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Abstract

The inner ear of teleost fishes is composed of three paired multimodal otolithic end organs (saccule, utricle, and lagena), which
encode auditory and vestibular inputs via the deflection of hair cells contained within the sensory epithelia of each organ.
However, it remains unclear how the multimodal otolithic end organs of the teleost inner ear simultaneously integrate vestibular
and auditory inputs. Therefore, microwire electrodes were chronically implanted using a 3-D printed micromanipulator into the
utricular nerve of oyster toadfish (Opsanus tau) to determine how utricular afferents respond to conspecific mate vocalizations
termed boatwhistles (180 Hz fundamental frequency) during movement. Utricular afferents were recorded while fish were pas-
sively moved using a sled system along an underwater track at variable speeds (velocity: 4.0–12.5 cm/s; acceleration: 0.2–2.6
cm/s2) and while fish freely swam (velocity: 3.5–18.6 cm/s; acceleration: 0.8–29.8 cm/s2). Afferent fiber activities (spikes/s)
increased in response to the onset of passive and active movements; however, afferent fibers differentially adapted to sustained
movements. In addition, utricular afferent fibers remained sensitive to playbacks of conspecific male boatwhistle vocalizations
during both passive and active movements. Here, we demonstrate in alert toadfish that utricular afferents exhibit enhanced activ-
ity levels (spikes/s) in response to behaviorally relevant acoustic stimuli during swimming.

NEW & NOTEWORTHY The inner ear of teleost fishes is composed of three paired multimodal otolithic end organs, which are
sensitive to vestibular and auditory inputs. Previous studies investigating inner ear functions have primarily focused on the
effects of unimodal stimuli; therefore, it remains unclear how otolithic end organs simultaneously encode multiple stimuli. Here,
we show that utricular afferents remain sensitive to behaviorally relevant acoustic stimuli during swimming.

auditory; fish hearing; swimming; utricle; vestibular

INTRODUCTION

The vertebrate inner ear functions to maintain equilib-
rium and detect auditory stimuli. Across vertebrates, the ves-
tibular function of the inner ear semicircular canals and the
multimodal functions (vestibular and auditory) of the oto-
lithic end organs have remained highly conserved since their
evolution in teleost fishes. However, in concert with the
change from an aquatic environment, terrestrial vertebrates
have evolved specialized auditory sensors that allow for the
detection of airborne acoustic stimuli (1–4). Thus, given that
teleost fishes lack separate hearing organs, the multimodal
otolithic end organs (saccule, utricle, and lagena) function as
both linear accelerometers (vestibular) and act as the pri-
mary auditory sensors (5–8). Surprisingly, how fishes simul-
taneously integrate exafferent (externally derived) acoustic

signals during reafferent (self-induced) vestibular stimula-
tion continues to remain unclear.

Across vertebrates, it is widely agreed that auditory and
vestibular efferent fibers function to modulate the gain of
afferent hair cells and afferent encoding mechanisms (9–12).
However, among anamniote vertebrates, the efferent system
has been shown to differently modulate the inner ear audi-
tory and vestibular systems and the mechanosensory lateral
line. For example, inner ear efferents both excite (13–15) and
inhibit (16–18) afferent fiber firing rates during efferent stim-
ulation, whereas lateral line afferent hair cell signals are sup-
pressed by neurons in higher-order central brain regions
(19–22) and inhibited via efferent signaling at the periphery
(23–27). However, these studies were primarily conducted in
stationary, restrained, or fictive swimming animals, which
does not recapitulate the motor output and motion-derived
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sensory reafference experienced by free-swimming animals.
Thus, it remains unclear how the multimodal inner ear in
naturally behaving aquatic animals retain exafferent sensi-
tivity during reafferent stimulation such as swimming.

The oyster toadfish (Opsanus tau) is a seasonally breed-
ing fish that relies upon the production and reception of
social acoustic signals to mediate reproductive encounters.
Therefore, toadfish have served as a well-suited model for
investigating the vestibular and auditory functions of the inner
ear, including the semicircular canals (17, 28–30), saccule (31–
33), and utricle (34–37). During late spring and summer, male
toadfish establish nests in shallow waters off the eastern coast
of the United States and acoustically attract gravid females via
courtship vocalizations, termed boatwhistles, for reproduction
(38–40). The ability of gravid female toadfish to detect the ad-
vertisement calls of courting males is critical to their reproduc-
tive success and has been shown to be mediated via the lateral
line (41–43), saccule (32, 33), and utricle (37). However, female
fish must also actively localize courting males, which is a
motor-driven behavior that results in reafferent vestibular
stimulation, to successfully reproduce. Therefore, female fish
must maintain exafferent auditory sensitivity to male adver-
tisement calls during active sound source localization. Yet,
how this is accomplished remains to be known.

Investigations into neuronal exafference sensitivity dur-
ing reafferent stimulation in free-swimming, naturally
behaving fishes have yet to be conducted because of chal-
lenges with electrode stability, movement artifacts, and
entanglement of tethers. Therefore, research has continued
to rely upon fictive preparations, which provide valuable
insights into the neural processes during the generation of
motor signals but does not recreate the reafferent inputs
experienced by free-swimming animals. However, recent
advancements in three-dimensional (3-D) printed implant-
able micromanipulators (44) have allowed for long-duration
chronic neural recordings in free-swimming fish following
implants, which supports sustained neural recordings in ani-
mals exhibiting natural behaviors such as swimming (42).

Here, we use this recently developed implantablemicroma-
nipulator recording technique to test the hypothesis that the
inner ear can simultaneously encode behaviorally relevant
reafferent vestibular and exafferent auditory inputs. We con-
ducted recordings from the toadfish utricle, an end organ that
is primarily thought to serve a vestibular function (34, 35, 45–
47) but also functions to transduce behaviorally relevant audi-
tory inputs in toadfishes (37, 48). We compare utricular affer-
ent firing rates during passive and active movements to
determine the effect movement has on utricular activity lev-
els. In addition, we compare how passive and active move-
ments affect toadfish utricular afferents ability to encode
conspecific vocalizations. We show that during passive and
active movements, utricular afferent fibers increase their fir-
ing rates (spikes/s) during movement but remain sensitive to
playbacks of behaviorally relevant auditory playbacks.

MATERIALS AND METHODS

Animal Husbandry

Adult toadfish (n = 15 females, n = 9males; standard length
29.5± 1.9 cm; body mass 703.3± 119.5 g; means ± SD) were

obtained from the Marine Biological Laboratory in Woods
Hole, MA. Fish were kept in large flow-through seawater
tanks and maintained at ambient water temperatures
(20±2�C). All experimental procedures conformed to NIH
guidelines for animal care and use of animals and were
approved by the Marine Biological Laboratory Institutional
Animal Care and Use Committee under Protocol ID: 19-29.

Micromanipulator and Microwire Electrode Fabrication

Microwire electrodes were custom fabricated and inte-
grated into a 3-D printed implantable micromanipulator
(44). The micromanipulator (10 � 10 � 15 mm; 4.4 g) con-
sisted of five parts (base, body, nut, screw drive, and elec-
trode holder) that were fabricated with a Formlabs Form 2
3-D printer using clear photopolymer resin (Somerville,
MA) (Fig. 1A). The electrodes were made by threading
three insulated (250 mm outer diameter), silver-coated
multistrand (seven wires per strand) copper wires (New
England Wire Technologies, Lisbon, NH) through the body
and electrode holder of the micromanipulator. The wire
protruding from the back of the manipulator was soldered
to insulated silver wires (320 mm) that terminated into an
underwater connector and sealed with liquid electrical
tape (Star brite, Fort Lauderdale, FL). Polyimide tubing (2
mm, 300 mm inner diameter) filled with conductive silver
paint (GC Electronics, Rockford, IL) was used to join each
multistrand wire to a 1 cm length of 10% platinum/iridium
microwire (20 mm diameter, Sigmund Cohn, Mt. Vernon,
NY). The three microwires were placed in a 3 mm segment
of polyimide tubing (120 mm inner diameter) to maintain
the electrode tips in close proximity, with �2 mm of micro-
wire protruding from the tubing. UV light-cured glue
(Bondic; Aurora, Ontario, Canada) was used to insulate the
final assembly and secure the polyimide tubing to the elec-
trode holder. The impedance of all microwire electrodes
was determined using an impedance-test unit (FHC, Inc.;
Bowdoinham, ME), and only electrodes with an imped-
ance between 0.7 and 1.8 MXwere used in recordings.

Microwire Electrode Implant

During microwire electrode implants, toadfish were anes-
thetized by immersion in 0.005% tricaine solution and then
immobilized with an intramuscular injection of 0.01% pancu-
ronium bromide (600 mg/kg). Fish were placed within a cus-
tom stereotactic aquarium on a vibration isolation table, and
a small medial incision through the dorsal musculature was
made to expose the posterior dorsal surface of the skull. A
small craniotomy was made lateral to the sagittal crest to ex-
pose the utricular nerve and otolith (Fig. 1B). The micromani-
pulator was secured with cyanoacrylate gel to the dorsal
surface of the skull, and microwires were implanted by man-
ually advancing the screw drive of the micromanipulator into
the utricular nerve anterior to its projection from the anterior
ramus of the VIII nerve (Fig. 1B, red regions). At this location,
the utricular nerve has completely separated from the saccu-
lar nerve and contains only utricular fibers. Horizontal move-
ments of the vibration isolation table confirmed that afferents
were modulated by linear motion. The craniotomy was then
sealed with cyanoacrylate gel, and the fascia and epidermis
were sutured tightly around the micromanipulator to create a
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watertight seal. Toadfish then were placed in the experi-
mental arena and allowed to recover for 90 min, which is a
sufficient amount of time for the tricaine solution and
pancuronium injection to wash out (51).

Experimental Setup

The experimental arena consisted of a grounded circular
fiberglass tank (350 L; 90 cm diameter � 55 cm; 50-cm water
depth) placed on a 5-cm rubber mat on cinderblocks (40 �
20� 10 cm) tominimize vibrations. An acrylic track (80� 25�
1.5 cm) with two parallel rails (80 � 4 � 1.5 cm) positioned

8 cm apart was elevated off the bottom of the arena by two
acrylic supports (1.5 � 30 � 8 cm). An underwater speaker
(Clark Synthesis AQ-339, Littleton, CO) was positioned
upright on the bottom of the tank, �30 cm perpendicular
to the midpoint of the sled track (Fig. 2A). A USB camera
(30 fps; 640 � 480 resolution; Svpro, New York, NY) was
positioned 175 cm above the water surface to monitor fish
movements.

Toadfish were allowed to swim spontaneously or were
passively moved forward on a 3-D printed sled (12.5 � 7.5 �
2.5 cm, weight: 125 g). The sled was placed on the under-
water track, and fish were affixed to the sled with plastic
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Figure 1. Utricular afferent neural recording and spike sorting paradigm. A: schematic of the three-dimensional (3-D) printed implantable micromanipula-
tor used to implant microwire electrodes for chronic neural recordings. B, left: dorsal view of oyster toadfish brain and inner ear. The blue dashed circle
highlights the utricle (U) while the red region indicates the implant position of microwire electrodes. Right: diagram of toadfish brain and inner ear: dorsal
view showing the general location of nerve fibers and auditory regions. The red-colored area indicates the region where utricular (U) afferent recordings
occurred. Roman numerals indicate cranial nerves. The schematic was based on Refs. 49 and 50. C: raw neural activity of a representative utricular affer-
ent. Individual spikes were differentiated based on waveform template matching (left). For the representative waveform template, the gray lines indicate
individual spikes, and the black line represents the mean waveform. Black horizontal lines represent the position of sorted spikes based on spike sorting
analysis. AC, anterior canal; AR, anterior ramus; C, cerebellum; HC, horizontal canal; L, lagena; M, midbrain; PC, posterior canal; PLLN, posterior lateral
line nerve; PR, posterior ramus; S, saccule; T, telencephalon.
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Figure 2. A: schematic of the experimental arena. Toadfish were passively moved (�75 cm) from position 1 to 2 while attached to a three-dimensional
(3-D) printed sled (12.5 � 7.5 � 2.5 cm) on a track by a motorized winch system at variable speeds. Alternatively, fish freely swam throughout the experi-
mental arena when the sled track was removed. An underwater speaker was positioned upright �30 cm perpendicular from the midpoint of the sled
track. Note that the schematic is not drawn to scale. B: sound pressure level (dB re: 1 mPa) maps of the experimental arena. Left: background sound pres-
sure level (dB re: 1 mPa) map. Right: sound map during boatwhistle (425 ms duration; 180 Hz fundamental frequency) playbacks. All sound stimuli were
presented at a sound pressure level of approximately 130 dB re: 1 mPa. Sound maps were constructed from sound pressure level (dB re: 1 mPa) measure-
ments made at 62 points throughout the experimental arena 12.5 cm from the bottom (37.5 cm water depth). Gray dashed lines indicate the position of
the sled rails, which were located 9.5 cm from the bottom (40.5 cmwater depth) and guided the affixed toadfish during passive sled movement.
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electrical ties around their mid-section. A custom-fabricated
R/C motorized (Uxcell, Hong Kong) winch system, with
monofilament as the cable, was secured to the upper rim of
the tank opposite the fish’s initial position and was used to
move the fish/sled forward at three speeds [slow (5.51±0.85
cm/s, 0.46±0.12 cm/s2); velocity, acceleration; medium
(7.91 ± 1.11 cm/s, 0.94±0.20 cm/s2); and fast (11.02± 1.06 cm/s,
1.71 ±0.34 cm/s2)]. The monofilament was threaded through
an underwater pulley positioned at track level to ensure the
sled maintained contact with the track during movement
(Fig. 2A).

Acoustic Stimulus and Calibration

The underwater speaker connected to a mixer amplifier
(Bosch Plena; Farmington Hills, MI) delivered the acoustic
stimulus, which consisted of either a continuous 60 s pure
tone (125, 150, 175, and 200 Hz) created with a function gen-
erator (Model: AFG1022; Tektronix Co. Ltd., Shanghai,
China) or a playback of a field recorded male toadfish boat-
whistle (180 Hz fundamental frequency; 425 ms duration)
with a duty cycle of 0.425 s on followed by 3.575 s off. Prior to
each trial, the sound pressure level (dB re: 1 mPa) of all under-
water acoustic stimuli was measured throughout the experi-
mental tank using a calibrated hydrophone [HTI-96-MIN,
open-circuit voltage (OCV) with preamp battery = �165 dB
re: 1 V/mPa; High Tech Inc., Long Beach,MS], which was posi-
tioned 12.5 cm from the bottom (37.5 cm water depth), and
connected to a PowerLab data acquisition system (Model 8/
35; ADInstruments Inc., Colorado Springs, CO). Underwater
acoustic stimuli were calibrated by determining the root
mean square (rms) voltage (Vrms) of the measured analog
acoustic stimulus. Using a custom MATLAB (v. 2017;
MathWorks Inc., Natick, MA) script, the measured Vrms val-
ues were converted to dB and then corrected for the open-
circuit voltage (Eq. 1). The signal (Vrms) was scaled until the
measured sound pressure level (dB re: 1 mPa) output from the
speaker was 130±2 dB re: 1 mPa along the length of the sled
track (Fig. 2B)

dBrms re: 1 lPa ¼ 20Log10 Vrmsð Þ �OCV: ð1Þ

Experimental Protocol

Following a recovery period of at least 90 min, after the
implanted fish was moved to the experimental tank, the
microelectrode underwater connector was coupled to a
waterproof tether (�3 m) that connected to a differential am-
plifier (�1,000; Dagan Corporation, Minneapolis, MN). The
neural signal (Fig. 1C) was filtered (0.03–5 kHz), recorded
using Spike2 software (v. 8; Cambridge Electronic Design
Ltd., Cambridge, UK), and monitored and stored on a porta-
ble computer. Two of the three microwire electrodes from
each implant were chosen for recording based on signal fi-
delity. Before conducting physiology experiments, individ-
ual spikes were discriminated for each implant recording
session using Spike 2 (v. 8; Cambridge Electronic Design
Ltd., Cambridge, UK) waveform template matching (Fig. 1C,
left). If the utricular neural signal became lost or diminished
during experimental testing, the screw drive of the microma-
nipulator was adjusted to reposition the electrodes. Once
high fidelity utricular afferents were re-acquired, individual

spikes were discriminated and characterized to determine if
the same utricular unit(s) were maintained or if new unit(s)
had been attained (44). If the same unit(s) were obtained, ex-
perimental trials were resumed; however, if new unit(s) were
isolated all experimental trials were repeated. Throughout
the manuscript, the number of animals and utricular fibers
recorded is presented as (n = no. of animals, no. of fibers),
and individuals are identified by TF#-letter indicating a dif-
ferent utricular fiber (e.g., TF1-A, TF1-B).

For the initial acoustic experiments, stationary toadfish
(n = 3, 4; no. of animals, no. of fibers) were positioned in the
center of the tank with the cone of the underwater speaker
positioned lateral, and �30 cm from the ipsilateral side of
the implant. Stationary fish were exposed to 60 s of continu-
ous pure tone acoustic stimuli (125–200 Hz in 25 Hz steps)
and a minimum of 10 consecutive boatwhistle vocalization
playbacks (425 ms duration; fundamental frequency = 180
Hz; duty cycle = 0.425/3.575 s on/off) while utricular neural
activity was recorded. If the fish moved during these trials, it
was re-positioned in the center of the tank before subsequent
testing.

During passivemovement trials, fish (n = 18, 33) were posi-
tioned on the far right of the tank (Fig. 2A, position 1) and 30
s of spontaneous utricular activity was recorded. Fish were
then pulled across the tank (� 75 cm) to the opposite side
(Fig. 2A, position 2), and then spontaneous utricular afferent
fiber activity was recorded for an additional 30 s. The fish/
sled was pulled forward for a minimum of five trials at each
speed, with a recovery period of 120 s between each trial. In
addition, during the slow speed trials, utricular afferent fiber
activity was recorded with and without boatwhistle play-
backs. During the acoustical stimulus trials (n = 5–10/fish), 5
boatwhistle playbacks were presented pre- and postmove-
ment; however, during transit, there was only time for one
boatwhistle per track segment (initial, middle, and end) due
to the duration of sled movements. The angle of the speaker
relative to the midline of the anterior portion of the fish was
approximately at 30� (premovement), 45�–75� (initial), 75�–
105� (middle), 105�–135� (end), and 150� (postmovement)
during playbacks. Alternatively, fish (n = 6, 6) were also
allowed to freely swim throughout the experimental arena
after the underwater track was removed, and neural activity
was recorded with and without boatwhistle playbacks (n = 5/
fish).

Particle Acceleration

The inner ear otolithic end organs of fishes contain dense
calcium carbonate otoliths that rest on a sensory bed of hair
cells and act as inertial accelerometers that are sensitive to
local particle motion and respond to changes in linear accel-
eration induced by both self-motion and acoustic stimuli. It
remains to be determined if oyster toadfish are sensitive to
sound pressure (dB re: 1 mPa), which is transmitted via local
particle motion (dB re: 1 m/s2) generated by pressure wave-
induced vibrations of the swim bladder when exposed to
sound pressure signals; however, in recent studies in a
closely related toadfish species, the plainfin midshipman
(Porichthys notatus) have demonstrated sound pressure (dB
re: 1 mPa) sensitivity (52, 53). Therefore, in addition to meas-
uring the sound pressure levels (dB re: 1 mPa) of the acoustic
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stimuli, particle acceleration levels (dB re: 1 m/s2) for back-
ground conditions, passive movements (slow, medium, and
fast), and boatwhistle playbacks were determined along the
track using a calibrated waterproofed triaxial accelerometer
[Model: W356A12/NC; Sensitivity: x = 10.47 mV/(m/s2); y =
10.35 mV/(m/s2); z = 10.29 mV/(m/s2); PCB Piezotronics,
Depew, NY]. The triaxial accelerometer was connected to a
signal conditioner (Model: 482 C; PCB Piezotronics, Depew,
NY) and monitored with a PowerLab data acquisition system
running LabChart software (v. 8; ADInstruments, Colorado
Springs, CO). Particle acceleration (dB re: 1 m/s2) during pas-
sive movements was measured throughout the duration of
movement while the accelerometer was attached to the sled
at the position of the fish’s head and pulled along the track
at the three speeds (slow, medium, and fast). To determine
particle acceleration levels (dB re: 1 m/s2) for background
conditions (i.e., no stimulus) and during boatwhistle play-
backs, the accelerometer was made neutrally buoyant using
polystyrene insulation sheathing (41) and suspended at the
position of the fish before movement (premovement), at the
midpoint of each track segment (initial, middle, and end)
and after movement (postmovement). All measurements
were made �6 cm above the track to correspond with the
utricle location during passive movement trials. Background
particle acceleration levels (dB re: 1 m/s2) were determined
over a 10-s interval when all stimuli were absent, whereas
particle acceleration levels (dB re: 1 m/s2) of boatwhistle
playbacks were determined throughout the duration of the
stimulus epoch at each track segment. Particle acceleration
(dB re: 1 m/s2) was calculated with a custom MATLAB (v.
2017; MathWorks Inc., Natick, MA) script, where the root
mean square (rms) voltage (Vrms) values of each axis (x-, y-,
and z-axes) were calibrated to the sensitivity of the acceler-
ometer and used to calculate the magnitude of particle accel-
eration in the dB scale (Eq. 2) (54, 55) as follows:

dB re: 1 m=s2 ¼ 20Log10ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
Þ: ð2Þ

Kinematic Measurements

Toadfish kinematic measurements were made using cus-
tom software developed in MATLAB (v. 2017; MathWorks
Inc., Natick, MA). Kinematic data were collected for all trials
using overhead video recordings (30 fps; 640 � 480 resolu-
tion). Toadfish position was tracked manually by using the
screw drive of the implanted micromanipulator as a refer-
ence point and then filtered with smoothening splines.
Using positional data, instantaneous velocities (v; cm/s) and
accelerations (a; cm/s2) were determined using the following
equations:

v ¼ ðsiþ 1 � siÞ=ðtiþ 1 � tiÞ ð3Þ

a ¼ ðviþ 1 � viÞ=ðtiþ 1 � tiÞ; ð4Þ

where velocity (v; cm/s) is equal to the change in fish posi-
tion (siþ 1 � si) over a given time period (tiþ 1 � ti), whereas
linear acceleration (a; cm/s2) is equal to the change in veloc-
ity (viþ 1 � vi) over a given time period (tiþ 1 � ti). The magni-
tude of velocities (v; cm/s) and accelerations (a; cm/s2)
during self-generated movements were determined using
the following equations:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ 1 � xiÞ
ðtiþ 1 � tiÞ

� �2

þ ðyjþ 1 � jÞ
ðtiþ 1 � tiÞ

� �2
s

ð5Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvxiþ 1 � vxiÞ
ðtiþ 1 � tiÞ

� �2

þ ðvyjþ 1 � vyjÞ
ðtiþ 1 � tiÞ

� �2
s

ð6Þ

where the magnitude of the velocity (v; cm/s) is the root
mean square of the toadfish position along the x- and y-axes
over time (tiþ 1 – ti), whereas acceleration (a; cm/s2) is the
root mean square of the toadfish velocity (v; cm/s) along the
x- and y-axes over time.

Analyses

During experimental recording trials, neural activity and
acoustic stimuli were recorded using a CED Micro 1401 data
acquisition unit, and Spike2 software (v. 8; Cambridge
Electronic Design Ltd., Cambridge, UK). Individual utricular
afferent fibers were discriminated offline using Spike2 (v. 8;
Cambridge Electronic Design Ltd., Cambridge, UK) via a sys-
tematic comparison of spike features including waveform
amplitude and duration via template matching. Afferent
fiber firing rates (spikes/s) were analyzed using MATLAB (v.
2017; MathWorks Inc., Natick, MA). All data passed normal-
ity testing except for particle acceleration level (dB re: 1 m/s2)
measurements, which were analyzed using nonparametric
tests.

Spontaneous firing rates (spikes/s) were determined as the
number of spikes over a 10-s interval when all sensory stim-
uli were absent while firing rates (spikes/s) during move-
ments were calculated as the number of spikes throughout
the duration of movement and boatwhistle-evoked firing
rates (spikes/s) were determined as the number of spikes
during each stimulus epoch (425 ms duration). The coeffi-
cient of variation (CV), which is a dimensionless ratio of the
standard deviation to mean interspike interval duration, was
also determined for each fiber. Utricular fibers were then
characterized as regular (normal distribution; CV < 0.4) or
irregular (non-normal distribution; CV � 0.4) based on their
interspike interval histograms and CV values.

During passive movement trials when the acoustic stimu-
lus was absent, utricular fibers were classified as either slow
adapting, which was characterized by an initial increase in
firing followed by a sustained response above spontaneous
rates (spikes/s) throughout movement, or fast adapting,
which displayed peak firing rates (spikes/s) within one sec-
ond of movement followed by a return to ±5% of baseline
rates during the remainder of passive movement. During
passive sled movements, linear models were constructed to
determine if there was a significant (P < 0.05) correlation
between utricular afferent activity levels (spikes/s) and the
velocity (cm/s) and acceleration (cm/s2) of passive move-
ments (slow, medium, and fast). To determine differences
between particle acceleration levels (dB re: 1 m/s2) during
passive movements (slow, medium, and fast) in the absence
of acoustic stimuli, a Kruskal–Wallis one-way ANOVA was
conducted followed by a Dunn–Holm post hoc test.

To determine if there were significant differences in utric-
ular fiber activities (spikes/s) in response to boatwhistle play-
backs while stationary, and during slow sled movements
with or without boatwhistle playbacks, a one-way repeated-
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measures ANOVA followed by pairwise comparison post hoc
testing with a Holm correction was conducted. In addition, a
Kruskal–Wallis one-way ANOVA followed by a Dunn–Holm
post hoc test compared particle acceleration levels (dB re: 1
m/s2) during boatwhistle playbacks while stationary and
during passivemovement and background conditions.

During swimming, a linear model correlated swimming
accelerations with firing rates (spikes/s). In addition, a one-
wayrepeated-measuresANOVAfollowedbypairwisecompari-
son post hoc testing with aHolm correction compared sponta-
neous firing rates (spikes/s) to the firing rates of fish while
stationary during boatwhistle playbacks and while swimming
in thepresence andabsenceof boatwhistle playbacks.

For stationary acoustic trials, a Student’s t test was con-
ducted to compare spontaneous and evoked (pure tone and
boatwhistle) utricular afferent firing rates (spikes/s). Phase-
locking analysis of utricular fibers in response to pure tones
and boatwhistle playbacks was determined by calculating
the synchronization coefficient, R, according to Goldberg
and Brown (56) (Eq. 7) as follows:

R ¼ 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X
cos hið Þ � nhi

�2

þ
�X

sin hið Þ � nhi

�2
s

:

ð7Þ
Here, phase angle (hi) ranges from 0 to 2p, nhi is equal to

the number of discharges at a given hi, and n represents the
total number of discharges occurring between 0 and 2p. A
minimum of 350 action potentials were used for phase-lock-
ing analysis. Strong phase-locking was defined as R > 0.5,
whereas weak phase-locking was represented by R� 0.5 (56).
Given that a small sample size (n) may misrepresent R, the
Rayleigh statistic (Z), which is a combined measure of n and

R defined as n � R2, was calculated to determine whether R
was statistically significant (Z > 6.91; P < 0.001) (57, 58).
Phase-locking in response to boatwhistle playbacks was con-
ducted relative to the tonal portion of the call (Fig. 3C).
Phase-locking was determined relative to the stimuli’s fun-
damental frequency for all acoustic stimuli. Phase-locking
analysis in response to boatwhistles playbacks during slow
passive movements was conducted before movement, at the
track’s initial, middle, and end segments, and postmove-
ment. Phase histograms, which were binned in 3� incre-
ments, for each position, were then pooled across trials, and
R and Zwere determined.

RESULTS
The activity of 40 utricular afferent fibers was recorded

from 24 toadfish. All units exhibited spontaneous firing rates
ranging from 2.8 to 76.7 spikes/s (22.7 ± 15.5 spikes/s; means ±
1 SD). The units were comprised predominately of irregular-
type fibers (n = 35 fibers; CV> 0.4) with the remainder of the
units displaying regular firing patterns (n = 5 fibers; CV <
0.4).

To ensure that the newly developed micromanipulator
did not affect utricular afferent sensitivity, several fish (n = 3,
4; no. animals, no. fibers) were positioned 30 cm from the
underwater speaker, and neural activities in response to
pure tones (125, 150, 175, and 200 Hz) were recorded. The
evoked firing rates (spikes/s) of all recorded fibers signifi-
cantly increased (Student’s t test, P < 0.05) above spontane-
ous resting rates (spikes/s) in response to acoustic stimuli. In
addition, these fibers displayed significant phase-locking in
response to acoustic stimuli while stationary. Figure 3A illus-
trates the phase-locking analysis for utricular fiber TF5-A,
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Figure 3.Utricular afferent response to pure tone stimuli (A and B) and boatwhistle playbacks (C). All auditory stimuli were presented at a sound pressure
level of 130 ±2 dB re: 1 mPa. A: phase histograms show the total number of spikes versus one sinusoidal cycle for utricular afferent fiber TF5-A in
response to pure tone stimuli [i) 125 Hz, ii) 150 Hz, iii) 175 Hz, and iv) 200 Hz]. B: Rayleigh statistic (Z) is plotted against the coefficient of synchronization
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UTRICULAR RESPONSE TO MULTIMODAL INPUTS

J Neurophysiol � doi:10.1152/jn.00483.2021 � www.jn.org 369
Downloaded from journals.physiology.org/journal/jn at Univ of Minnesota (134.084.192.101) on January 9, 2023.

http://www.jn.org


which strongly and significantly phase-locked to 150, 175,
and 200 Hz pure tones (150 Hz: R = 0.76, Z = 1,387.3; 175 Hz:
R = 0.75, Z = 1,074.8; 200 Hz: R = 0.61, Z = 1,061. 1) and weakly
phase-locked to 125 Hz (R = 0.29, Z = 241.5). Figure 3B dis-
plays the phase-locking responses of three additional utricu-
lar afferents (TF4-A, TF5-B, and TF7-A) in response to pure
tones. Utricular afferents also responded to conspecific boat-
whistle vocalization playbacks (Fig. 3Ci) by significantly
increasing (Student’s t test, P < 0.05) their firing rates
(spikes/s) during stimulus presentation and exhibiting
strong (R > 0.5) and significant phase-locking (Z > 6.91, P <
0.001) to the tonal portion of the boatwhistle vocalization
playback (Fig. 3Cii).

Utricular Activity during Passive Movement

The duration (s), velocity (cm/s), and acceleration (cm/s2)
of passive movements were inversely correlated to toadfish
body mass (range 482.0–941.4 g), with heavier fish traveling
slower along the track resulting in reduced velocities (cm/s)
and accelerations (cm/s2). Regardless, all afferent fibers (n =
18, 33) tested increased their firing rates (spikes/s) at the
onset of movement. During passive movements, 15 utricular
afferent fibers from 10 toadfish were maintained through all
three speeds (slow, medium, and fast: n = 5 trials/speed).
Figure 4A displays the spontaneous and passive movement
evoked activities (spikes/s) of the utricular fibers (n = 10, 15)
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that were held throughout all three speeds plotted against
mean linear i) velocity (cm/s) and ii) acceleration (cm/s2) for
all trials conducted (n = 225). During passive movements,
there was a significant (P < 0.001) positive correlation
between utricular fiber firing rates (spikes/s) and passive
movement velocity (r2 = 0.14) and acceleration (r2 = 0.14).
However, the sustained firing patterns of utricular afferent
fibers varied over the duration of passive movement. The
majority (n = 28) of the 33 afferent fibers tested during pas-
sive movements were slow adapting and exhibited a phasic
response at the onset of movement with a modest decrease
in firing rate that was sustained above baseline throughout
passive movements. In contrast, fast adapting fibers (n = 5)
exhibited phasic response patterns, which increased firing
rates during the initial phase of acceleration increase before
returning to ±5% of baseline activity levels throughout the
duration of passive movement. Figure 4B illustrates the neu-
ral activity (spikes/s) of a representative fast (TF27-A) and
slow (TF29-B) adapting fiber during slow, medium, and fast
passive movements. In addition, because the inner ear trans-
duces changes in linear acceleration, particle acceleration
levels (dB re: 1 m/s2) during slow, medium, and fast passive
sled movements were compared with background particle
acceleration levels (dB re: 1 m/s2). Based on these measure-
ments, it was observed that particle acceleration levels (dB
re: 1 m/s2) significantly increased (Kruskal–Wallis ANOVA,
v23;3703 = 2803, P < 0.001) above median background levels
(control; median =�48.27 dB re: 1 m/s2) during slow (median =
�21.89 dB re: 1 m/s2), medium (median =�18.68 dB re: 1 m/s2),
and fast (median = �14.09 dB re: 1 m/s2) passive sled move-
ments, and that particle acceleration levels (dB re: 1 m/s2)
significantly increased as passive sled movement speed
increased (Fig. 4C, Dunn–Holm, P < 0.001).

The activities (spikes/s) of utricular afferent fibers (n = 12,
22) were also determined during slow passive movements
(5.51 ±0.85 cm/s, 0.46±0.12 cm/s2) in response to boatwhistle
playbacks (130±2 dB re: 1 mPa; Fig. 2B). Figure 5, A and B
illustrates the utricular activity (spikes/s) of a representative
slow (TF18-B) and fast (TF26-A) adapting fiber before, dur-
ing, and after slow passive movement in the i) absence and
ii) presence of boatwhistle playbacks. Both afferents
increased their firing rates (spikes/s) in response to passive
movements (Fig. 5, Ai and Bi), and boatwhistle playbacks
while stationary and during passive movements (Fig. 5, Aii
and Bii). In addition, both fibers displayed strong (R > 0.50)
and significant (Z > 6.91, P < 0.001) phase-locking to the
tonal portion of boatwhistle vocalization playbacks through-
out passive movement (Fig. 5, Aiii and Biii). Figure 5C illus-
trates the response (spikes/s) of all fibers (n = 12, 22), which
displayed similar neural responses to the two utricular fibers
(TF18-B and TF26-A) illustrated in Fig. 5, A and B. Firing
rates (spikes/s) significantly increased (one-way repeated-
measures ANOVA, F3,315 = 142.8, P < 0.001) in response to
boatwhistle playbacks while stationary, and during slow pas-
sive movements when boatwhistle playbacks were absent
and present. In addition, utricular fiber firing rates (spikes/s)
in response to boatwhistle playbacks during slow passive
movements were significantly greater (P < 0.001) than utric-
ular afferent firing rates (spikes/s) in response to boatwhistle
playbacks while stationary and during slow passive move-
ments when acoustic stimuli were absent (Fig. 5C). Similarly,

particle acceleration (dB re: 1 m/s2), which is the acoustic sig-
nal most fish are sensitive to, significantly increased
(Kruskal–Wallis ANOVA, v23;2479 = 1821, P < 0.001) above me-
dian background particle acceleration levels (control =
�48.27 dB re: 1 m/s2) when stimuli were present (Fig. 5D). In
addition, the particle acceleration levels (dB re: 1 m/s2) of
boatwhistle playbacks while stationary (boatwhistle; median =
�15.47 dB re: 1 m/s2) and during slow passive movements
(boatwhistle þ slow; median = �15.73 dB re: 1 m/s2) were sig-
nificantly greater (Dunn–Holm, P < 0.001) than the particle
acceleration levels (dB re: 1 m/s2) of slow passive movements
(slow;median =�21.89 dB re: 1 m/s2) (Fig. 5D).

Utricular Response during Swimming

The activity levels (spikes/s) of utricular afferent fibers
(n = 6, 6) were recorded during swimming events, ranging
from 2 to 15 s durations, covering distances of 15–120 cm, at
mean linear accelerations ranging from 0.8 to 29.8 cm/s2.
Like passive movements, there was a significant (P < 0.001)
positive correlation (r2 = 0.57) between utricular afferent
fiber firing rates (spikes/s) and the mean linear acceleration
of active swimming movements (Fig. 6). Utricular afferent
fibers (n = 6, 6) also retained auditory sensitivity to playbacks
of conspecific boatwhistles during swimming (Fig. 7). Figure 7,
A and B illustrates the activity levels (spikes/s) of utricular
afferent fibers TF17-B and TF32-A, respectively, in response to
boatwhistle playbacks while stationary and swimming. Two
brief swims were monitored in Fig. 7A, with peak velocities of
6.1 and 6.3 cm/s and accelerations of 11.3 and 16.8 cm/s2.
Although TF17-Bwas stationary, boatwhistle playbacks evoked
spike rates (85.1±2.0 spikes/s) that significantly increased
(Student’s t test, P< 0.001) above spontaneous rates (44.4±1.4
spikes/s). During self-generated swimming, rates increased to
59.2± 1.7 spikes/s and continued to increase during boatwhis-
tle playbacks to 89.5±6.1 spikes/s (Fig. 7A, gray bar). Similarly,
the firing rates (spikes/s) of fiber TF32-A in Fig. 7B significantly
increased (Student’s t test, P < 0.001) above baseline (15.4±1.3
spikes/s) to 53.9±0.8 spikes/s in response to boatwhistle play-
backs while stationary. During swimming, rates increased to
27.8±8.0 spikes/s when acoustic stimuli were absent and to
47.8±4.3 spikes/s during boatwhistle playbacks (Fig. 7B,
shaded gray bar). Similarly, firing rates (spikes/s) across all
utricular fibers (n = 6, 6) significantly increased (one-way
repeated measures ANOVA, F3,111 =59.86, P < 0.001) in
response to swimming events and conspecific boatwhistle
playbacks while stationary and during swimming (Fig. 7C).
Across utricular afferent fibers, firing rates (spikes/s) during
swimming events were significantly greater (P = 0.014) than
evoked firing rates (spikes/s) in response to boatwhistle
playbacks while stationary. Additionally, utricular affer-
ent firing rates (spikes/s) in response to boatwhistle play-
backs while swimming were significantly greater than
swimming-evoked rates (P = 0.014) and boatwhistle-evoked
rates while stationary (P< 0.001).

DISCUSSION
The otolithic end organs (saccule, utricle, and lagena) of

the teleost inner ear function as linear accelerometers and
particle motion detectors (5–8). Previous investigations into
the teleost inner ear have primarily focused on the auditory
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role of the otolithic end organs, with the saccule receiving the
most attention (7). However, each otolithic end organ has a
multimodal function and is sensitive to both auditory and
vestibular inputs (34, 35, 37, 47, 48, 59). Therefore, the goal of
this study was to conduct in vivo electrophysiology

recordings from primary utricular afferent neurons in the
toadfish during passive and activemovements while present-
ing recordings of conspecific vocalizations to characterize the
effect of movements on the detection of auditory stimuli.
Here, we show that utricular afferent fibers exhibit robust
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responses to passive and activemovements yetmaintain sen-
sitivity to conspecific boatwhistle vocalizationplaybacks.

Across vertebrates, the inner ear otolithic end organs are
thought to primarily serve a vestibular function as they detect
translational movements and maintain static balance; how-
ever, they also detect vibrations at auditory frequencies [e.g.,
fish (5), frogs (60, 61), rats (62–64), and guinea pigs (65–67)].
In teleost fishes, the utricle acts as an inertial accelerometer
and responds to direct displacement by acoustic particle
motion and linear accelerations primarily in the horizontal
plane (5, 7, 68). Although the saccule and lagena are consid-
ered the main auditory end organs responsible for sound
detection and directional hearing in fishes (69–71), the utricle
is thought to primarily serve a vestibular role acting as a gravi-
static organ (35, 46, 47). These vestibular functions are sup-
ported by the utricle’s dense projections to the tangential
octaval nuclei, a posited vestibular brain region that also
receives input from the semicircular canals (49, 72–74).

Here, we show that toadfish utricular afferents are sensitive
to a range of pure tone frequencies that correspond to the fun-
damental frequency of male vocalizations (Fig. 3A) and play-
backs of male courtship vocalizations (Fig. 3C). These results
confirm previous physiological studies in batrachoid fishes
(toadfish and midshipman), which have shown that utricular
hair cells (48) and afferents (37) serve an auditory function

and are sensitive to a broad range of behaviorally relevant
acoustic frequencies, including playbacks of conspecific
courtship vocalizations. Additional support for the utricle’s
auditory function is provided by previous neuroanatomical
studies, which have shown that utricular primary afferents of
batrachoid fishes project centrally to the intermediate, rostral
intermediate, and dorsolateral auditory zones of the hind-
brain descending octaval nucleus (DON) and the auditory
region of the midbrain torus semicircularis, similar to the
saccule and lagena (49, 75). The auditory role of the utricle
is further supported by neuroanatomical and physiological
evidence in the sleeper goby (Dormitator latifrons), which
along with the saccule and lagena projects centrally to the in-
termediate auditory zone of the DON (74) and is directionally
sensitive to auditory stimuli (59, 76, 77). Together, this study
and previous studies strongly suggest that the utricle of
batrachoid fishes, and other fishes, serves an auditory func-
tion and can encode auditory information.

Consistent with the otolithic end organs functioning as
linear accelerometers that transduce translational move-
ments, we show that both slow and fast adapting utricular
afferent fibers exhibit increased firing rates (spikes/s) during
movements (Figs. 4 and 6). These increased activity levels
are consistent with previous studies in the toadfish, which
demonstrated robust utricular responses during passive yaw
rotations (34), sinusoidal linear movements (35), and active
gilling movements (37). Since toadfish are benthic ambush
predators that primarily exhibit short-distance swimming
bouts (� 2 m) ranging from 3.5 to 18.6 cm/s interspersed by
stationary periods (42, 78), we utilized passive movements to
control for a range of behaviorally relevant swimming
speeds. We observed that increased utricular afferent activ-
ity levels (spikes/s) correspond to increasing passive move-
ment accelerations, which in turn were correlated with
increased particle acceleration levels (dB re: 1 m/s2). While
the in vivo electrophysiology approach used in the present
study did not allow for determining the mechanisms that led
to the differential adaptation of utricular afferent fibers dur-
ing sustained movements, passive and active movement
speeds failed to saturate any of the afferent fibers. Taken to-
gether, these results show that utricular afferents encode a
range of behaviorally relevant linear accelerations during
both passive and activemovements.

The variability in swimming motivation, speed, and direc-
tion made it difficult for fish to consistently approach the
underwater acoustic source at the same angle and speed.

Figure 5.Utricular afferent activity increases in response to boatwhistle playbacks during slow passive movements. A and B: utricular afferent firing rates
(spikes/s) of a slow (TF18-B) and fast (TF26-A) adapting fiber during slow passive movement when boatwhistle acoustic stimuli are i) absent and ii) pres-
ent. Each panel from top to bottom displays the utricular fiber firing rate (spikes/s), auditory stimulus, velocity (cm/s), and acceleration (cm/s2). The
shaded gray regions indicate when fish were passively moved. Aiii and Biii: polar plots of utricular afferent vector strength, or the coefficient of synchro-
nization (R), in response to boatwhistle playbacks (n = 10) during slow passive movement. Vector strength, which is plotted along concentric lines, is plot-
ted along the angle of the speaker relative to the fish before, during (initial, middle, and end), and after passive movements. C: utricular afferent firing
rates (spikes/s) while stationary (Spontaneous), during boatwhistle playbacks while stationary (Boatwhistle), slow passive movements (Slow), and in
response to boatwhistle vocalization playbacks during slow movement (Boatwhistle þ Slow). Bar graphs represent the means ± SD of each group
across all trials conducted, while open circles represent utricular afferent firing rates for each trial. Different letters (a, b, c, and d) indicate significantly dif-
ferent utricular afferent firing rates (spikes/s) between various stimuli presented (pairwise comparison with Holm correction, P < 0.05). The parentheses
indicate the number of animals and utricular afferent fibers recorded. D: boxplots of particle acceleration levels (dB re: 1 m/s2) during boatwhistle play-
backs (Boatwhistle) and slow passive movements when boatwhistles were absent (Slow) and present (Boatwhistle þ Slow). Control indicates the back-
ground particle acceleration levels (dB re: 1 m/s2) within the experimental arena when all stimulus was absent. Data median is represented by the
horizontal line within each box and the mean of the data by an open circle. The box extends to the 25th and 75th percentile, while the upper and lower
tails extend to the 90th and 10th percentiles, respectively.
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Figure 6. Utricular afferent fiber activities were positively correlated (r2 =
0.57) with self-generated swimming events. Utricular afferent fiber firing
rates (spikes/s) are plotted against swimming acceleration (cm/s2).
Spontaneous fiber activity is plotted at 0 acceleration (cm/s2). Each data
point represents an individual self-generated swimming event (n = 5/fish),
and each color represents a different utricular fiber. The black line repre-
sents the best fit line, whereas the shaded region represents the 95% con-
fidence interval. The number of animals and utricular afferents recorded is
indicated in the parentheses.
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Therefore, in addition to allowing toadfish to swimwithin the
experimental arena freely, fish were passively moved via a
sled at behaviorally relevant swimming speeds, which
allowed for a precise correlation of utricular activity (spikes/s)
with speed and distance from the underwater speaker. During
both passive and active movements, our results indicate that
utricular afferent firing rates were not saturated duringmove-
ment as acoustic stimuli increased afferent fiber firing rates
(spikes/s) above evoked levels due to movement alone (Figs. 5
and 7). Fast adapting fibers were well suited to detect acoustic
stimuli as the firing rates (spikes/s) of these neurons rapidly
returned to rates near (±5%) spontaneous levels, thus remain-
ing sensitive to auditory stimuli, whereas slow adaptingfibers,
which partially adapted duringmovement, were also sensitive
to subsequent acoustic stimuli. In addition, phase-locking (R)
analysis, which is awell-established approach for determining
how well auditory-sensitive afferents encode the temporal
characteristics of acoustic stimuli (56–58, 79), revealed that
phase-locking persisted through movement. However, slow
adapting neurons exhibited a decrease in R strength during
movements, whichmay be due to the directional sensitivity of
utricular afferent hair cells to the auditory stimuli, with differ-
ences in R strength resulting from differences in the orienta-
tion of the toadfish inner ear relative to the underwater sound
sourceduringmovement.

It has remained unclear how fishes integrate multimodal
sensory inputs, such as detecting external auditory stimuli

while actively swimming. Possible mechanisms that would
allow for sustained exafference sensitivity during movement
are the feed-forward, predictive signalingmechanisms corol-
lary discharge , and efference copies, which allow organisms
to disambiguate reafferent and exafferent inputs via intrinsic
neural representations of self-generated motor commands
(80). Previously in aquatic organisms, it has been observed
that predictive signaling minimizes or abolishes neural acti-
vation during the production of motor commands at various
levels of sensory processing (13, 15, 19, 20, 24, 25, 81–84). For
example, in the lateral line, efferent modulation has been
noted during gilling (20), fictive swimming (24, 25, 84), vis-
ual stimuli (27), and fictive sound production (18). In the
inner ear, efferent modulation has been observed in the sac-
cule during fictive sound production (18) and the semicircu-
lar canals during sinusoidal mechanical indentation (17, 29)
and electrical stimulation (14). Although these previous
studies provided an in-depth understanding of how predic-
tive signaling modulates afferent fiber activities, all were
investigated with decerebrated (15, 20, 84), restrained (13, 14,
17, 18, 24, 25, 81, 82), or stationary (27, 85) animals receiving a
single stimulus, which does not accurately reflect naturalis-
tic behaviors. In our study, the modulation of primary affer-
ents via predictive signaling mechanisms, which has
previously been observed in the lateral line of fictive swim-
ming zebrafish (24, 25) and inner ear of larval Xenopus (82),
may have immediately reduced the activity of fast adapting
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Figure 7. Utricular auditory sensitivity during swimming. Representative fast (TF17-B) (A) and slow (TF32-A) (B) adapting utricular afferent fiber activities in
response to boatwhistle playbacks during swimming. For both A and B: i) experimental arena, where black lines represent the path of toadfish move-
ment during each swimming event from the start (green circle) to the end of movement (red circle). The black box indicates the position of the under-
water speaker during experimental trials. ii) Utricular afferent firing rates (spikes/s) of swimming toadfish in response to boatwhistle playbacks. The thick
black bars above the firing rates indicate when boatwhistle playbacks occurred. iii) Instantaneous linear velocity (cm/s; blue) and iv) acceleration (cm/s2;
red) during self-generated swimming.C: utricular afferent firing rates (spikes/s) while stationary (Spontaneous), during boatwhistle playbacks while stationary
(Boatwhistle), swimming (Swim), and in response to boatwhistle playbacks while swimming (Boatwhistle þ Swim). Bar graphs represent the means ± SD of
each group across all trials conducted, while open circles represent utricular afferent firing rates for each trial. Different letters (a, b, c, and d) indicate signifi-
cantly different utricular afferent firing rates (spikes/s) between various stimuli presented (pairwise comparison with Holm correction, P< 0.05). The numbers
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fibers and partially decreased the sensitivity of slow adapting
fibers in free-swimming toadfish. However, if motor com-
mand outputs are necessary to modulate efferent neurons,
different results would have been expected in toadfish that
were moved passively versus free-swimming, yet, both pas-
sive and active swimming showed the same outcome. One
possible explanation for the absence of efferent modulation
in the present study may be due to the fact that rhythmicity
in motor outputs is required for the generation of precise
efferent copies (82, 86). Yet, as shown here, no evidence of
efferent modulation was noted in toadfish anterior lateral
line neurons during swimming (42). In addition, previous
studies have noted that toadfish utricular efferents were not
modulated by sinusoidal linear acceleration (35), auditory
stimuli, or gilling (37). Although results from the present
study indicate that utricular afferent fibers retain exaffer-
ence sensitivity during self-generated movements, future
studies that simultaneously monitor efferent activity during
sustained rhythmic motor activity should be conducted in
free-swimming fish to determine how predictive signaling
mechanisms aid in sensory processing.

Although this study assessed utricular auditory and ves-
tibular activity during passive and self-generated move-
ments, several limitations should be considered. For
example, the tank size (90 cm diameter) limited long-range
movements and may have affected the integrity of the
acoustical stimulus by producing echoes and reverberations
inside the tank (87). However, utricular afferent fibers
responded in phase to both pure tones and boatwhistle
vocalization playbacks and ceased quickly after stimulus
cessation, indicating the fidelity of the boatwhistle was
maintained despite the small tank limitations. In addition,
the orientation of toadfish relative to the sound source dur-
ing passive and active swimming trials may have influenced
utricular afferent activity due to the directional sensitivity of
utricular afferent fibers or changes in sound pressure levels
throughout the tank. However, sound pressure levels
remained relatively uniform throughout the tank, varying
only by �2 dB re: 1 mPa along the length of the sled track and
no more than 4 dB re: 1 mPa in areas the fish freely swam.
Future experiments in larger tanks or in the field can more
accurately address sound detection range and better repre-
sent particle motion gradients as fish approach sound sour-
ces. Furthermore, chronic neural recordings, which entail
inserting electrodes into the cranial nerves or the brain, pref-
erentially allow for isolating and recording neural activity
from the largest fibers within the nerve bundle and often
omits many smaller, harder to isolate fibers. Moreover, the
low abundance of efferent fibers (<10% fibers) in the VIIIth
nerve made it challenging to isolate sufficient fibers for sta-
tistical analysis. Several efferent fibers were located and
failed to respond to table movements or tactile stimulation
and were not pursued further. Future studies will target
these fibers for implants to determine how they respond to
self-generated and auditory stimuli in free-swimming fish.
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