
Industry Experiences with Large-Scale Refactoring

James Ivers
jivers@sei.cmu.edu

CMU Software Engineering Institute
Pittsburgh, PA, USA

Robert L. Nord
rn@sei.cmu.edu

CMU Software Engineering Institute
Pittsburgh, PA, USA

Ipek Ozkaya
ozkaya@sei.cmu.edu

CMU Software Engineering Institute
Pittsburgh, PA, USA

Chris Seifried
cgseifried@sei.cmu.edu

CMU Software Engineering Institute
Pittsburgh, PA, USA

Christopher S. Timperley
ctimperley@cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

Marouane Kessentini
kessentini@oakland.edu

Oakland University
Rochester, MI, USA

ABSTRACT

Software refactoring plays an important role in software engineer-
ing. Developers often turn to refactoring when they want to restruc-
ture software to improve its quality without changing its external
behavior. Small-scale (floss) refactoring is common in industry and
is often performed by a single developer in short sessions, even
though developers do much of this work manually instead of us-
ing refactoring tools. However, some refactoring efforts are much
larger in scale, requiring entire teams and months or years of ef-
fort, and the role of tools in these efforts is not as well studied. In
this paper, we report on a survey we conducted with developers
to understand large-scale refactoring and its tool support needs.
Our results from 107 industry developers demonstrate that projects
commonly go through multiple large-scale refactorings, each of
which requires considerable effort. Our study finds that developers
use several categories of tools to support large-scale refactoring and
rely more heavily on general-purpose tools like IDEs than on tools
designed specifically to support refactoring. Tool support varies
across the different activities, with some particularly challenging
activities seeing little use of tools in practice. Furthermore, our
analysis suggests significant impact is possible through advances
in tool support for comprehension and testing, as well as through
support for the needs of business stakeholders.

CCS CONCEPTS

· Software and its engineering → Software evolution;Main-

taining software; Software maintenance tools; Development

frameworks and environments.

KEYWORDS

refactoring, large-scale refactoring, refactoring tools, software au-
tomation, software evolution

ACM Reference Format:

James Ivers, Robert L. Nord, Ipek Ozkaya, Chris Seifried, Christopher S. Tim-
perley, and Marouane Kessentini. 2022. Industry Experiences with Large-
Scale Refactoring. In Proceedings of the 30th ACM Joint European Software

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3558954

Engineering Conference and Symposium on the Foundations of Software Engi-

neering (ESEC/FSE ’22), November 14ś18, 2022, Singapore, Singapore. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3540250.3558954

1 INTRODUCTION

Refactoring is defined as restructuring software to improve its
quality without altering its external behavior [28]. The need to re-
structure software can come from such diverse goals as improving
software quality, migrating to new platforms like cloud, container-
izing software for DevOps, incorporating new technologies, or
extracting capabilities for strategic reuse. Many of these scenarios
involve broad changes to the system that cannot be accomplished
through local code changes. This paper focuses on these larger
refactoring efforts, which we refer to as large-scale refactoring
(LSR). Our experience working with multiple government and in-
dustry organizations on such refactoring efforts shows that such
large-scale endeavors often represent months to years of effort.

Well-known refactoring types described by Martin Fowler (e.g.,
rename, move function, extract class) are frequently used by de-
velopers [8]. However, in industry, manual efforts dominate use
of available tool support for refactoring [24ś27, 37]. Integrated
development environments (IDEs) like IntelliJ IDEA, Eclipse, VS
Code, and Visual Studio all include features that change code to
apply primitive refactoring types as directed by users. However,
these tools have varying levels of acceptance by developers, even
for their targeted local refactoring use cases. For example, in a
study done with 328 Microsoft developers, Kim et al. found that
86% refactor manually, with minimal use of features that implement
the refactoring types they intend to use [15].

These well-established refactoring types are building blocks for
large-scale refactoring [15, 40, 41]. Prior studies show use of such
refactorings to address evolution of APIs [7, 13, 39], design [3],
and architecture [2, 3, 20, 23, 36, 42]. Broad changes inherent in
large-scale refactoring, however, are often hindered by software
complexity and require labor-intensive efforts to complete. Con-
sequently, developers continue to desire more time to conduct
refactoring activities [6], often combine refactoring with new fea-
ture development to gain approval to proceed [14], and seek more
tool support while not trusting tools that are available as previous
empirical studies reveal [15, 25]. While large-scale refactoring is
commonly performed in industry, empirical data to guide priorities
for improving tool support for large-scale refactoring does not exist.

To understand how developers engage with large-scale refactor-
ing and how they use tools to support different activities involved,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1544

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3540250.3558954
https://doi.org/10.1145/3540250.3558954


ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore J. Ivers, R. L. Nord, I. Ozkaya, C. Seifried, C. S. Timperley, and M. Kessentini

we conducted a developer survey. Our results demonstrate that
developers use several categories of tools beyond IDE-provided
refactoring features to support large-scale refactoring. Tool support
varies across the different activities that are involved in large-scale
refactoring, with some particularly challenging activities seeing
little use of tools in practice. While developers broadly agree that
better tools are desired, they vary in the activities and degree of
intelligence they want in tools.

The contributions of this study include the following:

• We share analysis results specifically focused on large-scale
refactoring, demonstrate its prevalence with empirical data
from industry, and position it as part of refactoring research
and tool agendas. This contribution provides empirical data
that challenges assumptions that research should focus on
small-scale (floss) refactoring.

• We identify common reasons for deciding to perform or forgo
large-scale refactoring.We also identify common consequences
of forgoing such refactoring, adding a missing perspective to
industry’s motivation in engaging in large-scale refactoring.

• We identify which refactoring activities are most challenging,
time consuming, and see the greatest and least use of tools.
We also identify the categories of tools that are used today,
further improving our understanding of gaps in refactoring
tool support.

• We recommend comprehension and testing related features
as high impact features based on our analysis of what indus-
try developers report as missing and useful for large-scale
refactoring tool support.

• Lastly, we share our data.

To the best of our understanding, this study is the first of its
kind solely focused on understanding large-scale refactoring across
multiple organizations.

2 BACKGROUND

Refactoring is a complex activity involving problem recognition,
problem analysis, decision making, implementation, and evalua-
tion [10].

Murphy-Hill and Black [25] introduced two different notions
of refactoring; the need to continually tweak code while mak-
ing other changes (floss refactoring) and infrequent, but focused
changes to improve unhealthy code (root-canal refactoring). Floss
and root-canal refactoring are primarily differentiated by the na-
ture of changes made ś floss refactoring intermingles refactoring
with other changes, like feature development, while root-canal is
almost entirely about refactoring. Root-canal refactoring is also typ-
ically described as correcting unhealthy code, emphasizing quality
improvements rather than other motivations. Multiple empirical
studies that use analysis of commit histories or IDE usage have
foundmore evidence of floss refactoring than evidence of root-canal
refactoring [22, 26, 35]. Murphy-Hill et al. [26] further suggest that
łstudies should focus on floss refactoring for the greatest generality.ž

Tools that implement refactorings in code are available for many
popular programming languages through IDE context menu op-
tions that provide a list of available refactoring types from which
developers choose, such as those included in IntelliJ IDEA, Eclipse,

VS Code, and Visual Studio. According to a recent JetBrains sur-
vey of 1183 respondents, developers do in fact refactor their code
every week or even almost daily and refactoring sessions often
last an hour or longer. Despite this tool support, developers fre-
quently refactor their code manually, often due to a lack of trust
in what tools would do [9]. In addition, they seek more advice on
topics like how to refactor their code to achieve objectives like code
analyzabililty and readability than on how to use these tools as
demonstrated by refactoring questions asked in Stack Overflow [29].
Furthermore, studies analyzing GitHub contributions reveal that
refactorings are driven more often by changing requirements than
by code smells [34]. There is clearly an aspect of refactoring that is
broader in scope than the local code improvements that its original
definition and floss refactoring recommendations implied.

Large-scale refactoring is restructuring of software, with-
out introducing functionality, for the purpose of improving non-
functional quality or changing architecture. Large-scale refactoring
is a kind of root-canal refactoring in that both focus on structural im-
provements that are not intermingled with other changes. However,
the challenges that arise as the scale and complexity of refactoring
increases merit separate study. While floss refactoring often occurs
over short bursts (e.g., minutes to hours), root-canal has a less clear
scope, spanning anything from days to years of effort. For large-
scale refactoring, we focus on efforts that require months to years
of effort.

Large-scale refactoring involves either pervasive changes across
a codebase or extensive changes to a substantial element of the
system. Large-scale refactoring also often suggests a substantial
commitment of resources, requiring management approval. One
example is the need to partition legacy monoliths into smaller
pieces to create separately deployable, scalable, and evolvable units.
Another is restructuring interfaces and communication patterns
to enable replacement of a legacy feature by an improved or less
proprietary alternative.

Many examples of root-canal refactorings in the literature do
not represent particularly large efforts that require management
support and significant commitment of resources. Using this distinc-
tion in our survey, we captured data from multiple organizations
for refactoring efforts that were estimated to require a mean of
more than 1500 staff days of effort and that were often motivated
by broader business concerns than quality improvement alone.

Architecture refactoring overlaps significantly with large-scale
refactoring. Large-scale refactoring efforts typically involve ar-
chitecture changes; however, not all rearchitecting efforts require
large-scale efforts. Several research efforts are developing tools that
recommend sequences of refactorings that accomplish architecture-
scale changes [12, 21, 38], but these efforts have yet to be incorpo-
rated in commercial tools. Other work in architecture refactoring
addresses code and architecture smell detection, which often focus
narrowly on quality symptoms as indicators of opportunities for
architecture-scale changes [31, 35]. Our study, in contrast, takes a
broad perspective on the range of activities and supporting tools
from the perspective of developers performing large-scale refactor-
ing in industry.

Refactoring process studies are important to understand gaps
in tool support. A recent study of how software developers make de-
cisions proposed a decision-making framework for refactoring [19].

1545



Industry Experiences with Large-Scale Refactoring ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

They found stages of decision-making that consist of a pain zone
that triggers a decision to refactor, situation analysis, refactoring
planning, refactoring implementation, and follow up to assess the
effort. Factors that lead to decision making are influenced by scale.
More recently, Haendler and Frysak [10] provided a theoretical
perspective on applying concepts from decision-making research
to deconstruct the refactoring process. They provide a more gen-
eral interpretation of the software maintenance process [17] and
different refactoring stages [19]: problem recognition, problem anal-
ysis, decision-making, implementation, evaluation. Furthermore,
the model introduces a second dimension to account for the pri-
mary decisions in refactoring at management and operational lev-
els: whether to refactor, what to refactor, how to refactor. The
authors then group the many tools and techniques available for
refactoring by the following characteristics: smell detection and
refactoring recommendation tools, code-quality and design-critique
tools, refactoring tools, technical debt management and analysis
tools, automated regression testing frameworks, and documented
knowledge on refactoring rules. Our survey also reveals tools used
across these categories and confirms that the support is not ideal.

These studies commonly point out that the refactoring process
consists of activities that span several decision-making stages as
well as activities along the software development lifecycle. Abid
et al. recently completed a literature survey spanning 30 years of
refactoring research that emphasized a lifecycle view of refactor-
ing [1]. In our survey, we build on these studies and focus on the
following activities:

• Determining where changes are needed
• Choosing what changes to make
• Implementing the changes
• Generating new tests
• Migrating existing tests
• Validating refactored code (inspection, executing tests, etc.)
• Re-certifying refactored code (common to industry in regu-
lated domains)

• Updating documentation

Through the rest of this paper, we use these activities to under-
stand the prevalence of large-scale refactoring, its challenges, and
gaps in existing tools that support these activities. There are other
survey studies of refactoring, however, none focused on large-scale
refactoring as an industry relevant problem affecting the longevity
and maintainability of systems. Kim et al.’s [15] survey of develop-
ers at Microsoft in 2014 had the goal of understanding the benefits
of refactoring and developer perceptions. Their conclusions in-
cluded that the definition of refactoring in practice is broader than
behavior-preserving program transformations and include system
wide changes. In addition, they showed that developers need vari-
ous types of refactoring support beyond the refactoring features
provided by IDEs. Golubev et al.’s survey study focused specifically
on IntelliJ users and their perceptions of trust of IntelliJ’s refactor-
ing features [9]. Our survey study is similar in its methodology to
these other survey studies like Kim and Golubev; however, it differs
in its motivation and establishes large-scale refactoring as a distinct
refactoring category.

R
Q
1

•What were the business goals of the refactoring?
• Have you ever wanted to perform a large-scale refactoring
but were unable to?
•What consequences, if any, did you observe from not
performing the refactoring?

R
Q
2 •What tools, if any, did you use to assist your large-scale

refactoring efforts?
• To what extent do you use tools for the following activities?

R
Q
3

•What kind of automation, if available, would have most
improved your large-scale refactoring?
•What are the strengths and weakness of the tools you used
to support large-scale refactoring?

Figure 1: A sample of our survey questions and their corre-

sponding research question (RQ).

3 METHODOLOGY

Our goals in this study include assessing how developers perform
large-scale refactoring and understanding the tools they use to
support the process and their shortcomings. To achieve these goals,
we ask the following research questions:

RQ1: How pervasive is large-scale refactoring in industry?
RQ2: How do developers use tools to aid their large-scale refac-

toring efforts?
RQ3:What tools and support, if any, do developers desire to aid

their large-scale refactoring efforts?
In addition to assessing how common large-scale refactoring is,

we also collect information related to its overarching business and
technical goals, reasons why and why not to refactor, and risks
and challenges associated with large-scale refactoring. Our other
questions focus on refactoring process activities, examine the role
of tools to support these activities, and elicit what kind of tools
would better support these activities.

SurveyDesign. To answer our research questions, we performed
an online survey of members of the software engineering commu-
nity between November 2020 and February 2021. To ensure that we
collected meaningful and informative results, we followed several
survey design best practices by explicitly deriving survey questions
from our research questions, conducting a series of iterative pilot
surveys on a representative population of sample respondents, and
refining our survey design until reaching saturation [4, 16]. A sam-
ple of our survey questions is given in Figure 1.We used a branching
design to elicit separate experiences in which participants had per-
formed large-scale refactoring and those in which they had been
unable to do so. Those who had performed large-scale refactoring
were presented questions related to the challenges, outcomes, and
the extent to which tools supported the process. Those who were
unable to do so answered questions as to why not and the conse-
quences of not refactoring. 80 respondents completed the branch
of questions for those who had performed large-scale refactoring,
61 respondents completed the branch for having been unable to do
so, and 47 respondents completed both branches.

Recruitment. Our survey targeted an industry audience. We
distributed our survey to members of the software engineering
community via email (dlist: 7,700), LinkedIn (subscribers: 16,012),
Twitter (followers: 5,383), research colleagues (for redistribution

1546



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore J. Ivers, R. L. Nord, I. Ozkaya, C. Seifried, C. S. Timperley, and M. Kessentini

Table 1: Demographics of our 107 survey participants in

terms of their years of experience in the software indus-

try.

Years of experience # %

Less than three years 6 6%
Between three and ten years 16 15%
Ten or more years 85 79%

to their industry collaborators), and company internal technical
interest groups. A total of 107 participants took part in the survey.
74% of participants worked in industry and 96% of participants have
worked as software engineers and/or software architects (both of
which we refer to as developers). 79% of the participants had 10+
years of experience (Table 1). These demographics demonstrate that
our participants represent awealth of collective industry experience,
which helps to increase the confidence in our findings.

Qualitative Analysis. To analyze responses to the qualitative
parts of our survey, we used a descriptive coding approach [32].
Two authors tagged each response to open-ended survey questions
with one or more labels, known as codes, describing the topics of
that response. We then performed adjudication with a third author
to resolve any disagreements and code mapping to collapse our
codes into a consistent set of categories. Finally, we used axial
coding to identify relationships between categories, and to identify
a small number of overarching themes. Throughout this process,
we performed continual analysis, comparison, and discussion of
data until reaching thematic saturation (i.e., no new perspectives,
dimensions, or relationships were identified).

These responses reflect respondents’ perceptions and experi-
ences of large-scale refactoring. We report frequency of our coding
of this data only to demonstrate the prevalence of themes in our
data, not to suggest generalized conclusions. To allow others to
understand the logic behind our analysis process, we also provide
sample quotes throughout the paper.

Study Artifacts. To promote further research and allow others
to inspect and replicate our methodology and findings, we provide
a detailed audit trail of our study artifacts, which include our survey
questionnaire, recruitmentmaterials, codebook, anonymized survey
data, and the Jupyter notebook used to produce the figures in the
paper. Our study artifacts are available at:
https://github.com/ArchitecturePractices/lsr_survey_artifacts.

4 LSR IS AN OPEN INDUSTRY CHALLENGE

RQ1 asked how pervasive large-scale refactoring is in industry.
Common wisdom says that business priorities and natural system
evolution drive the need to conduct large-scale changes in industrial
software. However, we do not know whether developers resonate
with the concept of large-scale refactoring and how frequently, if
at all, they engage in conscious large-scale refactoring activities.
We wanted to understand the business and technical triggers, as
well as the challenges surrounding the decision to perform or forgo
large-scale refactoring and their consequences from the perspective
of industry developers.

4.1 Prevalence of LSR

Our findings confirm that large-scale refactoring is a major under-
taking that can be performed on industry software multiple times
in its lifetime. 82% of respondents had participated in large-scale
refactoring at least once, with 61% reporting participating in large-
scale refactoring more than once and 12% reporting engaging in
such refactoring five or more times. These refactorings were per-
formed on significantly large systems (34% were larger than 1M
LOC and 38% ranged from 100K-1M LOC) and consumed significant
resources, ranging from 2 days to 20,000 staff days as shown in
Figure 2 and 86.4% of whom reported effort that falls in the months
to years range.

Furthermore, 56% of systems on which respondents had per-
formed large-scale refactoring had undergone large-scale refac-
toring multiple times (16% twice, 36% three to five times, and 5%
more than five times). Half of respondents reported that they are
still working on the same system on which they had performed
large-scale refactoring, 42% of whom have worked on this system
for more than five years. The release frequencies for these systems
ranged from several times a month (25%) to several times a year
(49%). These results confirm that industrial software systems go
through major changes and support the conclusion that organiza-
tions do commonly conduct large-scale refactoring.

10
1

10
2

10
3

10
4

Refactoring Effort (in days)

Figure 2: Estimated effort (in staff days) that teams required

to complete their large-scale refactorings.

4.2 Reasons for LSR

Reducing cost of change and time to deliver were expressed as
top business reasons to refactor by our respondents who both had
the opportunity to refactor and wanted to refactor but could not
(Figure 3). As for technical reasons for refactoring, improving un-
derstandability and migrating to a new architecture had similarly
top occurrences (Figure 4).

Our analysis revealed an interesting relationship between the
top business and technical reasons: 78% of those who reported
that reducing cost of change was a business reason to refactor also
reported improving code understandability as a technical reason to
refactor. Among those who did undertake large-scale refactoring,
roughly 70% reported both improving code understandability and
migrating to a new architecture as top technical reasons to refactor.
These results further demonstrate the relationship between the
kind of architectural change that requires large-scale refactoring
and the potential impact of such change on business goals.

The scope of work in large-scale refactoring is broader than
local code improvements. The following survey response succinctly

1547

https://github.com/ArchitecturePractices/lsr_survey_artifacts


Industry Experiences with Large-Scale Refactoring ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of respondents

Reduce time to deliver new
features and versions

Reduce cost of software changes

Reduce reliance on unsupported
or outdated technology

Reuse features across systems

Replace existing features

Other
Refactored
Did not refactor

Figure 3: Business reasons for large-scale refactoring.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of respondents

Improve code understandability

Migrate to new architecture

Improve use of automation

Move to new deployment
environment

Switch from one technology or
programming language to another

Enable granular deployment
using DevOps

Other
Refactored
Did not refactor

Figure 4: Technical reasons for large-scale refactoring.

summarizes how the decision making process differs in large-scale
refactoring:

• Agile development practices encourage continuous micro refac-

torings to make the code a little bit better all the time. ... Refac-

toring is just part of the job ... like a surgeon washing her hands.

...teams should be continuously refactoring in the small without

the need for explicit investment or direction from the wider busi-

ness. I think larger scale "refactoring" is different in that there is

an opportunity cost to doing or not doing the work. It becomes a

business decision as to where to invest.

4.3 Forgoing LSR

Having established that industry systems undergo multiple large-
scale refactorings, we looked at how often organizations hadwanted
to perform refactoring but had decided not to do so. 71% of respon-
dents reported that there were occasions that they wanted to con-
duct large-scale refactoring, but had not done so. Sharma’s study
reported a similarly high portion of respondents (76%) identifying
prioritization of features over refactoring as an obstacle to under-
taking refactoring [33]. The reasons for deciding not to perform
large-scale refactoring center around opportunity cost (new fea-
tures were prioritized and anticipated cost was too high) as the most
important reasons. 35% of respondents reported both as driving
reasons, indicating that when resources are scarce, new features are
commonly preferred over other investments. Interestingly, among
the reasons to not refactor, only 6% of the participants indicated
that the anticipated value of refactoring was too low (Figure 5).

Given business realities, these results are not surprising. When
resource constraints (especially time and cost) force choices, new

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of respondents

New features were prioritized
over refactoring

Anticipated cost was too high
Refactoring would be too disruptive

to other development efforts
Refactoring could not be

completed quickly enough
Staff with sufficient knowledge

and skills not available
Risk of introducing errors was

too high
Anticipated value was too low

Other
Reasons to forego refactoring
Reasons noted as high importance

Figure 5: Reasons why organizations forgo large-scale refac-

toring.

Table 2: Consequences of forgoing large-scale refactoring, by

fraction of respondents reporting each category.

Category Description %

Delivery Slow feature delivery, inability to
develop features

56%

Internal quality Low productivity, duplicated code,
non-bug design flaws

54%

External quality Degraded user experience, bugs,
performance issues

32%

Staffing Low morale, increased onboarding
time, difficulty hiring or retaining staff

22%

features are prioritized over refactoring. However, there are conse-
quences to not performing needed refactoring, as our participants
reported through open ended questions. When we analyzed these
responses through a coding exercise (Table 2), we found that the
most common long term consequences were related to inability
to or slowing pace of delivering new features (56%). Instances of
deteriorating internal (54%) and external (32%) quality were often
accompanied by references to increasing operating or development
costs, which are expected consequences of quality deterioration.
90% of respondents reported delivery and/or internal quality prob-
lems, both of which reflect slowing development velocity, as conse-
quences of not refactoring.

The consequences that participants shared also clearly exemplify
the need for large-scale refactoring.

• We are stuck on outdated technologies. It is difficult to keep up

with the "startup" companies that provide features that we are

not able to create on the old tech stack.

• ...modernization cycle was held back by 4 years....maintenance

cost stayed high....cost to implement, deploy, and validate con-

tinue to increase.
• Feature delivery took longer as it required changes to multiple

parts of the system.

These consequences undermine the perceived opportunity to divert
resources from refactoring to new features.

1548



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore J. Ivers, R. L. Nord, I. Ozkaya, C. Seifried, C. S. Timperley, and M. Kessentini

Finding 1: Large-scale refactoring is prevalent in industry. 82%
of respondents had performed large-scale refactoring. Of the
systems on which they had performed large-scale refactoring,
57% had undergone multiple large-scale refactorings. Further-
more, 71% of respondents had wanted to perform large-scale
refactoring, but were unable to do so.

Finding 2: Large-scale refactorings are substantial efforts. The
mean time to complete refactoring is estimated at more than
1500 staff days.

Finding 3: Improving cost of change and time to deliver are
the top business reasons to refactor, while improving code un-
derstandability and migrating to a new architecture are the top
technical reasons.

Finding 4: Forgoing large-scale refactoring slows delivery tempo.
While prioritizing new features over refactoring is the most com-
mon reason for forgoing large-scale refactoring, 56% of respon-
dents report the inability to or slowing pace of delivering features
as a consequence of forgoing large-scale refactoring.

5 INADEQUATE TOOL SUPPORT FOR LSR

Refactoring has been a familiar concept to developers for decades [8],
but adoption of tools to support refactoring remains less common
[15, 26]. While studies have focused more on support for floss refac-
toring, Kim et al.’s interviews included a team that had performed
system-wide refactoring on a very large system [15]. Their analy-
sis indicates that refactoring at this scale involves far more than
applying refactorings for local changes. Instead, they observed that
system-wide refactoring involved understanding the system, per-
forming dependency analysis, creating a desired architecture struc-
ture, performing multiple gate checks, educating other developers,
and developing custom refactoring tools. In our RQ2, we sought to
understand what kinds of tools were used in large-scale refactor-
ing and whether they differ from those used in other refactoring.
We also investigated the different activities involved in large-scale
refactoring and how those tools support those activities.

5.1 Tools Used

We used two open ended questions to collect a list of tools that
respondents used for refactoring at any scale and for large-scale
refactoring. We used coding to categorize each tool into one of the
categories shown in Figure 6, which contrasts the fraction of re-
spondents using at least one tool in each category for refactoring at
any scale with that for large-scale refactoring. There is little differ-
ence between the fraction of respondents using tools for large-scale
refactoring and refactoring at any scale for most tool categories.
The exceptions are IDEs and text editors (greater use in refactoring
at any scale), testing tools (greater use in large-scale), and other
tools (much greater use in large-scale). The other tools category
includes custom scripts and tools on which custom tools were likely
built (e.g., static code analyzers and abstract syntax trees).

The most commonly used category of tool is the IDE; more than
half of all respondents reported using IDEs for refactoring (68.7% for
any scale and 54.3% for large-scale). In contrast, fewer than 10% of
respondents reported using tools that are designed specifically for
refactoring like ReSharper and JDeodorant (8.4% for any scale and

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraction of respondents

IDE
IDE refactoring

Refactoring tool
Code smells

Dep. exploration
Visual modeling

Text editor
Testing tools

Cont. integration
Version control
Manual efforts

Other

Refactoring at any scale
Large-scale refactoring

Figure 6: Categories of tools used to support refactoring.

4.3% for large-scale) or called out refactoring features of IDEs (6%
for any scale and 6.5% for large-scale). The portion of tools falling
into the other category was substantially higher for large-scale
refactoring (50%) than for refactoring at any scale (18%).

5.2 Refactoring Activities

We next looked at the work that respondents perform as part of
large-scale refactoring activities. We listed the refactoring activities
found in Figure 7 and asked respondents to report how much time
they spent in each, how challenging they found each, and the extent
to which they used tools for each. Figure 7 shows the fraction of
respondents reporting each activity in the positive for each question
(i.e., most time spent, most challenging, and extensive use of tools).
The top three activities in terms of taking the most time, being the
most challenging, andmaking the greatest use of tools all come from
these four activities: (1) determining where changes are needed, (2)
choosing what changes to make, (3) implementing changes, and (4)
validating refactored code.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of respondents

Determing where

Choosing changes

Implementing changes

Generating tests

Migrating tests

Validation

Re-certifying

Updating docs

Other

Most time spent
Most challenging
Most use of tools

Figure 7: Refactoring activities that take the most time, are

most challenging, and make the most use of tools.

Respondents commonly reported choosing what change to make
as most time consuming (48%) and most challenging (50%), but only
25% reported it as making extensive use of tools. In fact, looking
at the negative responses, 58% reported this activity as making
the least use of tools. The activity for which respondents reported
least use of tools was updating documentation (75%), which was
also commonly noted as taking the least time (63%) and being least
challenging (61%).

1549



Industry Experiences with Large-Scale Refactoring ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

5.3 Tool Effectiveness

Ideally, there is a relation among how much tools are used for
an activity, how much time it takes, and how challenging it is.
Highly effective tools can dramatically reduce the time spent and
the perceived challenge. Activities that remain highly challenging
and time consuming can suggest shortcomings in or under-use of
tools. We compared the tools that respondents used for large-scale
refactoring (Figure 6) with the time spent, challenge, and extent of
tool use for refactoring activities (Figure 7). We also applied our
judgment regarding the degree of support each category of tool
provides (based on the specific tools listed by respondents) to each
activity as additional context.

Respondents reported that determiningwhere changes are needed
and implementing changes as highly challenging activities (50% and
43.8%) for which they extensively use tools (37.7% and 49.2%), and
yet both take significant time (46% and 59%). Of note, respondents
report relatively little use of tools that are specifically designed to
support these tasks. Refactoring, code smell analysis, and depen-
dency exploration tools better support determining where changes
are needed, but are used by only 4.3%, 15.2%, and 0% of respondents.
Refactoring tools and IDE refactoring features better support imple-
menting changes, but are used by only 4.3% and 6.5% of respondents.
Both indicate that while respondents use tools extensively for two
of the three most challenging activities, they rely more heavily on
general purpose tools like IDEs and manual effort than on tools
specifically designed for refactoring.

Finding 5: Few respondents (less than 10%) indicate use of tools
specifically designed for refactoring.

Finding 6: 50% of respondents performing large-scale refactoring
report use of other tools, which are dominated by custom tools,
scripts, and packages on which they build their own tools.

Finding 7: Choosing which changes to make is one of the most
challenging and time consuming activities, while also one of the
activities for which developers make the least use of tools.

Finding 8: Large-scale refactoring involves multiple activities
that lack adequate tool support, including activities that see
little use of tools and activities that take significant time despite
extensive use of tools.

6 FOUNDATIONAL FEATURES ARE NEEDED

To understand what kinds of tools developers need and request
for large-scale refactoring, we looked in RQ3 at the challenges
respondents faced during their refactoring, the strengths and weak-
nesses of current tools, and how respondents directly answered the
question.

6.1 Activity Challenges

After asking respondents to rate how challenging each refactoring
activity was, we asked them through an open response question
what made their most challenging activities challenging. Table 3
shows our coding of these responses. Unsurprisingly, the most com-
mon challenge is the poor quality of the software being refactored,
a challenge that refactoring exercises inherit as a starting point.

Table 3: What made large-scale refactoring challenging, by

fraction of respondents reporting each category.

Category Description %

Code Quality Poor quality of code being refactored, exces-
sive dependencies that complicate changes

34%

Comprehension Difficulties in understanding code structure,
flow, and possible side-effects

26%

Tests Lack of tests to ensure behavior 19%
Communication Need to persuade management and team-

mates, gaining user trust
19%

Scoping Managing expectations, deciding how much
refactoring to do

15%

Documentation Poor documentation, unclear intent 13%
Techniques Lack of well-defined refactoring techniques 11%
Decision Criteria Choosing the right changes 6%

The second most common challenge is the difficulty in under-
standing code and the implications of a change. One respondent
emphasized this as The hardest part was gaining a conceptual grasp
of the overall code structure, and code flow, and understanding how

one basic change ś no matter how simple it appeared on the sur-

face ś might create consequences throughout the system. While this
challenge is more dependent on the tools and processes used for
refactoring, the starting quality of code can exacerbate it. Half of
respondents reporting code comprehension as a challenge also re-
ported poor code quality or lack of documentation as a challenge. A
need for code comprehension often stems from inheriting code writ-
ten by someone else. Most respondents reported that the software
on which they had performed large-scale refactoring was relatively
old when they started working on it (for 27% it was already 5-10
years old and for 25% it was already more than 10 years old).

Respondents reported challenges that closely relate to code arti-
facts more than twice as often (code quality and comprehension at
34% and 26%) as challenges that relate to making decisions (scoping
refactoring and decision criteria at 15% and 6%).

6.2 Assessment of Current Tools

Wenext looked at participant responses to a question on the strengths
and weaknesses of the tools that they currently use. Table 4 shows
our coding of these responses. Less than half of respondents pro-
vided any strengths, while only three respondents provided only
strengths. The top categories for reported strengths were modifica-
tion (automation of changes at 16%) and planning what to refactor
(identifying opportunities for refactoring at 12%). The top categories
for reported weaknesses were usability (learning curve and poor
interfaces for tasks at 33%) and modification (lack of control over
or unacceptable results from automated refactoring at 21%). This
corroborates a finding of Pinto and Kamei’s study, which identified
usability as a key barrier to adoption of refactoring tools [30].

Several responses directly contrasted available refactoring sup-
port for small-scale changes with needs for large-scale refactoring.
Examples include:

• The tools I use don’t offer any guides or hints related to large-

scale refactoring. Their analysis features usually present only

1550



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore J. Ivers, R. L. Nord, I. Ozkaya, C. Seifried, C. S. Timperley, and M. Kessentini

Table 4: Strengths and weaknesses of tools respondents use,

by fraction of respondents reporting each category.

Category Strengths Weaknesses

Usability 7% 33%
Modification 16% 21%
Planning what to refactor 12% 19%
Analysis 9% 16%
Large-scale refactoring 5% 16%
Comprehension 2% 16%
Testing 2% 5%
Planning how to refactor 0% 5%
Scoping refactoring 0% 5%

low level code smells that often don’t offer a considerable im-

provement in the quality of the software.

• They address refactoring efforts at a component level. They don’t

address end to end scenarios and analysing dynamics. Today’s

tools I have used provide quite a lot indicators for increasing

complexity and structure loss, but these are not enough to make

large scale decision with reducing these effects leading to system

failure.

• The tools I’ve got are too focused on munging text, or on refac-

toring that is syntactically simple enough that I don’t really

need help with it (maybe it saves time on typing, but typing

time isn’t the problem).

6.3 Interest in Intelligent Tools

The activity challenges (Table 3) and the weaknesses of tools used
(Table 4) point to room for improvement. We asked participants
what kind of tools would have most improved their experience.
Table 5 shows our coding of these open ended responses. Fewer
respondents expressed interest in intelligent tools that make deci-
sions for them than in foundational tools that act as directed by a
developer, like performing requested analyses, making specified
changes, and confirming the results of changes.

The three most common categories focused directly on the code
being refactored. Testing focused on testing automation (46%), mod-
ification focused on automating code changes (26%), and analysis
focused on understanding the code (23%). In contrast, categories
that included recommending actions were much less common: plan-
ning what to refactor (recommending where changes are needed at
9%) and planning how to refactor (recommending specific changes
at 6%). Pinto and Kamei’s analysis of Stack Overflow questions on
refactoring identified generating refactoring recommendations as a
desirable feature at a similarly low number (13%) [30].

This preference aligns with Table 3, which summarizes what
made refactoring challenging. Challenges with code comprehension
and tests align with top requests. Decision criteria was the least
common challenge, aligning with the lack of requests for intelligent
tools that recommend changes.

Notably, this preference is somewhat at odds with where re-
spondents report spending the most time in Figure 7. Two of the
four activities on which they spend the most time (implementing
changes and validation) align with two of the top three requests

Table 5: What kinds of tools would improve large-scale refac-

toring, by fraction of respondents reporting each category.

Category %

Testing 46%
Modification 26%
Analysis 23%
Comprehension 17%
Planning what to refactor 9%
Build Automation 9%
Planning how to refactor 6%

(testing and modification). The other two activities on which they
spend the most time (determining where changes are needed and
choosing the changes to make) align with two of the least common
requests (planning what and how to refactor).

While some respondents expressed clear skepticism of intelligent
refactoring tools (e.g., I’m still highly skeptical that a tool that can

effectively automatically suggest a collection of refactoring that would

solve a specific problem can be written.), 73% of respondents replied
that a tool that automatically suggests a collection of refactorings
that would solve a problem that they specified would be useful.
Regardless of any skepticism, responses to the question of what
tools would help reflected a genuine, if sometimes plaintive need
for help (e.g., Any at all and Almost anything :-)).

Finding 9: The most commonly reported refactoring challenge is
the starting quality of software. This challenge is closely followed
by the difficulty in comprehending that software.

Finding 10: Testing is the most common category of tools that
respondents believe would improve large-scale refactoring.

Finding 11: Of the tools respondents use today, the most com-
mon strengths reported are in automating changes and the most
common weaknesses are in usability.

Finding 12: Fewer respondents expressed interest in intelligent
tools that make decisions for them than in foundational tools
that act as directed by a developer.

7 DISCUSSION

Refactoring is an active area of research with an emphasis on tool
support and particular strengths in detecting refactoring opportu-
nities that improve code quality, safe implementation of low-level
refactorings in code, and use of search-based techniques to gener-
ate refactoring recommendations [1]. Our survey results, despite
representing only a sampling of the challenges and gaps in large-
scale refactoring in industry, demonstrate that there is room for
improvement in tools determining where to make changes and
implementing those changes. However, our analysis of the open
responses also points to other areas in which improvements would
benefit industry teams executing large-scale refactorings ś com-
prehension and testing. Furthermore, researchers and tool vendors
have an opportunity to improve how they integrate their contribu-
tions into the broader refactoring lifecycle by addressing the needs
of stakeholders beyond developers.

1551



Industry Experiences with Large-Scale Refactoring ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

7.1 Comprehension Recommendations

In our survey, many responses across questions reinforce the impor-
tance of comprehension in large-scale refactoring. We defined the
comprehension coding category to capture responses that focus on
making sense of a codebase, including understanding existing code
structure, design, and requirements. Many responses converge on
a scenario that is anecdotally common in industry and for which
comprehension is particularly crucial ś documentation is missing
or out-of-date, and so teams must discover how a large body of
code is structured and which design strategies were employed (and
why) prior to embarking on large-scale changes.

Our recommendations related to comprehension are based on
analysis of and connections among responses to several questions.
Determining where to make changes and choosing what changes to
make, both activities that rely on first comprehending the current
state of software, were noted as being the the most challenging ac-
tivities by respondents (Figure 7). The top challenges in performing
large-scale refactoring (Table 3) involved the prominence of code
with excessive dependencies and the difficulty in understanding
existing code structure. Additionally, the second most common cate-
gory of tools that respondents directly asked for was a capability to
help analyze code and the impact of possible changes (Table 5). The
ability to comprehend existing code is challenging to respondents,
critical to their most challenging activities, and an area in which
help is demonstrably wanted.

The following responses to the question "What kind of automa-
tion, if available, would have most improved your large-scale refac-
toring?" illustrate tool gaps related to comprehension and point in
constructive directions:

• Configurable combination of data-flow, and control-flow anal-

ysis queries, pipe-lined with each other, and ability to create

meaningful executable partitions of code

• static code analyzer on an architectural level to determine the

efforts and tracking refactoring activities over time

• Anything that could have given me a conceptual overview of

how the components of the system fit together, and influenced

one another. Code diagrams or visualizations would have been

most helpful. For instance, will this function behave differently

depending on the value of some given global variable?

When performing large-scale refactoring, the existing code is
ground truth. However, when dealing with changes that span signif-
icant portions of a system or affect tens or hundreds of thousands of
lines of code, developers benefit fromworking at a higher level of ab-
straction. Code-level analyses can produce overwhelming volumes
of data, only some of which is pertinent to refactoring. Architecture
and design models allow developers to focus on essential, strategic
decisions without inclusion of all the details found in code.

We recommend integration of refactoring research with ad-
vances in research from related specialties like software architecture
and reverse engineering to improve tool support for comprehen-
sion in the context of large-scale refactoring. Respondents want a
way to comprehend their starting point and plan a path forward
at a higher level than code. The architecture community long ago
converged on the importance of thinking about architecture from
multiple perspectives called views [5, 11, 18], each addressing spe-
cific concerns. However, research and tool support in this area

primarily addresses views that focus on code structure (e.g., UML
class diagrams) rather than views that convey run-time semantics
like concurrency and protocols of interaction. Specific advances
that would aid comprehension include:

• The ability to generate run-time architecture views from code.
• The ability to enrich dependency views with analyses of mech-
anisms that do not derive directly from programming lan-
guages, such as network-based communication, dependency
injection, and information exchange via repositories.

• Extension of these capabilities across a broader range of pro-
gramming languages (e.g., older languages that industry con-
tinues to rely on).

7.2 Testing Recommendations

Respondents likewise emphasized testing challenges through re-
sponses to several questions. Again, many responses indicated an
anecdotally common scenario that significantly complicates the
challenges of large-scale refactoring ś insufficient tests were in
place prior to beginning refactoring. From one response: code cover-
age was quite low, so we worked with fear of breaking things (which

we did in the end) and that made us overthink and double-triple check.

Testing was the most common category of tools that respondents
directly requested (Table 5). A lack of tests to ensure behavior was
referenced by 19% of respondents as a challenge to their large-scale
refactoring experiences (Table 3). Respondents reported little use of
tools in generating or migrating tests ( Figure 7). While validation
activities did see greater use of tools, it was still among the most
time consuming activities (Figure 7).

The following responses are illustrative of testing concerns:

• cost of migrating tests matched cost of refactoring code

• certifying that no functionality was broken given lack of tests

• Cannot easily generate tests to ensure behaviour remains un-

changed

• Better test coverage before we start. Would have saved the time

we need to spend on the basic test suite to make sure we did not

break anything.

Testing is a critical activity when performing any refactoring as
it can provide confidence that a refactoring has not altered behavior.
Ideally, adequate tests exist prior to performing any refactoring,
but this is not always the case, as evidenced by our results. Testing
takes on greater significance in large-scale refactoring as the scale
amplifies the time required to create missing tests, the difficulty in
comprehending interactions among large segments of often messy
code, and the importance of reassuring diverse stakeholders (e.g.,
managers) that refactoring is proceeding successfully and continued
resources are warranted.

As with comprehension, research in related specialties like test
generation is directly applicable to large-scale refactoring and their
successful integration and refinement can improve tool support.
Specific advances that would aid testing include:

• The ability to generate tests that specifically support refactor-
ing changes. This could include scoping baseline test genera-
tion to the smallest collection of code that can be affected by
specific proposed refactoring operations.

1552



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore J. Ivers, R. L. Nord, I. Ozkaya, C. Seifried, C. S. Timperley, and M. Kessentini

• The ability to generate consistent before and after tests for
proposed refactoring operations, with transparent relations
to improve developer confidence.

• The ability to generate non-functional tests to understand
architectural implications of large-scale changes.

7.3 Stakeholder Recommendations

The large-scale refactorings reported in this survey required alloca-
tion and management of significant resources. While such efforts
rely heavily on technical stakeholders like developers and architects,
they also rely on on business stakeholders like project managers,
executives with funding approval, and team leads of related sys-
tems.

Business stakeholders focus on concerns like cost, schedule, and
competitive advantage that affect whether large-scale refactoring
will be funded (Figure 3 and Figure 5). Their involvement led to
inclusion of tools in our responses that are more often mentioned
in project management circles than refactoring research, such as
wikis and issue trackers.

We recommend research and tool support that address the needs
of business stakeholders. The scope of large-scale-refactoring sharp-
ens the need to keep track of potentially widespread or dependent
series of changes that are more complex to manage across time and
teams than is typical of floss refactoring. Specific advances needed
include:

• Empirically validated resource estimation models for large-
scale refactoring.

• Tools that track progress across the broad scope of changes
needed, including identification of stable checkpoints for in-
cremental review, test, and deployment.

• Refactoring strategies that favor incremental demonstration
of value to retain management support.

Such advances would enhance planning and oversight of the
complex, expensive efforts that large-scale refactoring entails. Fur-
thermore, they would improve researchers’ and tool vendors’ un-
derstanding of the anticipated benefits of their work.

Our respondents were primarily technical stakeholders (96%
being software engineers and/or software architects), but the chal-
lenges they reported spanned business and technical concerns.
Their feature requests were oriented towards foundational capa-
bilities whose use developers would direct themselves rather than
than towards intelligent tools that make decisions on their behalf.
While some appetite for intelligent tools exists, there is evidence of
a lack of trust in automated decisions.

We recommend delivery of research and tools that provide foun-
dational capabilities for technical stakeholders, such as our compre-
hension and testing recommendations. This provides industry with
incremental delivery of value and opportunities for developers to
innovate with different compositions of capabilities. For intelligent
tools, providing transparency and control (e.g., confirmations be-
fore changes) are essential to building trust and gaining feedback
on how to improve the capabilities that are delivered. It is likely
that observable progress in foundational capabilities will help to
overcome some barriers that our and other previous studies have
identified and aid transition to practice of more intelligent tool
support for refactoring in industry.

7.4 Threats to Validity

Our threats to validity include the following:
Internal Validity. Our analysis of survey responses represents a

potential threat to internal validity. To mitigate this threat and to
ensure the reliability of our qualitative findings, we implemented
and consistently adhered to established guidelines and best prac-
tices for conducting qualitative research, including comprehensive
data use, constant comparison, the use of tables, and refinement of
codes through adjudication and investigator triangulation.

External Validity. Our findings are based on the data we collected
from 107 survey respondents. We do not make a generalizability
claim, but position our findings as observations supported by our
data and research literature.

Conclusion Validity.We distributed our survey to a broad audi-
ence to collect the most relevant data for our goals. To ensure that
we asked the right questions and to avoid introducing our own
biases into the wording and selection of questions, we conducted
a series of iterative pilots to identify and address shortcomings in
the survey design. Furthermore, we included several open-ended
questions to allow participants to share their views and experiences.

8 CONCLUSION

To understand the prevalence, challenges, and tool support for
large-scale refactoring we conducted a survey with industry devel-
opers. Our analysis of data from 107 respondents, 79% of whom
reported having at least 10 years of experience, confirm that large-
scale refactoring is not an unusual occurrence. Industry systems
undergo multiple large-scale refactorings over their lifetimes and
the magnitude of effort involved in each is considerable. Refactoring
tools designed to support floss refactoring efforts are not enough to
address the breadth of activities that developers consider a part of
large-scale refactoring, and developers encounter a wide range of
challenges despite using many different kinds of tools. Our study
demonstrates a clear need for better tools and an opportunity for
researchers to make a difference in industry.

Ironically, despite identifying many challenges and weaknesses
in today’s refactoring tools, 80% of respondents report having
achieved their large-scale refactoring goals. Given the many neg-
ative consequences of forgoing refactoring, developers have little
choice but to refactor their software despite the significant amount
of effort that our results show are required. Researchers and tool
developers have an opportunity to make significant industry im-
pact by eliminating even a fraction of the time spent on large-scale
refactoring activities.

ACKNOWLEDGMENTS

This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software En-
gineering Institute, a federally funded research and development
center. References herein to any specific commercial product, pro-
cess, or service by trade name, trade mark, manufacturer, or oth-
erwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by Carnegie Mellon University or its
Software Engineering Institute. DM22-0444

1553



Industry Experiences with Large-Scale Refactoring ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

REFERENCES
[1] Chaima Abid, Vahid Alizadeh, Marouane Kessentini, Thiago do Nascimento Fer-

reira Ferreira, and Danny Dig. 2020. 30 Years of Software Refactoring Research:
A Systematic Literature Review. arXiv:2007.02194 [cs.SE]

[2] Davide Arcelli, Vittorio Cortellessa, Mattia D’Emidio, and Daniele Di Pompeo.
2018. EASIER: An Evolutionary Approach for Multi-objective Software ArchItec-
turE Refactoring. In 2018 IEEE International Conference on Software Architecture
(ICSA). IEEE, 105ś10509.

[3] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. 2014.
Recommending Refactoring Operations in Large Software Systems. In Recom-
mendation Systems in Software Engineering. Springer Berlin Heidelberg, Berlin,
Heidelberg, 387ś419.

[4] Marcus Ciolkowski, Oliver Laitenberger, Sira Vegas, and Stefan Biffl. 2003. Prac-
tical Experiences in the Design and Conduct of Surveys in Empirical Software
Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, 104ś128.

[5] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,
Robert Nord, and Judith Stafford. 2003. Documenting Software Architectures: Views
and Beyond. Addison-Wesley Professional.

[6] Danny Dig, William G. Griswold, Emerson R. Murphy-Hill, and Max Schäfer.
2014. The Future of Refactoring (Dagstuhl Seminar 14211). Dagstuhl Reports 4, 5
(2014), 40ś67.

[7] Danny Dig and Ralph Johnson. 2005. The Role of Refactorings in API Evolution.
In Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM ’05). IEEE Computer Society, USA, 389ś398.

[8] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[9] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin,
and Mohamed Wiem Mkaouer. 2021. One Thousand and One Stories: A
Large-Scale Survey of Software Refactoring. CoRR abs/2107.07357 (2021).
arXiv:2107.07357 https://arxiv.org/abs/2107.07357

[10] Thorsten Haendler. and Josef Frysak. 2018. Deconstructing the Refactoring
Process from a Problem-solving and Decision-making Perspective. In Proceedings
of the 13th International Conference on Software Technologies - ICSOFT,. INSTICC,
SciTePress, 363ś372.

[11] 2000. IEEE Recommended Practice for Architectural Description for Software-
Intensive Systems. IEEE Std 1471-2000 (2000), 1ś30.

[12] James Ivers, Chris Seifried, and Ipek Ozkaya. 2022. Untangling the Knot: En-
abling Architecture Evolution with Search-Based Refactoring. In 2022 IEEE 19th
International Conference on Software Architecture (ICSA). 101ś111.

[13] Miryung Kim, Dongxiang Cai, and Sunghun Kim. 2011. An Empirical Investi-
gation into the Role of API-Level Refactorings during Software Evolution. In
Proceedings of the 33rd International Conference on Software Engineering (Waikiki,
Honolulu, HI, USA) (ICSE ’11). Association for Computing Machinery, New York,
NY, USA, 151ś160.

[14] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A field
study of refactoring challenges and benefits. In 20th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC,
USA - November 11 - 16, 2012, Will Tracz, Martin P. Robillard, and Tevfik Bultan
(Eds.). ACM, 50.

[15] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An em-
pirical study of refactoring challenges and benefits at Microsoft. IEEE Transactions
on Software Engineering 40, 7 (2014), 633ś649.

[16] Barbara A. Kitchenham and Shari L. Pfleeger. 1995 and 1996. Principles of Survey
Research: Parts 1 ś 6. Software Engineering Notes (1995 and 1996).

[17] Barbara A. Kitchenham, Guilherme H. Travassos, Anneliese von Mayrhauser,
Frank Niessink, Norman F. Schneidewind, Janice Singer, Shingo Takada, Risto Ve-
hvilainen, and Hongji Yang. 1999. Towards an Ontology of Software Maintenance.
Journal of Software Maintenance 11, 6 (Nov. 1999), 365ś389.

[18] P.B. Kruchten. 1995. The 4+1 View Model of architecture. IEEE Software 12, 6
(1995), 42ś50.

[19] Marko Leppänen, Samuel Lahtinen, Kati Kuusinen, Simo Mäkinen, Tomi Män-
nistö, Juha Itkonen, Jesse Yli-Huumo, and Timo Lehtonen. 2015. Decision-making
framework for refactoring. In 2015 IEEE 7th International Workshop on Managing
Technical Debt (MTD). 61ś68.

[20] Yun Lin, Xin Peng, Yuanfang Cai, Danny Dig, Diwen Zheng, and Wenyun Zhao.
2016. Interactive and guided architectural refactoring with search-based rec-
ommendation. In Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE ’16). ACM, Seattle, US, 535ś546.

[21] Yun Lin, Xin Peng, Yuanfang Cai, Danny Dig, Diwen Zheng, and Wenyun Zhao.
2016. Interactive and guided architectural refactoring with search-based recom-
mendation. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 535ś546.

[22] Hui Liu, Yuan Gao, and Zhendong Niu. 2012. An Initial Study on Refactoring
Tactics. In 2012 IEEE 36th Annual Computer Software and Applications Conference.
213ś218.

[23] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel Ó Cinnéide,
and Kalyanmoy Deb. 2016. On the use of many quality attributes for software
refactoring: a many-objective search-based software engineering approach. Em-
pirical Software Engineering 21, 6 (2016), 2503ś2545.

[24] G.C.Murphy,M. Kersten, and L. Findlater. 2006. How are Java software developers
using the Eclipse IDE? IEEE Software 23, 4 (2006), 76ś83.

[25] Emerson Murphy-Hill and Andrew P. Black. 2008. Refactoring Tools: Fitness for
Purpose. IEEE Software 25, 5 (2008), 38ś44.

[26] Emerson Murphy-Hill, Chris Parnin, and Andreaw P. Black. 2012. How We
Refactor, and How We Know It. IEEE Transactions on Software Engineering 38, 1
(2012), 5ś18.

[27] Emerson R Murphy-Hill and Andrew P Black. 2007. Why don’t people use
refactoring tools?. InWRT. 60ś61.

[28] William F Opdyke. 1992. Refactoring object-oriented frameworks. (1992).
[29] Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Christian D. New-

man, Mohamed Wiem Mkaouer, and Ali Ouni. 2022. How do i refactor this? An
empirical study on refactoring trends and topics in Stack Overflow. Empir. Softw.
Eng. 27, 1 (2022), 11.

[30] Gustavo H. Pinto and Fernando Kamei. 2013. What Programmers Say about
Refactoring Tools? An Empirical Investigation of Stack Overflow. In Proceedings of
the 2013 ACM Workshop on Workshop on Refactoring Tools (Indianapolis, Indiana,
USA) (WRT ’13). Association for Computing Machinery, New York, NY, USA,
33ś36.

[31] Luca Rizzi, Francesca Arcelli Fontana, and Riccardo Roveda. 2018. Support for
Architectural Smell Refactoring. In Proceedings of the 2nd International Workshop
on Refactoring (Montpellier, France) (IWoR 2018). Association for Computing
Machinery, New York, NY, USA, 7ś10.

[32] Johnny M Saldana. 2015. The Coding Manual for Qualitative Researchers. 3rd ed.
SAGE Publication.

[33] Tushar Sharma, Girish Suryanarayana, and Ganesh Samarthyam. 2015. Chal-
lenges to and Solutions for Refactoring Adoption: An Industrial Perspective. IEEE
Software 32, 6 (2015), 44ś51.

[34] Danilo Silva, Nikolaos Tsantalis, andMarco Tulio Valente. 2016. Whywe refactor?
confessions of GitHub contributors. Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Nov 2016).

[35] Leonardo Sousa, Willian Oizumi, Alessandro Garcia, Anderson Oliveira, Diego
Cedrim, and Carlos Lucena. 2020. When Are Smells Indicators of Architectural
Refactoring Opportunities: A Study of 50 Software Projects. In Proceedings of
the 28th International Conference on Program Comprehension (Seoul, Republic of
Korea) (ICPC ’20). Association for Computing Machinery, New York, NY, USA,
354ś365.

[36] Ricardo Terra, Marco Tulio Valente, Krzysztof Czarnecki, and Roberto S Bigonha.
2012. Recommending refactorings to reverse software architecture erosion. In
2012 16th European Conference on Software Maintenance and Reengineering. IEEE,
335ś340.

[37] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P.
Bailey, and Ralph E. Johnson. 2012. Use, disuse, and misuse of automated refac-
torings. In 2012 34th International Conference on Software Engineering (ICSE).
233ś243.

[38] Hanzhang Wang, Marouane Kessentini, and Ali Ouni. 2021. Interactive Refac-
toring of Web Service Interfaces Using Computational Search. IEEE Trans. Serv.
Comput. 14, 1 (2021), 179ś192.

[39] Peter Weißgerber and Stephan Diehl. 2006. Are Refactorings Less Error-Prone
than Other Changes?. In Proceedings of the 2006 International Workshop on Mining
Software Repositories (Shanghai, China) (MSR ’06). Association for Computing
Machinery, New York, NY, USA, 112ś118.

[40] Hyrum Wright. 2019. Lessons Learned from Large-Scale Refactoring. In 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME).
366ś366.

[41] Hyrum K. Wright, Daniel Jasper, Manuel Klimek, Chandler Carruth, and Zhany-
ong Wan. 2013. Large-Scale Automated Refactoring Using ClangMR. In 2013
IEEE International Conference on Software Maintenance. 548ś551.

[42] Olaf Zimmermann. 2017. Architectural refactoring for the cloud: a decision-
centric view on cloud migration. Computing 99, 2 (2017), 129śś145.

1554

https://arxiv.org/abs/2007.02194
https://arxiv.org/abs/2107.07357
https://arxiv.org/abs/2107.07357

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 LSR is an open industry challenge
	4.1 Prevalence of LSR
	4.2 Reasons for LSR
	4.3 Forgoing LSR

	5 Inadequate tool support for LSR
	5.1 Tools Used
	5.2 Refactoring Activities
	5.3 Tool Effectiveness

	6 Foundational features are needed
	6.1 Activity Challenges
	6.2 Assessment of Current Tools
	6.3 Interest in Intelligent Tools

	7 Discussion
	7.1 Comprehension Recommendations
	7.2 Testing Recommendations
	7.3 Stakeholder Recommendations
	7.4 Threats to Validity

	8 Conclusion
	Acknowledgments
	References

