOps tools for ML models evaluation and
monitoring, etc. On the other hand, tool developers can employ
program analysis [71] techniques to automatically generate ML
DevOps configuration files which can lower the barriers of entry
for data scientists who might be unfamiliar with DevOps concepts
and practices.

Our DevOps tool maintenance effort analysis, detailed within
Sections 4.2.1 and 4.2.2, reveals that even though ML Applied
projects much less adoption of DevOps than the other two cat-
egories (ML Tools and Non-ML projects), their developers are
changing DevOps configuration files more frequently. This high-
lights the necessity of working on support for automatic syn-
chronization of DevOps configuration files. This may be pro-
vided via change recommendation tools [72], safe refactoring
tools [73], and others. These tools can help reduce maintenance
overhead, and can provide technical support to developers and
data scientists who may not be very familiar with DevOps tools.
Our analysis on events that trigger DevOps file changes, within
Section 4.2.3, identified that bug-fixing commits within Tool
project that alter DevOps configuration files were much more
prevalent in comparison to ML Applied and Non-ML projects.
This indicates that the software maintenance research commu-
nity should invest more heavily in co-evolution analysis [74] of
functional code and DevOps configuration files to facilitate early
bug-detection. In turn, this will save both time and resources and
allow teams to invest them in improving their software product’s
quality and reputation, rather than resolving problems within it.
Our analysis on DevOps adoption advantages, within Section 4.3,
identified that for all project types, adopting DevOps has pos-
itive consequences on the code sharing and code integration
speed and frequency and helped decrease the duration necessary
for issue resolution and improve its quality. Even though using
DevOps tools for all types of projects, including ML projects,
introduced adoption and maintenance overhead, it appears that
the benefits of DevOps outweigh the associated costs. Thus, data
scientists and ML developers should adopt DevOps tools within
their projects. Furthermore, we believe that adopting DevOps
tools present these benefits for all ML projects, even for those
with smaller teams. This is especially prevalent in the case of
ML Applied projects, which had smaller team sizes overall but
generally saw larger improvements resultant of DevOps adoption
than ML Tool projects.

17

» Software engineering educators lack concrete ideas on ML De-
vOps integration trends, benefits, and tools, preventing them
from training students with ML DevOps skills that would allow
them to build industry-ready ML-based systems. This study helps
educators understand the current trends, benefits, and tools of ML
DevOps in order to include up-to-date pedagogical material on ML
DevOps.

6. Threats to validity

Our empirical analysis has some limitations that we would like to
discuss:

Construct validity: We used the code churn and commit ratio
metrics to estimate DevOps configuration files maintenance efforts.
However, while these metrics may not reflect maintenance effort 100%
correctly, they remain representative work items for maintaining source
code and other files.

Internal validity: During DevOps tools detection, we used a file
name patterns list which we manually constructed. To mitigate bias,
one of the co-authors performed a manual checking of DevOps config-
uration files and file naming patterns in both ML projects and Non-ML
projects. In addition, most tools have highly specific naming conven-
tions, so the probability of false positives is minimal. Some tools, such
as logging tools, may be hosted on third-party servers and do not need
to have any configuration files within a repository, but they remain the
minority among DevOps tools. Furthermore, DevOps tools that do not
leave traces in files within the code repository, such as communication
tools, cannot be detected via our approach.

External validity: Our analysis is based on public repositories on
GitHub. These results might differ for private GitHub repositories and
closed repositories, including projects developed by companies. How-
ever, our project set does contain projects developed by companies,
such as tensorflow/tensor2tensor which is backed by Google.
We also estimate that at least 30% of ML Tool projects are backed
by major organizations such as Microsoft and IBM. Furthermore, since
we used popular organization and user-managed projects within our
analysis, we expect many similarities of behavior.

7. Conclusion

In this study, we conducted an empirical study on 4031 ML projects
and a comparative set of 4076 Non-ML projects hosted in GitHub for
ML DevOps adoption, maintenance effort and benefit analysis. Through
our analysis, we found evidence of a lower adoption of DevOps tools
within ML Applied projects, as well as different development practices
and efforts in relation to these files that tended to be less efficient
than those of ML Tool and Non-ML projects. In contrast, this type of
projects has the most to gain from adopting these tools, and with similar
advantages for both ML Tool and Non-ML projects. To the best of our
knowledge, this is the first large scale empirical study on ML DevOps
adoption, maintenance effort and benefit analysis. This exploratory
work lays the foundation for future works, where we plan to investigate
the roadblocks developers encounter when adopting different DevOps
tools and the features they need to adopt to ease their adoption by ML
developers. Our data and code are available at [48].

D.E. Rzig et al.
CRediT authorship contribution statement

Dhia Elhaq Rzig: Conceptualization, Methodology, Software, Data
preparation, Writing — original draft, Writing - review & editing.
Foyzul Hassan: Conceptualization, Methodology, Software, Writing —
review & editing. Marouane Kessentini: Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The link to the code and the data was shared under the attach files
step

Replication Package (Original data) (Figshare)
Acknowledgments

The UofM-Dearborn authors are supported in part by
UofM-Dearborn Research Support, USA and NSF Award, USA NSF-
2152819.

References

[1] S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis, D. Feng, Early diagnosis of Alzheimer’s
disease with deep learning, in: 2014 IEEE 11th International Symposium on
Biomedical Imaging (ISBI), 2014, pp. 1015-1018.

H.N. Mhaskar, S.V. Pereverzyev, M.D. van der Walt, A deep learning approach
to diabetic blood glucose prediction, 2017, CoRR abs/1707.05828 [Online].
Available: http://arxiv.org/abs/1707.05828.

C. Chen, A. Seff, A. Kornhauser, J. Xiao, DeepDriving: Learning affordance for
direct perception in autonomous driving, in: 2015 IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 2722-2730.

The algorithm that beats your bank manager, 2020, Accessed: 2020-12-
29 https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbe
ats-your-bank-manager/#15da2651ae99/.

Evans data corporation. 2019. Global developer population and demographic
study, 2019, Accessed: 2019-12-01 https://evansdata.com/reports/viewRelease.p
hp?reportID=9/.

L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, A survey of DevOps concepts
and challenges, ACM Comput. Surv. 52 (6) (2019) http://dx.doi.org/10.1145/
3359981, [Online]. Available:.

Seven DevOps tips for faster app development, 2020, Accessed: 2020-12-
30 https://resources.github.com/downloads/GitHub-Top-7-tips- for- faster-
application-development-with-DevOps.pdf/.

S.M. Brown Allana, 2020 State of DevOps report, 2020.

A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S.A. Hong, A. Konwinski,
C. Mewald, S. Murching, T. Nykodym, et al., Developments in MLflow: A System
to Accelerate the Machine Learning Lifecycle, in: Proceedings of the Fourth
International Workshop on Data Management for End-To-End Machine Learning,
2020, pp. 1-4.

Amazon SageMaker, 2020, Accessed: 2020-12-30 https://aws.amazon.com/
sagemaker/.

L.E. Lwakatare, I. Crnkovic, J. Bosch, Devops for AI — challenges in development
of Al-enabled applications, in: 2020 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), IEEE, 2020, pp. 1-6,
[Online]. Available: https://ieeexplore.ieee.org/document/9238323/.

T. Gamblin, M. LeGendre, M.R. Collette, G.L. Lee, A. Moody, B.R. de Supinski,
S. Futral, The spack package manager: Bringing order to HPC software chaos, in:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, in: SC ’15, Association for Computing Machin-
ery, New York, NY, USA, 2015, http://dx.doi.org/10.1145/2807591.2807623,
[Online]. Available.

K. Hoste, J. Timmerman, A. Georges, S. De Weirdt, EasyBuild: building software
with ease, in: High Performance Computing, Networking, Storage and Analysis,
Proceedings, IEEE, 2012, pp. 572-582, [Online]. Available: http://dx.doi.org/10.
1109/SC.Companion.2012.81.

Docker, 2020, Accessed: 2020-12-20 https://www.docker.com/.

Kubernetes, 2020, Accessed: 2020-12-20 https://kubernetes.io/.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]
[15]

18

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Information and Software Technology 152 (2022) 107037

C. Renggli, F.A. Hubis, B. Karla” s, K. Schawinski, W. Wu, C. Zhang, Ease.Ml/Ci
and ease.Ml/Meter in action: Towards data management for statistical general-
ization, Proc. VLDB Endow. 12 (12) (2019) 1962-1965, http://dx.doi.org/10.
14778/3352063.3352110, [Online]. Available.

G. Fursin, H. Guillou, N. Essayan, CodeReef: an open platform for portable
MLOps, reusable automation actions and reproducible benchmarking, 2020.

M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. Hong, A. Konwinski, S.
Murching, T. Nykodym, P. Ogilvie, M. Parkhe, F. Xie, C. Zumar, Accelerating
the machine learning lifecycle with MLflow, IEEE Data Eng. Bull. 41 (2018)
39-45.

L.E. Lwakatare, I. Crnkovic, J. Bosch, DevOps for Al — challenges in development
of Al-enabled applications, in: 2020 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), 2020, pp. 1-6.

D. Gonzalez, T. Zimmermann, N. Nagappan, The State of the ML-universe: 10
Years of Artificial Intelligence &; Machine Learning Software Development on
GitHub, in: Proceedings of the 17th International Conference on Mining Software
Repositories (MSR), 2020.

D. Teixeira, R. Pereira, T.A. Henriques, M. Silva, J.a. Faustino, A systematic
literature review on DevOps capabilities and areas:, Int. J. Human Cap. Inf.
Technol. Prof. 11 (2) (2020) 1-22.

R. Jabbari, N. bin Ali, K. Petersen, B. Tanveer, What is DevOps?: A systematic
mapping study on definitions and practices, in: Proceedings of the Scientific
Workshop Proceedings of XP2016, ACM, 2016, pp. 1-11, [Online]. Available:
https://dl.acm.org/doi/10.1145/2962695.2962707.

F. Erich, C. Amrit, M. Daneva, A mapping study on cooperation between
information system development and operations, in: A. Jedlitschka, P. Kuvaja,
M. Kuhrmann, T. Ménnisto, J. Miinch, M. Raatikainen (Eds.), Product-Focused
Software Process Improvement, Springer International Publishing, 2014, pp.
277-280.

W.P. Luz, G. Pinto, R. Bonifacio, Building a collaborative culture: A grounded
theory of well succeeded devops adoption in practice, in: Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, in: ESEM ’18, Association for Computing Machinery, New
York, NY, USA, 2018, http://dx.doi.org/10.1145/3239235.3240299, [Online].
Available.

S. McIntosh, B. Adams, T.H. Nguyen, Y. Kamei, A.E. Hassan, An Empirical Study
of Build Maintenance Effort, in: ICSE 11, Association for Computing Machinery,
New York, NY, USA, 2011, pp. 141-150, http://dx.doi.org/10.1145/1985793.
1985813, [Online]. Available.

R.M. Shukla, J. Cartlidge, AgileML: A machine learning project development
pipeline incorporating active consumer engagement, in: 2021 IEEE Asia-Pacific
Conference on Computer Science and Data Engineering (CSDE), IEEE, Bris-
bane, Australia, 2021, pp. 1-7, [Online]. Available: https://ieeexplore.ieee.org/
document/9718470/.

I. Karamitsos, S. Albarhami, C. Apostolopoulos, Applying DevOps practices of
continuous automation for machine learning, Information 11 (7) (2020) 363,
[Online]. Available:https://www.mdpi.com/2078-2489/11/7/363.

N. Nahar, S. Zhou, G. Lewis, C. Késtner, Collaboration challenges in building
ML-enabled systems: Communicatfion, documentation, engineering, and process,
2022, arXiv:2110.10234 arXiv:2110.10234 [cs] [Online]. Available: http://arxiv.
org/abs/2110.10234.

B. Karlas, M. Interlandi, C. Renggli, W. Wu, C. Zhang, D. Mukunthu Iyap-
pan Babu, J. Edwards, C. Lauren, A. Xu, M. Weimer, Building continuous
integration services for machine learning, in: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, in:
KDD ’20, Association for Computing Machinery, New York, NY, USA, 2020, pp.
2407-2415, http://dx.doi.org/10.1145/3394486.3403290, [Online]. Available.
PyGithub, PyGithub/PyGithub. [Online]. Available https://github.com/
PyGithub/PyGithub.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and produc-
tivity outcomes relating to continuous integration in GitHub, in: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ACM, 2015, pp. 805-816, [Online]. Available: https://dl.acm.org/doi/10.1145/
2786805.2786850.

Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, B. Vasilescu, The impact of continuous
integration on other software development practices: A large-scale empirical
study, in: 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017, pp. 60-71.

J.a.H. Bernardo, D.A. da Costa, U. Kulesza, Studying the impact of adopting
continuous integration on the delivery time of pull requests, in: Proceedings
of the 15th International Conference on Mining Software Repositories, ACM,
Gothenburg Sweden, 2018, pp. 131-141, [Online]. Available: https://dl.acm.org/
doi/10.1145/3196398.3196421.

H.J. Keselman, C.J. Huberty, L.M. Lix, S. Olejnik, R.A. Cribbie, B. Donahue,
R.K. Kowalchuk, L.L. Lowman, M.D. Petoskey, J.C. Keselman, et al., Statistical
practices of educational researchers: An analysis of their Anova, manova, and
ancova analyses, Rev. Educ. Res. 68 (3) (1998) 350-386.

A. Rutherford, ANOVA and ANCOVA: A GLM Approach, Wiley, 2011, [Online].
Available: https://books.google.com/books?id=c5a0ZEniMqwC.

https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-application-development-with-DevOps.pdf/
https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-application-development-with-DevOps.pdf/
https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-application-development-with-DevOps.pdf/
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb8
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://ieeexplore.ieee.org/document/9238323/
http://dx.doi.org/10.1145/2807591.2807623
http://dx.doi.org/10.1109/SC.Companion.2012.81
http://dx.doi.org/10.1109/SC.Companion.2012.81
http://dx.doi.org/10.1109/SC.Companion.2012.81
https://www.docker.com/
https://kubernetes.io/
http://dx.doi.org/10.14778/3352063.3352110
http://dx.doi.org/10.14778/3352063.3352110
http://dx.doi.org/10.14778/3352063.3352110
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb17
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb17
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb17
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
https://dl.acm.org/doi/10.1145/2962695.2962707
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://dx.doi.org/10.1145/3239235.3240299
http://dx.doi.org/10.1145/1985793.1985813
http://dx.doi.org/10.1145/1985793.1985813
http://dx.doi.org/10.1145/1985793.1985813
https://ieeexplore.ieee.org/document/9718470/
https://ieeexplore.ieee.org/document/9718470/
https://ieeexplore.ieee.org/document/9718470/
https://www.mdpi.com/2078-2489/11/7/363
http://arxiv.org/abs/2110.10234
http://arxiv.org/abs/2110.10234
http://arxiv.org/abs/2110.10234
http://arxiv.org/abs/2110.10234
http://arxiv.org/abs/2110.10234
http://dx.doi.org/10.1145/3394486.3403290
https://github.com/PyGithub/PyGithub
https://github.com/PyGithub/PyGithub
https://github.com/PyGithub/PyGithub
https://dl.acm.org/doi/10.1145/2786805.2786850
https://dl.acm.org/doi/10.1145/2786805.2786850
https://dl.acm.org/doi/10.1145/2786805.2786850
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
https://dl.acm.org/doi/10.1145/3196398.3196421
https://dl.acm.org/doi/10.1145/3196398.3196421
https://dl.acm.org/doi/10.1145/3196398.3196421
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
https://books.google.com/books?id=c5aOZEniMqwC

D.E. Rzig et al.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

S. Rafi, W. Yu, M.A. Akbar, RMDevOps: A Road Map for Improvement in DevOps
Activities in Context of Software Organizations, in: Proceedings of the Evaluation
and Assessment in Software Engineering, 2020.

B.B.N. Franca, H. Jeronimo, G. Travassos, Characterizing DevOps by hearing
multiple voices, in: SBES ’16, 2016.

L.E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkild, J. Itkonen, P.
Kuvaja, T. Mikkonen, M. Oivo, C. Lassenius, DevOps in practice: A multiple case
study of five companies, Inf. Softw. Technol. 114 (2019) 217-230, [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0950584917302793.
G.B. Ghantous, A. Gill, DevOps: Concepts, practices, tools, benefits and
challenges, in: Pacific-Asia Conference on Information Systems PACIS 2017
Proceedings, 2017, [Online]. Available: https://aisel.aisnet.org/pacis2017/96.

I. Bucena, M. Kirikova, Simplifying the DevOps adoption process, in: BIR
Workshops, 2017.

AH. L, NJ. S, V. J,, V. K, A basic introduction to DevOps tools, 2015.

L. Yin, V. Filkov, Team discussions and dynamics during DevOps tool adoptions
in OSS projects, in: 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2020, pp. 697-708.

S. Mcintosh, B. Adams, A.E. Hassan, The evolution of java build systems, Empir.
Softw. Engg. 17 (4-5) (2012) 578-608, http://dx.doi.org/10.1007/s10664-011-
9169-5, [Online].Available.

Y. Jiang, B. Adams, Co-evolution of infrastructure and source code: An empirical
study, in: Proceedings of the 12th Working Conference on Mining Software
Repositories, in: MSR ’15, IEEE Press, 2015, pp. 45-55.

Github, github/linguist, [Online]. Available: https://github.com/github/linguist.
J. Katz, Libraries.io open source repository and dependency metadata, 2020,
http://dx.doi.org/10.5281/zenodo.3626071, [Online].Available.

J. Zhu, M. Zhou, A. Mockus, Patterns of folder use and project popularity: a case
study of github repositories, in: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement - ESEM ’14,
ACM Press, 2014, pp. 1-4, [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2652524.2652564.

Replication Package, https://figshare.com/s/0c4b685d4ab04{7f15af.
Gitpython-Developers, gitpython-developers/GitPython. [Online].
https://github.com/gitpython-developers/GitPython.

G. Fan, C. Wang, R. Wu, X. Xiao, Q. Shi, C. Zhang, Escaping dependency
hell: finding build dependency errors with the unified dependency graph, in:
Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020.

G. Robles, J.M. Gonzilez-Barahona, C. Cervigbén, A. Capiluppi, D. Izquierdo-
Cortézar, Estimating development effort in Free/Open source software projects by
mining software repositories: a case study of OpenStack, in: Proceedings of the
11th Working Conference on Mining Software Repositories - MSR 2014, ACM
Press, 2014, pp. 222-231, [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2597073.2597107.

D. Spadini, M. Aniche, A. Bacchelli, PyDriller: Python framework for mining
software repositories, in: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2018, ACM Press, New York, New York,
USA, 2018, pp. 908-911, [Online]. Available: http://dl.acm.org/citation.cfm?
doid=3236024.3264598.

[Online]. Available: https://graphql.github.com/.

Z. Lubsen, A. Zaidman, M. Pinzger, Using association rules to study the co-
evolution of production test code, in: 2009 6th IEEE International Working
Conference on Mining Software Repositories, 2009, pp. 151-154.

A. Zaidman, A. Zaidman, B. Van Rompaey, B. Van Rompaey, A. van Deursen, A.
van Deursen, S. Demeyer, S. Demeyer, Studying the co-evolution of production
and test code in open source and industrial developer test processes through
repository mining, Empir. Soft. Eng. Int. J. 16 (3) (2011) 325-364.

H. Wu, L. Shi, C. Chen, Q. Wang, B. Boehm, Maintenance effort estimation for
open source software: A systematic literature review, in: 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2016, pp.
32-43, [Online]. Available: http://ieeexplore.ieee.org/document/7816452/.
D.H. Martin, J.R. Cordy, On the maintenance complexity of makefiles, in:
Proceedings of the 7th International Workshop on Emerging Trends in Software
Metrics - WETSoM 16, ACM Press, 2016, pp. 50-56, [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2897695.2897703.

Available:

19

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Information and Software Technology 152 (2022) 107037

A. Bachmann, C. Bird, F. Rahman, P. Devanbu, A. Bernstein, The missing links:
Bugs and bug-fix commits, in: Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, in: FSE ’10,
Association for Computing Machinery, New York, NY, USA, 2010, pp. 97-106,
http://dx.doi.org/10.1145/1882291.1882308, [Online]. Available.

B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, P. Devanbu, On the
naturalness of buggy code, in: Proceedings of the 38th International Conference
on Software Engineering, 2016.

F. Hassan, X. Wang, HireBuild: An automatic approach to history-driven repair
of build scripts, in: Proceedings of the 40th International Conference on Software
Engineering, in: ICSE ’18, Association for Computing Machinery, New York,
NY, USA, 2018, pp. 1078-1089, http://dx.doi.org/10.1145/3180155.3180181,
[Online]. Available.

H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, R. Bowdidge, Programmers’ build
errors: a case study (at google), in: Proceedings of the 36th International Con-
ference on Software Engineering, ACM, 2014, pp. 724-734, [Online]. Available:
https://dl.acm.org/doi/10.1145/2568225.2568255.

Code Quality and Code Security | SonarQube, [Online]. Available: https://www.
sonarqube.org/.

A. Rahman, A. Agrawal, R. Krishna, A. Sobran, Characterizing the influence of
continuous integration. Empirical results from 250+ open source and proprietary
projects, in: Proceedings of the 4th ACM SIGSOFT International Workshop on
Software Analytics, 2018, pp. 8-14, arXiv:1711.03933.

M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs, and benefits
of continuous integration in open-source projects, in: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, in: ASE
2016, Association for Computing Machinery, New York, NY, USA, 2016, pp.
426-437, http://dx.doi.org/10.1145/2970276.2970358, [Online]. Available.

C. Vassallo, F. Palomba, A. Bacchelli, H.C. Gall, Continuous code quality:
are we (really) doing that? in: Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering, ACM, Montpellier
France, 2018, pp. 790-795, [Online]. Available: https://dl.acm.org/doi/10.1145/
3238147.3240729.

L.E. Lwakatare, A. Raj, J. Bosch, H.H. Olsson, I. Crnkovic, A taxonomy of
software engineering challenges for machine learning systems: An empirical
investigation, in: P. Kruchten, S. Fraser, F. Coallier (Eds.), Agile Processes in
Software Engineering and Extreme Programming, in: Lecture Notes in Business
Information Processing, 355, Springer International Publishing, 2019, pp. 227-
243, [Online]. Available: http://link.springer.com/10.1007/978-3-030-19034-7_
14.

S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B.
Nushi, T. Zimmermann, Software engineering for machine learning: A case study,
in: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), IEEE, 2019, pp. 291-300, [Online].
Available: https://ieeexplore.ieee.org/document/8804457/.

A. Arpteg, B. Brinne, L. Crnkovic-Friis, J. Bosch, Software engineering challenges
of deep learning, in: 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), IEEE, 2018, pp. 50-59, [Online]. Available:
https://ieeexplore.ieee.org/document/8498185/.

H.-Y. Kim, Analysis of variance (ANOVA) comparing means of more than two
groups, Restor. Dent. Endod. 39 (1) (2014) 74.

P.J. Rousseeuw, M. Hubert, Robust statistics for outlier detection, WIREs Data
Min. Knowl. Discov. 1 (1) (2011) 73-79.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J.
Reddi, K. Hazelwood, Pin: building customized program analysis tools with
dynamic instrumentation, Acm Sigplan Not. 40 (6) (2005) 190-200.

A.T. Ying, G.C. Murphy, R. Ng, M.C. Chu-Carroll, Predicting source code changes
by mining change history, IEEE Trans. Softw. Eng. 30 (9) (2004) 574-586.
H.K. Wright, D. Jasper, M. Klimek, C. Carruth, Z. Wan, Large-scale automated
refactoring using ClangMR, in: 2013 IEEE International Conference on Software
Maintenance, IEEE, 2013, pp. 548-551.

Y. Jiang, B. Adams, Co-evolution of infrastructure and source code-an empirical
study, in: 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, IEEE, 2015, pp. 45-55.

http://refhub.elsevier.com/S0950-5849(22)00153-7/sb37
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb37
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb37
https://linkinghub.elsevier.com/retrieve/pii/S0950584917302793
https://aisel.aisnet.org/pacis2017/96
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb41
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://dx.doi.org/10.1007/s10664-011-9169-5
http://dx.doi.org/10.1007/s10664-011-9169-5
http://dx.doi.org/10.1007/s10664-011-9169-5
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
https://github.com/github/linguist
http://dx.doi.org/10.5281/zenodo.3626071
http://dl.acm.org/citation.cfm?doid=2652524.2652564
http://dl.acm.org/citation.cfm?doid=2652524.2652564
http://dl.acm.org/citation.cfm?doid=2652524.2652564
https://figshare.com/s/0c4b685d4ab04f7f15af
https://github.com/gitpython-developers/GitPython
http://dl.acm.org/citation.cfm?doid=2597073.2597107
http://dl.acm.org/citation.cfm?doid=2597073.2597107
http://dl.acm.org/citation.cfm?doid=2597073.2597107
http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
https://graphql.github.com/
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://ieeexplore.ieee.org/document/7816452/
http://dl.acm.org/citation.cfm?doid=2897695.2897703
http://dl.acm.org/citation.cfm?doid=2897695.2897703
http://dl.acm.org/citation.cfm?doid=2897695.2897703
http://dx.doi.org/10.1145/1882291.1882308
http://dx.doi.org/10.1145/3180155.3180181
https://dl.acm.org/doi/10.1145/2568225.2568255
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
http://arxiv.org/abs/1711.03933
http://dx.doi.org/10.1145/2970276.2970358
https://dl.acm.org/doi/10.1145/3238147.3240729
https://dl.acm.org/doi/10.1145/3238147.3240729
https://dl.acm.org/doi/10.1145/3238147.3240729
http://link.springer.com/10.1007/978-3-030-19034-7_14
http://link.springer.com/10.1007/978-3-030-19034-7_14
http://link.springer.com/10.1007/978-3-030-19034-7_14
https://ieeexplore.ieee.org/document/8804457/
https://ieeexplore.ieee.org/document/8498185/
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb69
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb69
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb69
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb70
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb70
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb70
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74

	An empirical study on ML DevOps adoption trends, efforts, and benefits analysis
	Introduction
	Related work
	Methodology
	Data set collection
	DevOps tools classification
	Methods of analysis
	Phase 1: File, name and import pattern collection
	Phase 2: File system analysis
	Phase 3: repository and commit-based analysis

	Results
	Adoption rates of DevOps tools
	DevOps' current adoption rates
	Most popular DevOps tools
	DevOps' historical adoption rates

	DevOps maintenance efforts and goals
	Ratio of DevOps configuration files' updates
	DevOps coding efforts
	DevOps change goals
	Interpretation of results

	DevOps adoption advantages
	Commit frequency
	Merging frequency
	Issue duration
	Code quality
	Interpretation of results

	Implications of the proposed study
	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

