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Abstract

Biological cells, by definition, are the basic units which contain the fundamental molecules of life of which all living things
are composed. Understanding how they function and differentiating cells from one another, therefore, is of paramount impor-
tance for disease diagnostics as well as therapeutics. Sensors focusing on the detection and stratification of cells have gained
popularity as technological advancements have allowed for the miniaturization of various components inching us closer to
Point-of-Care (POC) solutions with each passing day. Furthermore, Machine Learning has allowed for enhancement in the
analytical capabilities of these various biosensing modalities, especially the challenging task of classification of cells into
various categories using a data-driven approach rather than physics-driven. In this review, we provide an account of how
Machine Learning has been applied explicitly to sensors that detect and classify cells. We also provide a comparison of how

different sensing modalities and algorithms affect the classifier accuracy and the dataset size required.

Keywords Biosensors - Machine Learning (ML) - Neural Networks - Deep learning - Microfluidics - Support Vector
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1 Introduction

A biosensor is typically composed of a biorecognition ele-
ment and a signal transduction element (Bora 2013). It is
used to selectively quantify an analyte or a biomarker. A
biomarker is a biological element such as a cell, protein,
or DNA which can be a sign of a normal or diseased state
(Califf 2018). In a biosensor, once an analyte of interest is
detected by a biorecognition element, the presence of the
analyte is confirmed by a transducer quantitatively or semi-
quantitatively. Then, the generated signal due to the recogni-
tion event is converted to an output signal. Biosensors are
employed in a broad range of applications including but not
limited to disease diagnostics, prognosis, and drug discovery
(Thevenot et al. 1999).

Biosensor measurements in microchannels have
attracted a lot of attention considering the small volume
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of the fluid required (Bamshad et al. 2017). Furthermore,
sensors that detect cells have garnered special interest in
the last few decades with the advent of technologies which
automate and miniaturize its different components. In par-
ticular, they are important for the diagnosis and detection
of various diseases which include but are not limited to:
Sickle cell Disease (Lizarralde Iragorri et al. 2018), Acute
Myeloid Leukemia (Jackson et al. 2016), and metastatic
cancers (Kim et al. 2019) through detection of Circulat-
ing Tumor Cells (CTCs). An important stage when using
these sensors in a clinical setting is converting the data
obtained from these biosensors into useful information by
classifying the cells into different categories. For exam-
ple, Circulating Tumor Cells need to be identified and
separated from Red Blood Cells. There are a number of
qualities which make a biosensor that detects cells more
popular including rapid performance and response (Xue
et al. 2020), high specificity (Ugawa et al. 2015), high
sensitivity (Hsieh et al. 2014). Also, other beneficial quali-
ties include continuous measurement of analyte without
involving experienced personnel (Lee et al. 2011), range
(Zhu et al. 2016), response time (King et al. 2007), stabil-
ity (Mani et al. 2017), low cost (Bardin and Lee 2014),
and accuracy (Carminati et al. 2017). Processing of the
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generated data from biosensors can be considered as an
important stage that effectively influences the improve-
ment of the above-mentioned qualities.

Machine learning, a subset of artificial intelligence, is a
framework allowing algorithms to learn automatically from
data. Many techniques based on machine learning (ML) have
been shown to solve significantly difficult tasks in the real
world. They are especially applicable to tasks that require
learning a variety of patterns obtained from data. Tradition-
ally, data has been analyzed by people with specific-domain
knowledge. However, with the recent advancements in Al
and ML, we now have models that can be trained to perform
these tasks with sufficient accuracy to significantly reduce
or even eliminate the need for human expert intervention.
The reason these models can work with such a high degree
of precision is that the given problem is defined in a pre-
cise mathematical framework. That framework uses large
amounts of either labeled or unlabeled data, and then some
general probabilistic algorithm is applied to find patterns in
the dataset. Evidently, this can have numerous advantages
as well as several drawbacks. These advantages include the
fact that in many applications since some general model is
used, there is no further need for hand-engineered expert
knowledge which can be quite expensive or even ambigu-
ous. For medical applications in particular, it has been
shown that such methods can not only significantly outper-
form human experts, but they are also able to discover new
knowledge (Najafi et al. 2019). Another advantage is that
sometimes these methods discover patterns that could not
have been discovered independently and might have seemed
irrelevant at first. This overall makes them much more scal-
able compared to human intervened knowledge discovery.
However, these approaches have some drawbacks as well.
For example, in many applications, they are very heavy
computations that takes several weeks for some models to
train. More importantly, they require costly predefined labels
in some supervised scenarios. Additionally, some applica-
tions are extremely sensitive to the choice of architectures
or the hyperparameters are chosen. These drawbacks are
being actively improved. As an example, in many classi-
cal classification problems, quite simple methods such as
logistic regression or Support Vector Machine (SVM) have
been shown to perform extremely well. For more complex
tasks, more complex neural net-based architectures can be
required.

In some biosensors, a large amount of data is generated
quickly at the output, and the analysis of this data requires
further processing by an experienced user that can lead to
errors. Processing by a person can take time to analyze data,
which can result in significant delays and add to the sample-
to-answer time attributed to a biosensor. On the other hand,
ML can identify features and trends, and can also provide
understandable output. A quick web search shows that the
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application of Machine Learning in biosensors have seen an
exponential rise in the last decade.

Other review papers have reviewed deep learning applied
on microfluidics and image cytometry, but no paper specifi-
cally discusses the application of ML on biosensors detect-
ing cells (Gupta et al. 2019; Riordon et al. 2019). In this
paper, a review of ML publications on biosensors detecting
cells is discussed whilst some pieces of useful information
will be provided for biosensor engineers and scientists who
want to use ML in their research. Therefore, we present an
overview of the main ML concepts to facilitate the reader
in understanding fundamental differences between the main
ML techniques employed in the subsequent sections. The
papers in this review are divided into four main categories
based upon the detection mechanism used. These include:
Electrical Detection and Optical Detection. Optical Detec-
tion further subdivided into Image-based, Flow Cytometry,
and Smartphone-based Detection.

2 Overview of main concepts in machine
learning

Machine Learning is a very wide field of study which has
seen advancement at a very accelerated rate in the past few
years. In this section, we aim to provide a brief overview of
the fundamental techniques in Machine Learning which are
used extensively throughout the review. The introductions
presented here are by no means extensive and the reader
is encouraged to consult Machine Learning textbooks and
literature for a more detailed description of the concepts
presented here.

2.1 Unsupervised ML

Unsupervised learning is a branch of Machine Learning in
which the data is unlabeled and it is up to the machine to
draw meaningful and useful interpretations from the data
(Ghahramani 2004). These interpretations can be used to
make decisions, finding meaningful connections within the
dataset, or even recognizing patterns which can be help-
ful in another downstream task, such as a classification or
regression problem (Ghahramani 2004). These algorithms
can take different approaches towards finding such meaning-
ful representations such as by probabilistic density estima-
tion, clustering, and latent variable modeling to name a few
(Ghahramani 2004).

2.2 Supervised ML
Supervised Machine Learning is another branch of Machine

Learning which encompasses a lot of the ML models cur-
rently available (Cunningham et al. 2008). In the supervised
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approach, a set of pre-defined labels accompanies the raw
dataset. These labels are used to assign variables to the
dataset and draw conclusions. Although this approach has
yielded significant results for certain applications, labeled
data is expensive and time consuming to gather (Xiao et al.
2015). Labeling data presents various challenges and is often
perceived as a laborious and boring task in the ML frame-
work although it is critical to the performance of most ML
algorithms (Alonso 2015). Some labeled datasets have been
made publicly available such as ImageNet (Deng et al. 2010)
and have proved to be instrumental in advancing the field of
image classification and computer vision. Supervised ML
finds applications in a wide range of tasks such as cancerous
Circulating Tumor Cells (CTC) detection (Guo et al. 2014),
facial recognition (Dixit and Silakari 2015), and weather
forecasting (Rodrigues et al. 2018). Biosensors that detect
and classify cells have specific labels associated with them
and have a well-defined objective such as detecting cancer-
ous cells. Thus, supervised ML models are more widely used
than their unsupervised counterparts for biosensors. Another
reason for the widespread use of supervised learning in this
domain is due to the relative simplicity compared to unsu-
pervised learning techniques (Saravanan and Sujatha 2018).
We now proceed to give a brief account of the supervised
techniques widely used throughout the review.

2.2.1 Support vector machine

Support vector machines (SVMs) are among the most
widely used methods for most supervised classification tasks
(Vaidya et al. 2008). SVM can also be used for regression,
but since this review is focused mainly on classification of
cells, we present SVMs in the context of classification. The
SVM algorithm seeks to identify an optimal hyperplane
in an n-dimensional space which maximizes the margins
between the data points where n is the number of features
that distinguishes data points from each other based on their
true labels (Akaho 2002). In case of non-linear problems
where a linear hyperplane may be insufficient, Kernel SVM
is used. This algorithm uses so-called kernel functions to
map the data into higher dimensional spaces with the objec-
tive that in this higher-dimensional space, the data can be
separated easily (Patle and Chouhan 2013). Hyperplanes are
decision boundaries that facilitate classification of the data
points, and their size depends on the number of features in
the dataset. A major advantage of the SVM is that it not only
finds hyperplanes but maximizes margins among datapoints,
which gives better generalization error (Wang and Miao
2012). The hyper-plane in 2D space, for instance, would be
a line divides the space into two sub-regions, each of which
represents a different class. In this respect, hyperplane posi-
tion and orientation can be affected by support vectors that
are datapoints closer to the hyperplane.

2.2.2 Artificial neural networks

One branch in machine learning which has recently got-
ten significant attention is called Artificial Neural Network
(ANN). These methods are loosely inspired by the inner
functioning of the human brain and aim to mathematically
model problems in a way that mimic the human brain. The
basic component of a neural network is the “neuron” (Maass
1997). These neurons are interconnected to make a structure
which can perform classification tasks with varying degrees
of complexity and nonlinearity. These nonlinear dynamics
allow them to extract much more complex and useful fea-
tures from raw data, thus leading to more useful representa-
tions and significantly better performance on variety of tasks
such as facial recognition (Baron 1981) and classification of
cells in blood (Tabrizi et al. 2010). The process of learning
within such ANN models is in fact the finding of optimal
parameters for synaptic weights of the neurons in order to
gain a reasonable accuracy (Livni et al. 2014). Also, it is
necessary to mention that in most ANN architectures, more
than one layer of neural operations are cascaded to make
them solve more complex tasks, thus giving them the name
“Deep Learning models” (Lecun et al. 2015).

Convolutional neural networks A specific form of ANNs
which is widely used in the field of medical image anal-
ysis (Li et al. 2014) and therefore deserves special men-
tion in this review is called Convolutional Neural Network
(CNN). These architectures are specifically designed for
image-based tasks such as image/video classification (Li
et al. 2014) and object detection (Zhigiang and Jun 2017),
although they have been applied to other problems as well.
CNN s are a kind of Feed Forward Neural Network that con-
siders spatial dependency by using convolutional kernels.
More specifically, the learnable weights of the network are
the parameters of a set of convolutional kernels which are
convolved with the input images or the outputs of the pre-
ceding layer. Such architectures were initially designed for
problems focusing on images, mainly because they take
advantage of the effect of spatial-invariance in the images
as well as the importance of locally-neighboring features.
A result, they convolve the same shared parameters across
the whole image.

3 Machine learning in different biosensing
techniques

3.1 Optical detection

Optical detection of cells implies the use of optical tech-

niques and instruments for the detection, classification,
and stratification of cells. These can be divided into 3
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main categories depending on the sensing modality used,
mainly image-based detection, optical flow cytometry, and
smartphone-based detection. Each of these sensing modali-
ties have their unique characteristics and come with their
own set of challenges. Image-based detection applies ML
techniques to images to extract features and get relevant
information. Smartphone-based detection, for example may
be considered an offshoot of image-based detection since it
also applies the ML techniques on images. However, these
differ from their image-based techniques mainly due to the
fact that data collection is carried out using a smartphone
camera. Although offering several advantages such as being
easily portable and simple, the images acquired using smart-
phones may have lower resolution than those acquired using
expensive optical microscopes and specialized cameras and
present a challenge for detection of cells when compared to
traditional high resolution imaging system. In optical flow
cytometry, cells flow through a microfluidic channel while
being illuminated by a light source (typically a laser). The
scattering of light in different directions (e.g. forward scatter
and back scatter) is measured for each cell passing through
the light source using optical filters. Such systems have high
throughput and need faster algorithms for real-time detec-
tion and classification. Recently, some researchers have aug-
mented data collection using this technique with images to
enhance the detection and classification accuracy (Li et al.
2019; Chen et al. 2016). In the subsequent sections, we pre-
sent a review of the different ML techniques applied to each
of these categories and summarize our findings in Table 1.

3.1.1 Image-based detection

Image-based detection implies the use of images or videos
of cells. These images or videos need to be processed to
identify and quantify cells. ML has tremendous power in
the analysis of image data by making accurate predictions
on large sample datasets. ML algorithms eliminate much of
the manual steps required to process data, thereby reducing
the processing time, and eliminating human error. In the
next following paragraphs, we present sensing approaches
based on ML algorithms on data obtained using this detec-
tion method.

Neural networks are often utilized in image analysis
making it a powerful tool for classifying cells imaged using
biosensors utilizing image-based detection. To demon-
strate, Koohababni et al. utilized Mixture Density Networks
(MDN5s) using a Gaussian Mixture Model (GMM) to iden-
tify cell nuclei (Koohababni et al. 2018). MDNs overcome
the limitations of the conventional neural networks utiliz-
ing the least squares approach and are more suitable candi-
dates for mapping single inputs to multi outputs. As such,
MDNs were used by the authors for the detection of several
seeds in a single image patch. The researchers compared
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their proposed method with the existing well established NN
frameworks and demonstrated a higher F1 score for identify-
ing cell nuclei in colorectal histology images. Classifying
cells using low resolution images remains a challenge in
the world of biosensing. Huang et al. (2016a) employed a
CNN-based super resolution (SR) in order to extract high
resolution (HR) images from low resolution (LR) images.
This has been previously demonstrated using an Extreme
Learning Machine (ELM) but with limited accuracy for large
datasets. The authors illustrated that they were able to obtain
HR images of red blood cells (RBCs), white blood cells
(WBCs) and platelets from their lensless system. The appli-
cation of ML is not merely limited to 2D images. Mayerich
et al. (2011) have presented a method for cell soma detec-
tion based on volumetric data. The researchers obtained
these volumetric images through their indigenously devel-
oped technique which they term as Knife-Edge Scanning
Microscopy (KESM). This technique generates huge amount
of data in a short span of time. This group has illustrated the
use of commercially available GPUs in conjunction with
a multi-layer feed forward NN to accurately locate neuron
positions in rat brain tissue from a large dataset amounting to
200 Gigabytes (GB). A comparison highlighting the superior
performance of their algorithm over standard feature detec-
tion algorithms was also presented. In another interesting
application of ML applied to biosensors, authors used NNs
to simulate the movement and behaviour of red blood cells
in blood plasma (Bachraty et al. 2020). This was mainly
used to optimize the microfluidic channel geometry. In this
study, the NN was taking a numerical simulation as an input.
Alternatively, the input could also be a video recorded from
an actual biological experiment. Their results indicated that
for uncomplicated box channels, there was no advantage of
using this method instead of fluid streamlines. However, in
a more complicated geometry, the NN performance showed
a significant improvement. Cell gating has been tradition-
ally used to stratify various types of blood cells. ML pro-
vides an efficient and favourable alternative to this prob-
lem. Researchers used principal component analysis (PCA)
in conjunction with NNs to recognize five types of WBCs
in peripheral blood (Tabrizi et al. 2010). For this purpose,
nucleus and cytoplasm were segmented using the Gram-
Schmidt method and snake algorithm. Moreover, three
kinds of features (morphological, textural, and color) were
extracted from the segmented areas. Next, the best features
were selected using Principal Component Analysis (PCA).
Finally, five types of white blood cells were classified using
Learning Vector Quantization neural network (LVQNN).
When applying Machine Learning to a specific application,
there exists a wide variety of software packages and inter-
faces to choose from. Each of these interfaces and packages
has a learning curve. Falk et al. (2019) proposed plugin in
a software package for cell detection and cell segmentation
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Table 1 (continued)

Dataset size = Other

N/A

199 Blood Samples

0.74

RMSE

Red Blood Cells

Blood

Electrical

ELM, ELM

SVM, ELS-ELM, RLS-
SVM

Park et al. (2008)

N/A

5333 MFC Data Points

Acute Myeloid Leukemia 92.40%

Optical Flow Cytometry Blood

Ko et al. (2018)

(AML) and

Myelodysplastic

Syndrome (MDS) Cells

OT-1I White Blood

N/A

6700 Data Points

95.74%

Optical Flow Cytometry Buffer

Deep learning

Lietal. (2019)

Cells and SW-480
Epithelial Cancer

Cells
Sickle Cells and

N/A

96 Patients' Blood

98%

Whole blood

Smartphone-based

Deep Learning

Haan et al. (2020)

Smear
17,447 Videos

Healthy RBCs
MCEF-7 Cancer Cells

N/A

78%

Image-based Whole Blood

Deep Learning

Zhang et al. (2019)

based on deep learning allowing users to employ this plugin
without having knowledge of ML. Unlike previous similar
software packages, their plugin, U-Net, had the capability
to be trained and adapted to new sets of data and tasks by
ImageJ® software interface.

Live cell imaging is a valuable tool for studying living
organisms. However, cell segmentation is a considerable
challenge in live cell imaging since there are segmenta-
tion methods that require several hours curation that should
be performed manually and these methods are dependent
on approaches which are difficult to share between differ-
ent labs. Van Valen et al. (2016) developed a framework
utilizing deep learning to successfully overcome the image
segmentation problem. The authors demonstrated that deep
CNN is able to successfully segment and classify different
mammalian cells. The researchers have reimagined the prob-
lem of cell segmentation as cell classification using a deep
learning framework. Similarly, Akram et al. (2016) presented
a CNN-based method providing cell segmentation propos-
als. These proposals initially represented bounding boxes
utilizing a fully CNN (FCN) and then predicted segmenta-
tion masks for bounding boxes using another CNN. They
compared their proposed techniques with other conventional
cell detection and segmentation methods and concluded that
their method has a better performance in terms of common
evaluation parameters. In another study, Xia et al. (2019)
developed a deep learning-based object detection method,
Faster Region-based CNN which is a modified version of
Region-based CNN. In this method, a Region Proposal Net-
work (RPN) was used along with a transfer learning process
to detect WBCs in microscopic images. By conducting anal-
ysis on 364 images, 50 images for training and 314 images
for testing, they reported a miss rate of 1.3% and a detection
accuracy of 98.4%. Likewise, Faster Region-based CNN was
applied for cell detection by segmentation and classification
to detect cells (Yang et al. 2017). Their experiments showed
that cells can be detected in microscopic images using Faster
R-CNN. Furthermore, this technique improved cell detec-
tion performance, saved time, and was easily implemented.
Detecting rare cells in blood is of particular interest in diag-
nosing disease particularly cancer such as the case of CTCs.
Zhang et al. (2019) have recently demonstrated a novel cell
detection and cytometry technique by incorporating mag-
netically modulated lensless imaging. A deep learning-based
classifier was employed to enhance the specificity of their
cytometer which also allowed to detect MCF-7 circulating
tumor cells based on their spatio-temporal features under a
controlled magnetic force. This technique enabled authors to
detect 10 cells per milliliter of whole blood. Spatio-temporal
features of bacteria can be utilized for classification of bac-
teria and characterizing bacterial growth similar to how
these were used for cell classification. Wang et al. (2020)
presented a live microscopy detection system for detecting
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3 different kinds of bacteria. Their imaging platform com-
prises of a lensless image sensor which scans an agar plate
every 30 min to acquire holographic images. A differen-
tial image analysis is then applied to detect objects. These
objects include surface impurities in addition to the bacteria.
A Deep Neural Network (DNN) is used to separate the bac-
teria from these impurities based on the bacterial growth; the
size of the bacterial colonies will grow over time whereas
the size of impurities will remain relatively constant. A sec-
ond DNN is then utilized to classify the bacterial colonies
into their subtypes. For this study, they used Escherichia
coli, Klebsiella aerogenes and Klebsiella pneumoniae subsp.
Pneumoniae respectively. Their platform decreases the time
required for detection by > 12 h and eliminates the need for
expertise required for identification of the bacteria due to
use of ML techniques.

Applications of ML in cell segmentation have been
extended to cell shape and morphology. Cell shape and
structure says a lot about its health and is an important
parameter in diagnosing various conditions. An example of
this is Sickle Cell Anemia where the RBC shape deteriorates
usually due to the interaction of abnormal hemoglobin with
the RBCs. Researchers have developed a high-throughput
and automated RBC shape classification framework utilizing
CNNs on patient-specific microscopy images for aiding in
diagnosis of sickle cell anemia (Xu et al. 2017). Their high-
throughput classification assay consists of four main steps:
1) Hierarchical RBC patch extraction, 2) Size-invariant RBC
patch normalization, 3) RBC pattern classification based on
deep CNN, and 4) Automated RBC shape factor calcula-
tion. Their work differs from traditional methods used such
that they have removed most of the labor-intensive tasks
associated with classification which usually require spe-
cific domain knowledge. For example, instead of scanning
the whole image using same-size patch method (Han et al.
2016) or manually selecting the image patches with RBCs,
they automate this process through hierarchical RBC patch
extraction. In this method, an entropy function is calculated
to differentiate the cells from the background and to identify
a Region of Interest (ROI). A patch normalization technique
is then used to eliminate the variations in the data and this
is fed into a deep CNN to classify the cells into as much as
8 different categories including Sickle cells. Similarly, the
use of ML algorithms for differentiating cells on the basis
of shape has been demonstrated for classifying T-cells and
B-cells in a pillar-based microfluidic cell counting system
by applying a SVM classifier (Turan et al. 2018). In object
detection, a descriptor is a simplified representation of the
image that contains only the most important features of the
image. In this work, authors used a commonly used descrip-
tor which focuses on the structure or the shape of an object
namely as histogram of oriented gradients (HOG) along with
color features to differentiate B-cells from T-cells (Fig. 1).
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First, a linear-kernel SVM was trained to detect cells from a
background in dual dyed images. Subsequently, the cells in
a single dye image were identified by the first SVM based
on HOG features found in the image using a sliding window
method. At last, a Radial Basis Function (RBF)-kernel SVM
was trained with the color information of found cells to dif-
ferentiate T-cells from B-cells.

SVMs are an important ML technique that are more
robust against the otherwise notorious problem of overfit-
ting associated with ANNs and deep learning. It’s use for
classifying cells has been explored extensively. Long et al.
(2006) demonstrated that they can differentiate between
unstained viable and non-viable cells using SVMs com-
bined with a novel image selection technique. The problem
associated with differentiating viable and non-viable cells is
that the dataset is extremely unbalanced i.e. the non-viable
cells detected greatly outnumber the viable cells. This prob-
lem was overcome by a method they named “Compensatory
Iterative Sample Selection”. The way this method works is
by iteratively selecting images that are most representative
of the data in the non-viable class and re-training the SVM
until a performance plateau is reached, thus minimizing the
misclassification cost and increasing classifier accuracy.
Similarly, Uslu et al. (2019) developed an automated SVM
based method of quantifying leukemia cells captured and
separated using immunomagnetic beads. The immunomag-
netic beads were coated with antibodies which then attached
to the cells. The beads that contained cells fell into 2 cat-
egories: 1) They were either single isolated cells in which
case the cell boundary was partially obstructed by the bead
or 2) The beads formed cell-bead clusters, which could be
distinguished easily. The authors considered both of these
possibilities and applied it to an SVM based classifier. The
classifier had 2 classes as the output i.e. cell and non-cell.
There was an imbalance between the data as the non-cells
outnumbered the cells and therefore the non-cell data was
downsampled to eliminate this problem. The researchers
used a radial basis function as the kernel for their proposed
SVM and demonstrated successful stratification reporting a
classification accuracy of 87.4%.

Geometric and statistical features can be used to sepa-
rate cancerous cells from non-cancerous cells as demon-
strated by Amin et al. (2015). Geometric features include
area, perimeter, solidity, eccentricity, the extent of the
nucleus from the binary image of the nucleus, whereas
statistical features are features extracted from the gray-
scale intensity values of the pixels such as mean, stand-
ard deviation, energy, entropy, skewness, kurtosis. This
specific study used Acute lymphoblastic leukemia cells
for demonstration. K-means algorithm was employed to
segment cell nuclei after pre-processing of the images.
The means of SVM classifier were used the two types
of cells. These cells were further classified into their
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Fig. 1 Outline of the Image-
based system proposed by Turan
et al. (2018). Whole blood

was injected into the device
through inlet while leukocytes
were trapped in different zones
based on the deformability and
size difference. The proposed
experiment setup and block
diagram of cell detection using
ML is also shown in this figure.
In the block diagram of the cell
detection framework, it can be
inferred that using Support Vec-
tor Machine (SVM), training
images are centered, cropped,
and labeled. The Histogram

of Gradients (HOG) and color
data was computed using the
processed images for the clas-
sification of cells. Adapted from
Turan et al. (2018)
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different morphological subtypes by a multi-SVM clas-
sifier. The accuracies of both these classifiers were above
95%. Microalgal cells show promise as a biofuel and as an
effective solution towards global warming as they perform
photosynthesis and can be grown in relatively harsh condi-
tions such as wastewater. These cells produce lipids when
subjected to stress usually through nutrient deficiency,
particularly nitrogen. Therefore, it is important to charac-
terize them into nitrogen deficient and nitrogen sufficient
compounds. Guo et al. (2017) proposed a high-throughput
label-free single-cell method for screening lipid-producing
microalgal cells by optofluidic time-stretch quantitative
phase microscopy. Optofluidic time-stretch Quantitative
Phase Microscopy provides a method for detecting these
cells at a high rate of 10,000 cells/s (Guo et al. 2018). 188
features extracted from the images were used in the clas-
sification of nitrogen-sufficient and nitrogen-deficient E.
gracilis cells. A SVM that was trained using a sequential
minimal optimization algorithm was applied to analyze
the intensity and phase images acquired by the optofluidic
time-stretch quantitative phase microscopy. It achieved an
2.15% error rate in cell classification.

Observing cell cycle progression is an important field
of study with numerous applications. One such example is
the identification of cancerous cells (Srivastava et al. 2008).
Yeast cells are frequently used as a model for studying cell
cycle regulation. Yu et al. (2011) employed image process-
ing algorithms to classify yeast cells in a microfluidic chan-
nel. The authors used a simple threshold algorithm based
on the Mahalanobis distance (Wang et al. 2007) for image
enhancement to reduce background noise, before carrying
out image segmentation. The cells were differentiated into
3 classes pertaining to different stages of cell cycle devel-
opment. The main difference between the cells in their cell
cycles is that when they are in the Synthesis (S) stage, they
have a daughter cell or a “bud” with them and have a char-
acteristic peanut-like shape as opposed to a circular shape.
The researchers extracted a combination of 3 features based
on the shape and size of the cells in relation to the size of the
buds which they used for training 3 different classifiers. They
compared the performance of these 3 classifiers namely lin-
ear support vector machine (LSVM), distance-based clas-
sification (GED), and k-nearest-neighbor (KNN). The per-
formance of all 3 classifiers did not vary considerably. The
main drawback of the algorithm the researchers used is that
their method was only applicable to single isolated cells and
did not take into consideration if two cells were touching or
overlapping one another and was only applicable to micro-
fluidic devices. This is not an inherent drawback of any of
the ML algorithms used but it is due to their initial assump-
tions of classifying cells of “peanut-like” shape from the
circular shaped cells and the pre-processing image enhance-
ment algorithms used.
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A novel segmentation algorithm for the classification of
five types of white blood cells by Su et al. (2014). Their seg-
mentation algorithm was based on finding a discriminating
region of white blood cell tones in the HSI color space. In
their study, three different NN-based classifiers of Multilayer
perceptrons (MLP), SVM and hyperrectangular composite
neural networks (HRCNN) were adopted for classifying white
blood cells. It was shown that the proposed system incorpo-
rated with a trained MLP can reach the highest performance.
Morphological properties of erythrocytes can be an indica-
tive of various hematological diseases (Tomaiuolo 2014). In
a label-free approach, Go et al. (2018) used digital in-line
holographic microscopy (DIHM) paired with ML models to
identify and classify different types of erythrocytes: disco-
cytes, echinocytes, and spherocytes. Four different models
were used to determine the best algorithm: SVM, Decision
Trees, Linear Discrimination Classification (LDC), and
k-nearest neighbor (KNN) classification. The decision trees
exhibited the best identification performance for the training
sets (n = 440, 98.18%) and test sets (n = 140, 97.37%). The
detection of CTCs in blood is a challenge since the CTCs
are generally outnumbered by Peripheral Blood Mononuclear
Cells (PBMCs). Therefore, any ML algorithm to be used for
reliable detection of CTCs needs to have a very low False
Positive Rate (FPR). Singh et al. employed ML-based gating
criteria to differentiate MCF-7 and MDA-MB-231 cell lines
from PBMCs when flowing through a microchannel (Fig. 2;
Singh et al. 2017).

Initially, they used binary discriminants to differentiate
these cells from the PBMCs. The authors used 3 features for
differentiation: cell diameter, maximum pixel intensity, and
mean pixel intensity. They used a Classification and Regres-
sion Tree (CART) algorithm (Dension 1998) for optimizing
their classifiers. The authors claimed an FPR of only 0.001%
and were able to identify CTCs at a concentration as low as
10 CTCs per ml. They noted that all the 3 features differed
significantly between the classes. The authors also observed
that SVM and Linear Discriminant classifiers provided simi-
lar improved accuracy over the binary discriminants when
incorporating all 3 features. In a similar study for differenti-
ating CTCs from blood cells, Mao et al. (2015) investigated
the use of 2 classifiers on a microscopic image-based CTC
detection platform. The 2 classifiers used were SVMs and
CNNs. The SVM used Histogram of Gradients (HoG) as
features and the CNN used 6 convolutional filters on the
image patches. The authors used the MCF-7 cell lines for
validating their algorithms and reported that both of these
methods had a maximum F-score of 91.2%.

Manual counting of cells is time consuming, low through-
put, and laboriously extensive. On the other hand, com-
mercial flow cytometers have their own limitations such as
being bulky, expensive, and require specific domain knowl-
edge. An alternative is to use lensless microfluidic image
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Fig. 2 Inline digital holography
microscopy (DHM) utilized by
Singh et al. (2017) for charac-
terizing cells in flow. As shown,
in this figure, experimental
arrangement of inline-DHM is
shown which enabled recording /
holograms of cells in bulk flow
along with multiple experi-
mental parameters. The output
data was used in a classifier
enabling detection of tumor
cells. Adapted from Singh et al.
(2017)
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detection. This method produces low resolution images that
present an obstacle for high-throughput analysis of samples.
This is where ML assisted counting comes in. As an example
2 approaches which utilize ML, namely Extreme Machine
Learning Super Resolution (ELMSR) and Convolutional
Neural Network Super Resolution (CNNSR), were explored
by researchers to solve the low-resolution problem in a lens-
less microfluidic imaging using CMOS image sensors for
blood cell counting (Huang et al. 2016b). Low-resolution
lensless cell images were the input and an improved high-
resolution cell image was the output. At the end, cell resolu-
tion was improved 400% while the cell counting results were
in line with commercial flow cytometers.

3.1.2 Optical flow cytometry

A microfluidic flow cytometer is an integrated system which
consists of microchannels for flow and optical sensors for
detection. Typically, the cell is detected using scattered light
from laser beams illuminating the cells flowing through the
detection chamber in a microchannel. Ideally, the biosensor
would be portable, easy to operate, and suitable for use as a
point-of-care diagnostic device. In this section, we analyze
the works by researchers who have demonstrated the use of
Machine Learning techniques on data gathered explicitly by
Optical Flow Cytometry.

Various research groups have applied deep learning with
their microfluidic flow cytometers to analyze the single-cell
images for cell classification. Heo et al. (2017) developed a
custom algorithm for simultaneously tracking and classify-
ing cells in real-time by using multiple thread processing
i.e. less than 2 ms. They used a CNN with fully-connected
layer for supervised classification to differentiate between
microparticles of different sizes, RBCs, and K562 cells.
Currently, their algorithm classifies cells based on size.
Although the authors did not demonstrate their algorithm’s
efficiency for classifying cells based on morphology, they
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claim that their algorithm will be useful for classifying cells
with varying features and classes by making small modifica-
tions to the CNN such as using a fancy network architecture.
The authors reported a mAP of 93.3%. Ben et al. (2016)
proposed a method for detecting CTCs among WBCs by
detecting change in pH. The detection method exploited the
anomalous extra cellular acidification rate (ECAR) of CTCs.
For this purpose, the CTCs and WBCs were enclosed in
picolitre sized droplets so that each droplet contained at most
a single cell. A pH dependent dye was used, and images
were also acquired for each droplet that was detected via
an electronically controlled trigger. These images then had
to be inspected individually via a manual process to sepa-
rate the CTCs from the empty droplets and debris. Recently,
the authors demonstrated the utility of neural networks for
solving this problem (Soldati et al. 2018). They tested a vari-
ety of neural network architectures, and performed various
image augmentation techniques such as flipping the images
across horizontal and vertical axes, modifying contrast,
blur, and rotation. After testing various architectures, they
concluded that the best architecture for their application
was a combination of MobileNet and Inception-v2, which
yielded an overall accuracy of 96%. Optical flow cytometry
usually involves the use of dyes to identify micro particles
of interest. Time stretch Quantitative Phase Imaging (TS-
QPI) provides an alternative to these methods providing
high sensitivity and producing high amounts of data in a
relatively short period of time (Goda et al. 2009, 2012).
Conventional methods rely on converting these data into
images and performing deep learning on the images. This
has two disadvantages: longer time required for conversion
of images and possible loss of information which may occur
during conversion. Recently, Li et al. (2019) presented a
deep learning architecture which could classify cells using
these raw waveforms. The authors used waveform files col-
lected by the ultrafast ADC directly without conversion into
images as input to their convolutional network (Fig. 3). Each
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Fig.3 Overview of the application of deep learning in flow cytom-
etry presented by Li et al. (2019). In this research, hydrodynamic
focusing mechanism was employed in a microfluidic channel to align
the cells in the centerline of the main channel. Waveform pulses gen-
erated in the channel were captured by time-stretch imaging system.

waveform was divided into 100 elements with 50 percent
overlap to increase the redundancy and augmenting their
dataset thus resulting in an increased training stability.
The one-dimensional time series waveform elements were
reshaped into 2D data corresponding to the pulses. This
digital data was further reduced by factor of 40 to achieve
an acceptable trade-off between the processing time and the
accuracy of the deep learning model. The learning model
consisted of 16 convolutional layers to learn and extract the
features of the input data, 3 max pooling layers to reduce
the number of parameters and computations, and 3 fully-
connected network with dropout regularization which finally
concludes with a Softmax layer. The authors demonstrated
the utility of their network to classify between 3 categories
with 95% accuracy: SW-480 colorectal cancer cells, OT-1I
hybridoma white blood cells, and the blank examples i.e.
running buffer. Neural networks were also used in an inline
holography microscopy for label-free, high-speed, cell sort-
ing (Schneider et al. 2015). They showed that this label-free
imaging technique can be applied for ultrafast, cell sorting
with classification accuracy of 89%.

In a microfluidic-based imaging flow cytometry (IFC)
technique, an accurate classification framework was presented
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Consequently, without further signal processing, these waveforms of
time-stretch imaging were outputted to a deep NN where cell classifi-
cation was carried out rapidly with high accuracy. The 2 types of cells
were then categorized before being separated into their respective
collection tubes based on their charge. Adapted from Li et al. (2019)

for the first time. It was based on deep learning for IFC data
extracted from three unstained, unlabeled, leukemia cell lines
(K562, MOLT, and HL60) (Gopakumar et al. 2017). They
demonstrated that instead of using conventional fine segmen-
tation and explicit feature extraction, deep learning algorithms
could successfully classify the cell lines up to a precision of
78.8%. Sun et al. (2019) used a deep CNN to learn the bio-
logical characteristics of 2D light scattering patterns in the
azimuthal and polar angle from a microfluidic cytometer and
ultimately identified label-free lymphocytic leukemia cells.
Their deep learning network accurately detected Jurkat and
BALL-1 cells with an accuracy of 93.2%, and the sensitiv-
ity and specificity were 92% and 94.453%. Chen et al. (2016)
integrated feature extraction and deep learning with high-
throughput quantitative imaging enabled by photonic time
stretch, achieving high classification accuracy (95.5%). Their
system captures quantitative optical phase and intensity and
extracts multiple biophysical features of individual cells.
These biophysical measurements thus form a hyperdimen-
sional feature space in which supervised ML is performed
for cell classification.

SVMs offer an alternative to NN for use as a classifica-
tion framework and have been demonstrated as a useful tool
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for a wide variety of classification problems as evident from
the research reviewed in the following paragraphs. Research-
ers applied an SVM algorithm to analyze MFC dataset in
order to automatically detect minimal residue disease in
acute myeloid leukemia and myelodysplastic syndrome
patients (Ko et al. 2018). The original raw data were encoded
using a multivariate Gaussian mixture model and then fed
into the SVM classifier. They validated this with a large-
scale clinical data and clinical outcome. Another research
group developed an in vivo Photoacoustic Flow Cytometry
(PAFC) system to achieve in vivo melanoma inspection (Fu
et al. 2019). They implemented a support vector machine
algorithm to discriminate signals and noises based on the
continuity, amplitude, and photoacoustic waveform pulse
width extracted from photoacoustic waves. A model accu-
racy of 92% was accomplished. Lin et al. (2018) developed
a label-free light-sheet microfluidic cytometer for single cell
analysis by two-dimensional (2D) light scattering measure-
ments. Incorporating the cytometer with SVM algorithms,
a high accuracy was achieved in automatic classification of
senescent and normal human fibroblasts. Four parameters
(contrast, correlation, energy and homogeneity) were calcu-
lated for light scattering patterns and used as features in the
SVM classifier. A linear kernel function was adopted with
fivefold cross validation. Toedling et al. (2006) used an SVM
for automatic detection of leukemic cells from patients' bone
marrow and peripheral blood samples in flow cytometry
readouts. Manually gated leukemic cells were recovered by
SVM with 98.87% specificity and 99.78% sensitivity which
showed the potential of a well-established multivariate-
analysis technique.

Huang et al. (2014) demonstrated the use of a technique
based on Extreme Learning Machines (ELM) for single-
frame super-resolution processing applied on a microflu-
idic contact imaging cytometer platform. Compared with
the commercial flow cytometer, less than 8% error was
observed for the absolute number of microbeads. They
demonstrated in another paper that by mixed flowing of
HepG2 and Huh7 cells as the inputs, the developed scheme
achieved 23% better recognition accuracy compared to the
one without error recovery. Whereas, it also achieved an
average of 98.5% resource-saving compared to the previ-
ous multi-frame super-resolution processing (Huang et al.
2015). Autoencoders are considered an unsupervised learn-
ing technique since they don't need explicit labels to train
on. However, to be more precise they are self-supervised
because they generate their own labels from the training
data. A microfluidics-based platform for single-cell imag-
ing in-flow and subsequent image analysis using Variational
Autoencoders (VAE) for unsupervised characterization of
cellular mixtures was demonstrated in Constantinou et al.’s
paper (2019). Heterogeneous mixtures of yeast species were
classified with 88% accuracy. Microfluidic Imaging Flow

Cytometry (MIFC) is an emerging method of microscopic
imaging, which aims to reduce the complexity of the tasks
involved in cytometry by combining flow cytometry with
digital microscopy (Kalmady et al. 2017). This technique
promised significantly higher throughput and was easy to set
up with minimal expenses in Kalmady et al. study (2017).
This group employed MIFC for obtaining images instead
of image cytometry. They proposed a transfer learning and
ensemble learning-based approach for the automation of
cytopathological analysis of Leukemia cell-line images.
Compared to earlier works, the use of fine-tuned features
from a modified deep NN for transfer learning provided a
substantial improvement in performance.

3.1.3 Smartphone-based detection

Smartphone-based sensors are closely related to the Image-
based sensors since they replace the microscope with the
smartphone cameras, which are often supplemented by an
attachment and have the same output i.e. image. They are
becoming increasingly popular because of their small foot-
print and widespread availability of smartphones. Further-
more, they eliminate the need for specialized optical equip-
ment like microscopes and spectroscopes by substituting
it with relatively inexpensive and portable attachments.
Smartphone-based biosensors utilizing ML, therefore, have
tremendous promise for being used as point-of-care diagnos-
tic devices with minimal training and knowledge required
for operation.

A cost-effective method proposed by de Haan et al.
(2020) was capable of automatic screening of sickle cells
(SC) in a deep learning framework. The framework included
two complementary deep NN (Fig. 4). The first one stand-
ardized and enhanced blood smear images from a smart-
phone microscope while the second one acted on the output
of the first image and performed the semantic segmentation
between SC and healthy cells in a blood smear. Furthermore,
the segmented images were utilized for the diagnosis of SC
disease and achieved an accuracy of 98%.

A comparison of different ML algorithms was carried
out for waterborne pathogen (Giardi) detection using a
smartphone- based setup (Koydemir et al. 2017). The accu-
racy and the Area Under the ROC curve (AUROC) of dif-
ferent ML models were compared including, but not limited
to SVM, nearest neighbors and ensemble methods. All the
models had a classification accuracy above 81%, while the
AUROC values were greater than 0.7. The best predictive
performance was obtained using bagged trees (Ntree =
400). Fine and cubic kNN classifiers provided fast fitting
speeds, but their predictive accuracy was relatively poor. On
the other hand, SVM and bagged ensemble classifiers were
promising at their prediction accuracy, while their training
speeds were slower.
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Fig.4 Overview of smartphone-based biosensor employed by de Haan
et al. (2020) A Photograph of the smartphone-based system, the over-
all design, and the light path is shown from left to right. Reprinted
from de Haan et al. (2020) B workflow of deep learning process is

3.2 Electrical detection

Electrical detection refers to the use of electrical circuits to
obtain data in the form of electrical signals. These signals can
be impedance, voltage, current or any other electrical signal.
Impedance is generally the most commonly used parameter
to identify and quantify cells. When a cell passes through
the electrodes in a microfluidic channel, a change in imped-
ance occurs. The output signal is determined by the cell’s

Fig.5 Schematic diagram of an
electrical impedance cytometer.
As cells flow from the inlet to
the outlet in these biosensors,
the change in impedance is
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presented. This learning algorithm has been used sickle cell analysis
to enhance blood smear images and carry out semantic segmentation
between SC and healthy cells. Adapted from de Haan et al. (2020)

properties such as cell size, conductivity, and permittivity.
Electrical Detection of cells has many advantages over tra-
ditional optical detection. Since there is no need for bulky
optical equipment, electrical detection devices usually have
a small footprint and are less expensive. In the following
paragraphs, we present biosensors utilizing ML techniques
for electrical detection of various biomarkers. A schematic
diagram of an electrical impedance cytometer with SVM for
data analysis is shown in Fig 5.
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Integrated with ML algorithms, a microfluidic impedance
cytometry for real-time, label-free multiparametric charac-
terization of biological cells (Honrado et al. 2020). In this
study, a recurrent NN was designed to predict cell diameter,
velocity, and position from electric current signals, meas-
ured by a microfluidic impedance chip. The trained network
was able to characterize geometric and electrical properties
of beads, red blood cells, and yeasts with a good accuracy
and a unitary prediction time of 0.4 ms. Zhao et al. (2018)
designed a new microfluidic impedance cytometry with
crossing constriction microchannels, which allows quanti-
fying the cellular electrical markers. Using an equivalent cir-
cuit model, they translated the measured impedance values
to specific membrane capacitance and cytoplasm conduc-
tivity. A NN-based pattern recognition was used to classify
tumor cell lines and tumor cells with epithelial-mesenchymal
transitions. Precise measurement of mechanical and/or elec-
trical properties of cells or cell components yields useful
information on the physiological and pathological state of
cells and is critical for cell classification. Yang et al. (2019)
extracted deformability, electrical impedance and relaxation
index of single cells from impedance spectroscopy measure-
ments with self-aligned 3D electrodes. They demonstrated
the ability of their system to detect and classify cells using
a back propagation NN completely based on the biophysi-
cal properties of the cells. In another study, a microfluidic
constriction channel was designed to measure single-cell
electrical properties (Zheng et al. 2013). A back propa-
gation NN was used for cell classification based on three
parameters of diameter, specific membrane capacitance,
and cytoplasm conductivity. Finally, they showed that cell
classification success rate significantly improved when
information additional to cell size was included.

In Zhao et al.’s work (2013), osteoblasts and osteocytes
were classified using a two-layer back propagation NN70.
The input data had three groups of parameters measured
on cells, namely, transit time, impedance amplitude ratio,
and cell elongation length. Their results suggested that
biomechanical and bioelectrical parameters, when used
in combination, provided a higher cell classification suc-
cess rate than using alone. In another study, a microfluidic
system was presented for cell type classification based on
size-independent electrical properties, specific membrane
capacitance and cytoplasm conductivity. Two lung tumor
cell lines were classified using a two-layer back propagation
NN. The NN-based classification resulted in a fairly accept-
able classification success rate of 65.4% (CSpecific Mem-
brane), 71.4% (ccytoplasm), and 74.4% (CSpecific Mem-
brane combined with ccytoplasm). A microfluidic system
proposed by Zheng et al. (2012) with a constriction channel.
The channel was marginally smaller than the RBC’s diam-
eters which was used to classify adult and neonatal RBCs
using a back propagation NN through their biophysical

properties (mechanical and electrical). Electrical meas-
urements were performed to characterize these properties.
The input data had three group of parameters (transit time,
amplitude ratio and phase increase). The results showed that
when these parameters were used in combination, yielded
a relatively higher classification accuracy (84.8%) than
the time each parameter was used alone. Recently a study
published where the authors used Quadratic Discriminant
Analysis (QDA). This is a type of supervised ML algorithm
that helped them extract six features from Red Blood Cells
(RBCs) and yeast cells using Impedance micro-cytometry.
They achieved the maximum test accuracy (99%) by using
four features on RBCs. They also demonstrated the efficacy
of their platform by classifying different cancer subtypes.
The accuracy decreased when more than four features was
used. It was because of overfitting of the model to the train-
ing data (Joshi et al. 2020).

A study conducted cancer drug efficacy analysis using
multifrequency impedance cytometry, measuring the
impedance of a single cell at several discrete frequencies
(Ahuja et al. 2019). Support vector machine algorithm was
implemented to help differentiate alive cells from dead
cells. Song et al. (2013) employed a support vector machine
algorithm to help identify differentiation states of stem
cells based on impedance signals collected by the micro-
fluidic electrical impedance flow cytometer at 50 kHz, 250
kHz, 500 kHz and 1 MHz. Another research group dis-
criminated strains of E. coli K-12, E. coli O157: H7, and
Salmonella Thompson using a multichannel immunosensor
incorporated with multiclass support vector machines (Zuo
et al. 2006). Gini-SVM framework was adopted to design
multiclass SVMs. To evaluate the performance, a 100-fold
cross-validation procedure was implemented.

Detection and enumeration of circulating tumor cells from
red blood cells were performed in research using a micropore-
based microfluidic impedance cytometer (Guo et al. 2014).
The peak amplitude and the pulse bandwidth of signal pulses
were analyzed by SVM to differentiate cancer cells from red
blood cells. Radial basis function (RBF) was appointed as
the kernel function. The results of the proposed microflu-
idic sensor combined with SVM showed a good agreement
with the results of a commercial flow cytometer. Wang et al.
(2017) proposed a sensitive multiplex self-referencing SERS
pathogen detection scheme. A linear kernel-based SVM in
conjunction of PCA was performed for rapid discrimination
and classification of target bacteria with a detection accu-
racy above 95%. An approach for hematocrit estimation from
the transduced anodic current curves introduced in a study.
The curves were obtained by glucose-oxidase reaction in the
strip-type electrochemical biosensors (Park et al. 2008). The
support vector machine was implemented for regression with
the target value of accurate hematocrit values measured by a
hospital analysis system.
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4 Conclusions

ML has become a useful tool in analyzing and classify-
ing the data obtained from biosensors for cellular analysis.
Based on the papers we discussed here, we see that both
SVM and ANN are the prevalent techniques which are effec-
tive in automating the classification of various cell types
except for Image-based biosensors. This may be due to the
fact that these are the most widely known techniques for
researchers working in fields related to biosensors. In the
case of Image-based biosensors, various NN architectures
are preferred over SVM and other methods for classification
of different cell types.

Table 1 compares important characteristics for several
papers that are discussed in this review. It is divided into
2 main categories for easily comparing each method’s effi-
cacy. In the first part, we list the papers in which the num-
ber of cells are specified as the dataset size. The second
part of the table contains the papers in which the number
of images is considered as the dataset size. Other than
these 2 main categories, we have listed a few papers in
which the dataset neither corresponds to the number of
images nor the number of cells. The last column of Table 1
is a ratio of the classifier accuracy (in percentage) to the
dataset size. A higher number, therefore, indicates that
the accuracy achieved corresponds to a relatively small
dataset.

We also noted that Deep Learning and ANN have grown
more popular recently with the majority of the newer publi-
cations using these methods. Another interesting observa-
tion is that biosensors utilizing electrical detection methods
rarely employ deep learning as the analytical tool for clas-
sifying cells. This may be due to the fact that deep learn-
ing is data hungry and databases for electrical biosensing
data are not yet established. On the other hand, there is a
plethora of datasets easily available that may be used as
training samples for image and optical detection of various
biomarkers.

To summarize, the use of ML algorithms in biosensors
have huge benefits that automate the cumbersome and com-
plicated process of extracting, processing and analyzing
data that is generated by the biosensors. Such an automa-
tion eliminates the need for an experienced professional to
make sense of the data and moves us closer to providing
Point-of-care health solutions in environments that have low
resources. Although ML algorithms have been around for a
while now and have huge benefits, the techniques discussed
here mostly utilize code and require certain Integrated
Development Environments (IDE’s) e.g. Python, MATLAB
etc. for their use. Researchers should consider packaging of
the softwares into a GUI which will make these relatively
simple to interact with and less formidable.
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