
Information and Software Technology 152 (2022) 107037

A
0

D
a
a
t
w
m

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

An empirical study onML DevOps adoption trends, efforts, and benefits
analysis
Dhia Elhaq Rzig a,∗, Foyzul Hassan a, Marouane Kessentini b
a Computer and Information Science Department, University of Michigan - Dearborn, Dearborn, USA
b School Of Engineering And Computer Science, Oakland University, Rochester, USA

A R T I C L E I N F O

Dataset link: Replication Package (Original dat
a)

Keywords:
Machine learning
DevOps

A B S T R A C T

Context: Machine Learning (ML), including Deep Learning(DL), based systems, have become ubiquitous in
today’s solutions to many real-world problems. ML-based approaches are being applied to solve complex
problems such as autonomous driving, recommendation systems, etc.
Objective: To improve the quality and deliverability of ML-based applications, the software development
community is adopting state-of-the-art DevOps practices within them. However, we currently lack knowledge
about the DevOps adoption trends, maintenance efforts and benefits among ML-based projects, and this work
attempts to remedy this knowledge-gap.
Methods: In this research work, we conducted a large-scale empirical analysis on 4031 ML projects, including
1116 ML Tools and 2915 ML Applied projects to quantify DevOps adoption, maintenance effort and benefits.
To characterize the development behaviors, we performed configuration-script-analysis and commit-change-
analysis on DevOps configuration files. To compare the characteristics of ML DevOps to those of traditional
software projects, we performed the same analysis on 4076 non-ML projects.
Results: Our analysis identified that ML projects, more specifically ML-Applied projects, have a slower, lower,
and less efficient adoption of DevOps tools in general. DevOps configuration files in ML-Applied projects
tended to experience more frequent changes than ML-Tool projects and were less likely to occur in conjunction
with build and bug fixes. It’s also evident that adopting DevOps in ML projects correlates with an increase
in development productivity, code quality, and a decrease in bug resolution time, especially in ML-Applied
projects which have the most to gain by adopting these tools.
Conclusion: We identified the characteristics and improvement scopes of ML DevOps, such as the slower
adoption of DevOps in certain ML projects, and the need for automatic configuration synchronization tools
for these projects. We also identified the improvements the productivity of ML teams and projects associated
with DevOps adoption, including better code quality, more frequent code sharing and integration and faster
issue resolution.
1. Introduction

Recently, Machine Learning (ML), including Deep Learning (DL),
has become prevalent with many applications: Alzheimer’s disease
diagnosis [1], Blood glucose prediction in diabetics [2], Autonomous-
driving cars [3], Loan approval prediction [4], etc. The Worldwide
eveloper Population and Demographic Study 2019 [5] estimates that
pproximately 7 million developers have used ML in their development
ctivity, and expects another 9.5 million developers to use ML in
he next twelve months. Although ML-based approaches are becoming
idely adopted by the industry as well as the research community, one
ajor challenge remains: the integration of ML components in complex

∗ Corresponding author.
E-mail addresses: dhiarzig@umich.edu (D.E. Rzig), foyzul@umich.edu (F. Hassan), kessentini@oakland.edu (M. Kessentini).

production systems and processes while maintaining their reliability
and efficiency in the context of continuously evolving ML projects.

To improve the software delivery process, a closer collaboration
between the development and operations teams, known as DevOps [6]
has become popular within the software engineering community. De-
vOps is a modern software engineering paradigm that brings changes
to production processes with the approach of automating the building,
testing, code analysis and deployment of software. A recent GitHub
study [7] discovered that highly-performing DevOps teams recover
from downtime 96 times faster, have a 5 times lower failure rate, and
a 46 times more frequent deployment rate. While DevOps practices
are slowly becoming more common and standardized for traditional
vailable online 18 August 2022
950-5849/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.infsof.2022.107037
Received 15 February 2022; Received in revised form 2 August 2022; Accepted 4 A
ugust 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
mailto:dhiarzig@umich.edu
mailto:foyzul@umich.edu
mailto:kessentini@oakland.edu
https://doi.org/10.1016/j.infsof.2022.107037
https://doi.org/10.1016/j.infsof.2022.107037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107037&domain=pdf


Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

t
c

software products [8], the state of DevOps within ML-based projects,
the advantages, and the challenges it brings, still require more study
within the research community.

Recently, there have been many works focused on ML DevOps
support. MLFlow [9] and Amazon SageMaker [10] were designed to
improve the workflow of ML project development, which involves
the data collection, data preparation, model definition and training,
and results-testing [11]. Package managers such as Spack [12] and
EasyBuild [13] were conceived to allow the automatic rebuilding of
ML models. Container-based technology such as Docker [14] and Ku-
bernetes [15] has proven apt for shareable models. Aguilar et al. [16]
proposed Ease.ml/CI for continuous integration (CI) and data man-
agement within ML projects. Fursin et al. [17] proposed CodeReef
to perform benchmarking for ML projects and enable their reusable
automation. However, the majority of these tools are still premature,
require an important development effort, and can only be used in con-
junction with specific ML technologies or frameworks [17–19]. Prior
research [17] also identifies that workflows using these solutions are
not easy to put into practice. Moreover, very little is known about ML
projects’ DevOps adoption and the difficulty of maintaining correctly
functioning DevOps tools within them. This motivates our large-scale
study on DevOps tools’ adoption within ML projects, their maintenance
effort and goals, and the benefits they bring.

In order to obtain more information about these aspects, we defined
the following research questions:

(1) What are the current and historical adoption rates of DevOps
Tools for ML and Non-ML projects?

(2) What are the maintenance efforts and goals associated with
DevOps tools across the different project categories ?

(3) What are the advantages of adopting DevOps tools across the
different project categories?

In this empirical study, we conducted a large scale analysis on 4031
ML projects that we manually curated from the dataset by Gonzalez
et al. [20]. We also performed the same analysis on the 4076 Non-ML
projects from the same dataset [20] for comparative purposes.

Our main contributions through this paper can be summarized as
follows:

• Characterization of the current and historical adoption of DevOps
tools within a subset of popular Open-source ML projects. In-
deed, we found that ML Tool projects, which are general purpose
projects meant for use by other developers, had similar current
and historical DevOps tools’ adoption to Non-ML projects, while
ML Applied projects, which are specific-purpose projects meant
for use by other developers and end-users, had a lower and slower
DevOps tools adoption in comparison

• An empirical analysis of the development effort in regards to
employing DevOps tools for different types of ML projects. We
believe that more DevOps-related development effort is invested
within ML Tool projects than ML Applied projects, and that the
adoption of certain DevOps tools within these project categories
is linked to a larger effort invested by their development teams.

• Characterization of the common goals behind the changes in
DevOps configuration files and their other accompanying changes
ML projects. We found that ML Tool and Non-ML projects achieve
more Bug fixes than ML Applied projects. Both in ML Tool and
Non-ML project, this increase in bug fixes is correlated with
their adoption of DevOps tools such as Test and Code analysis
tools, while this correlation was not found within ML Applied
projects. A small percentage of DevOps-altering commits were
found to have Build fixes as a goal, and the majority of them were
concerned with other miscellaneous changes.

• An empirical analysis of the improvements in the development
process resulting from the usage of DevOps tools within ML
projects. Across all categories of projects, we found that the
2

adoption of one or more DevOps tools was positively correlated
with an increase in commit frequency, merge frequency, code
quality, and a reduction of the average issue resolution duration.

The rest of this paper is organized as follows: We start by discussing
related works in Section 2. After that, in Section 3, we discuss the
methodology of our analysis, which includes data set selection, DevOps
tools classification, and the methods of analysis we used to answer
our Research Questions. Section 4 presents the results of the empirical
analysis within our study and Section 5 discusses the possible implica-
ions of our study. Finally, we discuss the threats to validity and our
onclusion in Section 6 and Section 7, respectively.

2. Related work

As DevOps became a modern software engineering paradigm, it
received growing attention from the research community [6,21–23].
Luz et al. [24] compared different approaches of adopting DevOps
and identified the main concerns of DevOps. They believe that col-
laboration is an important DevOps concern in addition to the more
common and equally important tool usage. However, this work mainly
focused on interview outcomes rather than an empirical analysis of
DevOps as adopted by the software projects. Moving on to guidance
on adopting DevOps, Leite et al. [6] analyzed DevOps within general-
purpose software projects from a multitude of facets. They developed
conceptual maps that described DevOps and linked them to engineering
and management perspectives.

McIntosh et al. [25] analyzed Build files, a type of DevOps con-
figuration files, in order to estimate the effort invested by developers
to maintain functioning Build systems in 9 open-source and 1 closed
source projects. They found that the level of correlation between source
files and build files is linked to a project’s programming languages.
However, their work only covered a limited set of C and Java projects
and a handful of build tools, such as Make and ANT. This means
that their findings may not apply to projects with other programming
languages and other Build and DevOps tools.

However, none of these aforementioned works focus specifically
on ML projects or considered them as a specific project-category. We
consider this an oversight due to the fundamental differences between
ML and Non-ML software projects. While Non-ML projects are given
specific solutions in the form of an algorithm designed by their de-
velopers to solve a specific problem or set of problems, ML projects
are designed to come up with their own solutions, which may be
unknown to these projects developers. Indeed, ML projects attempt to
solve a problem by analyzing data, testing their findings, evaluating
their results, and iterating on these phases. Furthermore, they require
new development processes and practices such as data engineering and
model management [11,26,27], follow different collaboration strate-
gies between their collaborators [20,28], and may require different
approaches to existing software development processes in comparison
to traditional software, such as the example of Non-ML software testing
being ineffective on ML projects [29].

Lwakatare et al. [11] outlined some of the problems teams face
while attempting to integrate ML workflows within DevOps processes,
such as the inadequacy of existing code versioning tools for ML artifacts
management, and proposed alternative processes to employ DevOps in
ML projects. Yet, their work relied on existing literature and expert
knowledge when discussing DevOps adoption problems within ML
projects, and did not perform empirical analysis to validate the actual
factors behind ML projects’ success or failure at adopting DevOps.

To analyze ML project development aspects, the work of Gonzalez
et al. [20] conducted a large-scale empirical study of Open-source ML
Tools (700) and Applications (4524) hosted on GitHub. For compar-
ative purposes, they also analyzed 4101 Non-ML projects. Their work
provided insight into collaboration and autonomy rates in development
teams and identified ML Applied projects as the most autonomous,



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.
Non-ML projects as less autonomous, and ML Tool projects as the least
autonomous. However, we uncovered problems with their data-set in
regards to the selection and classification of ML projects. Furthermore,
their work is more interested in analyzing development practices and
collaboration aspects of the projects rather than analyzing their DevOps
adoption and DevOps practices.

Focusing more on the intersection of DevOps and ML projects,
Karlaš et al. [29] discussed the shortcomings and the lack of support
of existing CI tools of ML projects in practice. Their work proposed
implementation details that attempted to solidify and build on existing
theoretical concepts concerning CI systems for ML projects. However,
their work did not consider other aspects of DevOps processes such as
Code Analyzers, Build systems, Deployment Automation, etc.

In contrast to existing works, our goal within this paper is to analyze
the adoption rates and trends of all DevOps components such as Code
Analyzers, Build systems, Continuous Integration systems, etc., within
ML projects, to characterize their associated maintenance efforts, goals,
as well as the advantages they bring to the projects that adopt them.

3. Methodology

In this section, we discuss the different steps of our analysis which
includes: Data set selection, performed through a mix of automatic
and manual steps, DevOps tool classification, performed via a study
of existing research works around the types of these tools, and our
methods of analysis, which relied on different phases of exploration and
multi-pronged analyses to empower us to answer our different research
questions.

3.1. Data set collection

For this work, our goal was to analyze DevOps tools’ adoption
within a set of active and currently developed Machine Learning (ML)
software projects, referred to as ML projects, and a comparison set of
Software Projects that do not use ML, referred to as Non-ML projects.
However, preparing a data-set of ML projects and Non-ML projects is
effort-intensive, and not the goal of this work. Initially, we opted for
a recent dataset proposed by Gonzalez et al. [20] for our analysis.
This dataset was supposed to contain 5224 ML projects and 4101
non-ML projects for comparative purposes. However, we found several
problems with it such as the inclusion of toy projects, learning guides
and other types of projects that were supposedly manually removed
from it, as well as the misclassification between the two subsets of
ML projects. To resolve this problem, two authors re-curated the ML
projects by reading their descriptions on their main GitHub page, and
any websites linked to by that page. The resulting new dataset we used
within this work contained:

(1) 1116 ML Tool projects: frameworks and libraries such as Ten-
sorflow, which can be used by developers to solve a variety of
problems. These projects are generally only usable via an API.

(2) 2915 ML Applied projects: Applications and libraries that use
ML components or libraries from the ML Tool projects, to solve
a specific problem. FaceSwap is an example of an application
and Document-Classifier-LSTM is an example of a library. These
projects may offer a combination of a UI and an API.

(3) 4076 Non-ML projects: A comparison set of classic software
projects that do not use ML. These projects may offer a com-
bination of a UI and an API.

In addition, we used the GitHub API [30] in order to collect the
following information about each project in our set: Age In days,
Number of Stars, Number of Forks, Team size, Number of Pull Requests
open, Number of Pull Requests merged, Number of Pull Requests
rejected, Number of Core Pull Requests Open, Number of Core Pull
Requests Merged, Number of Core Pull Requests Rejected, and Number
of Issues open. The project properties with Core in their name refer
3

to those managed by core developers and other project insiders, for
example, Number of Core Pull Requests Open refers to the Number of
PRs opened by project insiders. Vasilescu et al. [31] chose these data-
points as representative characteristics of each project and its activity,
and their works’ validation by the research community indicate the
validity of their variable selection.We especially note that the Age
In days, Number of Stars, Number of Forks, Team size, are used as
numerical estimators of the size of the projects in our work, similar
to other works [31–33]. We collected these project properties to enrich
the data-set and facilitate the statistical analyses within this work such
as ANCOVA [34,35].

3.2. DevOps tools classification

DevOps has many competing definitions, consequentially, there is
no consensus on how to determine whether or not a project is employ-
ing DevOps. Prior research [24,36–38] on DevOps and DevOps tools
also identified the same challenge. To circumvent this problem, we
used the adoption of DevOps tools as an indicator of the adoption of
DevOps, and we focused on analyzing these tools and their usage within
our chosen project-set. DevOps tools are defined by Leite et al. [6] as
the tools pursuing human collaboration across different departments,
enabling continuous delivery, and maintaining software reliability. We
opted for this definition as it is similar to those found within other
research works concerning DevOps and DevOps tools [39–41]. Initially,
we considered the list of DevOps tools determined by Leite et al. [6].
However, since this list was formed by analyzing traditional software,
we wanted to expand the number of tools within our analysis to avoid
missing any DevOps tools that are more popular with ML projects.
To expand our list of DevOps tools to consider within this work, we
followed the method outlined in Section 3.3.1, to discover new DevOps
tools in-use within our projects but not described within previous
works. We classified the different tools we found into 6 categories:

(1) Build Tools: Responsible for generating packages meant for
deployment, also referred to as builds. They are also generally
responsible for generating other artifacts and providing feedback
to developers using only the source code as input.

(2) Continuous Integration (CI) Tools: Responsible for the orches-
tration of several steps that ensure the development pipeline and
automation of development tasks such as package generation,
automated test execution, and deployment to both development
and production environments.

(3) Deployment Automation Tools: Make use of certain outputs
of the continuous delivery process. They are employed in the
deployment stages in order to allow frequent and reliable de-
ployment processes.

(4) Monitoring and Logging Tools: Responsible for tracking non-
functional properties, such as performance, availability, scalabil-
ity, resilience, and reliability.

(5) Test Tools: Validate the functionality of software, and identify
possible errors, or missing requirements.

(6) Code Analysis Tools: Static code analyzers that perform several
operations, such as code coverage, static error detection, etc.

The Code Analysis category was proposed by Yin & Filkov et al. [42],
and Leite et al. [6] coined the first 4 categories and while they
considered Test tools as a part of the Build category, we opted to
consider them as a separate category due to the difference in their
respective goals, as detailed within the definitions above. We did not
consider Source code management tools in our analysis because the
projects in our dataset were all collected from GitHub. Furthermore,
our analysis in Section 3.3.1 did not uncover any ML-specific tools. To
further verify the absence of usage of these tools, we performed an
automatic search for the configuration files of some ML-specific tools
such as MLFlow [9], Amazon SageMaker [10] and Spack [12], and
we found no evidence of their usage within the two categories of ML
projects we considered



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

3

c
w
w
u
A
p
l
f
a
f
t
o
r
a
1
p
f
G
r
f
a
t
t
w
t
d
t
t
r
b
u
2
t
f
S
F
t

s

Fig. 1. Overview of our approach.
t
w
T
P
a
s
m
c
F
d

a
t
i

3.3. Methods of analysis

The overview of our analysis is illustrated in Fig. 1.

.3.1. Phase 1: File, name and import pattern collection
DevOps configuration files are written in a variety of domain spe-

ific languages (DSL). For example, the Maven build specification is
ritten in an XML format, while the Gradle build specification is
ritten in a Groovy-based DSL language. On the other hand, Docker
ses a DSL that can only be parsed and recognized by the Docker tool.
s a result, static program analysis techniques developed for certain
rogramming languages or DSLs might not be sufficient to detect a
arge pool of DevOps tools. This lead us to use the configuration
ile name and path patterns to detect DevOps configuration files. We
dapted this method from prior works which employed this approach
or IaC and Build artifact files [25,43,44]. But first, in order to establish
he set of DevOps tools to consider in this work, we considered the list
f tools proposed by Leite et al. [6] as a starting point. However, upon
ealizing its limitations, as discussed within Section 3.2, we performed
semi-automatic classification of DevOps configuration files on the top
000 ML projects and 1000 Non-ML projects based on their GitHub
roject popularity.1 First, performed an automatic classification of the
iles within the repositories of the aforementioned projects using the
itHub Linguist tool [45]. Then, a co-author manually verified the
esulting classification, and extracted from it the possible DevOps con-
iguration files by ignoring files with known extensions or names, such
s source code and readme files. Libraries.io [46] was then consulted
o find the tools corresponding to these configuration files and verify if
hey corresponded to DevOps tools. Finally, these tools’ documentation
ere examined to extract configuration file name and path patterns
hat correspond to them. These patterns are then used within the phase
escribed in Section 3.3.2. However, no such patterns were found for
esting tools as they do not rely on specific configuration files. To detect
hese tools, we identified the testing files within the aforementioned
epositories, using the name and path pattern-based method proposed
y Zhu et al. [47] Then, the import or import-equivalent (e.g., include,
sing, etc.) statements within these files were manually checked by
co-authors and cross-referenced with the Libraries.io [46] dataset

o determine if the modules being imported were testing tools and
rameworks. These patterns are used within the phase described in
ection 3.3.2. Overall, we identified 93 DevOps tools via this phase.
ig. 2 presents a subset of the tools we identified and processes we used
o identify them during our analysis, with a full list available at [48]

1 The project popularity criteria used was a combination of the number of
tars and number of watchers.
4

3.3.2. Phase 2: File system analysis
Having extracted the file name and path patterns for Build, Con-

tinuous Integration, Deployment Automation, Code Analysis and Mon-
itoring and Logging Tools, import-equivalent statements of the Test
tools, we used these patterns to verify their adoption within a certain
repository. We considered the existence of a configuration file matching
the file name and path patterns of a specific DevOps tool as indicative
of that tool’s usage within the project. For example, a pom.xml file in
he project repository indicates that Maven is being used as a Build tool
ithin that project and a .travis.yml indicated that the project adopted
ravis CI for Continuous Integration. Using the GitPython [49], and
yGitHub [30] libraries, we created a tool that allowed us to access
nd clone the remote source codes of these projects into a local file
ystem. Then, we analyzed the files of each project and attempted to
atch them with the aforementioned patterns to detect if the tools
orresponding to these patterns were adopted within each project.
or the specific case of testing tools, we analyzed the test code files,
etected per the method specified by Zhu et al. [47], for the import
statements specific to the test file’s possible testing tools, which are
language specific. For example, if a test file has the .py extension, it is
identified as a Python file. It is then scanned for the import statements
of Python testing tools identified within Section 3.3.1. For example, if
the statement import pytest is found, the project that contains the
test file is assumed to be using the PyTest tool. In a software system,
build script is responsible for collecting the necessary dependencies,
hus analyzing build scripts can provide important information regard-
ng their usage within a project. For example, Fan et al. [50] relied
on build-script analysis to find dependency related errors related to
building projects. In addition to the two previously described methods,
we relied on the analysis of build scripts and considered a project’s
dependency on a tool to be indicative of its use within it. For example, if
a project specified a dependency on Codecov within its Maven pom.xml
file, we considered the project to be using the Codecov tool. We used
this method to detect the usage of DevOps tools of all categories. The
categories of DevOps tools and the methods we used to identify the
tools of those categories, as well as a subset of the DevOps tools we
considered, and their corresponding file name and path patterns or
import patterns are illustrated in Fig. 2. To determine the different
variables that contribute to DevOps adoption within different project
categories, We performed an ANCOVA [35] analysis, a type of GLM
regression for models with categorical and continuous variables, using
DevOps adoption as a dependent variable and the additional data we
collected, detailed in Section 3.1, as covariates. This phase allowed us
to answer part of RQ1 regarding the current adoption of DevOps of
the different project categories, the project’s properties linked to its
DevOps adoption, and the most popular DevOps tools of each type in
the different project categories we specified. We also used this phase
to extract the different DevOps configuration files used within the

different phases described in Section 3.3.3.



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

3

a
m
c
p
v

Fig. 2. Subset of DevOps tools, their categories, and their corresponding configuration file name patterns or import statements used to detect their usage.
𝐴

.3.3. Phase 3: repository and commit-based analysis
Repositories and their commits contain valuable information about

project’s development and maintenance efforts [51]. DevOps tools are
eant to be configured and updated via their configuration files, hence,
ommits affecting these files contain insight into the usage trends and
ractices of DevOps tools. We extracted the DevOps configuration files
ia the steps discussed in Section 3.3.2. We performed our analysis on
the Main branch of the different repositories, using the PyDriller [52]
tool and Github GraphQL API [53] to obtain additional data not stored
in the Git repository, such as the CI status following a commit. While
Test files were analyzed within Section 3.3.2 to extract information
about a project’s testing framework, which we considered a type of
DevOps tool, test files are not considered DevOps configurations files
within the scope of this analysis. This is because Test code is very
similar to source code and test file changes are highly coupled with
source-file changes [54,55]. In contrast, DevOps configuration files are
used to configure the different DevOps tools used within a project,
such as Continuous Integration tools. We used this commit-based anal-
ysis to answer RQ1 regarding DevOps historical adoption trends via
analyzing our projects’ commits, where we assumed the date of the
first commit within a project to be the date of its creation, and the
date of the addition of the first DevOps configuration file within a
project to be an indicator of when it adopted DevOps. We also an-
swered RQ2 using commit-based analysis via the sub-phases detailed in
Section 3.3.3.1, Section 3.3.3.2, and RQ3 using commit-based analysis
and repository-based analysis via the sub-phase Section 3.3.3.3.

3.3.3.1. Phase 3-a: DevOps adoption effort. To obtain a better idea
about the configuration and maintenance efforts of DevOps tools, we
analyzed the commits that modified one or more DevOps configuration
files. We calculated the Commit Ratio metric, which is similar to the
amount of commits metric, used by a number of works to estimate
activity within a project [56], but adapted to the context of a specific
type of files, to estimate the portion of commits that affect DevOps
configuration files. This metric is defined as follows:

Commit Ratio:

𝐶𝑜𝑚𝑚𝑖𝑡𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑜𝑓𝐶𝐷𝑒𝑣𝑂𝑝𝑠
5

𝑁𝑜𝑓𝐶
𝑁𝑜𝑓𝐶𝐷𝑒𝑣𝑂𝑝𝑠 is the total number of commits that involved DevOps
configuration file(s) and 𝑁𝑜𝑓𝐶 is the total number of commits.

To estimate the size of an update per-file-type within a project, We
calculated the Average Normalized Code Churn of Source and DevOps
configuration files, a commonly used metric [56] that was also previ-
ously used in the context of build artifacts [25], and that is superior to
other metrics such as Lines of Code (LOC) [57]. This metric is defined
as follows:

Average Normalized Code Churn:

𝑣𝑔.𝑁𝑜𝑟𝑚.𝐶ℎ.(𝑇 𝑦𝑝𝑒, 𝑃 𝑟𝑜𝑗.) =

∑𝑛
𝑖=1

𝑁𝐵𝐹𝑖𝑙𝑒𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑(𝑇 𝑦𝑝𝑒, 𝑃 𝑟𝑜𝑗.)
𝑁𝐵𝐹𝑖𝑙𝑒𝑠𝐸𝑥𝑖𝑠𝑡(𝑇 𝑦𝑝𝑒, 𝑃 𝑟𝑜𝑗.)
𝑁𝑏𝑂𝑓𝐷𝑒𝑣𝑀𝑜𝑛𝑡ℎ𝑠

𝑁𝑏𝑂𝑓𝐷𝑒𝑣𝑀𝑜𝑛𝑡ℎ𝑠 is the number of development months.2
𝑁𝐵𝐹𝑖𝑙𝑒𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑(𝑇 𝑦𝑝𝑒, 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡) is the number of either Source code
or DevOps configuration files of that changed during a development
period, 𝑁𝐵𝐹𝑖𝑙𝑒𝑠𝐸𝑥𝑖𝑠𝑡𝑒𝑑(𝑇 𝑦𝑝𝑒, 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡) is the number of files of a
certain type, source code file or DevOps configuration file, that existed
during a development period.

For each project category, we performed 2 ANCOVA [35] analyses,
using Commit Ratio as a dependent variable for the first analysis
and Normalized Code Churn for the second analysis, and using the
covariates presented within Section 3.1. In total, this was 6 ANCOVA
analyses. We also performed 2 ANOVA analyses to detect any statistical
differences concerning these metrics between the different project cat-
egories. We used this sub-phase and its associated analyses and metrics
to answer RQ2 regarding DevOps adoption efforts.

3.3.3.2. Phase 3-b: DevOps change goals. While the Normalized Code
Churn and Commit Ratio metrics inform us on the properties of DevOps
configuration files changes, they do not reveal the underlying causes of
the changes occurring to these DevOps configuration files. To approx-
imate the change goals of DevOps configuration files, we selected the
projects that adopted at least a Build and a CI tool, then analyzed their
commits that affected their DevOps configuration file(s). We analyzed

2 We considered a development month to be 30 days within this work.



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

l
o

D

3
a
c
a
u
I
Q
r

m
m
t

𝐴

𝑁
𝑁
a

m

v

t
c

u
a
A
f
d
W
e
W
r

4

4

commits from 851 ML Applied projects, 586 ML Tool projects, and 1942
Non-ML projects. We classified the commits’ main change goal between
4 different alternates:

• Bug Fix: A bug fix is done to remedy a programming bug or
error. However, identifying bug-fixing commits in a Git commit-
history is a challenging task [58]. To identify this type of commit,
we adopted the approach proposed by Ray et al. by scanning
commit messages for the keywords (‘‘error’’, ‘‘bug’’, ‘‘fix’’, ‘‘issue’’,
‘‘mistake’’, ‘‘incorrect’’, ‘‘fault’’, ‘‘defect’’, ‘‘flaw’’, ‘‘type’’) [59].

• CI Build Fix: CI Build fix refers to code changes that aim to
fix integration failures such as compilation failures, dependency
issues, unit test failures, etc. that are reported by CI systems, and
also referred to as Build Breakages. To detect these commits, we
adopted an approach proposed by Hassan & Wang et al. [60],
and that is similar to the approach used by Hyunmin et al. [61]
to detect a build-failure resolution. Based on this approach, if a
commit changes the CI build status from Build failure or Build error
to Build success, we consider the commit a CI-fixing commit. We
used the GraphQL Github API [53] to detect the CI build status.

• Bug and CI Fix: A commit that meets the criteria of a Bug Fix
commits and CI fix commit is considered to be attempting to fix
both types of problems.

• Other changes: We considered commits that contain neither a
bug fix nor a CI fix as commits with the main goal of other mis-
cellaneous changes. These commits may add new functionality,
refactor existing code, etc.

Finally, in order to make these measures project-specific, we calcu-
ated the percentage of each of the aforementioned commit types out
f all the commits of a project.
For each project category, we performed an ANCOVA [35] analysis,

using the four goals, Bug and CI fix, Bug fix, CI fix, and Other changes,
as dependent variables for the analysis, and using the same covariates
as the ANCOVA analysis done within Section 3.3.1 in addition to the
adoption of different DevOps Tool types, such as Build Tool Adoption,
CI Tool adoption, etc. In total, this was 3 ANCOVA analyses. We used
this sub-phase and its associated analyses to answer RQ2 regarding
evOps change goals

.3.3.3. Phase 3-c: DevOps adoption advantages. Having gained an idea
bout the properties and goals of the changes performed on DevOps
onfiguration files, we wanted to develop an understanding of the
dvantages associated with adopting DevOps Tools. To achieve this, we
sed the metrics of Commit Frequency, Merge Frequency, and Average
ssue duration, which also rely on commit-based analysis , and Code
uality, through the widely-used tool SonarQube [62] which relies on
epository-based analysis.
DevOps encourages more code sharing via frequent commits and
erges, hence Average Commit Frequency and Average Merging Com-
its Frequency are correlated directly to is principles of DevOps. These
wo metrics are calculated as follows:
Average Commit Frequency:

𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑁𝐵𝑜𝑓𝐶𝑜𝑚𝑚𝑖𝑡𝑠

𝑁𝐵𝑜𝑓𝐷𝑒𝑣𝑀𝑜𝑛𝑡ℎ𝑠

𝐵𝑜𝑓𝐶𝑜𝑚𝑚𝑖𝑡𝑠 is the total number of commits within a project and
𝐵𝑜𝑓𝐷𝑒𝑣𝑀𝑜𝑛𝑡ℎ𝑠 is the total number of development months within
project.
Average Merging Commits Frequency:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑒𝑟𝑔𝑖𝑛𝑔𝐶𝑜𝑚𝑚𝑖𝑡𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑁𝐵𝑜𝑓𝑀𝑒𝑟𝑔𝑖𝑛𝑔𝐶𝑜𝑚𝑚𝑖𝑡𝑠

𝑁𝐵𝑜𝑓𝐷𝑒𝑣𝑀𝑜𝑛𝑡ℎ𝑠

𝑁𝐵𝑜𝑓𝑀𝑒𝑟𝑔𝑖𝑛𝑔𝐶𝑜𝑚𝑚𝑖𝑡𝑠 is the total number of merging commits within
a project and 𝑁𝐵𝑜𝑓𝐷𝑒𝑣𝑀𝑜𝑛𝑡ℎ𝑠 is the total number of development
onths within a project.
A reduced issue duration is also an expected result of adopting De-

Ops, since it is claimed to increase the speed and productivity of teams
6

in relation to resolving software issues, making Average Issue Duration
a good metric to evaluate this claim. This metric is calculated as :

Average Issue Duration :

𝐴𝑣𝑔𝐼𝑠𝑠𝑢𝑒𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝐴) =
∑𝑛

𝑖=1 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐼𝑠𝑠𝑢𝑒𝑖, 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡𝐴)
𝑇 𝑜𝑡𝑎𝑙𝑁𝐵𝐼𝑠𝑠𝑢𝑒𝑠(𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝐴)

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐼𝑠𝑠𝑢𝑒𝑖, 𝑃 𝑟𝑜𝑗𝑒𝑐𝑡𝐴) is the duration of an issue i for a project
A, 𝑛 𝑇 𝑜𝑡𝑎𝑙𝑁𝐵𝐼𝑠𝑠𝑢𝑒𝑠(𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝐴) indicates the number of issues for that
project.

Finally, DevOps is associated with an improvement in the quality of
the development process, and possibly that of the code-base as well. We
used the Maintainability and Reliability code quality metrics as gener-
ated by SonarQube to evaluate the quality of the projects within our set.

Prior works [63–65] used similar metrics and tools to analyze
he effectiveness of adopting CI within a number of projects, giving
onfidence to their effectiveness.
For each project category, we performed 4 ANCOVA [35] analyses,

sing Average Commit Frequency as a dependent variable for the first
nalysis, Average Merging Commits Frequency for the second analysis,
verage Issue Duration for the third analysis, and Code Quality for the
ourth analysis. We used the same covariates as the ANCOVA analysis
one within Section 3.3.1. In total, this was 12 ANCOVA analyses.
e also performed 4 ANOVA analyses to detect any statistical differ-
nces concerning these metrics between the different project categories.
e used this sub-phase and its associated analyses to answer RQ3
egarding DevOps adoption advantages.

. Results

.1. Adoption rates of DevOps tools

Research Question 1: What are the current and historical adop-
tion rates of DevOps Tools for ML and Non-ML projects?

4.1.1. DevOps’ current adoption rates

Fig. 3. DevOps tools current adoption rates.

Adopting DevOps tools and practices within software projects has
numerous advantages to the productivity of a development team and
the quality of their processes. Since their growth in popularity, DevOps
tools are progressively being embraced by independent developers and
companies alike. Following our analysis, we were able to confirm this
with the high adoption rates of 63.30% for Non-ML projects, and
64.07% for the ML Tool projects. However, ML Applied projects have
shown a lower adoption rate of only 40.41%. Focusing on the different
DevOps tools categories, ML Tool projects generally had the highest
adoption rates across the majority of tool types, with Non-ML projects
following as a close second, and Applied projects trailing as the third.
Details concerning these rates are illustrated within Fig. 3. To identify



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

a
c
t
c
p
o
R
P
C

a

the factors behind adoption of DevOps, we performed an ANCOVA [35]
nalysis, a type of GLM regression for models with categorical and
ontinuous variables, for each project category. We used DevOps adop-
ion as a dependent variable and the additional data we collected
oncerning each project, detailed in Section 3.1, as covariates. The
roject-specific data points were: Age In days, Number of Stars, Number
f Forks, Team size, Number of Pull Requests open, Number of Pull
equests merged, Number of Pull Requests rejected, Number of Core
ull Requests Open, Number of Core Pull Requests Merged, Number of
ore, Pull Requests Rejected, and Number of Issues open.

Table 1
ANCOVA analysis of DevOps adoption within Applied projects (Only statistically
significanta variables are shown).
Source Sig. Partial Details

Eta
Squared

Intercept <.001 .007 Intercept of the model

Age In days <.001 .027 A project’s age

Team size <.001 .008 A project’s team-size

Number of Pull requestsN_Pr_Merged <.001 .008 merged

Number of Pull requestsN_Pr_Core_Merged <.001 .006 by core developers merged

R Squared = .119 (Adjusted R Squared = .116).
Statistically significant variables have a Sig.(𝑃 -value) less than 0.05.

Using the results of the ANCOVA analysis illustrated within Table 1,
we found that for ML Applied projects, the most important statistically-
significant factors that contribute to DevOps adoption within them
were the Age of a project and its Team size. This is indicated via the
Partial Eta Square statistic which informs us which variables have the
largest effect on the dependent variable, which is a project’s adoption
of DevOps in our case. Hence, older and larger ML Applied projects are
more likely to adopt DevOps. Similar results were found when perform-
ing ANCOVA on ML Applied projects while considering as dependent
variables each DevOps tool category, except Analyzer and Test tools
where only Team size was a determining variable of their adoption of
DevOps. No statistically significant contributor was determined behind
the adoption of monitoring and logging tools by ML Applied projects,
most likely due to their low adoption by this project category.
Table 2
ANCOVA analysis of DevOps adoption within Tool projects (Only statistically significant
variables are shown).
Source Sig. Partial Details

Eta
Squared

Intercept <.001 .131 Intercept of the model

Age In days <.001 .023 Age of the project

N_Stars .036 .004 Number of stars of project

N_Forks .016 .006 Number of forks of project

Number of pull requests openN_Pr_Open .020 .005 of project

R Squared = .096 (Adjusted R Squared = .087).

For ML Tool projects, as illustrated within Table 2, Age was statisti-
cally significant correlated to their DevOps adoption. Furthermore, the
Number of stars and Number of forks also had a significant correlation
to their DevOps adoption. It is important to note that while Team
size was significantly correlated to DevOps adoption of ML Applied
projects, this correlation was not found within Tool projects. Around
50% of ML Tool projects before our re-categorization process were
backed by major organization such as Microsoft and IBM [20], and after
this process, and we estimate that 30% of these projects are backed
by such organizations. This makes all the more surprising the lack
of correlation between team-size and DevOps adoption for ML Tool
projects, especially considering these organization are more likely to
7

have larger resource and to adopt best practices such as DevOps in
comparison to independent developers. It is also important to note that
ML Tool projects show more variance within their team sizes than their
ML Applied counterparts, as illustrated within Fig. 4, signaling that
a lack of correlation between Team size and DevOps adoption is not
due to limitations related to sample size, but rather the properties of
ML Tool projects. Focusing on the different categories of DevOps tools,
Age was also a key variable in determining whether an ML Tool project
adopts Build, CI or Deployment tools, while surprisingly, Team size was
the key predictor of Code Analysis tools adoption. Finally, no predictors
of Monitoring tools’ adoption by ML Tools projects was found.

Fig. 4. Variance of team size (Outliers removed).
Table 3
ANCOVA analysis of DevOps adoption within Non-ML projects (Only statistically
significant variables are shown).
Source Sig. Partial Details

Eta
Squared

Intercept <.001 .106 Intercept of the model

Team size .003 .002 Size of the project’s team

Age In days .006 .002 Age of the project

N_Forks .010 .002 Number of forks of projects

Number of pull requests openN_Pr_Open .951 .000 of project

R Squared = .060 (Adjusted R Squared = .057).
Considering Non-ML projects, it is clear through Table 3 that they

show similar results regarding the factors contributing to DevOps adop-
tion to those of ML Tool projects. A Non-ML project’s age, pull-request
based development activity, popularity as measured by its number
of forks, and its team size are significant contributing factors to its
adoption of DevOps. Focusing on the different categories of DevOps
tools, two or more of the aforementioned projects’ characteristics were
among the main predictors of the adoption of a specific DevOps tools
category, indicating no major difference between the predictors of
DevOps adoption in-general and the adoption of a specific category of
DevOps tools by Non-ML projects.
Table 4
Summary of ANCOVA analyses results for DevOps adoption.
Category Most important

variables affecting
DevOps adoption

Interpretation

ML
Applied

Age In days, Team
Size, N_Pr _Merged,
N_Pr_Core _Merged

An ML Applied projects’ DevOps adoption is
linked to its age, team size and reliance on
PR-based development as measured through
its number of pull requests merged

ML Tool Age In days, N_Stars,
N_Forks, N_Pr_Open

An ML Tool projects’ DevOps adoption is
linked to its age, popularity as measured
with its number of stars and forks, and its
Number of PRs open

Non-ML Team Size, Age In days,
N_Forks, N_Pr _Open

A Non-ML projects’ DevOps adoption is
linked to its team size, age, popularity as
measured with its number of forks and
reliance on PR-based development as
measured through its number of pull
requests open

A summary of our findings is illustrated in Table 4. We found that
an ML Applied project’s age and team size are more likely to affect its’



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.
DevOps adoption more so than that of a Tool or Non-ML project. Similar
characteristics related to a project’s size, popularity, as measured by its
number of stars and forks, and its reliance on PR-based development,
are the important factors that affect whether or not it adopts DevOps,
regardless of whether or not it is an ML project. One important outlier
is that an ML Tool projects’ team size does not affect its DevOps
adoption outcome. Based on observations by Karlaš et al. [29], Renggli
et al. [16], Lwakatare et al. [11,66], Amershi et al. [67], and Arpteg
et al. [68], we attribute the lower adoption of DevOps by ML Applied
projects to the differences between traditional software projects and ML
projects, and a lack of DevOps tools that were specifically designed for
small scale ML projects.

4.1.2. Most popular DevOps tools
In addition to exploring the adoption rates of DevOps tools and the

factors affecting their adoption, we were interested in exploring which
tools were currently popular across the different types of projects.
Tables 5–9 illustrate the adoption rates for the DevOps tools that have
at least 1% adoption rate by one or more categories of projects. We
believe knowing which tools are popular for each project category can
help guide future research regarding DevOps practices within them. For
example, research on Code analysis within ML projects should focus on
the Coverage and Pylint tools since they are the most popular Code
analysis tools within them.
Table 5
Usage rates of build tools (Tools with 1% or more usage rates).
Tool name Project category Adoption percentage

setuptools
ML Applied 9.88%
ML Tool 18.91%
Non-ML 0.74%

Rake
ML Applied 0.41%
ML Tool 1.34%
Non-ML 1.72%

QMake
ML Applied 1.30%
ML Tool 1.25%
Non-ML 2.21%

Maven
ML Applied 2.78%
ML Tool 5.38%
Non-ML 1.67%

MakeFile
ML Applied 16.78%
ML Tool 30.73%
Non-ML 3.68%

JUnit
ML Applied 2.81%
ML Tool 3.76%
Non-ML 1.64%

Gradle
ML Applied 2.02%
ML Tool 2.06%
Non-ML 2.77%

Clang
ML Applied 2.06%
ML Tool 6.63%
Non-ML 0.65%

Ant
ML Applied 1.72%
ML Tool 5.02%
Non-ML 0.54%

4.1.3. DevOps’ historical adoption rates
We analyzed the historical adoption trends of DevOps tools to get a

better understanding of the evolution of their adoption rates over time.
The results of our analysis are illustrated in Fig. 5. When analyzing
the growth of Non-ML projects overall in comparison to that of Non-
ML projects with one or more DevOps tools, it is clear that they both
have similar trends over time, signaling a healthy adoption growth of
DevOps among this type of projects.

Focusing on ML project types, both ML Tool projects’ growth and
ML Applied projects’ have seen a near exponential increase starting
from 2017.The explosion in the projects’ total amount can be attributed
to the advances in ML fields and gains in their popularity. Focusing on
the amount of ML Tool projects with DevOps tools, it shows similar
8

Table 6
Usage rates of code analysis tools (Tools with 1% or more usage rates).
Tool name Project category Adoption percentage

Pylint
ML Applied 2.02%
ML Tool 4.75%
Non-ML 0.17%

Flow
ML Applied 0.96%
ML Tool 1.88%
Non-ML 0.39%

Flake8
ML Applied 1.78%
ML Tool 3.32%
Non-ML 0.05

ESLint
ML Applied 1.58%
ML Tool 1.34%
Non-ML 2.55%

Coverage
ML Applied 3.50%
ML Tool 7.89%
Non-ML 0.29%

Codecov
ML Applied 2.64%
ML Tool 5.38%
Non-ML 0.25%

CodeClimate
ML Applied 0.48%
ML Tool 1.08%
Non-ML 0.27%

Clang
ML Applied 1.58%
ML Tool 6.00%
Non-ML 0.37

Table 7
Usage rates of Test Tools (Tools with 1% or more usage rates).
Tool name Project category Adoption percentage

testthat
ML Applied 1.03%
ML Tool 2.78%
Non-ML 0.12%

Pytest
ML Applied 2.81%
ML Tool 6.45%
Non-ML 0.39%

JUnit
ML Applied 1.34%
ML Tool 2.42%
Non-ML 2.04%

Cassert
ML Applied 0.34%
ML Tool 1.08%
Non-ML 0.37%

Table 8
Usage rates of Continuous Integration Tools (Tools with 1% or more usage rates).
Tool name Project category Adoption percentage

Travis
ML Applied 17.94%
ML Tool 33.24%
Non-ML 10.30%

Jenkins
ML Applied 0.58%
ML Tool 1.97%
Non-ML 0.05%

AppVeyor
ML Applied 2.44%
ML Tool 6.09%
Non-ML 0.76%

Table 9
Usage rates of Deployment Automation Tools (Tools with 1% or more usage rates).
Tool name Project category Adoption percentage

Docker
ML Applied 13.17%
ML Tool 15.59%
Non-ML 1.67%

Chef
ML Applied 0.10%
ML Tool 0.36%
Non-ML 0.64%



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

p

g
s
H
t
g
h
N
t
l
a
c

B
l

p
a
M
c
M
o
t
T

t
a
m
w
g

4

f

Fig. 5. Historical project amounts and their DevOps tools’ adoption (normalized to
ercentages).

rowth trends as the total number of the ML Tool projects. This
imilarity in growth trends is also observed for Non-ML projects growth.
owever, while ML Applied projects have seen a similar in amount
o ML Tool projects due to analogous reasons, their DevOps adoption
rowth has stalled in comparison. DevOps tools’ in ML Applied projects
ad a slower and lower adoption rate overall in comparison to both
on-ML and ML Tool projects, and we were able to partially link them
o the smaller team sizes of these projects in Section 4.1.1 to their
ower DevOps adoption. Overall, these results indicate that the current
doption rates are consistent with the historical rates across project
ategories, and there are no abrupt changes of DevOps adoption.

Finding 1: ML Tool projects and Non-ML projects have signifi-
cantly higher current and historical DevOps tools’ adoption rates
than ML Applied projects. This adoption is most influenced by a
project’s age, team-size or both factors, depending on the project’s
category.

4.2. DevOps maintenance efforts and goals

Research Question 2:What are the maintenance efforts and goals
associated with DevOps tools across the different categories of
projects ?

Having determined the historical and current adoption rates, we
wanted to investigate the differences in the effort that developers
are putting into maintaining their DevOps configuration files and the
correct functioning of DevOps tools within their repositories, and to
explore the different goals of updates to DevOps configuration files.

4.2.1. Ratio of DevOps configuration files’ updates
We used the Commit Ratio metric to estimate the share of updates

that affect DevOps tools out of all the updates that affect a repository.
As illustrated by Fig. 6, Tool projects tend to update their DevOps
configuration files less overall, while Applied and Non-ML projects had
higher and similar ratios of updates. The projects with the highest
DevOps commits ratio are generally those with the majority of their
updates affecting their Build, CI or Deployment automation files. One
such example is the ML Applied project rosette-api/rosette-elasticsearch-
plugin, with 78.46% of its commits modifying its Maven and Travis file.
The majority of these updates are comprised of version or dependency
and configuration changes for the project overall or its docker image
and the plug-ins it provides. Another example is the ClarityCafe/Ivy
repo, which has frequent commits which almost always change its
9

u

Fig. 6. Commit ratios of DevOps configuration files.

Travis CI and Docker file. Upon closer inspection, we identified that
this project’s Docker and Travis files are mostly changed to fix CI
and Deployment problems. These examples and our statistical findings
stand in contrast with the concept of ‘‘write-once-and-forget-it’’ for
DevOps configuration files and indicate that they evolve frequently for
different aspects of software maintenance.
Table 10
ANCOVA analysis of Commit Ratio for Applied projects (Only statistically significant
variables are shown).
Source Sig. Partial Details

Eta
Squared

Intercept <.001 .022 Intercept of the model

CI .006 .007 Adoption of CI tool(s)

Build * CI Adoption of Build, CI
* Analyzer .007 .007 and CA tool(s)

Build * Deployment Adoption of Build, DA
* Test .024 .005 and Test tool(s)
Build * Analyzer Adoption of Build, Code
* Test .035 .004 Analysis and Test tool(s)

CI * Deployment Adoption of CI, DA
* Analyzer .045 .004 and CA tool(s)

CI * Deployment Adoption of CI, DA
* Analyzer * Test .045 .004 , CA and Test tool(s)

R Squared = .098 (Adjusted R Squared = .063).

To further investigate whether these project-specific trends are a
widespread phenomenon, we performed, the ANCOVA analysis illus-
trated in Table 10, we found that CI adoption, and the adoption of CI,
uild and Test tools at the same time to be among the strongest factors
eading to a higher commit ratio in Applied projects.
However, after performing the same analysis on the other two

roject categories, we found no statistically significant link between the
doption of specific DevOps tool categories and the commit ratio in
L Tool and Non-ML projects. This allows us to deduce that specific
ategories of DevOps tools, such as CI, Build and Testing tools in
L Applied projects need more frequent updates in comparison to
ther types of tools. Yet, ML Tool and Non-ML projects do not show
his correlation. A summary of our ANCOVA analyses is found within
able 11
Finally, we were able verify the statistical dissimilarity between

he different projects categories via the one-way ANOVA test [69],
test developed to allow the comparison of the means of three or
ore different groups based on one property. The 𝑝-value obtained
as 0.032 implying significant statistical difference between the three
roups regarding their Commit Ratios.

.2.2. DevOps coding efforts
To estimate the effort that developers put into DevOps configuration

iles in comparison to Source files between different commits, we
sed the Average Normalized Code Churn metric. As illustrated by



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

c
A
m
t
o
d
m
a
g
i
t
v
t
t
w
t
a
t

h
i
T
C
t
m
a
s

C
p

W
D
w
D
M
S
d
c
w
p
p

Table 11
Summary of ANCOVA analyses results for DevOps Commit-ratio.
Category Most important variables

affecting DevOps churn
Interpretation

ML Applied CI, Build * CI * Analyzer,
Build * Deployment * Test,
Build * Analyzer * Test, CI
* Deployment * Analyzer,
CI * Deployment *
Analyzer * Test

An ML Applied projects’ adoption
of certain DevOps tool categories
or a combination of these
categories is linked to an increase
in its DevOps configuration files
commit-ratio

ML Tool None An ML Tool projects’ DevOps
configuration files commit-ratio is
not linked to its adoption of a
tool of a certain DevOps category.

Non-ML None A Non-ML projects’ DevOps
configuration files commit-ratio is
not linked to its adoption of a
tool of a certain DevOps category.

Fig. 7. Average Normalized Code Churn (Outliers removed with IQR [70]).

the results in Fig. 7, a comparatively higher relative churn of DevOps
onfiguration files is noted in ML Tool projects in comparison to ML
pplied projects. This is made clearer with the higher quartiles and
edian values of this metric for ML Tool DevOps churn in comparison
o those of ML Applied projects. Non-ML projects had a bigger churn
verall on both file-types, yet its DevOps churn shows a more even
istribution across its value range, reflecting more diverse DevOps
aintenance practices within these projects. With a more detailed
nalysis, we identified that both Source and DevOps churn values are
enerally high at the beginning of a project’s history, matching the
ntuition regarding changes being done to a large number of files as
he project’s initial code and configuration are being defined across a
ariety of them. These rates tended to quickly drop in value during
he following months. Regarding DevOps Churn specifically, it tended
o increase across all project categories whenever a new DevOps tool
as added to a project, and it can take several development periods
o drop again. This signifies a possible adoption barrier due to the time
nd effort required to establish and configure correctly working DevOps
ools in a project.
Focusing on some interesting cases, the ML Applied project with the

ighest Avg. Normalized DevOps Churn and Source code churn was the
ndix/whatthelang project with the respective values of 1.0 and 0.43.
his project provides a language prediction application usable via a
LI or an API. It employs Travis CI For continuous integration. Within
his repository, 23 total commits over the period of one month were
ade. The only DevOps file within this project was a .travis.yml file,
nd it was updated more than once during that month, but not all of the
ource files were updated during this period following their creation.
The ML Tool project with the highest Avg. Normalized DevOps

hurn and Source code churn was the yinchuandong/sentiment-analysis
10

roject with values of 1.0 and 0.2 respectively. It is a Deep Learning
orkflow for Sentiment Analysis, and the only DevOps tool it uses is
ocker for Deployment Automation. It also has a relatively low activity
ith 36 commits over the duration of one month, during which the
ocker file was frequently updated. These two specific cases aside,
L projects of both types had DevOps churn values close to their
ource churns. This implies that DevOps configuration files require
evelopment effort similar to that of Source files, along with the ac-
ompanying time and resource investments. Our intuition is confirmed
ithin the ANCOVA analyses of DevOps code churn across the different
roject categories, which are illustrated and discussed in the following
aragraphs.

Table 12
ANCOVA analysis of DevOps Code Churn for Applied projects (Only statistically
significant variables are shown).
Source Sig. Partial Details

Eta
Squared

Intercept <.001 .022 Intercept of the model

Team Size <.001 .021 Project’s team size

Age In Days <.001 .011 Project’s age

Number of Pull requestsN_Pr_Merged .021 .005 merged

CI .031 .004 Adoption of CI tool(s)

Deployment * Analyzer Adoption of DA, CA and
* Test .032 .004 Test tool(s)

Build * Deployment Adoption of Build, DA,
* Analyzer * Test .037 .004 CA and Test tool(s)

Adoption of CA and TestAnalyzer * Test .041 .004 tool(s)

Number of Pull requestsN_Pr_Core_Merged .048 .004 by core developers merged

R Squared = .213 (Adjusted R Squared = .182).

Focusing on ML Applied projects, the results of which are illustrated
in Table 12, we found that their adoption of a DevOps tool, or a
combination of tools, such as Build or CI tools, is strongly correlated
with an increase in their DevOps churn. Furthermore, the varying effect
size values (represented by the Partial Eta Square) imply that different
DevOps tools have different effort-requirements, with CI Tools being
the ones that are most effort-intensive for ML Applied projects.
Table 13
ANCOVA analysis of DevOps Code Churn for Tool projects (Only statistically significant
variables are shown).
Source Sig. Partial Details

Eta
Squared

Age In Day <.001 .019 Age of the project

Intercept <.001 .018 Intercept of the model

Build * CI Adoption of Build, DA,
* Deployment * Analyzer <.001 .005 CI, and CA tools

CI .002 .004 Adoption of CI Tools

Build * CI .002 .004 Adoption of Build, CI,
* Analyzer and CA Tools

Adoption of DA and TestDeployment * Test .006 .003 tools

N_issues_Open .007 .003 Number of Issues open

Adoption of CI and CACI * Analyzer .020 .002 tools

Build * CI .021 .002 Adoption of Build, CI
* Deployment and DA tools

Adoption of BuildBuild * Test .042 .002 and Test tools

R Squared = .106 (Adjusted R Squared = .090).

Moving on to ML Tool projects, the ANCOVA of which is illustrated
in Table 13, we also found that their adoption of one or more DevOps
tools is correlated with an increase in their DevOps churn. In their case,



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

T
p
u
n
s
t
a
e
a
S
f

i

S
s

the adoption of Build, Deployment Automation, Continuous Integra-
tion, and Code Analysis tools at the same time had the largest effect
size, and thus the highest consequential increase in DevOps Churn. This
implies that an ML Tool project’s adoption of multiple DevOps tools
categories at the same time is more likely to result in an increase of its
DevOps configuration files churn and this increase is likely to be more
substantial than that resultant of the adoption of DevOps tools of one
category.
Table 14
ANCOVA analysis of DevOps Code Churn for Non-ML projects (Only statistically
significant variables are shown).
Source Sig. Partial Details

Eta
Squared

Intercept <.001 .082 Intercept of the model

Build * Analyzer Adoption of Build, CA
* Test .009 .011 and Test tools

Age In Days .010 .011 Age of the project

Build .031 .008 Adoption of Build Tools

N_Pr_Open .040 .007 Number of Pull requests opened

Team Size .043 .007 Size of the project’s team

CI .049 .006 Adoption of CI Tools

R Squared = .148 (Adjusted R Squared = .091).

Finally, focusing on Non-ML projects’ ANCOVA, illustrated in
able 14, we find similar results to those of ML Applied and ML Tool
rojects, establishing that the phenomena of increased DevOps config-
ration files Churn is true across project categories. It is interesting to
ote that the adoption of a different mix of DevOps categories, more
pecifically Build, Code Analysis and Test tools, which is different from
hat of ML Tool projects’, is the variable with the largest effect size
nd hence the biggest effect on DevOps Churn of Non-ML projects. It is
specially interesting that Test tools are within this group of category,
s they do not rely on any specific configuration file. As mentioned in
ection 3.3.3, we do not consider Test files as DevOps configuration
iles.
Table 15
Summary of ANCOVA analyses results for DevOps Churn.
Category Most important variables affecting

DevOps churn
Interpretation

ML Applied Team Size, Age In days,
N_Pr_Merged, CI, Deployment *
Analyzer * Test, Build *
Deployment * Analyzer * Test,
Analyzer * Test,
N_Pr_Core_Merged,

An ML Applied projects’ Team
Size, Age, reliance on PR-based
development, and its adoption of
certain DevOps tool categories or
a combination of these categories
are linked to an increase in its
DevOps configuration files churn

ML Tool Build * CI * Deployment *
Analyzer, Build * CI * Analyzer ,
Deployment * Test,
N_Issues_Open, CI * Analyzer,
Build * CI * Deployment, Build *
Test

An ML Tool projects’ DevOps
configuration files churn is not
linked to its adoption of certain
DevOps tool categories, and its
number of issues open.

Non-ML Build * Analyzer * Test, Age In
days, Build, N_Pr_Open, Team
Size, CI

A Non-ML projects’ DevOps
configuration files churn is linked
to its adoption of certain DevOps
tool categories, its age, its
reliance on PR-based
development, and its team size.

The summary of our ANCOVA analyses in relation to DevOps churn
s within Table 15. Notably, across all project categories, the number
of issues does not seem to affect DevOps code churn, signaling a lack
of correlation between the reporting of issues within a project and the
churn of DevOps configuration files. Applying the one-way ANOVA test
across the different categories, we obtain a 𝑝-value of 3.61e−18 for the
ource Code Churn and 6.49e−18 for the DevOps Code Churn, implying
11

ignificant statistical difference between the three groups of projects.
4.2.3. DevOps change goals
After uncovering the efforts invested by developers in DevOps con-

figuration files, we wanted to explore the goals developers were trying
to achieve by changing one or multiple DevOps configuration files. To
achieve this, we analyzed the different commits that affect DevOps
configuration files and determined the commits’ main goals, within
1437 ML projects and 1942 Non-ML projects which adopted Build and
CI Tools, via a process detailed in Section 3.3.3.2. The results are
illustrated in Fig. 8.

Fig. 8. Goals of DevOps-changing commits (Outliers points hidden, 3 quartile-values
shown if different).

In a typical development cycle, bugs and problems may be detected
directly by the developer through local unit testing, or be reported
externally by either customers or testers. In a project that adopts CI
tools, program bugs, test failures, DevOps tools’ misconfigurations and
other problems may be detected and reported by the CI system.
Table 16
ANCOVA analysis of bug-fix commit goal for Applied projects.
Source Sig. Partial Eta

Squared
Details

CI * Deployment Adoption of CI, DA
* Analyzer [X] .068a .004 and CA Tools

Intercept .087a .004 Intercept of the model

Build * CI .112a .003 Adoption of Build and
CI Tools

R Squared = .059 (Adjusted R Squared = .007).
aMarks statistically non-significant variables, table is shown for illustrative purposes.

For ML Applied projects, the lower percentages of bug-fixes shown
in Fig. 8 may imply that these projects are experiencing less build
breakages and bugs. But in reality, the ANCOVA analysis for ML Ap-
plied projects in Table 16 indicates that there is no correlation between
the adoption of Test and Code Analysis tools and a reduction in the
percentages of these fixes. This indicates that ML Applied projects are
not using these tools efficiently in order to remedy the bugs that may
arise in their code. In addition, we did not find any correlation between
team size or other covariates considered and bug-fixes. This implies
that this misuse of Test and Code Analysis tools is present within the
majority ML Applied projects, regardless of a project’s properties.

Moving on to ML Tool projects, as illustrated within Table 17, a
clear correlation is found between the adoption of Build, Code Analysis
and Test tools within a project and bug-fixing commits being performed
within it. Since the goals of Code Analysis and Test tools is to allow
developers to find bugs and issues with their code-base, we interpret
the increase of bug-fixing commits of ML Tool projects that adopted
them as a sign of efficient use of these tools by these projects.

Concerning Non-ML projects, as shown in Table 18, a correlation

is found between the adoption of Build, CI, Code analysis, Test and



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

D
b
t
d
b

p
f
a
p
a
i
a

4

A
f
s
o
N
t
c
m
A
t
a
p
C
f
t
M
f
t
m
b
l
M
c
r
r

s
m

4

c
g
i
m
w

Table 17
ANCOVA analysis of bug-fix commit goal for Tool projects (Only statistically significant
variables are shown).
Source Sig. Partial Eta

Squared
Details

Intercept <.001 .060 Intercept of the model

Build * Analyzer Adoption of Build, CA
* Test .016 .012 and Test tools

R Squared = .136 (Adjusted R Squared = .062).

Table 18
ANCOVA analysis of bug-fix commit goal for Non-ML projects (Only statistically
significant variables are shown).
Source Sig. Partial Eta

Squared
Details

Analyzer <.001 .006 Adoption of CA tool(s)
Intercept .005 .004 Intercept of the model
Deployment * Test .020 .003 Adoption of DA tool(s)
Build * CI .025 .003 Adoption of Build, CI tool(s)
Build * Analyzer .033 .003 Adoption of Build, CA tool(s)
Build * Test .047 .00 Adoption of Build, Test tool(s)

R Squared = .045 (Adjusted R Squared = .023).

eployment Automation tools within a project and bug-fixing commits
eing performed within it. Similar to ML Tool projects, we interpret
he increase of bug-fixing commits of Non-ML projects that adopted the
ifferent categories of DevOps tools, especially those designed to allow
ug-detection as a sign of efficient use of these tools by these projects.
Across all projects categories, no correlation between Build fix

ercentage and Code Analysis tool adoption or any other variable was
ound within the ANCOVA analysis. This indicates that Build failures
nd the corresponding Build fixes are not affected by variability within
rojects or project categories, and that there is no evidence that the
doption of a specific tool or tool type such as code analyzers will
nfluence build failures and subsequent build-fixes. A summary of the
nalyses we performed for DevOps change goals is within Table 19.

.2.4. Interpretation of results
Using these findings, it is evident that developers working on ML

pplied projects make numerous updates to their DevOps configuration
iles that are also smaller than those of ML Tools project. By compari-
on, developers behind ML Tool projects overall did a smaller number
f updates to their DevOps configuration files, that were larger in size.
on-ML projects had frequencies of DevOps-files updates similar to
hose of ML Applier projects, with a bigger variance in update-size in
omparison to both ML categories. The frequency and size of updates,
easured through the commit-ratio and DevOps code churn of ML
pplied DevOps updates was linked to their adoption of certain DevOps
ools categories, while no such correlations were found for ML Tool
nd Non-ML projects. The majority of DevOps updating commits of all
rojects categories had concerns that are not immediately related to the
I infrastructure which are in turn configured by DevOps configuration
iles. However, through the ANCOVA analyses we performed, we found
hat the adoption of Code Analysis, Test and other DevOps tools by
L Tool and Non-ML projects correlates with an increase in their bug-
ixes. This signals that these tools are being efficiently used within
hese projects to detect bugs and the large effect size in the ANCOVA
odel signify this effect has important consequences on the number of
ug-fixing commits. However, while adopting these tools is linked with
arger and more frequent updates to DevOps configuration files within
L Applied projects, it is not linked with an increase in bug-fixing
ommits. This hints at a less efficient adoption of these tools which
equires more frequent updates with more effort but no noticeable
esults on bug-fixes within ML Applied projects
12
Finding 2: While ML Applied DevOps configuration files updates
are more frequent, they are smaller in size than those of ML Tool
DevOps configuration files, are less concerned with CI Build fixes,
and imply that DevOps tools are being used less efficiently within
these projects.

4.3. DevOps adoption advantages

Research Question 3: What are the advantages of adopting
DevOps tools across the different types of projects?

4.3.1. Commit frequency
Among the goals of the adoption of DevOps tools and practices

within software projects is to increase the rate at which developers
share their code with other stakeholders within their teams, which
in-turn is measured with the frequency of commits that developers
make during a specific development period. As illustrated in Fig. 9,
the projects that adopted 1 or more specific types of DevOps tools
had generally higher monthly commit frequencies. This was especially
true for projects that adopted CI, Deployment Automation and Testing
tools, where the increase in commit frequencies was significant across
all types of projects. In addition, ML Tool projects tend to see more
frequent commits than ML Applied projects, which in turn have more
frequent commits than Non-ML projects.

When statistically analyzing the Commit frequency through AN-
COVA for ML Applied projects, as illustrated in Table 20, it is clear
that DevOps tool adoption has a significant and important effect on
the increase of monthly commit averages, especially since DevOps
adoption is the variable with the largest effect size within the ANCOVA
model.

For ML Tool projects, the ANCOVA analysis in Table 21, shows that
DevOps tools adoption by these projects also has an important effect
on the increase of their monthly commit averages. However, the size
of a project’s team and the number of open issues it has seem to have
a larger effect than its DevOps adoption on its commit averages.

For Non-ML projects, the ANCOVA analysis in Table 22, shows
that DevOps tools adoption by Non-ML projects positively affects its
monthly commit averages. However, the size of a project’s team and
other variables related to its pull requests have a larger effect than its
DevOps adoption on its commit averages.

The summary of our findings through the ANCOVA analysis linked
to the average monthly Commits metric is illustrated in Table 23.
Applying the one-way ANOVA test on this metric across the different
categories, we obtain a 𝑝-value of s 7.29e−13, implying significant
tatistical difference regarding the average monthly commit frequency
etric between the three groups of projects.

.3.2. Merging frequency
Increasing the rate at which developers merge their code with other

ode branches, thus increasing their code integration, is also a crucial
oal of DevOps practices and tools. Merges are represented with merg-
ng commits in a Git repository, and the frequency of branch merges is
easured with the frequency of merging commits that developers make
ithin a specific development period. As represented in Fig. 10, the

projects that adopted a specific type or more of DevOps tools had gener-
ally higher monthly merge commit frequencies. This was especially true
for projects that adopted Analyzer, CI, and Deployment Automation
tools, where the increase in merge frequencies was significant across all
types of projects. ML Tool projects tend to have more frequent merges
than Applied projects, which in turn have more frequent commits than

Non-ML projects.



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

t
d
r
i
a
M
e

Fig. 9. Commit frequency in correlation to project type and DevOps tool adoption (Outliers removed with IQR [70]).
Table 19
Summary of ANCOVA analyses results for DevOps change goals.
Category Most important variables

affecting DevOps bug-fix
commit

Interpretation

ML Applied None An ML Applied projects’ adoption of certain DevOps tool
categories or a combination of these categories is not linked
to an increase in its Bug fixes

ML Tool Build * Analyzer * Test An ML Tool projects’ commits which modify DevOps-files
and fix bugs increase when Build, Code Analysis, and Test
tools are adopted by them. This implies that these tools are
being efficiently used to find and subsequently fix bugs.

Non-ML Deployment * Test, Build * CI,
Build * Analyzer, Build * Test

A Non-ML projects’ commits which modify DevOps-files and
fix bugs increase when combination of Build, Code Analysis,
Test, Deployment, CI tools are adopted by them. This implies
that the tools from these categories which facilitate
bug-locating are being efficiently used to find and
subsequently fix bugs.
Fig. 10. Merging commit frequency in correlation to project type and DevOps tool adoption (Outliers removed with IQR [70]).
D
t
i
l

T
r
r
a
c
o

l

Table 20
ANCOVA analysis of Commit frequency for ML Applied projects (Only statistically
significant variables are shown).
Source Sig. Partial Eta

Squared
Details

Intercept <.001 .043 Intercept of the model

DevOps <.001 .013 DevOps tool(s) adoption

Number of Pull requestsN_Pr_Rejected <.001 .004 rejected

Number of Pull requestsN_Pr_Core_Rejected .002 .003 by core developers rejected

Age In Days .003 .003 Project’s age

Team size .004 .003 Project’s team size

N_Stars .013 .002 Number of stars

Number of Pull requestsN_Pr_Core_Open .036 .002 by core developers opened

N_issues_Open .044 .001 Number of issues opened

R Squared = .185 (Adjusted R Squared = .182).

To examine the relationship between DevOps tools’ adoption and
he frequency of merge commits, we built ANCOVA models for the
ifferent project categories. For ML Applied projects, this model is
epresent in Table 24. Similar to the results found within Section 4.3.1
t is clear that adopting DevOps tools has a statistically-significant
nd important effect on the increase of monthly merge averages for
L Applied projects. DevOps adoption is the variable with the largest
ffect size within the ANCOVA model, indicating that DevOps adoption
13

t

Table 21
ANCOVA analysis of Commit frequency for ML Tool projects (Only statistically
significant variables are shown).
Source Sig. Partial Eta Squared Details

Team size <.001 .061 Size of the project’s team
Intercept <.001 .037 Intercept of the model
N_issues_Open <.001 .011 Number of Pull requests opened
DevOps .018 .005 Adoption of DevOps tool(s)
N_Forks .029 .005 Number of Forks

R Squared = .198 (Adjusted R Squared = .189).

has the highest positive influence on Merge commit rates within ML
Applied projects.

Moving on to ML Tool projects, Table 25 shows that adopting
evOps tools also has a statistically-significant and important effect on
he increase of monthly merge averages for ML Tool projects. However,
t is important to note that an ML Tool project’s team-size has a much
arger effect on Merge commit rates within ML Tool projects.
Through the ANCOVA analysis on Non-ML projects, shown in

able 26, it seems that DevOps adoption has no effect on Non-ML merge
ates. To better investigate this contradiction with existing findings
egarding DevOps tool adoption on merge frequency [7], we performed
detailed analysis on the effects of the adoption of the different
ategories of DevOps tool categories, such as Build Tools, CI Tools, etc.,
n Non-ML merge frequency, which is illustrated within Table 27.
In this model, the statistically significant variable with the second

argest effect size is the adoption of CI tools, Analyzer tools and Test
ools, implying that these specific tool categories are more likely to



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

i
o
n

M
t
m
s
b

4

t
a
s
m
a
o
a
e
T
r
r

i
a
i
p
t

T
e
M
p

p
o
t
h

i
A
t
s

Table 22
ANCOVA analysis of Commit frequency for Non-ML projects (Only statistically
significant variables are shown).
Source Sig. Partial Eta

Squared
Details

Team size <.001 .015 Project’s team size

Intercept <.001 .007 Intercept of the model

Number of Pull requestsN_Pr_Core_Rejected <.001 .005 by core developers rejected

Number of Pull requestsN_Pr_Rejected <.001 .003 rejected

Number of Pull requestsN_Pr_Merged .004 .002 merged

DevOps .006 .002 Adoption of DevOps tool(s)

Number of Pull requestsN_Pr_Core_Merged .016 .002 by core developers merged

R Squared = .057 (Adjusted R Squared = .054).

ncrease the merge frequency of Non-ML projects, versus the adoption
f any combination of tools, which apparently has no effect on the
umber of monthly merges.
The summary of our ANCOVA analyses in relation to the Average
onthly Merging Commits metric is detailed in Table 28. Applying
he one-way ANOVA test on the Average Monthly Merging Commits
etric across the different project categories, we obtain a 𝑝-value of
1.61e−13, implying that there is a significant statistical difference
etween the three groups of projects.

.3.3. Issue duration
Allowing the quick resolution of problems and shortening down-

ime are also some of the purported goals of adopting DevOps within
software project. To measure the effectiveness of teams at resolving
uch problems, we used the average issue duration metric to approxi-
ate the duration an issue takes to be resolved after it is opened within
specific project, in accordance to a project’s category and its adoption
f one or more types of DevOps tools. As illustrated in Fig. 11, adopting
ny type of DevOps tools corresponds to a quicker resolution of issues,
specially the adoption of Analyzer, CI, Deployment Automation and
esting tools. Furthermore, ML Tool projects tend to have quicker
esolution of issues than Applied projects, which in turn have a quicker
esolution then Non-ML projects.
When analyzing the effect of the adoption of DevOps tools on

ssue durations of ML Applied projects, as illustrated in the ANCOVA
nalyses in Table 29, it is clear that it has a statistically significant and
mportant effect on decreasing the average issue durations across all
roject categories. However, the number of issues open and the age of
he project seem to have larger effects than DevOps adoption.
Moving on to the ANCOVA analysis regarding issue durations of ML

ool projects illustrated in Table 30, it is clear that it has an important
ffect on decreasing the average issue durations. However, similar to
L Applied projects, the number of issues open and the age of the
roject seem to have larger effects than DevOps adoption.
By observing the ANCOVA analysis of the issue durations of Non-ML

rojects illustrated in Table 31, it is clear that it has an important effect
n decreasing average issue durations. However, other factors, such as
he number of pull requests open and the age of the project seem to
ave larger effects than DevOps adoption.
A summary regarding the ANCOVA analyses linked to the average

ssue duration metric is illustrated in Table 32. Applying the one-way
NOVA test on the Average Monthly Merging Commit metric across
he different categories, we obtain a 𝑝-value of s 1.02e−174, implying
14

ignificant statistical difference between the three groups of projects.
4.3.4. Code quality
In addition to positively influencing the code sharing rates and issue

resolution durations, DevOps is also posed as a method of improving
the quality of development processes of a project as well as its code
base. To evaluate the validity of this claim, we used the state-of-the-
art tool SonarQube [62] via the method described in Section 3.3.3.3 in
order to evaluate the quality of the projects within our dataset. We were
able to successfully generate code quality reports for 2566 ML Applied
projects, 969 ML Tool projects and 3320 Non-ML projects, forming re-
spectively 88.02%, 86.82% and 81.45% of the total number of projects
from their categories. SonarQube was unable to process some projects
due to problems such as software incompatibility, as the free version
is not compatible with C and C++ projects, missing dependencies,
internal memory management issues, among other reasons.

Through the ANCOVA analyses within Table 33, it is clear that an
ML Applied project’s reliability is correlated and most improved by its
DevOps adoption. It is also interesting to note that a project’s age, team
size, and number of issues have a significant effect on improving a
project’s reliability. Longer-lived projects with larger teams, who are
more capable at keeping track of bugs, are more likely to have better
Reliability metrics. Focusing on ML Applied project’s Maintainability,
it is clear through Table 34 that DevOps adoption is the only project
property that is statistically correlated to this quality metric. Overall,
through these two analyses, it is clear that DevOps adoption is the
number one factor influencing an ML Applied project’s code quality.

Moving on to ML Tool projects, it is clear through Table 35 that
DevOps is the only statistically significant variable that affects these
projects Reliability metric. However, no such correlation was found
concerning the Maintainability metric, as no statistically significant
variables were found within its ANCOVA analysis. This allows us to
deduce that DevOps adoption only affects certain aspect of an ML Tool
project’s code quality, yet it is the only variable that seems to affect it,
regardless of an ML Tool project’s team size, age, etc.

Concerning Non-ML projects, it is clear through Table 36 that De-
vOps is the single biggest contributor to a project’s improved Reliability
metric. In addition, a project’s number of issues open, age, number of
forks and Team size all correlate to this metric, signaling that multiple
factors can influence a Non-ML project’s reliability. However, it is also
important to note that no statistically significant variables were found
within the ANCOVA analyses of the Maintainability metric.

A summary regarding the ANCOVA analyses linked to the reliability
and maintainability metrics is illustrated in Table 37. Applying the one-
way ANOVA test on these two metrics across the different categories,
we obtain a 𝑝-value of 5.22e−6 for Reliability, and 0.98 for Maintain-
ability. This is surprising as it implies significant statistical difference
between the three groups of projects for the first metric, but similarity
regarding the second metric, even though both are code quality metrics.

4.3.5. Interpretation of results
Using these five metrics and their associated statistical analyses,

it is evident that employing DevOps tools of different categories has
mostly correlated with an increase in the frequency of code commits,
an increase in the merges across different branches, a reduced duration
leading up to issue resolution, and an increase in code quality across
the three different types of projects. These advantages are especially
prevalent when using CI and Deployment automation tools across all
categories of projects.

Focusing more on ML Applied projects, it is evident that employing
DevOps tools has an important and generally positive effect on the
development activities, issue resolution, and code quality within these
projects, thus signaling that while these projects may have a harder
time employing DevOps tools, as per the findings in Section 4.2, they
also have the most to gain from using DevOps tools within their code
bases.



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.

M
i
e
p

Table 23
Summary of ANCOVA analysis results of Commit frequency.
Category Most important variables affecting

Commit Frequency
Interpretation

ML Applied DevOps, N_Pr_Rejected,
N_Pr_Core_Rejected, Age In Days, Team
Size, N_Stars, N_Pr_Core_Open,
N_issues_Open

An ML Applied projects’ adoption of DevOps has
the largest effect on its monthly commits. Other
factors such as its Number of rejects PRs and
Team-size also affect this metric.

ML Tool Team Size, N_issues_Open, DevOps,
N_Forks

An ML Tool project’s adoption of DevOps has an
important effect on its monthly commits, however,
other factors such as its Team-size have a larger
effect on this metric.

Non-ML Team Size, N_Pr_Core_Rejected,
N_Pr_Rejected, N_Pr_Merged, DevOps,
N_Pr_Core_Merged

A Non-ML project’s adoption of DevOps has an
important effect on its monthly commits, however,
other factors such as its Team-size have a larger
effect this metric.
Fig. 11. Average issue duration in correlation to project type and DevOps tool adoption (Outliers removed with IQR [70]).
Table 24
ANCOVA analysis of Merge Commit frequency for Applied projects (Only statistically
significant variables are shown).
Source Sig. Partial Eta Squared Details

Intercept <.001 .018 Intercept of the model
DevOps <.001 .011 Adoption of DevOps tool(s)
Age In Days .005 .003 Age of the project
N_Stars .016 .002 Number of stars
N_Pr_Merged .019 .002 Number of Pull Requests merged

R Squared = .258 (Adjusted R Squared = .255).

Table 25
ANCOVA analysis of Merge Commit frequency for Tool projects (Only statistically
significant variables are shown).
Source Sig. Partial Eta Squared Details

Team Size <.001 .047 Size of the project’s team
Intercept <.001 .022 Intercept of the model
DevOps .021 .005 Adoption of DevOps tool(s)

R Squared = .143 (Adjusted R Squared = .133).

Table 26
ANCOVA analysis of Merge Commit frequency for Non-ML projects (Only statistically
significant variables are shown).
Source Sig. Partial Details

Eta Squared

Team size <.001 .052 Size of the project’s team
Age In days <.001 .006 Age of the project
Intercept <.001 .004 Intercept of the model
N_Forks <.001 .003 Number of forks
N_Stars <.001 .003 Number of stars
N_Pr_Rejected <.001 .003 Number of pull requests rejected

Number of pull requestsN_Pr_Core_Rejected .003 .002 by core developers rejected

R Squared = .086 (Adjusted R Squared = .083).

L Tool and Non-ML projects that employ DevOps show mostly similar
mprovements in comparison to their non-DevOps counterparts, how-
ver, the improvements are not as drastic as those of the Applied ML
15

rojects.
Table 27
Detailed ANCOVA analysis of Merge Commit frequency for Non-ML projects (Only
statistically significant variables are shown).
Source Sig. Partial Details

Eta Squared

Team size <.001 .042 Size of the project’s team

CI * Analyzer Adoption of CI, CA
* Test <.001 .012 and Test tools

Build * CI * Adoption of Build, CI,
Deployment * Analyzer <.001 .006 DA and CA tools

Build * CI Adoption of Build, CI
* Analyzer <.001 .006 and CA Tools

R Squared = .144 (Adjusted R Squared = .135).

Table 28
Summary of ANCOVA analyses results for Merging Commits frequency.
Category Most important

variables affecting
Merging Commit
Frequency

Interpretation

ML Applied DevOps, Age In days,
N_Stars, N_Pr_Merged

An ML Applied projects’ adoption of
DevOps has the largest effect on its
monthly merging commits. Other factors
such as its number of stars and Number
of Pull requests merged also affect this
metric.

ML Tool Team size, DevOps An ML Tool project’s adoption of
DevOps has an important effect on its
monthly commits, however, Team-size
has a larger effect this metric.

Non-ML Team size, CI *
Analyzer * Test, Build
* CI * Deployment *
Analyzer, Build * CI *
Analyzer

An Non-ML project’s adoption of certain
DevOps tool categories at the same time,
such as adoption CI, Code Analysis and
Test tools, has an important effect on its
monthly merging commits. However, its
Team-size has a larger effect this metric.

Finding 3: All categories of projects that employ DevOps show
improvements in their development, code quality and issue res-
olution metrics in comparison to their non-DevOps counterparts,

especially in the case of ML Applied projects, supporting the claim
that DevOps tools can improve the development processes of most
projects they are used in.



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.
Table 29
ANCOVA analysis of Average Issue duration for Applied projects (Only statistically
significant variables are shown).
Source Sig. Partial Details

Eta Squared

N_issues_Open <.001 .033 Number of issues open

Intercept <.001 .032 Intercept of the model

Age In days <.001 .021 Project’s age

DevOps <.001 .012 Adoption of DevOps tool(s)

Number of pull requestsN_Pr_Rejected <.001 .007 rejected

Number of pull requestsN_Pr_Core_Rejected <.001 .006 by core developers rejected

Team size .003 .003 Project’s team size

Number of pull requestsN_Pr_Core_Open .004 .003 opened by core developers

Number of pull requestsN_Pr_Merged .009 .003 merged

Number of pull requestsN_Pr_Core_Merged .033 .002 by core developers merged

R Squared = .096 (Adjusted R Squared = .092).

Table 30
ANCOVA analysis of Average Issue duration for Tool projects (Only statistically
significant variables are shown).
Source Sig. Partial Details

Eta
Eta

Intercept <.001 .095 Intercept of the model
N_issues_Open <.001 .022 Number of issues open
Age In days <.001 .017 Age of the project

Number of pull requestsN_Pr_Core_Open .019 .006 opened by core developers

DevOps .045 .004 Adoption of DevOps tool(s)
N_Pr_Open .046 .004 Number of pull requests open

R Squared = .094 (Adjusted R Squared = .083).

Table 31
ANCOVA analysis of Average Issue duration for Non-ML projects (Only statistically
significant variables are shown).
Source Sig. Partial Details

Eta Squared

Number of Pull requestsN_Pr_Open <.001 .101 opened

Age In days <.001 .076 Age of the project

Number of IssuesN_issues_Open <.001 .057 opened by core developers

Intercept <.001 .049 Intercept of the model

Number of Pull requestsN_Pr_Core_Open <.001 .043 opened by core developers

Team size <.001 .027 Size of the project’s team

Number of Pull requestsN_Pr_Rejected <.001 .012 rejected

DevOps <.001 .008 Adoption of DevOps tool(s)

N_Stars <.001 .007 Number of stars of project

Number of Pull requestsN_Pr_Core_Rejected <.001 .006 by core developers rejected

N_Forks .001 .003 Number of forks of a project

R Squared = .327 (Adjusted R Squared = .325).
16
Table 32
Summary of ANCOVA analyses results for Average Issue Duration.
Category Most important variables

affecting Issue Duration
Interpretation

ML Applied N_issues_Open, Age In days,
DevOps, N_Pr_Rejected,N_Pr
_Core_Rejected, Team size,
N_Pr_Core_Open, N_Pr_Merged,
N_Pr_Core_Merged

An ML Applied projects’ DevOps
adoption helps it reduce its issue
duration, however, other factors
such as its numbers of issues
open and its age have a larger
effect on these durations.

ML Tool N_issues_Open, Age In days,
N_Pr_Core_Open, DevOps,
N_Pr_Open

An ML Tool project’ DevOps
adoption helps it reduce its issue
duration, however, other factors
such as its numbers of issues open
and number of PRs open have a
larger effect on these durations.

Non-ML N_Pr_Open, Age In days,
N_issues_Open, N_Pr_Core_Open,
Team size, N_Pr_Rejected,
DevOps, N_Stars,
N_Pr_Core_Rejected, N_Forks

A Non-ML project’ DevOps
adoption helps it reduce its issue
duration, however, other factors
such as its age and number of
PRs open have a larger effect on
these durations.

Table 33
ANCOVA analysis of Reliability for ML Applied projects.
Source Sig. Partial Details

Eta Squared

Intercept 0.000 0.435 Intercept of the model
DevOps <0.001 0.08 Adoption of DevOps
Age In days 0.002 0.004 Age of a project
N_issues_Open 0.006 0.006 Number of Issues Open
Team size 0.011 0.003 Age of a project

R Squared = .065 (Adjusted R Squared = .059).

Table 34
ANCOVA analysis of Maintainability for ML Applied projects.
Source Sig. Partial Details

Eta Squared

Intercept 0.000 0.992 Intercept of the model
DevOps <0.001 0.004 Adoption of DevOps

R Squared = .011 (Adjusted R Squared = .004).

Table 35
ANCOVA analysis of Reliability for ML Tool projects.
Source Sig. Partial Details

Eta Squared

Intercept 0.000 0.479 Intercept of the model
DevOps 0.001 0.013 Adoption of DevOps

R Squared = .089 (Adjusted R Squared = .077).

Table 36
ANCOVA analysis of Reliability for Non-ML projects.
Source Sig. Partial Details

Eta Squared

Intercept 0.000 0.476 Intercept of the model
DevOps 0.000 0.010 Adoption of DevOps
N_issues_Open 0.000 0.009 Number of Issues Open
Age In days 0.000 0.005 Age of a project
NBForks 0.013 0.002 Number of Forks
Team size 0.005 0.002 Size of project’s team

R Squared = .059 (Adjusted R Squared = .055).



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.
Table 37
Summary of ANCOVA analyses results for Reliability and Maintainability.
Category Most important variables affecting

Reliability
Most important variables
affecting Maintainability

Interpretation

ML Applied DevOps, Age In days, N_issues _Open,
Team size

DevOps An ML Applied project’s DevOps adoption, age, and Number of issues open are the
most important factors that affect its code quality

ML Tool DevOps None An ML Tool project’s DevOps adoption is the only statistically significant factors
affecting its code quality

Non-ML DevOps, N_issues _Open, Age In days,
NBForks, Team size

None A Non-ML project’s DevOps adoption, Number of issues open, age, Number of forks
and Team size are the most important factors that influence its code quality
G
c
e
s

5. Implications of the proposed study

In this section, we discuss the implications of our empirical analysis.
The following is a list of actionable items we identified:

• Our analysis on DevOps adoption rates and trends, detailed in
Section 4.1, identified that ML Applied projects were slow in
adopting DevOps. They also had a lower adoption across different
DevOps tool categories such as Build, CI and Code Analyzer.
While analyzing the exact reasons behind the barriers to adoption
of DevOps tools is by ML projects is not within this work’s scope,
our results shed a light on the necessity for researchers to study
the barriers to adopting DevOps in ML projects and identify
possible improvement scopes. These may include ML DevOps
task automation, DevOps tools for ML models evaluation and
monitoring, etc. On the other hand, tool developers can employ
program analysis [71] techniques to automatically generate ML
DevOps configuration files which can lower the barriers of entry
for data scientists who might be unfamiliar with DevOps concepts
and practices.

• Our DevOps tool maintenance effort analysis, detailed within
Sections 4.2.1 and 4.2.2, reveals that even though ML Applied
projects much less adoption of DevOps than the other two cat-
egories (ML Tools and Non-ML projects), their developers are
changing DevOps configuration files more frequently. This high-
lights the necessity of working on support for automatic syn-
chronization of DevOps configuration files. This may be pro-
vided via change recommendation tools [72], safe refactoring
tools [73], and others. These tools can help reduce maintenance
overhead, and can provide technical support to developers and
data scientists who may not be very familiar with DevOps tools.

• Our analysis on events that trigger DevOps file changes, within
Section 4.2.3, identified that bug-fixing commits within Tool
project that alter DevOps configuration files were much more
prevalent in comparison to ML Applied and Non-ML projects.
This indicates that the software maintenance research commu-
nity should invest more heavily in co-evolution analysis [74] of
functional code and DevOps configuration files to facilitate early
bug-detection. In turn, this will save both time and resources and
allow teams to invest them in improving their software product’s
quality and reputation, rather than resolving problems within it.

• Our analysis on DevOps adoption advantages, within Section 4.3,
identified that for all project types, adopting DevOps has pos-
itive consequences on the code sharing and code integration
speed and frequency and helped decrease the duration necessary
for issue resolution and improve its quality. Even though using
DevOps tools for all types of projects, including ML projects,
introduced adoption and maintenance overhead, it appears that
the benefits of DevOps outweigh the associated costs. Thus, data
scientists and ML developers should adopt DevOps tools within
their projects. Furthermore, we believe that adopting DevOps
tools present these benefits for all ML projects, even for those
with smaller teams. This is especially prevalent in the case of
ML Applied projects, which had smaller team sizes overall but
generally saw larger improvements resultant of DevOps adoption
than ML Tool projects.
17
• Software engineering educators lack concrete ideas on ML De-
vOps integration trends, benefits, and tools, preventing them
from training students with ML DevOps skills that would allow
them to build industry-ready ML-based systems. This study helps
educators understand the current trends, benefits, and tools of ML
DevOps in order to include up-to-date pedagogical material on ML
DevOps.

6. Threats to validity

Our empirical analysis has some limitations that we would like to
discuss:

Construct validity: We used the code churn and commit ratio
metrics to estimate DevOps configuration files maintenance efforts.
However, while these metrics may not reflect maintenance effort 100%
correctly, they remain representative work items for maintaining source
code and other files.

Internal validity: During DevOps tools detection, we used a file
name patterns list which we manually constructed. To mitigate bias,
one of the co-authors performed a manual checking of DevOps config-
uration files and file naming patterns in both ML projects and Non-ML
projects. In addition, most tools have highly specific naming conven-
tions, so the probability of false positives is minimal. Some tools, such
as logging tools, may be hosted on third-party servers and do not need
to have any configuration files within a repository, but they remain the
minority among DevOps tools. Furthermore, DevOps tools that do not
leave traces in files within the code repository, such as communication
tools, cannot be detected via our approach.

External validity: Our analysis is based on public repositories on
itHub. These results might differ for private GitHub repositories and
losed repositories, including projects developed by companies. How-
ver, our project set does contain projects developed by companies,
uch as tensorflow/tensor2tensor which is backed by Google.
We also estimate that at least 30% of ML Tool projects are backed
by major organizations such as Microsoft and IBM. Furthermore, since
we used popular organization and user-managed projects within our
analysis, we expect many similarities of behavior.

7. Conclusion

In this study, we conducted an empirical study on 4031 ML projects
and a comparative set of 4076 Non-ML projects hosted in GitHub for
ML DevOps adoption, maintenance effort and benefit analysis. Through
our analysis, we found evidence of a lower adoption of DevOps tools
within ML Applied projects, as well as different development practices
and efforts in relation to these files that tended to be less efficient
than those of ML Tool and Non-ML projects. In contrast, this type of
projects has the most to gain from adopting these tools, and with similar
advantages for both ML Tool and Non-ML projects. To the best of our
knowledge, this is the first large scale empirical study on ML DevOps
adoption, maintenance effort and benefit analysis. This exploratory
work lays the foundation for future works, where we plan to investigate
the roadblocks developers encounter when adopting different DevOps
tools and the features they need to adopt to ease their adoption by ML
developers. Our data and code are available at [48].



Information and Software Technology 152 (2022) 107037D.E. Rzig et al.
CRediT authorship contribution statement

Dhia Elhaq Rzig: Conceptualization, Methodology, Software, Data
preparation, Writing – original draft, Writing – review & editing.
Foyzul Hassan: Conceptualization, Methodology, Software, Writing –
review & editing. Marouane Kessentini: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The link to the code and the data was shared under the attach files
step

Replication Package (Original data) (Figshare)

Acknowledgments

The UofM-Dearborn authors are supported in part by
UofM-Dearborn Research Support, USA and NSF Award, USA NSF-
2152819.

References

[1] S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis, D. Feng, Early diagnosis of Alzheimer’s
disease with deep learning, in: 2014 IEEE 11th International Symposium on
Biomedical Imaging (ISBI), 2014, pp. 1015–1018.

[2] H.N. Mhaskar, S.V. Pereverzyev, M.D. van der Walt, A deep learning approach
to diabetic blood glucose prediction, 2017, CoRR abs/1707.05828 [Online].
Available: http://arxiv.org/abs/1707.05828.

[3] C. Chen, A. Seff, A. Kornhauser, J. Xiao, DeepDriving: Learning affordance for
direct perception in autonomous driving, in: 2015 IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 2722–2730.

[4] The algorithm that beats your bank manager, 2020, Accessed: 2020-12-
29 https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbe
ats-your-bank-manager/#15da2651ae99/.

[5] Evans data corporation. 2019. Global developer population and demographic
study, 2019, Accessed: 2019-12-01 https://evansdata.com/reports/viewRelease.p
hp?reportID=9/.

[6] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, A survey of DevOps concepts
and challenges, ACM Comput. Surv. 52 (6) (2019) http://dx.doi.org/10.1145/
3359981, [Online]. Available:.

[7] Seven DevOps tips for faster app development, 2020, Accessed: 2020-12-
30 https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-
application-development-with-DevOps.pdf/.

[8] S.M. Brown Allana, 2020 State of DevOps report, 2020.
[9] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S.A. Hong, A. Konwinski,

C. Mewald, S. Murching, T. Nykodym, et al., Developments in MLflow: A System
to Accelerate the Machine Learning Lifecycle, in: Proceedings of the Fourth
International Workshop on Data Management for End-To-End Machine Learning,
2020, pp. 1–4.

[10] Amazon SageMaker, 2020, Accessed: 2020-12-30 https://aws.amazon.com/
sagemaker/.

[11] L.E. Lwakatare, I. Crnkovic, J. Bosch, Devops for AI – challenges in development
of AI-enabled applications, in: 2020 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), IEEE, 2020, pp. 1–6,
[Online]. Available: https://ieeexplore.ieee.org/document/9238323/.

[12] T. Gamblin, M. LeGendre, M.R. Collette, G.L. Lee, A. Moody, B.R. de Supinski,
S. Futral, The spack package manager: Bringing order to HPC software chaos, in:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, in: SC ’15, Association for Computing Machin-
ery, New York, NY, USA, 2015, http://dx.doi.org/10.1145/2807591.2807623,
[Online]. Available.

[13] K. Hoste, J. Timmerman, A. Georges, S. De Weirdt, EasyBuild: building software
with ease, in: High Performance Computing, Networking, Storage and Analysis,
Proceedings, IEEE, 2012, pp. 572–582, [Online]. Available: http://dx.doi.org/10.
1109/SC.Companion.2012.81.

[14] Docker, 2020, Accessed: 2020-12-20 https://www.docker.com/.
[15] Kubernetes, 2020, Accessed: 2020-12-20 https://kubernetes.io/.
18
[16] C. Renggli, F.A. Hubis, B. Karlaˇ s, K. Schawinski, W. Wu, C. Zhang, Ease.Ml/Ci
and ease.Ml/Meter in action: Towards data management for statistical general-
ization, Proc. VLDB Endow. 12 (12) (2019) 1962–1965, http://dx.doi.org/10.
14778/3352063.3352110, [Online]. Available.

[17] G. Fursin, H. Guillou, N. Essayan, CodeReef: an open platform for portable
MLOps, reusable automation actions and reproducible benchmarking, 2020.

[18] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. Hong, A. Konwinski, S.
Murching, T. Nykodym, P. Ogilvie, M. Parkhe, F. Xie, C. Zumar, Accelerating
the machine learning lifecycle with MLflow, IEEE Data Eng. Bull. 41 (2018)
39–45.

[19] L.E. Lwakatare, I. Crnkovic, J. Bosch, DevOps for AI – challenges in development
of AI-enabled applications, in: 2020 International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), 2020, pp. 1–6.

[20] D. Gonzalez, T. Zimmermann, N. Nagappan, The State of the ML-universe: 10
Years of Artificial Intelligence &; Machine Learning Software Development on
GitHub, in: Proceedings of the 17th International Conference on Mining Software
Repositories (MSR), 2020.

[21] D. Teixeira, R. Pereira, T.A. Henriques, M. Silva, J.a. Faustino, A systematic
literature review on DevOps capabilities and areas:, Int. J. Human Cap. Inf.
Technol. Prof. 11 (2) (2020) 1–22.

[22] R. Jabbari, N. bin Ali, K. Petersen, B. Tanveer, What is DevOps?: A systematic
mapping study on definitions and practices, in: Proceedings of the Scientific
Workshop Proceedings of XP2016, ACM, 2016, pp. 1–11, [Online]. Available:
https://dl.acm.org/doi/10.1145/2962695.2962707.

[23] F. Erich, C. Amrit, M. Daneva, A mapping study on cooperation between
information system development and operations, in: A. Jedlitschka, P. Kuvaja,
M. Kuhrmann, T. Männistö, J. Münch, M. Raatikainen (Eds.), Product-Focused
Software Process Improvement, Springer International Publishing, 2014, pp.
277–280.

[24] W.P. Luz, G. Pinto, R. Bonifácio, Building a collaborative culture: A grounded
theory of well succeeded devops adoption in practice, in: Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, in: ESEM ’18, Association for Computing Machinery, New
York, NY, USA, 2018, http://dx.doi.org/10.1145/3239235.3240299, [Online].
Available.

[25] S. McIntosh, B. Adams, T.H. Nguyen, Y. Kamei, A.E. Hassan, An Empirical Study
of Build Maintenance Effort, in: ICSE ’11, Association for Computing Machinery,
New York, NY, USA, 2011, pp. 141–150, http://dx.doi.org/10.1145/1985793.
1985813, [Online]. Available.

[26] R.M. Shukla, J. Cartlidge, AgileML: A machine learning project development
pipeline incorporating active consumer engagement, in: 2021 IEEE Asia-Pacific
Conference on Computer Science and Data Engineering (CSDE), IEEE, Bris-
bane, Australia, 2021, pp. 1–7, [Online]. Available: https://ieeexplore.ieee.org/
document/9718470/.

[27] I. Karamitsos, S. Albarhami, C. Apostolopoulos, Applying DevOps practices of
continuous automation for machine learning, Information 11 (7) (2020) 363,
[Online]. Available:https://www.mdpi.com/2078-2489/11/7/363.

[28] N. Nahar, S. Zhou, G. Lewis, C. Kästner, Collaboration challenges in building
ML-enabled systems: Communicatfion, documentation, engineering, and process,
2022, arXiv:2110.10234 arXiv:2110.10234 [cs] [Online]. Available: http://arxiv.
org/abs/2110.10234.

[29] B. Karlaš, M. Interlandi, C. Renggli, W. Wu, C. Zhang, D. Mukunthu Iyap-
pan Babu, J. Edwards, C. Lauren, A. Xu, M. Weimer, Building continuous
integration services for machine learning, in: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, in:
KDD ’20, Association for Computing Machinery, New York, NY, USA, 2020, pp.
2407–2415, http://dx.doi.org/10.1145/3394486.3403290, [Online]. Available.

[30] PyGithub, PyGithub/PyGithub. [Online]. Available https://github.com/
PyGithub/PyGithub.

[31] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and produc-
tivity outcomes relating to continuous integration in GitHub, in: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ACM, 2015, pp. 805–816, [Online]. Available: https://dl.acm.org/doi/10.1145/
2786805.2786850.

[32] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, B. Vasilescu, The impact of continuous
integration on other software development practices: A large-scale empirical
study, in: 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017, pp. 60–71.

[33] J.a.H. Bernardo, D.A. da Costa, U. Kulesza, Studying the impact of adopting
continuous integration on the delivery time of pull requests, in: Proceedings
of the 15th International Conference on Mining Software Repositories, ACM,
Gothenburg Sweden, 2018, pp. 131–141, [Online]. Available: https://dl.acm.org/
doi/10.1145/3196398.3196421.

[34] H.J. Keselman, C.J. Huberty, L.M. Lix, S. Olejnik, R.A. Cribbie, B. Donahue,
R.K. Kowalchuk, L.L. Lowman, M.D. Petoskey, J.C. Keselman, et al., Statistical
practices of educational researchers: An analysis of their Anova, manova, and
ancova analyses, Rev. Educ. Res. 68 (3) (1998) 350–386.

[35] A. Rutherford, ANOVA and ANCOVA: A GLM Approach, Wiley, 2011, [Online].
Available: https://books.google.com/books?id=c5aOZEniMqwC.

https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb1
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://arxiv.org/abs/1707.05828
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb3
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-application-development-with-DevOps.pdf/
https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-application-development-with-DevOps.pdf/
https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-application-development-with-DevOps.pdf/
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb8
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://ieeexplore.ieee.org/document/9238323/
http://dx.doi.org/10.1145/2807591.2807623
http://dx.doi.org/10.1109/SC.Companion.2012.81
http://dx.doi.org/10.1109/SC.Companion.2012.81
http://dx.doi.org/10.1109/SC.Companion.2012.81
https://www.docker.com/
https://kubernetes.io/
http://dx.doi.org/10.14778/3352063.3352110
http://dx.doi.org/10.14778/3352063.3352110
http://dx.doi.org/10.14778/3352063.3352110
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb17
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb17
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb17
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb18
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb19
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb21
https://dl.acm.org/doi/10.1145/2962695.2962707
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb23
http://dx.doi.org/10.1145/3239235.3240299
http://dx.doi.org/10.1145/1985793.1985813
http://dx.doi.org/10.1145/1985793.1985813
http://dx.doi.org/10.1145/1985793.1985813
https://ieeexplore.ieee.org/document/9718470/
https://ieeexplore.ieee.org/document/9718470/
https://ieeexplore.ieee.org/document/9718470/
https://www.mdpi.com/2078-2489/11/7/363
http://arxiv.org/abs/2110.10234
http://arxiv.org/abs/2110.10234
http://arxiv.org/abs/2110.10234
http://arxiv.org/abs/2110.10234
http://arxiv.org/abs/2110.10234
http://dx.doi.org/10.1145/3394486.3403290
https://github.com/PyGithub/PyGithub
https://github.com/PyGithub/PyGithub
https://github.com/PyGithub/PyGithub
https://dl.acm.org/doi/10.1145/2786805.2786850
https://dl.acm.org/doi/10.1145/2786805.2786850
https://dl.acm.org/doi/10.1145/2786805.2786850
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb32
https://dl.acm.org/doi/10.1145/3196398.3196421
https://dl.acm.org/doi/10.1145/3196398.3196421
https://dl.acm.org/doi/10.1145/3196398.3196421
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb34
https://books.google.com/books?id=c5aOZEniMqwC


Information and Software Technology 152 (2022) 107037D.E. Rzig et al.
[36] S. Rafi, W. Yu, M.A. Akbar, RMDevOps: A Road Map for Improvement in DevOps
Activities in Context of Software Organizations, in: Proceedings of the Evaluation
and Assessment in Software Engineering, 2020.

[37] B.B.N. França, H. Jeronimo, G. Travassos, Characterizing DevOps by hearing
multiple voices, in: SBES ’16, 2016.

[38] L.E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkilä, J. Itkonen, P.
Kuvaja, T. Mikkonen, M. Oivo, C. Lassenius, DevOps in practice: A multiple case
study of five companies, Inf. Softw. Technol. 114 (2019) 217–230, [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0950584917302793.

[39] G.B. Ghantous, A. Gill, DevOps: Concepts, practices, tools, benefits and
challenges, in: Pacific-Asia Conference on Information Systems PACIS 2017
Proceedings, 2017, [Online]. Available: https://aisel.aisnet.org/pacis2017/96.

[40] I. Bucena, M. Kirikova, Simplifying the DevOps adoption process, in: BIR
Workshops, 2017.

[41] A.H. L., N.J. S., V. J., V. K., A basic introduction to DevOps tools, 2015.
[42] L. Yin, V. Filkov, Team discussions and dynamics during DevOps tool adoptions

in OSS projects, in: 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2020, pp. 697–708.

[43] S. Mcintosh, B. Adams, A.E. Hassan, The evolution of java build systems, Empir.
Softw. Engg. 17 (4–5) (2012) 578–608, http://dx.doi.org/10.1007/s10664-011-
9169-5, [Online].Available.

[44] Y. Jiang, B. Adams, Co-evolution of infrastructure and source code: An empirical
study, in: Proceedings of the 12th Working Conference on Mining Software
Repositories, in: MSR ’15, IEEE Press, 2015, pp. 45–55.

[45] Github, github/linguist, [Online]. Available: https://github.com/github/linguist.
[46] J. Katz, Libraries.io open source repository and dependency metadata, 2020,

http://dx.doi.org/10.5281/zenodo.3626071, [Online].Available.
[47] J. Zhu, M. Zhou, A. Mockus, Patterns of folder use and project popularity: a case

study of github repositories, in: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement - ESEM ’14,
ACM Press, 2014, pp. 1–4, [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2652524.2652564.

[48] Replication Package, https://figshare.com/s/0c4b685d4ab04f7f15af.
[49] Gitpython-Developers, gitpython-developers/GitPython. [Online]. Available:

https://github.com/gitpython-developers/GitPython.
[50] G. Fan, C. Wang, R. Wu, X. Xiao, Q. Shi, C. Zhang, Escaping dependency

hell: finding build dependency errors with the unified dependency graph, in:
Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2020.

[51] G. Robles, J.M. González-Barahona, C. Cervigón, A. Capiluppi, D. Izquierdo-
Cortázar, Estimating development effort in Free/Open source software projects by
mining software repositories: a case study of OpenStack, in: Proceedings of the
11th Working Conference on Mining Software Repositories - MSR 2014, ACM
Press, 2014, pp. 222–231, [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2597073.2597107.

[52] D. Spadini, M. Aniche, A. Bacchelli, PyDriller: Python framework for mining
software repositories, in: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2018, ACM Press, New York, New York,
USA, 2018, pp. 908–911, [Online]. Available: http://dl.acm.org/citation.cfm?
doid=3236024.3264598.

[53] [Online]. Available: https://graphql.github.com/.
[54] Z. Lubsen, A. Zaidman, M. Pinzger, Using association rules to study the co-

evolution of production test code, in: 2009 6th IEEE International Working
Conference on Mining Software Repositories, 2009, pp. 151–154.

[55] A. Zaidman, A. Zaidman, B. Van Rompaey, B. Van Rompaey, A. van Deursen, A.
van Deursen, S. Demeyer, S. Demeyer, Studying the co-evolution of production
and test code in open source and industrial developer test processes through
repository mining, Empir. Soft. Eng. Int. J. 16 (3) (2011) 325–364.

[56] H. Wu, L. Shi, C. Chen, Q. Wang, B. Boehm, Maintenance effort estimation for
open source software: A systematic literature review, in: 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2016, pp.
32–43, [Online]. Available: http://ieeexplore.ieee.org/document/7816452/.

[57] D.H. Martin, J.R. Cordy, On the maintenance complexity of makefiles, in:
Proceedings of the 7th International Workshop on Emerging Trends in Software
Metrics - WETSoM ’16, ACM Press, 2016, pp. 50–56, [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2897695.2897703.
19
[58] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, A. Bernstein, The missing links:
Bugs and bug-fix commits, in: Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, in: FSE ’10,
Association for Computing Machinery, New York, NY, USA, 2010, pp. 97–106,
http://dx.doi.org/10.1145/1882291.1882308, [Online]. Available.

[59] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, P. Devanbu, On the
naturalness of buggy code, in: Proceedings of the 38th International Conference
on Software Engineering, 2016.

[60] F. Hassan, X. Wang, HireBuild: An automatic approach to history-driven repair
of build scripts, in: Proceedings of the 40th International Conference on Software
Engineering, in: ICSE ’18, Association for Computing Machinery, New York,
NY, USA, 2018, pp. 1078–1089, http://dx.doi.org/10.1145/3180155.3180181,
[Online]. Available.

[61] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, R. Bowdidge, Programmers’ build
errors: a case study (at google), in: Proceedings of the 36th International Con-
ference on Software Engineering, ACM, 2014, pp. 724–734, [Online]. Available:
https://dl.acm.org/doi/10.1145/2568225.2568255.

[62] Code Quality and Code Security | SonarQube, [Online]. Available: https://www.
sonarqube.org/.

[63] A. Rahman, A. Agrawal, R. Krishna, A. Sobran, Characterizing the influence of
continuous integration. Empirical results from 250+ open source and proprietary
projects, in: Proceedings of the 4th ACM SIGSOFT International Workshop on
Software Analytics, 2018, pp. 8–14, arXiv:1711.03933.

[64] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs, and benefits
of continuous integration in open-source projects, in: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, in: ASE
2016, Association for Computing Machinery, New York, NY, USA, 2016, pp.
426–437, http://dx.doi.org/10.1145/2970276.2970358, [Online]. Available.

[65] C. Vassallo, F. Palomba, A. Bacchelli, H.C. Gall, Continuous code quality:
are we (really) doing that? in: Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering, ACM, Montpellier
France, 2018, pp. 790–795, [Online]. Available: https://dl.acm.org/doi/10.1145/
3238147.3240729.

[66] L.E. Lwakatare, A. Raj, J. Bosch, H.H. Olsson, I. Crnkovic, A taxonomy of
software engineering challenges for machine learning systems: An empirical
investigation, in: P. Kruchten, S. Fraser, F. Coallier (Eds.), Agile Processes in
Software Engineering and Extreme Programming, in: Lecture Notes in Business
Information Processing, 355, Springer International Publishing, 2019, pp. 227–
243, [Online]. Available: http://link.springer.com/10.1007/978-3-030-19034-7_
14.

[67] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B.
Nushi, T. Zimmermann, Software engineering for machine learning: A case study,
in: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), IEEE, 2019, pp. 291–300, [Online].
Available: https://ieeexplore.ieee.org/document/8804457/.

[68] A. Arpteg, B. Brinne, L. Crnkovic-Friis, J. Bosch, Software engineering challenges
of deep learning, in: 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), IEEE, 2018, pp. 50–59, [Online]. Available:
https://ieeexplore.ieee.org/document/8498185/.

[69] H.-Y. Kim, Analysis of variance (ANOVA) comparing means of more than two
groups, Restor. Dent. Endod. 39 (1) (2014) 74.

[70] P.J. Rousseeuw, M. Hubert, Robust statistics for outlier detection, WIREs Data
Min. Knowl. Discov. 1 (1) (2011) 73–79.

[71] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J.
Reddi, K. Hazelwood, Pin: building customized program analysis tools with
dynamic instrumentation, Acm Sigplan Not. 40 (6) (2005) 190–200.

[72] A.T. Ying, G.C. Murphy, R. Ng, M.C. Chu-Carroll, Predicting source code changes
by mining change history, IEEE Trans. Softw. Eng. 30 (9) (2004) 574–586.

[73] H.K. Wright, D. Jasper, M. Klimek, C. Carruth, Z. Wan, Large-scale automated
refactoring using ClangMR, in: 2013 IEEE International Conference on Software
Maintenance, IEEE, 2013, pp. 548–551.

[74] Y. Jiang, B. Adams, Co-evolution of infrastructure and source code-an empirical
study, in: 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, IEEE, 2015, pp. 45–55.

http://refhub.elsevier.com/S0950-5849(22)00153-7/sb37
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb37
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb37
https://linkinghub.elsevier.com/retrieve/pii/S0950584917302793
https://aisel.aisnet.org/pacis2017/96
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb40
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb41
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb42
http://dx.doi.org/10.1007/s10664-011-9169-5
http://dx.doi.org/10.1007/s10664-011-9169-5
http://dx.doi.org/10.1007/s10664-011-9169-5
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb44
https://github.com/github/linguist
http://dx.doi.org/10.5281/zenodo.3626071
http://dl.acm.org/citation.cfm?doid=2652524.2652564
http://dl.acm.org/citation.cfm?doid=2652524.2652564
http://dl.acm.org/citation.cfm?doid=2652524.2652564
https://figshare.com/s/0c4b685d4ab04f7f15af
https://github.com/gitpython-developers/GitPython
http://dl.acm.org/citation.cfm?doid=2597073.2597107
http://dl.acm.org/citation.cfm?doid=2597073.2597107
http://dl.acm.org/citation.cfm?doid=2597073.2597107
http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
https://graphql.github.com/
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb54
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb55
http://ieeexplore.ieee.org/document/7816452/
http://dl.acm.org/citation.cfm?doid=2897695.2897703
http://dl.acm.org/citation.cfm?doid=2897695.2897703
http://dl.acm.org/citation.cfm?doid=2897695.2897703
http://dx.doi.org/10.1145/1882291.1882308
http://dx.doi.org/10.1145/3180155.3180181
https://dl.acm.org/doi/10.1145/2568225.2568255
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
http://arxiv.org/abs/1711.03933
http://dx.doi.org/10.1145/2970276.2970358
https://dl.acm.org/doi/10.1145/3238147.3240729
https://dl.acm.org/doi/10.1145/3238147.3240729
https://dl.acm.org/doi/10.1145/3238147.3240729
http://link.springer.com/10.1007/978-3-030-19034-7_14
http://link.springer.com/10.1007/978-3-030-19034-7_14
http://link.springer.com/10.1007/978-3-030-19034-7_14
https://ieeexplore.ieee.org/document/8804457/
https://ieeexplore.ieee.org/document/8498185/
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb69
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb69
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb69
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb70
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb70
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb70
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb71
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb72
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb73
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74
http://refhub.elsevier.com/S0950-5849(22)00153-7/sb74

	An empirical study on ML DevOps adoption trends, efforts, and benefits analysis
	Introduction
	Related work
	Methodology
	Data set collection
	DevOps tools classification
	Methods of analysis
	Phase 1: File, name and import pattern collection 
	Phase 2: File system analysis 
	Phase 3: repository and commit-based analysis


	Results
	Adoption rates of DevOps tools
	DevOps' current adoption rates
	Most popular DevOps tools 
	DevOps' historical adoption rates

	DevOps maintenance efforts and goals
	Ratio of DevOps configuration files' updates
	DevOps coding efforts
	DevOps change goals
	Interpretation of results

	DevOps adoption advantages
	Commit frequency
	Merging frequency
	Issue duration
	Code quality 
	Interpretation of results


	Implications of the proposed study
	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


