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Abstract
Biological cells, by definition, are the basic units which contain the fundamental molecules of life of which all living things 
are composed. Understanding how they function and differentiating cells from one another, therefore, is of paramount impor-
tance for disease diagnostics as well as therapeutics. Sensors focusing on the detection and stratification of cells have gained 
popularity as technological advancements have allowed for the miniaturization of various components inching us closer to 
Point-of-Care (POC) solutions with each passing day. Furthermore, Machine Learning has allowed for enhancement in the 
analytical capabilities of these various biosensing modalities, especially the challenging task of classification of cells into 
various categories using a data-driven approach rather than physics-driven. In this review, we provide an account of how 
Machine Learning has been applied explicitly to sensors that detect and classify cells. We also provide a comparison of how 
different sensing modalities and algorithms affect the classifier accuracy and the dataset size required.

Keywords  Biosensors · Machine Learning (ML) · Neural Networks · Deep learning · Microfluidics · Support Vector 
Machine

1  Introduction

A biosensor is typically composed of a biorecognition ele-
ment and a signal transduction element (Bora 2013). It is 
used to selectively quantify an analyte or a biomarker. A 
biomarker is a biological element such as a cell, protein, 
or DNA which can be a sign of a normal or diseased state 
(Califf 2018). In a biosensor, once an analyte of interest is 
detected by a biorecognition element, the presence of the 
analyte is confirmed by a transducer quantitatively or semi-
quantitatively. Then, the generated signal due to the recogni-
tion event is converted to an output signal. Biosensors are 
employed in a broad range of applications including but not 
limited to disease diagnostics, prognosis, and drug discovery 
(Thevenot et al. 1999).

Biosensor measurements in microchannels have 
attracted a lot of attention considering the small volume 

of the fluid required (Bamshad et al. 2017). Furthermore, 
sensors that detect cells have garnered special interest in 
the last few decades with the advent of technologies which 
automate and miniaturize its different components. In par-
ticular, they are important for the diagnosis and detection 
of various diseases which include but are not limited to: 
Sickle cell Disease (Lizarralde Iragorri et al. 2018), Acute 
Myeloid Leukemia (Jackson et al. 2016), and metastatic 
cancers (Kim et al. 2019) through detection of Circulat-
ing Tumor Cells (CTCs). An important stage when using 
these sensors in a clinical setting is converting the data 
obtained from these biosensors into useful information by 
classifying the cells into different categories. For exam-
ple, Circulating Tumor Cells need to be identified and 
separated from Red Blood Cells. There are a number of 
qualities which make a biosensor that detects cells more 
popular including rapid performance and response (Xue 
et al. 2020), high specificity (Ugawa et al. 2015), high 
sensitivity (Hsieh et al. 2014). Also, other beneficial quali-
ties include continuous measurement of analyte without 
involving experienced personnel (Lee et al. 2011), range 
(Zhu et al. 2016), response time (King et al. 2007), stabil-
ity (Mani et al. 2017), low cost (Bardin and Lee 2014), 
and accuracy (Carminati et al. 2017). Processing of the 

 *	 Mehdi Javanmard 
	 mehdij@alumni.stanford.edu

	 Hassan Raji 
	 hassan.raji@rutgers.edu

1	 Department of Electrical and Computer Engineering, 
Rutgers University, Piscataway, NJ 08854, USA

http://orcid.org/0000-0002-9560-4311
http://crossmark.crossref.org/dialog/?doi=10.1007/s10544-022-00627-x&domain=pdf


	 Biomedical Microdevices (2022) 24: 26

1 3

26  Page 2 of 20

generated data from biosensors can be considered as an 
important stage that effectively influences the improve-
ment of the above-mentioned qualities.

Machine learning, a subset of artificial intelligence, is a 
framework allowing algorithms to learn automatically from 
data. Many techniques based on machine learning (ML) have 
been shown to solve significantly difficult tasks in the real 
world. They are especially applicable to tasks that require 
learning a variety of patterns obtained from data. Tradition-
ally, data has been analyzed by people with specific-domain 
knowledge. However, with the recent advancements in AI 
and ML, we now have models that can be trained to perform 
these tasks with sufficient accuracy to significantly reduce 
or even eliminate the need for human expert intervention. 
The reason these models can work with such a high degree 
of precision is that the given problem is defined in a pre-
cise mathematical framework. That framework uses large 
amounts of either labeled or unlabeled data, and then some 
general probabilistic algorithm is applied to find patterns in 
the dataset. Evidently, this can have numerous advantages 
as well as several drawbacks. These advantages include the 
fact that in many applications since some general model is 
used, there is no further need for hand-engineered expert 
knowledge which can be quite expensive or even ambigu-
ous. For medical applications in particular, it has been 
shown that such methods can not only significantly outper-
form human experts, but they are also able to discover new 
knowledge (Najafi et al. 2019). Another advantage is that 
sometimes these methods discover patterns that could not 
have been discovered independently and might have seemed 
irrelevant at first. This overall makes them much more scal-
able compared to human intervened knowledge discovery. 
However, these approaches have some drawbacks as well. 
For example, in many applications, they are very heavy 
computations that takes several weeks for some models to 
train. More importantly, they require costly predefined labels 
in some supervised scenarios. Additionally, some applica-
tions are extremely sensitive to the choice of architectures 
or the hyperparameters are chosen. These drawbacks are 
being actively improved. As an example, in many classi-
cal classification problems, quite simple methods such as 
logistic regression or Support Vector Machine (SVM) have 
been shown to perform extremely well. For more complex 
tasks, more complex neural net-based architectures can be 
required.

In some biosensors, a large amount of data is generated 
quickly at the output, and the analysis of this data requires 
further processing by an experienced user that can lead to 
errors. Processing by a person can take time to analyze data, 
which can result in significant delays and add to the sample-
to-answer time attributed to a biosensor. On the other hand, 
ML can identify features and trends, and can also provide 
understandable output. A quick web search shows that the 

application of Machine Learning in biosensors have seen an 
exponential rise in the last decade.

Other review papers have reviewed deep learning applied 
on microfluidics and image cytometry, but no paper specifi-
cally discusses the application of ML on biosensors detect-
ing cells (Gupta et al. 2019; Riordon et al. 2019). In this 
paper, a review of ML publications on biosensors detecting 
cells is discussed whilst some pieces of useful information 
will be provided for biosensor engineers and scientists who 
want to use ML in their research. Therefore, we present an 
overview of the main ML concepts to facilitate the reader 
in understanding fundamental differences between the main 
ML techniques employed in the subsequent sections. The 
papers in this review are divided into four main categories 
based upon the detection mechanism used. These include: 
Electrical Detection and Optical Detection. Optical Detec-
tion further subdivided into Image-based, Flow Cytometry, 
and Smartphone-based Detection.

2 � Overview of main concepts in machine 
learning

Machine Learning is a very wide field of study which has 
seen advancement at a very accelerated rate in the past few 
years. In this section, we aim to provide a brief overview of 
the fundamental techniques in Machine Learning which are 
used extensively throughout the review. The introductions 
presented here are by no means extensive and the reader 
is encouraged to consult Machine Learning textbooks and 
literature for a more detailed description of the concepts 
presented here.

2.1 � Unsupervised ML

Unsupervised learning is a branch of Machine Learning in 
which the data is unlabeled and it is up to the machine to 
draw meaningful and useful interpretations from the data 
(Ghahramani 2004). These interpretations can be used to 
make decisions, finding meaningful connections within the 
dataset, or even recognizing patterns which can be help-
ful in another downstream task, such as a classification or 
regression problem (Ghahramani 2004). These algorithms 
can take different approaches towards finding such meaning-
ful representations such as by probabilistic density estima-
tion, clustering, and latent variable modeling to name a few 
(Ghahramani 2004).

2.2 � Supervised ML

Supervised Machine Learning is another branch of Machine 
Learning which encompasses a lot of the ML models cur-
rently available (Cunningham et al. 2008). In the supervised 
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approach, a set of pre-defined labels accompanies the raw 
dataset. These labels are used to assign variables to the 
dataset and draw conclusions. Although this approach has 
yielded significant results for certain applications, labeled 
data is expensive and time consuming to gather (Xiao et al. 
2015). Labeling data presents various challenges and is often 
perceived as a laborious and boring task in the ML frame-
work although it is critical to the performance of most ML 
algorithms (Alonso 2015). Some labeled datasets have been 
made publicly available such as ImageNet (Deng et al. 2010) 
and have proved to be instrumental in advancing the field of 
image classification and computer vision. Supervised ML 
finds applications in a wide range of tasks such as cancerous 
Circulating Tumor Cells (CTC) detection (Guo et al. 2014), 
facial recognition (Dixit and Silakari 2015), and weather 
forecasting (Rodrigues et al. 2018). Biosensors that detect 
and classify cells have specific labels associated with them 
and have a well-defined objective such as detecting cancer-
ous cells. Thus, supervised ML models are more widely used 
than their unsupervised counterparts for biosensors. Another 
reason for the widespread use of supervised learning in this 
domain is due to the relative simplicity compared to unsu-
pervised learning techniques (Saravanan and Sujatha 2018). 
We now proceed to give a brief account of the supervised 
techniques widely used throughout the review.

2.2.1 � Support vector machine

Support vector machines (SVMs) are among the most 
widely used methods for most supervised classification tasks 
(Vaidya et al. 2008). SVM can also be used for regression, 
but since this review is focused mainly on classification of 
cells, we present SVMs in the context of classification. The 
SVM algorithm seeks to identify an optimal hyperplane 
in an n-dimensional space which maximizes the margins 
between the data points where n is the number of features 
that distinguishes data points from each other based on their 
true labels (Akaho 2002). In case of non-linear problems 
where a linear hyperplane may be insufficient, Kernel SVM 
is used. This algorithm uses so-called kernel functions to 
map the data into higher dimensional spaces with the objec-
tive that in this higher-dimensional space, the data can be 
separated easily (Patle and Chouhan 2013). Hyperplanes are 
decision boundaries that facilitate classification of the data 
points, and their size depends on the number of features in 
the dataset. A major advantage of the SVM is that it not only 
finds hyperplanes but maximizes margins among datapoints, 
which gives better generalization error (Wang and Miao 
2012). The hyper-plane in 2D space, for instance, would be 
a line divides the space into two sub-regions, each of which 
represents a different class. In this respect, hyperplane posi-
tion and orientation can be affected by support vectors that 
are datapoints closer to the hyperplane.

2.2.2 � Artificial neural networks

One branch in machine learning which has recently got-
ten significant attention is called Artificial Neural Network 
(ANN). These methods are loosely inspired by the inner 
functioning of the human brain and aim to mathematically 
model problems in a way that mimic the human brain. The 
basic component of a neural network is the “neuron” (Maass 
1997). These neurons are interconnected to make a structure 
which can perform classification tasks with varying degrees 
of complexity and nonlinearity. These nonlinear dynamics 
allow them to extract much more complex and useful fea-
tures from raw data, thus leading to more useful representa-
tions and significantly better performance on variety of tasks 
such as facial recognition (Baron 1981) and classification of 
cells in blood (Tabrizi et al. 2010). The process of learning 
within such ANN models is in fact the finding of optimal 
parameters for synaptic weights of the neurons in order to 
gain a reasonable accuracy (Livni et al. 2014). Also, it is 
necessary to mention that in most ANN architectures, more 
than one layer of neural operations are cascaded to make 
them solve more complex tasks, thus giving them the name 
“Deep Learning models” (Lecun et al. 2015).

Convolutional neural networks  A specific form of ANNs 
which is widely used in the field of medical image anal-
ysis (Li et al. 2014) and therefore deserves special men-
tion in this review is called Convolutional Neural Network 
(CNN). These architectures are specifically designed for 
image-based tasks such as image/video classification (Li 
et al. 2014) and object detection (Zhiqiang and Jun 2017), 
although they have been applied to other problems as well. 
CNNs are a kind of Feed Forward Neural Network that con-
siders spatial dependency by using convolutional kernels. 
More specifically, the learnable weights of the network are 
the parameters of a set of convolutional kernels which are 
convolved with the input images or the outputs of the pre-
ceding layer. Such architectures were initially designed for 
problems focusing on images, mainly because they take 
advantage of the effect of spatial-invariance in the images 
as well as the importance of locally-neighboring features. 
A result, they convolve the same shared parameters across 
the whole image.

3 � Machine learning in different biosensing 
techniques

3.1 � Optical detection

Optical detection of cells implies the use of optical tech-
niques and instruments for the detection, classification, 
and stratification of cells. These can be divided into 3 
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main categories depending on the sensing modality used, 
mainly image-based detection, optical flow cytometry, and 
smartphone-based detection. Each of these sensing modali-
ties have their unique characteristics and come with their 
own set of challenges. Image-based detection applies ML 
techniques to images to extract features and get relevant 
information. Smartphone-based detection, for example may 
be considered an offshoot of image-based detection since it 
also applies the ML techniques on images. However, these 
differ from their image-based techniques mainly due to the 
fact that data collection is carried out using a smartphone 
camera. Although offering several advantages such as being 
easily portable and simple, the images acquired using smart-
phones may have lower resolution than those acquired using 
expensive optical microscopes and specialized cameras and 
present a challenge for detection of cells when compared to 
traditional high resolution imaging system. In optical flow 
cytometry, cells flow through a microfluidic channel while 
being illuminated by a light source (typically a laser). The 
scattering of light in different directions (e.g. forward scatter 
and back scatter) is measured for each cell passing through 
the light source using optical filters. Such systems have high 
throughput and need faster algorithms for real-time detec-
tion and classification. Recently, some researchers have aug-
mented data collection using this technique with images to 
enhance the detection and classification accuracy (Li et al. 
2019; Chen et al. 2016). In the subsequent sections, we pre-
sent a review of the different ML techniques applied to each 
of these categories and summarize our findings in Table 1.

3.1.1 � Image‑based detection

Image-based detection implies the use of images or videos 
of cells. These images or videos need to be processed to 
identify and quantify cells. ML has tremendous power in 
the analysis of image data by making accurate predictions 
on large sample datasets. ML algorithms eliminate much of 
the manual steps required to process data, thereby reducing 
the processing time, and eliminating human error. In the 
next following paragraphs, we present sensing approaches 
based on ML algorithms on data obtained using this detec-
tion method.

Neural networks are often utilized in image analysis 
making it a powerful tool for classifying cells imaged using 
biosensors utilizing image-based detection. To demon-
strate, Koohababni et al. utilized Mixture Density Networks 
(MDNs) using a Gaussian Mixture Model (GMM) to iden-
tify cell nuclei (Koohababni et al. 2018). MDNs overcome 
the limitations of the conventional neural networks utiliz-
ing the least squares approach and are more suitable candi-
dates for mapping single inputs to multi outputs. As such, 
MDNs were used by the authors for the detection of several 
seeds in a single image patch. The researchers compared 

their proposed method with the existing well established NN 
frameworks and demonstrated a higher F1 score for identify-
ing cell nuclei in colorectal histology images. Classifying 
cells using low resolution images remains a challenge in 
the world of biosensing. Huang et al. (2016a) employed a 
CNN-based super resolution (SR) in order to extract high 
resolution (HR) images from low resolution (LR) images. 
This has been previously demonstrated using an Extreme 
Learning Machine (ELM) but with limited accuracy for large 
datasets. The authors illustrated that they were able to obtain 
HR images of red blood cells (RBCs), white blood cells 
(WBCs) and platelets from their lensless system. The appli-
cation of ML is not merely limited to 2D images. Mayerich 
et al. (2011) have presented a method for cell soma detec-
tion based on volumetric data. The researchers obtained 
these volumetric images through their indigenously devel-
oped technique which they term as Knife-Edge Scanning 
Microscopy (KESM). This technique generates huge amount 
of data in a short span of time. This group has illustrated the 
use of commercially available GPUs in conjunction with 
a multi-layer feed forward NN to accurately locate neuron 
positions in rat brain tissue from a large dataset amounting to 
200 Gigabytes (GB). A comparison highlighting the superior 
performance of their algorithm over standard feature detec-
tion algorithms was also presented. In another interesting 
application of ML applied to biosensors, authors used NNs 
to simulate the movement and behaviour of red blood cells 
in blood plasma (Bachratý et al. 2020). This was mainly 
used to optimize the microfluidic channel geometry. In this 
study, the NN was taking a numerical simulation as an input. 
Alternatively, the input could also be a video recorded from 
an actual biological experiment. Their results indicated that 
for uncomplicated box channels, there was no advantage of 
using this method instead of fluid streamlines. However, in 
a more complicated geometry, the NN performance showed 
a significant improvement. Cell gating has been tradition-
ally used to stratify various types of blood cells. ML pro-
vides an efficient and favourable alternative to this prob-
lem. Researchers used principal component analysis (PCA) 
in conjunction with NNs to recognize five types of WBCs 
in peripheral blood (Tabrizi et al. 2010). For this purpose, 
nucleus and cytoplasm were segmented using the Gram-
Schmidt method and snake algorithm. Moreover, three 
kinds of features (morphological, textural, and color) were 
extracted from the segmented areas. Next, the best features 
were selected using Principal Component Analysis (PCA). 
Finally, five types of white blood cells were classified using 
Learning Vector Quantization neural network (LVQNN). 
When applying Machine Learning to a specific application, 
there exists a wide variety of software packages and inter-
faces to choose from. Each of these interfaces and packages 
has a learning curve. Falk et al. (2019) proposed plugin in 
a software package for cell detection and cell segmentation 
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based on deep learning allowing users to employ this plugin 
without having knowledge of ML. Unlike previous similar 
software packages, their plugin, U-Net, had the capability 
to be trained and adapted to new sets of data and tasks by 
ImageJ® software interface.

Live cell imaging is a valuable tool for studying living 
organisms. However, cell segmentation is a considerable 
challenge in live cell imaging since there are segmenta-
tion methods that require several hours curation that should 
be performed manually and these methods are dependent 
on approaches which are difficult to share between differ-
ent labs. Van Valen et al. (2016) developed a framework 
utilizing deep learning to successfully overcome the image 
segmentation problem. The authors demonstrated that deep 
CNN is able to successfully segment and classify different 
mammalian cells. The researchers have reimagined the prob-
lem of cell segmentation as cell classification using a deep 
learning framework. Similarly, Akram et al. (2016) presented 
a CNN-based method providing cell segmentation propos-
als. These proposals initially represented bounding boxes 
utilizing a fully CNN (FCN) and then predicted segmenta-
tion masks for bounding boxes using another CNN. They 
compared their proposed techniques with other conventional 
cell detection and segmentation methods and concluded that 
their method has a better performance in terms of common 
evaluation parameters. In another study, Xia et al. (2019) 
developed a deep learning-based object detection method, 
Faster Region-based CNN which is a modified version of 
Region-based CNN. In this method, a Region Proposal Net-
work (RPN) was used along with a transfer learning process 
to detect WBCs in microscopic images. By conducting anal-
ysis on 364 images, 50 images for training and 314 images 
for testing, they reported a miss rate of 1.3% and a detection 
accuracy of 98.4%. Likewise, Faster Region-based CNN was 
applied for cell detection by segmentation and classification 
to detect cells (Yang et al. 2017). Their experiments showed 
that cells can be detected in microscopic images using Faster 
R-CNN. Furthermore, this technique improved cell detec-
tion performance, saved time, and was easily implemented. 
Detecting rare cells in blood is of particular interest in diag-
nosing disease particularly cancer such as the case of CTCs. 
Zhang et al. (2019) have recently demonstrated a novel cell 
detection and cytometry technique by incorporating mag-
netically modulated lensless imaging. A deep learning-based 
classifier was employed to enhance the specificity of their 
cytometer which also allowed to detect MCF-7 circulating 
tumor cells based on their spatio-temporal features under a 
controlled magnetic force. This technique enabled authors to 
detect 10 cells per milliliter of whole blood. Spatio-temporal  
features of bacteria can be utilized for classification of bac-
teria and characterizing bacterial growth similar to how 
these were used for cell classification. Wang et al. (2020) 
presented a live microscopy detection system for detecting Ta
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3 different kinds of bacteria. Their imaging platform com-
prises of a lensless image sensor which scans an agar plate 
every 30 min to acquire holographic images. A differen-
tial image analysis is then applied to detect objects. These 
objects include surface impurities in addition to the bacteria. 
A Deep Neural Network (DNN) is used to separate the bac-
teria from these impurities based on the bacterial growth; the 
size of the bacterial colonies will grow over time whereas 
the size of impurities will remain relatively constant. A sec-
ond DNN is then utilized to classify the bacterial colonies 
into their subtypes. For this study, they used Escherichia 
coli, Klebsiella aerogenes and Klebsiella pneumoniae subsp. 
Pneumoniae respectively. Their platform decreases the time 
required for detection by > 12 h and eliminates the need for 
expertise required for identification of the bacteria due to 
use of ML techniques.

Applications of ML in cell segmentation have been 
extended to cell shape and morphology. Cell shape and 
structure says a lot about its health and is an important 
parameter in diagnosing various conditions. An example of 
this is Sickle Cell Anemia where the RBC shape deteriorates 
usually due to the interaction of abnormal hemoglobin with 
the RBCs. Researchers have developed a high-throughput 
and automated RBC shape classification framework utilizing 
CNNs on patient-specific microscopy images for aiding in 
diagnosis of sickle cell anemia (Xu et al. 2017). Their high-
throughput classification assay consists of four main steps: 
1) Hierarchical RBC patch extraction, 2) Size-invariant RBC 
patch normalization, 3) RBC pattern classification based on 
deep CNN, and 4) Automated RBC shape factor calcula-
tion. Their work differs from traditional methods used such 
that they have removed most of the labor-intensive tasks 
associated with classification which usually require spe-
cific domain knowledge. For example, instead of scanning 
the whole image using same-size patch method (Han et al. 
2016) or manually selecting the image patches with RBCs, 
they automate this process through hierarchical RBC patch 
extraction. In this method, an entropy function is calculated 
to differentiate the cells from the background and to identify 
a Region of Interest (ROI). A patch normalization technique 
is then used to eliminate the variations in the data and this 
is fed into a deep CNN to classify the cells into as much as 
8 different categories including Sickle cells. Similarly, the 
use of ML algorithms for differentiating cells on the basis 
of shape has been demonstrated for classifying T-cells and 
B-cells in a pillar-based microfluidic cell counting system 
by applying a SVM classifier (Turan et al. 2018). In object 
detection, a descriptor is a simplified representation of the 
image that contains only the most important features of the 
image. In this work, authors used a commonly used descrip-
tor which focuses on the structure or the shape of an object 
namely as histogram of oriented gradients (HOG) along with 
color features to differentiate B-cells from T-cells (Fig. 1). 

First, a linear-kernel SVM was trained to detect cells from a 
background in dual dyed images. Subsequently, the cells in 
a single dye image were identified by the first SVM based 
on HOG features found in the image using a sliding window 
method. At last, a Radial Basis Function (RBF)-kernel SVM 
was trained with the color information of found cells to dif-
ferentiate T-cells from B-cells.

SVMs are an important ML technique that are more 
robust against the otherwise notorious problem of overfit-
ting associated with ANNs and deep learning. It’s use for 
classifying cells has been explored extensively. Long et al. 
(2006) demonstrated that they can differentiate between 
unstained viable and non-viable cells using SVMs com-
bined with a novel image selection technique. The problem 
associated with differentiating viable and non-viable cells is 
that the dataset is extremely unbalanced i.e. the non-viable 
cells detected greatly outnumber the viable cells. This prob-
lem was overcome by a method they named “Compensatory 
Iterative Sample Selection”. The way this method works is 
by iteratively selecting images that are most representative 
of the data in the non-viable class and re-training the SVM 
until a performance plateau is reached, thus minimizing the 
misclassification cost and increasing classifier accuracy. 
Similarly, Uslu et al. (2019) developed an automated SVM 
based method of quantifying leukemia cells captured and 
separated using immunomagnetic beads. The immunomag-
netic beads were coated with antibodies which then attached 
to the cells. The beads that contained cells fell into 2 cat-
egories: 1) They were either single isolated cells in which 
case the cell boundary was partially obstructed by the bead 
or 2) The beads formed cell-bead clusters, which could be 
distinguished easily. The authors considered both of these 
possibilities and applied it to an SVM based classifier. The 
classifier had 2 classes as the output i.e. cell and non-cell. 
There was an imbalance between the data as the non-cells 
outnumbered the cells and therefore the non-cell data was 
downsampled to eliminate this problem. The researchers 
used a radial basis function as the kernel for their proposed 
SVM and demonstrated successful stratification reporting a 
classification accuracy of 87.4%.

Geometric and statistical features can be used to sepa-
rate cancerous cells from non-cancerous cells as demon-
strated by Amin et al. (2015). Geometric features include 
area, perimeter, solidity, eccentricity, the extent of the 
nucleus from the binary image of the nucleus, whereas 
statistical features are features extracted from the gray-
scale intensity values of the pixels such as mean, stand-
ard deviation, energy, entropy, skewness, kurtosis. This 
specific study used Acute lymphoblastic leukemia cells 
for demonstration. K-means algorithm was employed to 
segment cell nuclei after pre-processing of the images. 
The means of SVM classifier were used the two types 
of cells. These cells were further classified into their 
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Fig. 1   Outline of the Image-
based system proposed by Turan 
et al. (2018). Whole blood 
was injected into the device 
through inlet while leukocytes 
were trapped in different zones 
based on the deformability and 
size difference. The proposed 
experiment setup and block 
diagram of cell detection using 
ML is also shown in this figure. 
In the block diagram of the cell 
detection framework, it can be 
inferred that using Support Vec-
tor Machine (SVM), training 
images are centered, cropped, 
and labeled. The Histogram 
of Gradients (HOG) and color 
data was computed using the 
processed images for the clas-
sification of cells. Adapted from 
Turan et al. (2018)
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different morphological subtypes by a multi-SVM clas-
sifier. The accuracies of both these classifiers were above 
95%. Microalgal cells show promise as a biofuel and as an 
effective solution towards global warming as they perform 
photosynthesis and can be grown in relatively harsh condi-
tions such as wastewater. These cells produce lipids when 
subjected to stress usually through nutrient deficiency, 
particularly nitrogen. Therefore, it is important to charac-
terize them into nitrogen deficient and nitrogen sufficient 
compounds. Guo et al. (2017) proposed a high-throughput 
label-free single-cell method for screening lipid-producing 
microalgal cells by optofluidic time-stretch quantitative 
phase microscopy. Optofluidic time-stretch Quantitative 
Phase Microscopy provides a method for detecting these 
cells at a high rate of 10,000 cells/s (Guo et al. 2018). 188 
features extracted from the images were used in the clas-
sification of nitrogen-sufficient and nitrogen-deficient E. 
gracilis cells. A SVM that was trained using a sequential 
minimal optimization algorithm was applied to analyze 
the intensity and phase images acquired by the optofluidic 
time-stretch quantitative phase microscopy. It achieved an 
2.15% error rate in cell classification.

Observing cell cycle progression is an important field 
of study with numerous applications. One such example is 
the identification of cancerous cells (Srivastava et al. 2008). 
Yeast cells are frequently used as a model for studying cell 
cycle regulation. Yu et al. (2011) employed image process-
ing algorithms to classify yeast cells in a microfluidic chan-
nel. The authors used a simple threshold algorithm based 
on the Mahalanobis distance (Wang et al. 2007) for image 
enhancement to reduce background noise, before carrying 
out image segmentation. The cells were differentiated into 
3 classes pertaining to different stages of cell cycle devel-
opment. The main difference between the cells in their cell 
cycles is that when they are in the Synthesis (S) stage, they 
have a daughter cell or a “bud” with them and have a char-
acteristic peanut-like shape as opposed to a circular shape. 
The researchers extracted a combination of 3 features based 
on the shape and size of the cells in relation to the size of the 
buds which they used for training 3 different classifiers. They 
compared the performance of these 3 classifiers namely lin-
ear support vector machine (LSVM), distance-based clas-
sification (GED), and k-nearest-neighbor (KNN). The per-
formance of all 3 classifiers did not vary considerably. The 
main drawback of the algorithm the researchers used is that 
their method was only applicable to single isolated cells and 
did not take into consideration if two cells were touching or 
overlapping one another and was only applicable to micro-
fluidic devices. This is not an inherent drawback of any of 
the ML algorithms used but it is due to their initial assump-
tions of classifying cells of “peanut-like” shape from the 
circular shaped cells and the pre-processing image enhance-
ment algorithms used.

A novel segmentation algorithm for the classification of 
five types of white blood cells by Su et al. (2014). Their seg-
mentation algorithm was based on finding a discriminating 
region of white blood cell tones in the HSI color space. In 
their study, three different NN-based classifiers of Multilayer 
perceptrons (MLP), SVM and hyperrectangular composite 
neural networks (HRCNN) were adopted for classifying white 
blood cells. It was shown that the proposed system incorpo-
rated with a trained MLP can reach the highest performance. 
Morphological properties of erythrocytes can be an indica-
tive of various hematological diseases (Tomaiuolo 2014). In 
a label-free approach, Go et al. (2018) used digital in-line 
holographic microscopy (DIHM) paired with ML models to 
identify and classify different types of erythrocytes: disco-
cytes, echinocytes, and spherocytes. Four different models 
were used to determine the best algorithm: SVM, Decision 
Trees, Linear Discrimination Classification (LDC), and 
k-nearest neighbor (KNN) classification. The decision trees 
exhibited the best identification performance for the training 
sets (n = 440, 98.18%) and test sets (n = 140, 97.37%). The 
detection of CTCs in blood is a challenge since the CTCs 
are generally outnumbered by Peripheral Blood Mononuclear 
Cells (PBMCs). Therefore, any ML algorithm to be used for 
reliable detection of CTCs needs to have a very low False 
Positive Rate (FPR). Singh et al. employed ML-based gating 
criteria to differentiate MCF-7 and MDA-MB-231 cell lines 
from PBMCs when flowing through a microchannel (Fig. 2; 
Singh et al. 2017).

Initially, they used binary discriminants to differentiate 
these cells from the PBMCs. The authors used 3 features for 
differentiation: cell diameter, maximum pixel intensity, and 
mean pixel intensity. They used a Classification and Regres-
sion Tree (CART) algorithm (Dension 1998) for optimizing 
their classifiers. The authors claimed an FPR of only 0.001% 
and were able to identify CTCs at a concentration as low as 
10 CTCs per ml. They noted that all the 3 features differed 
significantly between the classes. The authors also observed 
that SVM and Linear Discriminant classifiers provided simi-
lar improved accuracy over the binary discriminants when 
incorporating all 3 features. In a similar study for differenti-
ating CTCs from blood cells, Mao et al. (2015) investigated 
the use of 2 classifiers on a microscopic image-based CTC 
detection platform. The 2 classifiers used were SVMs and 
CNNs. The SVM used Histogram of Gradients (HoG) as 
features and the CNN used 6 convolutional filters on the 
image patches. The authors used the MCF-7 cell lines for 
validating their algorithms and reported that both of these 
methods had a maximum F-score of 91.2%.

Manual counting of cells is time consuming, low through-
put, and laboriously extensive. On the other hand, com-
mercial flow cytometers have their own limitations such as 
being bulky, expensive, and require specific domain knowl-
edge. An alternative is to use lensless microfluidic image 
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detection. This method produces low resolution images that 
present an obstacle for high-throughput analysis of samples. 
This is where ML assisted counting comes in. As an example 
2 approaches which utilize ML, namely Extreme Machine 
Learning Super Resolution (ELMSR) and Convolutional 
Neural Network Super Resolution (CNNSR), were explored 
by researchers to solve the low-resolution problem in a lens-
less microfluidic imaging using CMOS image sensors for 
blood cell counting (Huang et al. 2016b). Low-resolution 
lensless cell images were the input and an improved high-
resolution cell image was the output. At the end, cell resolu-
tion was improved 400% while the cell counting results were 
in line with commercial flow cytometers.

3.1.2 � Optical flow cytometry

A microfluidic flow cytometer is an integrated system which 
consists of microchannels for flow and optical sensors for 
detection. Typically, the cell is detected using scattered light 
from laser beams illuminating the cells flowing through the 
detection chamber in a microchannel. Ideally, the biosensor 
would be portable, easy to operate, and suitable for use as a 
point-of-care diagnostic device. In this section, we analyze 
the works by researchers who have demonstrated the use of 
Machine Learning techniques on data gathered explicitly by 
Optical Flow Cytometry.

Various research groups have applied deep learning with 
their microfluidic flow cytometers to analyze the single-cell 
images for cell classification. Heo et al. (2017) developed a 
custom algorithm for simultaneously tracking and classify-
ing cells in real-time by using multiple thread processing 
i.e. less than 2 ms. They used a CNN with fully-connected 
layer for supervised classification to differentiate between 
microparticles of different sizes, RBCs, and K562 cells. 
Currently, their algorithm classifies cells based on size. 
Although the authors did not demonstrate their algorithm’s 
efficiency for classifying cells based on morphology, they 

claim that their algorithm will be useful for classifying cells 
with varying features and classes by making small modifica-
tions to the CNN such as using a fancy network architecture. 
The authors reported a mAP of 93.3%. Ben et al. (2016) 
proposed a method for detecting CTCs among WBCs by 
detecting change in pH. The detection method exploited the 
anomalous extra cellular acidification rate (ECAR) of CTCs. 
For this purpose, the CTCs and WBCs were enclosed in 
picolitre sized droplets so that each droplet contained at most 
a single cell. A pH dependent dye was used, and images 
were also acquired for each droplet that was detected via  
an electronically controlled trigger. These images then had 
to be inspected individually via a manual process to sepa-
rate the CTCs from the empty droplets and debris. Recently, 
the authors demonstrated the utility of neural networks for 
solving this problem (Soldati et al. 2018). They tested a vari-
ety of neural network architectures, and performed various 
image augmentation techniques such as flipping the images 
across horizontal and vertical axes, modifying contrast, 
blur, and rotation. After testing various architectures, they 
concluded that the best architecture for their application 
was a combination of MobileNet and Inception-v2, which 
yielded an overall accuracy of 96%. Optical flow cytometry 
usually involves the use of dyes to identify micro particles 
of interest. Time stretch Quantitative Phase Imaging (TS-
QPI) provides an alternative to these methods providing 
high sensitivity and producing high amounts of data in a 
relatively short period of time (Goda et al. 2009, 2012). 
Conventional methods rely on converting these data into 
images and performing deep learning on the images. This 
has two disadvantages: longer time required for conversion 
of images and possible loss of information which may occur 
during conversion. Recently, Li et al. (2019) presented a  
deep learning architecture which could classify cells using 
these raw waveforms. The authors used waveform files col-
lected by the ultrafast ADC directly without conversion into 
images as input to their convolutional network (Fig. 3). Each 

Fig. 2   Inline digital holography 
microscopy (DHM) utilized by 
Singh et al. (2017) for charac-
terizing cells in flow. As shown, 
in this figure, experimental 
arrangement of inline-DHM is 
shown which enabled recording 
holograms of cells in bulk flow 
along with multiple experi-
mental parameters. The output 
data was used in a classifier 
enabling detection of tumor 
cells. Adapted from Singh et al. 
(2017)
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waveform was divided into 100 elements with 50 percent 
overlap to increase the redundancy and augmenting their 
dataset thus resulting in an increased training stability. 
The one-dimensional time series waveform elements were 
reshaped into 2D data corresponding to the pulses. This 
digital data was further reduced by factor of 40 to achieve 
an acceptable trade-off between the processing time and the 
accuracy of the deep learning model. The learning model 
consisted of 16 convolutional layers to learn and extract the 
features of the input data, 3 max pooling layers to reduce 
the number of parameters and computations, and 3 fully-
connected network with dropout regularization which finally 
concludes with a Softmax layer. The authors demonstrated 
the utility of their network to classify between 3 categories 
with 95% accuracy: SW-480 colorectal cancer cells, OT-II 
hybridoma white blood cells, and the blank examples i.e. 
running buffer. Neural networks were also used in an inline 
holography microscopy for label-free, high-speed, cell sort-
ing (Schneider et al. 2015). They showed that this label-free 
imaging technique can be applied for ultrafast, cell sorting 
with classification accuracy of 89%.

In a microfluidic-based imaging flow cytometry (IFC) 
technique, an accurate classification framework was presented 

for the first time. It was based on deep learning for IFC data 
extracted from three unstained, unlabeled, leukemia cell lines 
(K562, MOLT, and HL60) (Gopakumar et al. 2017). They 
demonstrated that instead of using conventional fine segmen-
tation and explicit feature extraction, deep learning algorithms 
could successfully classify the cell lines up to a precision of 
78.8%. Sun et al. (2019) used a deep CNN to learn the bio-
logical characteristics of 2D light scattering patterns in the 
azimuthal and polar angle from a microfluidic cytometer and 
ultimately identified label-free lymphocytic leukemia cells. 
Their deep learning network accurately detected Jurkat and 
BALL-1 cells with an accuracy of 93.2%, and the sensitiv-
ity and specificity were 92% and 94.453%. Chen et al. (2016) 
integrated feature extraction and deep learning with high-
throughput quantitative imaging enabled by photonic time 
stretch, achieving high classification accuracy (95.5%). Their 
system captures quantitative optical phase and intensity and 
extracts multiple biophysical features of individual cells. 
These biophysical measurements thus form a hyperdimen-
sional feature space in which supervised ML is performed 
for cell classification.

SVMs offer an alternative to NNs for use as a classifica-
tion framework and have been demonstrated as a useful tool 

Fig. 3   Overview of the application of deep learning in flow cytom-
etry presented by Li et  al. (2019). In this research, hydrodynamic 
focusing mechanism was employed in a microfluidic channel to align 
the cells in the centerline of the main channel. Waveform pulses gen-
erated in the channel were captured by time-stretch imaging system. 

Consequently, without further signal processing, these waveforms of 
time-stretch imaging were outputted to a deep NN where cell classifi-
cation was carried out rapidly with high accuracy. The 2 types of cells 
were then categorized before being separated into their respective 
collection tubes based on their charge. Adapted from Li et al. (2019)
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for a wide variety of classification problems as evident from 
the research reviewed in the following paragraphs. Research-
ers applied an SVM algorithm to analyze MFC dataset in 
order to automatically detect minimal residue disease in 
acute myeloid leukemia and myelodysplastic syndrome 
patients (Ko et al. 2018). The original raw data were encoded 
using a multivariate Gaussian mixture model and then fed 
into the SVM classifier. They validated this with a large-
scale clinical data and clinical outcome. Another research 
group developed an in vivo Photoacoustic Flow Cytometry 
(PAFC) system to achieve in vivo melanoma inspection (Fu 
et al. 2019). They implemented a support vector machine 
algorithm to discriminate signals and noises based on the 
continuity, amplitude, and photoacoustic waveform pulse 
width extracted from photoacoustic waves. A model accu-
racy of 92% was accomplished. Lin et al. (2018) developed 
a label-free light-sheet microfluidic cytometer for single cell 
analysis by two-dimensional (2D) light scattering measure-
ments. Incorporating the cytometer with SVM algorithms, 
a high accuracy was achieved in automatic classification of 
senescent and normal human fibroblasts. Four parameters 
(contrast, correlation, energy and homogeneity) were calcu-
lated for light scattering patterns and used as features in the 
SVM classifier. A linear kernel function was adopted with 
fivefold cross validation. Toedling et al. (2006) used an SVM 
for automatic detection of leukemic cells from patients' bone 
marrow and peripheral blood samples in flow cytometry 
readouts. Manually gated leukemic cells were recovered by 
SVM with 98.87% specificity and 99.78% sensitivity which 
showed the potential of a well-established multivariate-
analysis technique.

Huang et al. (2014) demonstrated the use of a technique 
based on Extreme Learning Machines (ELM) for single-
frame super-resolution processing applied on a microflu-
idic contact imaging cytometer platform. Compared with 
the commercial flow cytometer, less than 8% error was 
observed for the absolute number of microbeads. They 
demonstrated in another paper that by mixed flowing of 
HepG2 and Huh7 cells as the inputs, the developed scheme 
achieved 23% better recognition accuracy compared to the 
one without error recovery. Whereas, it also achieved an 
average of 98.5% resource-saving compared to the previ-
ous multi-frame super-resolution processing (Huang et al. 
2015). Autoencoders are considered an unsupervised learn-
ing technique since they don't need explicit labels to train 
on. However, to be more precise they are self-supervised 
because they generate their own labels from the training 
data. A microfluidics-based platform for single-cell imag-
ing in-flow and subsequent image analysis using Variational 
Autoencoders (VAE) for unsupervised characterization of 
cellular mixtures was demonstrated in Constantinou et al.’s 
paper (2019). Heterogeneous mixtures of yeast species were 
classified with 88% accuracy. Microfluidic Imaging Flow 

Cytometry (MIFC) is an emerging method of microscopic 
imaging, which aims to reduce the complexity of the tasks 
involved in cytometry by combining flow cytometry with 
digital microscopy (Kalmady et al. 2017). This technique 
promised significantly higher throughput and was easy to set 
up with minimal expenses in Kalmady et al. study (2017). 
This group employed MIFC for obtaining images instead 
of image cytometry. They proposed a transfer learning and 
ensemble learning-based approach for the automation of 
cytopathological analysis of Leukemia cell-line images. 
Compared to earlier works, the use of fine-tuned features 
from a modified deep NN for transfer learning provided a 
substantial improvement in performance.

3.1.3 � Smartphone‑based detection

Smartphone-based sensors are closely related to the Image-
based sensors since they replace the microscope with the 
smartphone cameras, which are often supplemented by an 
attachment and have the same output i.e. image. They are 
becoming increasingly popular because of their small foot-
print and widespread availability of smartphones. Further-
more, they eliminate the need for specialized optical equip-
ment like microscopes and spectroscopes by substituting 
it with relatively inexpensive and portable attachments. 
Smartphone-based biosensors utilizing ML, therefore, have 
tremendous promise for being used as point-of-care diagnos-
tic devices with minimal training and knowledge required 
for operation.

A cost-effective method proposed by de Haan et  al. 
(2020) was capable of automatic screening of sickle cells 
(SC) in a deep learning framework. The framework included 
two complementary deep NN (Fig. 4). The first one stand-
ardized and enhanced blood smear images from a smart-
phone microscope while the second one acted on the output 
of the first image and performed the semantic segmentation 
between SC and healthy cells in a blood smear. Furthermore, 
the segmented images were utilized for the diagnosis of SC 
disease and achieved an accuracy of 98%.

A comparison of different ML algorithms was carried 
out for waterborne pathogen (Giardi) detection using a 
smartphone- based setup (Koydemir et al. 2017). The accu-
racy and the Area Under the ROC curve (AUROC) of dif-
ferent ML models were compared including, but not limited 
to SVM, nearest neighbors and ensemble methods. All the 
models had a classification accuracy above 81%, while the 
AUROC values were greater than 0.7. The best predictive 
performance was obtained using bagged trees (Ntree = 
400). Fine and cubic kNN classifiers provided fast fitting 
speeds, but their predictive accuracy was relatively poor. On 
the other hand, SVM and bagged ensemble classifiers were 
promising at their prediction accuracy, while their training 
speeds were slower.
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3.2 � Electrical detection

Electrical detection refers to the use of electrical circuits to 
obtain data in the form of electrical signals. These signals can 
be impedance, voltage, current or any other electrical signal. 
Impedance is generally the most commonly used parameter 
to identify and quantify cells. When a cell passes through 
the electrodes in a microfluidic channel, a change in imped-
ance occurs. The output signal is determined by the cell’s 

properties such as cell size, conductivity, and permittivity. 
Electrical Detection of cells has many advantages over tra-
ditional optical detection. Since there is no need for bulky 
optical equipment, electrical detection devices usually have 
a small footprint and are less expensive. In the following 
paragraphs, we present biosensors utilizing ML techniques 
for electrical detection of various biomarkers. A schematic 
diagram of an electrical impedance cytometer with SVM for 
data analysis is shown in Fig 5.

Fig. 4   Overview of smartphone-based biosensor employed by de Haan 
et al. (2020) A Photograph of the smartphone-based system, the over-
all design, and the light path is shown from left to right. Reprinted 
from de Haan et  al. (2020) B workflow of deep learning process is 

presented. This learning algorithm has been used sickle cell analysis 
to enhance blood smear images and carry out semantic segmentation 
between SC and healthy cells. Adapted from de Haan et al. (2020)

Fig. 5   Schematic diagram of an 
electrical impedance cytometer. 
As cells flow from the inlet to 
the outlet in these biosensors, 
the change in impedance is 
measured by a lock-in amplifier. 
The lock-in amplifier can apply 
signal in different frequencies 
at a time. The data are then 
recorded and analyzed using 
SVM. Adapted from Sui et al. 
(2020)
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Integrated with ML algorithms, a microfluidic impedance 
cytometry for real-time, label-free multiparametric charac-
terization of biological cells (Honrado et al. 2020). In this 
study, a recurrent NN was designed to predict cell diameter, 
velocity, and position from electric current signals, meas-
ured by a microfluidic impedance chip. The trained network 
was able to characterize geometric and electrical properties 
of beads, red blood cells, and yeasts with a good accuracy 
and a unitary prediction time of 0.4 ms. Zhao et al. (2018) 
designed a new microfluidic impedance cytometry with 
crossing constriction microchannels, which allows quanti-
fying the cellular electrical markers. Using an equivalent cir-
cuit model, they translated the measured impedance values 
to specific membrane capacitance and cytoplasm conduc-
tivity. A NN-based pattern recognition was used to classify 
tumor cell lines and tumor cells with epithelial-mesenchymal  
transitions. Precise measurement of mechanical and/or elec-
trical properties of cells or cell components yields useful 
information on the physiological and pathological state of 
cells and is critical for cell classification. Yang et al. (2019) 
extracted deformability, electrical impedance and relaxation 
index of single cells from impedance spectroscopy measure-
ments with self-aligned 3D electrodes. They demonstrated 
the ability of their system to detect and classify cells using 
a back propagation NN completely based on the biophysi-
cal properties of the cells. In another study, a microfluidic 
constriction channel was designed to measure single-cell 
electrical properties (Zheng et al. 2013). A back propa-
gation NN was used for cell classification based on three 
parameters of diameter, specific membrane capacitance, 
and cytoplasm conductivity. Finally, they showed that cell 
classification success rate significantly improved when  
information additional to cell size was included.

In Zhao et al.’s work (2013), osteoblasts and osteocytes 
were classified using a two-layer back propagation NN70. 
The input data had three groups of parameters measured 
on cells, namely, transit time, impedance amplitude ratio, 
and cell elongation length. Their results suggested that 
biomechanical and bioelectrical parameters, when used 
in combination, provided a higher cell classification suc-
cess rate than using alone. In another study, a microfluidic 
system was presented for cell type classification based on 
size-independent electrical properties, specific membrane 
capacitance and cytoplasm conductivity. Two lung tumor 
cell lines were classified using a two-layer back propagation 
NN. The NN-based classification resulted in a fairly accept-
able classification success rate of 65.4% (CSpecific Mem-
brane), 71.4% (σcytoplasm), and 74.4% (CSpecific Mem-
brane combined with σcytoplasm). A microfluidic system 
proposed by Zheng et al. (2012) with a constriction channel. 
The channel was marginally smaller than the RBC’s diam-
eters which was used to classify adult and neonatal RBCs 
using a back propagation NN through their biophysical 

properties (mechanical and electrical). Electrical meas-
urements were performed to characterize these properties. 
The input data had three group of parameters (transit time, 
amplitude ratio and phase increase). The results showed that 
when these parameters were used in combination, yielded 
a relatively higher classification accuracy (84.8%) than 
the time each parameter was used alone. Recently a study 
published where the authors used Quadratic Discriminant 
Analysis (QDA). This is a type of supervised ML algorithm 
that helped them extract six features from Red Blood Cells 
(RBCs) and yeast cells using Impedance micro-cytometry. 
They achieved the maximum test accuracy (99%) by using 
four features on RBCs. They also demonstrated the efficacy 
of their platform by classifying different cancer subtypes. 
The accuracy decreased when more than four features was 
used. It was because of overfitting of the model to the train-
ing data (Joshi et al. 2020).

A study conducted cancer drug efficacy analysis using 
multifrequency impedance cytometry, measuring the 
impedance of a single cell at several discrete frequencies 
(Ahuja et al. 2019). Support vector machine algorithm was 
implemented to help differentiate alive cells from dead 
cells. Song et al. (2013) employed a support vector machine 
algorithm to help identify differentiation states of stem 
cells based on impedance signals collected by the micro-
fluidic electrical impedance flow cytometer at 50 kHz, 250 
kHz, 500 kHz and 1 MHz. Another research group dis-
criminated strains of E. coli K-12, E. coli O157: H7, and 
Salmonella Thompson using a multichannel immunosensor 
incorporated with multiclass support vector machines (Zuo 
et al. 2006). Gini-SVM framework was adopted to design 
multiclass SVMs. To evaluate the performance, a 100-fold 
cross-validation procedure was implemented.

Detection and enumeration of circulating tumor cells from 
red blood cells were performed in research using a micropore-
based microfluidic impedance cytometer (Guo et al. 2014). 
The peak amplitude and the pulse bandwidth of signal pulses 
were analyzed by SVM to differentiate cancer cells from red 
blood cells. Radial basis function (RBF) was appointed as 
the kernel function. The results of the proposed microflu-
idic sensor combined with SVM showed a good agreement 
with the results of a commercial flow cytometer. Wang et al. 
(2017) proposed a sensitive multiplex self-referencing SERS 
pathogen detection scheme. A linear kernel-based SVM in 
conjunction of PCA was performed for rapid discrimination 
and classification of target bacteria with a detection accu-
racy above 95%. An approach for hematocrit estimation from 
the transduced anodic current curves introduced in a study. 
The curves were obtained by glucose-oxidase reaction in the 
strip-type electrochemical biosensors (Park et al. 2008). The 
support vector machine was implemented for regression with 
the target value of accurate hematocrit values measured by a 
hospital analysis system.
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4 � Conclusions

ML has become a useful tool in analyzing and classify-
ing the data obtained from biosensors for cellular analysis. 
Based on the papers we discussed here, we see that both 
SVM and ANN are the prevalent techniques which are effec-
tive in automating the classification of various cell types 
except for Image-based biosensors. This may be due to the 
fact that these are the most widely known techniques for 
researchers working in fields related to biosensors. In the 
case of Image-based biosensors, various NN architectures 
are preferred over SVM and other methods for classification 
of different cell types.

Table 1 compares important characteristics for several 
papers that are discussed in this review. It is divided into 
2 main categories for easily comparing each method’s effi-
cacy. In the first part, we list the papers in which the num-
ber of cells are specified as the dataset size. The second 
part of the table contains the papers in which the number 
of images is considered as the dataset size. Other than 
these 2 main categories, we have listed a few papers in 
which the dataset neither corresponds to the number of 
images nor the number of cells. The last column of Table 1 
is a ratio of the classifier accuracy (in percentage) to the 
dataset size. A higher number, therefore, indicates that 
the accuracy achieved corresponds to a relatively small 
dataset.

We also noted that Deep Learning and ANN have grown 
more popular recently with the majority of the newer publi-
cations using these methods. Another interesting observa-
tion is that biosensors utilizing electrical detection methods 
rarely employ deep learning as the analytical tool for clas-
sifying cells. This may be due to the fact that deep learn-
ing is data hungry and databases for electrical biosensing 
data are not yet established. On the other hand, there is a 
plethora of datasets easily available that may be used as 
training samples for image and optical detection of various 
biomarkers.

To summarize, the use of ML algorithms in biosensors 
have huge benefits that automate the cumbersome and com-
plicated process of extracting, processing and analyzing 
data that is generated by the biosensors. Such an automa-
tion eliminates the need for an experienced professional to 
make sense of the data and moves us closer to providing 
Point-of-care health solutions in environments that have low 
resources. Although ML algorithms have been around for a 
while now and have huge benefits, the techniques discussed 
here mostly utilize code and require certain Integrated 
Development Environments (IDE’s) e.g. Python, MATLAB 
etc. for their use. Researchers should consider packaging of 
the softwares into a GUI which will make these relatively 
simple to interact with and less formidable.
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