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Abstract

Aim: The fungal pathogen Pseudogymnoascus destructans and resultant white-nose
syndrome (WNS) continues to advance across North America, infecting new bat
hibernacula. Western North America hosts the highest bat diversity in the United
States and Canada, yet little is known about hibernacula and hibernation behaviour in
this region. An improved understanding of the distribution of suitable hibernacula is
critical for land managers to anticipate conservation needs of WNS-susceptible spe-
cies in currently uninfected regions.

Location: United States, Canada.

Taxon: Bats.

Methods: We estimated suitability of potential winter hibernaculum sites across five
bat species' ranges. We estimated winter survival capacity from a mechanistic sur-
vivorship model based on bat bioenergetics and climate conditions. We then used
boosted regression trees to relate these estimates, along with key landscape attrib-
utes, to bat occurrence data in a hybrid correlative-mechanistic approach.

Results: Winter survival capacity, topography, land cover and access to subterranean
features were important predictors of winter hibernaculum selection, but the shape
and relative importance of these relationships varied amongst species. This suggests
that the occurrence of bat hibernacula can, in part, be predicted from readily mapped
above-ground features, not just below-ground characteristics for which spatial data
are lacking. Furthermore, our mechanistic estimate of winter survivorship was, on
average, the third strongest predictor of winter occurrence probability across focal
species.

Main conclusions: Winter distributions of North American bat species were driven by
their physiological capacity to survive winter conditions and duration in a given loca-
tion, as well as selection for topographic and other landscape features but in species-
specific ways. The influence of winter survivorship on several species' distributions,
the underlying influence of climate conditions on winter survivorship and the antici-
pated influence of WNS on bats' hibernation physiology and survivorship together
suggest that North American bat distributions may undergo future shifts as these
species are exposed not only to WNS but also to climate change.
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1 | INTRODUCTION

Globally, bats are threatened by a wide range of human impacts, in-
cluding habitat loss and fragmentation, mortality due to roads and
energy development, loss of water sources, exploitation and intro-
duction of disease (Voigt & Kingston, 2016). In North America, one of
the most pressing threats is white-nose syndrome (WNS), caused by a
fungal pathogen introduced to New York state in 2006 that is rapidly
spreading across the continent with dire consequences for hibernating
bat populations (Frick et al., 2015; Leopardi et al., 2015). In response
to this novel threat, hibernating bats have been studied intensively
in eastern North America. In western North America (an arbitrary
distinction often defined as west of the Mississippi River, herein the
West), where WNS has only recently begun to appear (United States
Fish & Wildlife Service, 2021), bat hibernation is far less understood.
The West harbours considerably higher bat diversity than the East
(Harvey et al., 2013), and western bats hibernate differently (Weller
et al., 2018). Western bats generally do not form large colonies of
thousands of individuals but instead hibernate in much smaller num-
bers distributed widely across the landscape (Adams, 2003; Weller
et al., 2018). This hibernation behaviour, along with the ruggedness
and remoteness of much of the West, renders bats more difficult to
study than in the East. This is important as WNS begins to reach the
West (United States Fish & Wildlife Service, 2021) and as climate
change impacts bat populations (Sherwin et al., 2013), potentially in-
teracting with the effects of WNS. Researchers and managers need
new tools to understand how these combined stressors are likely to
impact western bats and how to allocate monitoring and management
resources to minimise impacts to vulnerable populations.

When species ecology is poorly understood, species distribu-
tion models (SDMs) help fill a wide variety of information needs
(Rodriguez et al., 2007). A first, necessary step in building knowl-
edge about these species and anticipating conservation needs is
understanding where they are most likely to occur so that they
can be better studied, monitored and managed. SDMs use what
we know about where a species occurs to predict where it is likely
to occur over a broader area. These models can then serve many
practical purposes, including (1) informing sampling and monitoring
efforts (Hauser & McCarthy, 2009; Jarnevich et al., 2006; Williams
et al., 2009); (2) elucidating movement patterns and metapopula-
tion dynamics (Frey et al., 2012; Lawler et al., 2013; McClure et al.,
2017); (3) reconstructing or predicting changes in distribution over
time (Beans et al., 2012; Svenning et al., 2011); (4) assessing op-
portunities for reintroduction or assisted migration (Hallfors et al.,
2016; Miranda et al., 2019) and (5) anticipating how the species
may be impacted by climate change, land use change and other
stressors (Doherty et al., 2008; Johnston et al.,, 2012; La Manna
etal., 2008).

Modeling species distributions is particularly challenging for
subterranean species because observations tend to be rare and
habitat selection is likely driven by landscape features that are not
well-represented in existing geodatabases. To estimate the degree to
which a species is associated with particular landscape characteris-
tics, SDMs typically quantify the characteristics of sites where a spe-
cies has been observed, often comparing them to those of sites where
the species has not been observed or to random sites across an area
of interest (Elith & Leathwick, 2009). These models often use readily
available data describing climate, land cover and water availability,
as these attributes are critical for defining species’ physiological and
ecological limits. However, the landscape attributes to which bats re-
spond when selecting hibernacula (i.e. shelters in which to hibernate,
such as caves) are largely unknown, and because key subterranean
habitat attributes are not visible to remote sensing platforms, contin-
uous data over large extents are rarely available. Efforts to model bat
distributions, space use and habitat selection have increased rapidly
in recent years (e.g. Burke et al., 2019; Delgado-Jaramillo et al., 2020;
Razgour et al., 2016; Zamora-Gutierrez et al., 2018). Few, however,
have attempted to model distributions of winter hibernacula (but
see Russell et al., 2014; Smeraldo et al., 2018; Weller et al., 2018) or
focused on western North America (but see Rodhouse et al., 2012,
2015; Weller et al., 2018). None to our knowledge have predictively
mapped occurrence probability or abundance in the West.

Climate is expected to be an important driver of bat winter dis-
tributions given that hibernaculum temperature and winter duration
dictate the length of time that hibernating bats can survive on their
fat stores (Speakman & Thomas, 2003; Thomas et al., 1990). Climate
metrics (e.g. mean annual temperature and annual precipitation)
are often included as predictors in SDMs (e.g. Kadmon et al., 2003;
Peterson & Vieglais, 2001; Phillips et al., 2006). Yet recent intensive
study of bat hibernation physiology offers a far more detailed mech-
anistic understanding of how temperature and humidity affect bat
metabolic rates and their ability to survive winter. Moreover, we now
understand (and can predict) how bat physiology is affected when
they are infected by Pseudogymnoascus destructans, the fungus that
causes WNS (Haase et al., 2019; Hayman et al., 2016; Johnson et al.,
2014; Langwig et al., 2012, 2016). We suggest that more fully and
precisely integrating the relationship between climate and winter
survivorship in SDMs can enhance our ability to model winter bat
distributions and understand how they may be impacted by WNS.

Buckley et al., (2010, 2011) pioneered the concept of SDMs that
integrate mechanistic understanding of how species respond physi-
ologically to environmental conditions. They fit correlative SDMs to
relate observed locations of butterflies to empirically derived numbers
of degree-days required for each species’ growth and survival (Buckley
et al.,, 2011). They found that species-specific degree-day measures
outperformed a fixed degree-day metric in predicting the current
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distribution of each species. However, the difference in performance
was modest, suggesting that more detailed models and/or additional
predictors may be helpful in refining predicted distributions. These
hybrid correlative-mechanistic models, which integrate a mechanistic
understanding of how a species responds to its environment into a
more traditional correlative framework, allow incorporation of addi-
tional landscape attributes to which the species is likely to respond
alongside physiology (e.g. Martinez et al., 2015; McClure et al., 2015).

Here, we integrated a bioenergetic model of bat hibernation
(Haase et al., 2019; Hayman et al., 2016; Hranac et al., 2021) into a
correlative species distribution modeling approach to predict winter
distributions of bat species whose ranges extend into the West. The
bioenergetic model makes species-specific predictions of remaining
fat stores and thus the likelihood of survival at the end of winter in a
given location. Bringing bioenergetic model predictions into our anal-
ysis makes full use of what we know about bat hibernation physiology.
We compiled bat winter occurrence data for five representative spe-
cies from a variety of sources to inform our models. We used spatial
predictions of winter survivorship from this mechanistic model as one
predictor of bat occurrence probability (or habitat suitability) across
the areas encompassing our focal species’ known range extents. We
included this along with other landscape attributes (e.g. topography,
vegetation cover and karst and mines) to fit SDMs using a boosted re-
gression tree (BRT) approach (Elith et al., 2008). Our objective was to
better understand the distribution of suitable bat hibernacula across
the West to inform targeted monitoring and management practices
and provide a baseline for estimating which species and populations
may be hardest hit by the advance of WNS and climate change.

2 | MATERIALS AND METHODS
2.1 | Winter occurrence data

We selected five focal species for our analyses: Corynorhinus
townsendii, Myotis californicus, Myotis lucifugus, Myotis velifer and
Perimyotis subflavus. These species were chosen because occurrence
data and field-measured metabolic parameters were available for
estimating survivorship and because they were representative of
variability in known habitat requirements amongst hibernating bats
whose ranges lie in whole or in part in the West, defined here as
west of the Mississippi River (Figure 1; National Atlas of the United
States, 2011).

We compiled species occurrence data from multiple sources,
including online databases of museum records (VertNet, National
Science Foundation (NSF), 2016, Biodiversity Information Serving
Our Nation, United States Geological Survey (USGS), 2012), online
repositories of vetted public and scientific observations (Global
Biodiversity Information Facility, GBIF.org, 2018, Bat Population
Database, United States Geological Survey (USGS), 2003), data

LExcluding isolated subspecies C. townsendii ingens and virginianus found in the Ozark
and Appalachian Mountains
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associated with published literature (Dubois & Monson, 2007,
Kuenzi et al., 1999; Ports & Bradley, 1996), data obtained from mul-
tiple Natural Heritage Programs (NHP; Montana Natural Heritage
Program, 2020; NatureServe, 2019) and data collected in our own
field studies (unpublished data). We amassed thousands of occur-
rence records for each focal species, but the vast majority of records
(>85%) were observed during summer or fall swarming, when bats
are more readily observed. Even in bats that do not migrate season-
ally, selection of hibernaculum microclimates and the surrounding
habitat mosaic is expected to differ from selection of summer roosts
(Smeraldo et al., 2018). Moreover, due to the sensitivity of hibernac-
ulum locations to disturbance or exploitation, along with the diffi-
culty of detecting torpid bats in hibernacula, winter bat location data
were difficult to come by and limited in number.

We included only in-hand or visual observations (i.e. no acous-
tic detections) with dates of record since 1948 with location error
<5 km. Because we were interested only in winter distributions as-
sociated with hibernaculum use, we filtered the compiled dataset
to observations recorded during what we defined as winter in a
spatially explicit and hibernation-specific manner. We first used a
generalised linear model informed by the timing of M. lucifugus im-
mergence and emergence observations at hibernacula throughout
North America (Hranac et al., 2021, Supporting Information) to es-
timate winter duration for each 1 km raster cell across the United
States and Canada. Then, to estimate the start and end date of win-
ter hibernation at a given grid cell, we centred this model-based win-
ter duration estimate on the winter solstice. Finally, we selected only
occurrence records observed between these spatially explicit start
and end dates. Lastly, we removed repeat observations (e.g. across
multiple studies or survey dates), retaining a single record for a given
site (with unique sites defined to the nearest thousandth of a degree

of latitude and longitude).

2.2 | Predictor variables

We identified landscape attributes that potentially influence hiber-
naculum conditions and selection from the published literature and
our own knowledge (Table 1 and Figure SA1). We selected publicly
available datasets representing these predictors with sufficient
spatial extent to encompass our compiled occurrence data (United
States and Canada south of the Arctic Circle). Where multiple candi-
date datasets were available, we chose those with the highest spatial
resolution and/or temporal range that best encompassed our occur-
rence data. The scale at which bats perceive and respond to land-
scape attributes may vary amongst species, attributes and locales
(see Bellamy et al., 2013; Ducci et al., 2015; Razgour et al., 2011).
We therefore derived predictor variables at multiple spatial scales
(i.e. different neighbourhood sizes or the radius around each focal
raster cell across which predictor values were smoothed) where ap-
plicable for comparison (Table 1). Our selection of neighbourhood
sizes, which included 500 m, 5 km, and 25 km, was guided by those to
which bats were found to respond in previous studies of multiscale
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FIGURE 1 Current geographic range maps overlaid with winter presence locations available to inform species distribution models across
the United States and Canada for five focal species (a) Corynorhinus townsendii, (b) Myotis californicus, (c) Myotis velifer, (d) Myotis lucifugus and
(e) Perimyotis subflavus. The Mississippi River demarcating the West is shown in bold. All maps use the USA Contiguous Albers Equal Area

Conic projection

habitat selection (100 m to 10 km; Bellamy et al., 2013; Ducci et al.,
2015). However, these studies focused on response to the landscape
during daily foraging bouts, and we felt it was important to consider
a broader range of spatial scales for selection of a winter hibernacu-
lum. All smoothing of predictor variables using each of the selected
neighbourhood sizes was performed at the native resolution of each
variable prior to sampling. Thus, for a variable with native resolution
of 30 m, we summarised values within 500 m, 5 km and 25 km of
each focal 30-m cell. Each layer was then aggregated to two scales,
1 and 10 km, for sampling. This step offered a means of exploring
the scale of bats’ response to those variables to which we could not
reasonably apply the above range of neighbourhood sizes, either due
to the coarse native resolution of the variables or because applica-
tion of varying neighbourhood sizes did not make intuitive sense. All

predictors were derived and/or sampled using Google Earth Engine,
a cloud-based computing platform supporting large-scale analysis on
an extensive catalogue of remotely sensed, climatological and other
geospatial datasets (Gorelick et al., 2017). All final predictive maps
were derived at a resolution of 1 km.

Survivorship. We estimated species-specific, spatially explicit win-
ter survivorship relative to the duration of winter. These estimates
were based on an existing bioenergetic model of bat winter survivor-
ship, recently updated and parameterised for western bat species.
Full details are elsewhere (Haase et al., 2019; Hranac et al., 2021), but
briefly, the model uses the hypothesised energetic requirements of
bats in torpor to dynamically model torpor bouts for the duration of a
predicted winter under specified hibernaculum conditions. For M. [u-
cifugus, torpor consumes approximately 80 times less energy per unit
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TABLE 1 Summary of predictors considered in winter species distribution models for bat species Corynorhinus townsendii, Myotis
californicus, Myotis lucifugus, Myotis velifer and Perimyotis subflavus across the United States and Canada

Predictor

Winter survivorship

Distance to mines
Mine density
Karst

Elevation

Ruggedness

Topographic position

Solar insolation

Annual precipitation

Annual snow days

Percent water

Groundwater depth

Percent tree cover

Night lights

Rationale (references)

Defines physiological response to climate
conditions, seasonality (Hayman et al., 2016)

Hibernaculum availability (Weller et al., 2018)
Hibernaculum availability (Weller et al., 2018)

Hibernaculum availability (Burke et al., 2019;
Cooper-Bohannon et al., 2016; Russell et al.,
2014; Weller et al., 2018)

Affects local climate, vegetation® (Burke et al.,
2019; Cooper-Bohannon et al., 2016;
Delgado-Jaramillo et al., 2020; Smeraldo
et al,, 2018; Weller et al., 2018)

Proxy for availability of crevices/caves, diverse
exposure conditions (Perry et al., 2013)

Affects local climate norms and variability (cold
sinks, inversions; Perry et al., 2013)

Affects local climate norms & variability (de
Boer et al., 2013; Perry et al., 2013)

Affects local climate, vegetation, water
availability (Weller et al., 2018; Zamora-
Gutierrez et al., 2018)

Insulation effect, water availability (Burke
et al,, 2019; Perry et al., 2013; Smeraldo
et al., 2018; Zamora-Gutierrez et al., 2018,
precipitation seasonality)

Water availability (Cooper-Bohannon et al.,
2016; de Boer et al., 2013; Razgour et al.,
2018; Smeraldo et al., 2018, distance from
water)

Proxy for potential water flow within caves/
mines (Perry et al., 2013)

Shade effect, roost availability in active seasons
(de Boer et al., 2013; Perry et al., 2013;
Russell et al., 2014)

Proxy for intensity of human development/
activity; some bats hibernate in human
structures (de Boer et al., 2013, cover by
built-up areas, Razgour et al., 2018, distance
from urban)

Neighbourhood

Source data Resolution size

(Haase et al., 2019; Hranac 1 km -
etal., 2021)

USGS MRDS?, BC MinFile? 1km -

USGS MRDS, BC MinFile 1 km 25 km

(Weary & Doctor, 2014; 1 km —

Forest Analysis &
Inventory, 2019)

ALOS® Digital Surface Model 30 m -
v2 (Tadono et al., 2014)

ALOS Digital Surface Model 30m 500 m, 5 km,
v2 (Tadono et al., 2014) 25 km,

multiscale

ALOS Digital Surface Model 30m 500 m, 5 km,
v2 (Tadono et al., 2014) 25 km,

multiscale

ALOS Digital Surface Model 30m 500 m, 5 km,
v2 (Theobald et al., 2015) 25 km,

multiscale

DayMet v3 (Thornton et al., 1 km —

2019)

MODIS* Global Daily Snow 500 m =
Cover vé (Hall et al.,

2016)

JRC? Yearly Water 30m 500 m, 5 km,
Classification v1 (Pekel 25 km,
etal., 2016) multiscale

(Fan et al., 2013) 1 km —

MODIS Vegetation 250 m 5km, 25 km
Continuous Fields®
(DiMiceli et al., 2019)

DMSP Radiance- 30 arcsec -

Calibrated OLS’ v48
(National Oceanic

and Atmospheric
Administration (NOAA),
2016)

Note: The reasoning and precedence for consideration of each predictor are summarised under ‘Rationale’, noting (in parentheses) where cited
studies used slightly different form of a predictor (e.g. percent water vs. distance from water).

?Surrounding vegetation composition may affect availability of insect prey and roost sites in active seasons. 1—United States Geological Survey

Mineral Resources Data System; 2—British Columbia Mineral Inventory; 3—Advanced Land Observing Satellite; 4—Moderate Resolution Imaging
Spectroradiometer; 5—Joint Research Centre; 6—National Aeronautics and Space Administration; 7—Defense Meteorological Satellite Program-
Operational Linescan System; 8—National Oceanic and Atmospheric Administration.

time than euthermia, whereas the infrequent but periodic arousals to
euthermic temperatures use the majority of energy stores, with each
arousal consuming approximately 5% of total overwinter energetic
costs (Thomas et al., 1990). In this model, ambient temperature and
relative humidity were drivers of arousal frequency. Using gridded

spatial data, we applied the model to values of each 1 km grid cell
across the study extent to predict the fat mass expected to remain
at the end of winter given mean ambient temperature and winter du-
ration at each 1 km? raster cell. Higher, positive predicted values are
expected to correspond to high survivorship, whilst low or negative
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values indicate areas where bats are unlikely to survive. Further details
regarding the bioenergetic model and spatial parameters are described

in the Supporting Information.

2.21 | Topography

We derived topographic covariates from the global ALOS Digital
Surface Model (DSM version 2.2; Tadono et al., 2014) at 30-m
resolution, including elevation, topographic ruggedness and topo-
graphic position. Topographic ruggedness was quantified as the
standard deviation of elevation values within a given radius around
each focal raster cell. Similarly, topographic position was quantified
as the difference between the elevation of each focal raster cell
and the mean of elevation values within a given radius, such that
high values are associated with peaks and ridges and low values
are associated with canyon bottoms (e.g. Dickson & Beier, 2007,
Guisan et al., 1999). We also extracted Continuous Heat-Insolation
Load Index, a surrogate for effects of solar insolation and topo-
graphic shading on evapotranspiration, also derived from the global
ALOS DSM at 90-m resolution by Theobald et al., (2015). We used
a moving window approach to derive topographic ruggedness and
position at three spatial scales (diameter = 500 m, 5 km, 25 km),
then the resulting values were averaged to create ‘multiscale’ met-
rics. We took the focal mean of solar insolation values over these

multiple scales as well.

2.2.2 | Surface attributes

We derived percent tree cover from the Terra MODIS Vegetation
Continuous Fields product, which estimates subpixel-level sur-
face vegetation cover globally, including percent tree cover, on
an annual basis (250-m resolution; DiMiceli et al., 2019). Because
data were not available for the entire temporal range of our oc-
currence data, we used data for the most recent year available
(2015). We estimated percent tree cover at two aggregated scales
(diameter = 5 km, 25 km). We used global nighttime lights imagery
from the Defense Meteorological Program Operational Line-Scan
System (Radiance-Calibrated, V4) as a proxy for relative intensity of
human development (30-arcsec resolution; National Oceanic and
Atmospheric Administration (NOAA), 2016). We estimated avail-
ability of surface water based on the Joint Research Center Yearly
Water Classification History (V1), which maps the location and sea-
sonality of surface water from Landsat 5, 7, and 8 imagery (30-m
resolution; Pekel et al., 2016). We estimated the percent cover of
seasonal or permanent surface water at three spatial scales (diam-
eter = 500 m, 5 km, 25 km), focusing on the most recent year for
which data were available (2015) because the data do not span the
entire temporal range of our occurrence dataset. We estimated the
frequency of snow cover based on the MODIS Global Daily Snow
Cover product (V6; Hall et al., 2016), which estimates percent snow
cover of each 500-m pixel on a daily basis. We counted the average

number of days per year with at least 10% snow cover over the
5 year period from July 2013 to June 2018. We quantified precipi-
tation using the DayMet dataset (V3; Thornton et al., 2019), which
provides gridded daily precipitation data at 1-km resolution. We
estimated mean annual total precipitation by summing daily values
annually then averaging the most recent five years available (2013-
2018) for consistency with the temporal range of other available

predictor data.

2.2.3 | Below-ground attributes

To represent potential availability of karst features that may pro-
vide suitable hibernacula, we relied on a map of karst and pseu-
dokarst features across the United States produced by Weary
and Doctor (2014) derived from State geological survey maps and
USGS integrated geologic map databases (1:24,000 to 1:500,000
resolution). We merged this with an equivalent dataset for British
Columbia provided by the Ministry of Forests, Lands, Natural
Resource Operations and Rural Development (1:250,000 resolu-
tion; Forest Analysis & Inventory, 2019). We did not differentiate
amongst karst types and instead created a simple binary indicator
of karst presence vs. absence in raster format (1 km resolution).
We also estimated availability of mines as potential hibernacula,
using mine site locations available from the USGS Prospect-
and Mine-Related Features database (v4, available for all but
northeastern states; Horton & San Juan, 2019) and the Mineral
Resources Data System (MRDS, used for northeastern states;
United States Geological Survey, 2016) and from the MINFILE
Production Database for British Columbia (BC Geological Survey,
2019). We included only mineral resource sites classified as mines
(Mine-Related Features and MRDS) or as producing at one time
(MINFILE). We derived two measures of mine availability: distance
to the nearest mine and density of mines within 50 km of each
focal raster cell (1-km resolution), calculated using a Gaussian ker-
nel density function (sigma = 25 km). Karst and mine data were not
available for other Canadian provinces; these predictors were not
included in models for M. lucifugus, whose range spans these areas.
Finally, we estimated groundwater depth from a global water table
depth model that gap-filled point observations with a mechanistic
groundwater model (1-km resolution; Fan et al., 2013).

2.3 | Model fitting

We estimated species-specific relative probability of occurrence
(also interpretable as relative habitat suitability) during winter using
boosted regression trees (BRT; De'Ath, 2007; Elith et al., 2008). A
BRT (a.k.a. gradient boosting machine or stochastic gradient boost-
ing) is an ensemble approach that combines regression trees, which
relate a response to predictors by recursive binary splits of the data
and boosting, in which inference is drawn from the relative strength
of many possible models rather than fitting a single parsimonious
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model. This method offers advantages over more traditional linear
regression approaches in that a variety of response data and model
forms can be accommodated (e.g. Gaussian, binomial and Poisson);
different types of predictor variables (e.g. continuous, ordinal and
categorical) can be included with no need for transformation or out-
lier removal; nonlinear relationships are easily captured; and interac-
tions between predictors are handled automatically. Furthermore,
overfitting is well-controlled through the use of cross-validation
as BRT models are ‘grown’ (Elith et al., ,2006, 2008). Importantly,
a number of studies (e.g. Elith et al., 2006; Maiorano et al., 2013;
Oppel et al., 2012; Wisz et al., 2008) have shown strong BRT predic-
tive performance relative to other SDM approaches (e.g. generalised
linear models, generalised additive models (GAM), climatic envelope
models ad maximum entropy).

We follow the approach detailed by Elith et al., (2008) for appli-
cation of BRT to species distribution modeling. One key difference
in our application is that we make use of presence-background data
rather than presence-absence data. Use of presence-background
data, in which sites where the focal species was absent are not known
with certainty, requires a shift in model assumptions and inference.
Presence-absence models compare landscape attributes of sites at
which the species was known to be present and absent to estimate
the absolute probability of occurrence at any unobserved site given
its climate and/or landscape characteristics (Guisan & Zimmermann,
2000; Manly et al., 2007). Without absence data, attributes of pres-
ence locations must instead be compared to randomly sampled ‘back-
ground’ locations (e.g. Ferrier et al., 2002). In this case, presence is
assessed relative to availability and the species’ absence at sampled
background locations is not guaranteed. This shift in comparison fun-
damentally alters the inferences that can be made from the model:
We cannot estimate the absolute probability of focal species occur-
rence (i.e. 80% probability of occurrence at a given site), but we can
estimate, or rank, the relative probability of occurrence (Keating &
Cherry, 2004; but see Phillips & Elith, 2011; Royle et al., 2012).

We sampled ‘background’ locations from geographic areas ex-
tending well beyond each species’ known range in the United States
and Canada (16 western states and British Columbia for C. townsendii,
M. californicus; all states and provinces for M. lucifugus; all US states for
M. velifer, P. subflavus). This choice aimed to sufficiently capture the full
range of environmental conditions limiting bats’ distributions (Razgour
et al., 2016). Because bats were more likely to have been observed in
locations already known to harbour bats and that are more accessi-
ble (e.g. closer to population centres, accessible by roads and in less
rugged topography; Graham et al., 2004), we generated background
points so as to replicate and thus control for this inherent spatial bias
(after Hertzog et al., 2014). We first created a bias grid based on the
kernel density of occurrence locations (Venables & Ripley, 2002) using
the MASS package for R, then generated background points with
probability dictated by occurrence density, such that areas with high
density of occurrences had high probability of background sampling,
but all locations within the sampling extent had nonzero probability
of sampling (e.g. Figure SA2). Our background sample consisted of
three background points per occurrence point as a balance between
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achieving good coverage of available habitat and not artificially inflat-
ing sample size. Finally, we sampled all candidate predictor variables at
each presence and background location.

To identify the most appropriate scale for each predictor (i.e. the
scale at which habitat selection was most evident), we first fit uni-
variate GAM (Yee & Mitchell, 1991) for each predictor. We chose
GAM for this preliminary predictor selection step to not constrain
the form of the response. We selected the best performing scale
for each predictor, which was then included in the final multivari-
ate model (below), based on a comparison of Akaike's Information
Criterion (AIC) scores across each scale at which the predictor was
sampled. We then assessed pairwise correlations and variance infla-
tion factors across the resulting set of predictors and excluded those
causing standard thresholds of 0.7 and 4.0, respectively, to be ex-
ceeded to avoid multicollinearity (Belsley, 1991; Booth et al., 1994).
We also excluded mine density from further consideration due to its
poorer AlC-based performance across all focal species compared to
distance from mines.

We fit and calibrated each BRT model using the stepwise cross-
validation process detailed by Elith et al., (2008) and accompanying
R scripts (Appendix S3 in Elith et al., 2008). We adjusted the model
learning rate to ensure that a minimum of 1,000 trees were fit, then
calibrated the tree complexity (range: 3-5) and bag fraction (range:
0.5-0.7) to minimise deviance. We tested for benefits of dropping
uninformative model terms based on estimated reduction in de-
viance. We then used this ‘optimised’ model to assess the relative
contribution of each predictor, plot the relationship between each
predictor and relative occurrence probability and evaluate model
performance. We evaluated the model's fit to the training data (it-
eratively partitioned in the cross-validation process) based on the
mean proportion of deviance explained in each cross-validation
iteration (D?), a pseudo-determination coefficient intended to be
comparable to R? (Mateo & Hanselman, 2014; Nieto & Melin, 2017).
We also assess predictive performance based on the cross-validated
area under the receiver operating curve (AUC). Although use of this
metric to evaluate presence-background models is flawed by ‘con-
tamination’ of background sites with unobserved presence (Boyce
etal., 2002; Escobar et al., 2018; Jimenez-Valverde, 2012), we report
it here as an additional evaluation metric that supports comparison
with other studies that frequently include it. As a final modeling
step, we applied the optimised model to predictor values in each
1-km cell of the extent of interest for each species to predict and
map relative probability of occurrence (Appendix S3 in Elith et al.,
2008). We summarised the percentile ranks of occurrence probabil-
ity values predicted for presence and background locations as an ad-
ditional assessment of predictive performance. All model fitting and
prediction were conducted in R (version 3.4.1; R Core Team, 2019).

3 | RESULTS

After filtering the compiled dataset to unique winter locations, an
average of 250 presence locations per species (range: 72-442) was
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available to fit SDMs (Table 2). Of the neighbourhood sizes com-
pared, moderate to large neighbourhoods (5-km, 25-km diameter)
tended to capture the scale at which bats responded to landscape
attributes better than a small neighbourhood (500 m), but scale of
selection for each attribute varied amongst species (Table SA1).
Sampling landscape predictors at finer resolution (1 km) tended to
produce stronger relationships with bat occurrence than coarse-
resolution sampling (10 km), and the tendency for each predictor to
perform best at either a fine or coarse sampling resolution was fairly
consistent across species (Table SA1).

Optimal BRT parameters varied amongst species, but higher tree
complexity (4-5) and higher bag fractions (0.6-0.7) were favoured
(Table 3). Model goodness of fit was fairly similar across species,
with a mean of 54.7%-71.7% of the total deviance in the training
data explained. Performance standards vary by application; here we
considered values between 50% and 75% to demonstrate moderate
support. Predictive performance based on AUC ranged from 0.814
to 0.873; scores between 0.8 and 0.9 are generally considered ex-
cellent (Hosmer & Lemeshow, 2000). The model for M. velifer had
the best fit to the data (71.7% deviance explained) as well as the
best predictive performance (0.873 AUC), followed by C. townsen-
dii (0.867 AUC). The model for P. subflavus had the poorest perfor-
mance in terms of both fit (54.7% deviance explained) and predictive
performance (0.814 AUC).

We found considerable interspecific differences in the relative
influence of each predictor on occurrence probability (Figure 2).
Ruggedness, distance to mines, winter survivorship and percent
tree cover were amongst the strongest contributors, based on mean
relative influence across species (12.0%, 9.9%, 9.8% and 9.2%, re-
spectively). Whilst the influence of ruggedness and percent tree
cover was consistently quite high across species, distance to mines
and winter survivorship had far more variable influence (Figure 2).
Winter survivorship was the strongest predictor of M. californicus
winter distributions but the second weakest predictor for M. velifer.
On average, winter survivorship was the third strongest predictor
(out of 11 to 13 predictors considered for each species). Karst had

TABLE 2 Occurrence data available to inform winter species
distribution models for five bat species across the United States
and Canada after filtering to unique winter locations

Species Total Winter Unique
Corynorhinus townsendii 8,959 1,637 355
Myotis californicus 5,920 596 97
Myotis lucifugus 14,946 2,113 442
Myotis velifer 11,152 1,688 72
Perimyotis subflavus 7,024 2,722 284

Note: Total records include all raw observations compiled from multiple
sources. Winter records were selected based on a spatially explicit
model of winter duration informed by bat immergence and emergence
observations (Hranac et al., 2021, Supporting Information). Unique
records were counted after dissolving repeat winter observations (e.g.
across multiple studies or survey dates) at a given location.

the lowest influence overall (mean 3.7%, though it was not consid-
ered in the M. lucifugus model).

Consistency in a predictor's degree of influence across species
did not necessarily correspond to similar relationships between
that predictor and relative occurrence probability amongst species
(Figure SA3). The effect of ruggedness was fairly consistent amongst
species, with low relative occurrence probability predicted in very
flat, open areas (very low ruggedness). M. velifer and particularly P.
subflavus appeared to favour low topographic positions (i.e. can-
yon bottoms); M. lucifugus also showed this pattern, in addition to
an avoidance of open, flat topography (topographic position ~0).
Relationships with solar insolation and elevation varied widely. For
example, C. townsendii showed some preference for low elevations
with high insolation, whilst M. velifer selected for low elevation, low
insolation sites and P. subflavus preferred higher elevations (eleva-
tion was excluded from models for M. californicus and M. lucifugus
due to high collinearity with other predictors). Occurrence proba-
bility generally increased with predicted winter survivorship, as
expected, particularly in species for which survivorship had strong
influence (M. californicus, M. lucifugus and P. subflavus). Similarly, oc-
currence probability was generally higher with greater tree cover
and fewer days of snow annually. The shape and direction of re-
sponses to groundwater depth, surface water and annual precipi-
tation (excluded from C. townsendii and M. californicus models due
to collinearity) were highly variable. In preliminary models that did
not correct for bias in presence locations (unpublished data), night
lights were a strong predictor of most species’ occurrence, but this
relationship primarily reflected the distribution of sampling effort,
not distribution of the species of interest. Still, even after correcting
for sampling bias closer to human habitation, all species had very
low relative probability of occurrence where night light intensity
was lowest (darkest). However, in all species the rest of the response
curve is quite flat, indicating minimal lingering effect of night lights
in the models. Similarly, occurrence probability tended to be highest
very close to mines, but beyond a minimum distance, the presence
of mines had little effect on species distributions. Three species
showed evidence of a preference for karst features (karst could not
be considered for M. lucifugus due to missing karst data in portions
of the species’ range).

We observed high relative probability of occurrence at presence
locations compared to background locations, as expected (Table 3
and Figure SA4). The mean percentile rank of predicted occurrence
probability at presence locations ranged from 80.3 (M. lucifugus,
M. velifer) to 94.8 (M. californicus), 29.9-45 percentile points higher
than the mean values predicted for background locations. In some
cases, conspicuous exclusions and inclusions evident in existing spe-
cies range extents (e.g. exclusion of Great Plains for C. townsendlii,
exclusion of Texas panhandle and mid-Atlantic coast for M. luci-
fugus, inclusion of Great Salt Lake area for M. californicus, inclusion
of Arizona's Sky Islands for M. velifer) are mirrored by low and high
predicted probabilities, respectively. Often, areas outside the focal
species’ known ranges have high predicted occurrence probability,
reflecting the similarity of landscape attributes in these areas to
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TABLE 3 Final boosted regression tree (BRT) model parameters and performance metrics for winter species distribution models for bat species Corynorhinus townsendii, Myotis californicus,

Myotis lucifugus, Myotis velifer and Perimyotis subflavus across the United States and Canada

Mean predicted

Mean predicted

Cross-validated

Mean deviance
AUC

Mean residual
deviance

Mean total
deviance

percentile (background)

percentile (presence)

explained (D?)

trees

Bag fraction

Tree complexity

Species

53.6

89.4

0.867
0.853

0.391 65.2

1.122
1.116
1.141
1.125
1.126

3400
1100
4500
1800
2300

0.7

5

C. townsendii

55.9

94.8

62.8

0.415

0.7

M. californicus

43.4

80.3

0.839

64.2

0.409

0.6
0.6
0.5

5

M. lucifugus
M. velifer

38.7

83.7

0.873

71.7

0.318
0.51

58.1

88.0

0.814

54.7

P. subflavus
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those of known presence locations. Conversely, areas with low oc-
currence probability often occur within the species’ known ranges,
highlighting the generalised nature of simple polygon range extent

estimates.

4 | DISCUSSION

This study provides insights into the drivers and spatial patterns of
bat hibernaculum selection in western North America (the West)—a
topic that is poorly understood, yet critical for advancing bat re-
search, conservation and management of WNS impacts. We demon-
strate that the nature and scale of bats’ responses to the landscape
when selecting hibernacula varies amongst species and across dif-
ferent landscape attributes. Our results point to ranges of landscape
attribute values where each focal species may be most likely to hi-
bernate and highlight the importance of protecting mine features as
hibernacula for multiple species. Importantly, our findings indicate
that topographic attributes are important predictors of hibernacu-
lum selection, suggesting that bat winter occurrence can, in part,
be predicted from readily mapped above-ground features. We also
found that our mechanistic estimate of winter survivorship contrib-
uted to prediction of winter occurrence probability for all focal spe-
cies; in one case (M. californicus), it was the strongest predictor.

Because so little is known about how bats choose winter hiber-
nacula and bat winter distributions in the West have never been
modeled, we felt it was important to use methods that allow for flex-
ible, nonlinear relationships between predictors and relative proba-
bility of occurrence. Peaks in our modeled response curves may help
to identify ranges of preferred attributes (e.g. preferred elevation
bands or density of forest cover). Flat portions of response curves
may indicate an absence of selection (e.g. beyond a threshold dis-
tance, bats do not care how far they are from the nearest mine) or
they may indicate ranges of attribute values where we simply have
no data (see wide gaps in decile rug plots on response curves, Figure
A3). Our use of bias correction when generating background loca-
tions (Hertzog et al., 2014) was important given the opportunistic
sampling of winter bat locations reflected in the public databases
we relied on. Preliminary models that did not include bias correc-
tion (unpublished data) pointed to night lights as a strong predictor
of most species’ occurrence probability and suggested a preference
for more intense night lights, but this uncorrected result would have
reflected the distribution of sampling effort rather than the ecology
of the focal species.

Although topographic attributes were often strong predictors of
hibernaculum selection, preferred topographic characteristics (e.g.
high versus low topographic position) varied amongst species. Karst
presence was a weak predictor, perhaps because we did not consider
differential selection amongst different types or depths of karst or
because the available map of karst features does not necessarily
indicate where karst features are accessible to bats via caves or
crevices. Mines were clearly important features for several species,

and their relative influence appeared to scale sensibly with species’
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tendency to use mines: influence was lowest for M. velifer (Cave my-
otis), which is more frequently found in caves. Our models suggest
the importance of generating and making public spatial karst and
mine datasets in other Canadian provinces to better predict occur-
rence for M. lucifugus and other species frequently found in mines
in these regions. Our results support the preservation of western
mines as critical winter habitat for which there are significant op-
portunities to enhance existing protected area status (Weller et al.,
2018).

Our mechanistic winter survivorship estimate (Hranac et al.,
2021) contributed to all species’ predicted occurrence, but to vary-
ing degrees. The direction of the relationship between survivorship
and relative occurrence probability was positive overall, as expected,
and survivorship was the third strongest predictor of occurrence
overall (9.8% mean influence), but its influence varied considerably
amongst species (4%-21.5%, Figure 2). This interspecies variability
is likely to reflect some real ecological differences in the degree to
which species distribution limits are defined by the physiological re-
sponse to ambient temperature and winter duration captured in our
winter survivorship model. Winter survivorship was a poor predictor
of winter distribution for M. velifer, whose U.S. distribution is limited
to Texas and the desert southwest where winters are relatively short
and winter temperatures are generally mild. In contrast, winter sur-
vivorship was the strongest predictor of the winter distribution of
M. californicus, whose range encompasses strong latitudinal and ele-
vational gradients. Here, we would expect a strong ‘signal’ in terms
of relative probability of occurrence of M. californicus along these
gradients driving winter survivorship predictions.

This complex, model-based estimate of survivorship is unavoid-
ably subject to uncertainty, but it has greater direct relevance to
winter bat distributions than generic climate metrics (e.g. mean
surface temperature) with no mechanistic link to bat physiology.
Future quantitative comparisons between predictions from this
mechanistic predictor and those generated using standard, off-the-
shelf climate predictors may be of interest. We also see worthwhile
opportunities to continue honing this survivorship model as addi-
tional empirical data for parameterisation become available (e.g. for

sAep mous [enuuy -

FIGURE 2 Final predictor influences
in boosted regression tree (BRT) models
estimating winter species distributions

of bat species Corynorhinus. townsendlii,
Mpyotis. californicus, Myotis. lucifugus,
Myotis. velifer and Perimyotis. subflavus
across the United States and Canada.
Brighter colours indicate higher influence;
predictors that were dropped from a given
model are shown in grey. Variables are
ordered by their average influence across
species (decreasing left to right)
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estimating species-specific, spatially explicit winter duration, better
estimating subterranean temperatures and humidity experienced by
hibernating bats and how they respond physiologically).

The maps of relative occurrence probability presented here
(Figure 3) should help to guide future work to survey and monitor
western bat populations, inform future conservation efforts and pro-
vide a baseline for understanding potential impacts of future change,
namely, the spread of WNS through the West and climate change.
These maps should be interpreted with care outside the known
range of each species, as places with predictor values similar to those
currently occupied will be highlighted but other limits on species dis-
tributions (e.g. historic spread processes, species interactions) may
exist that were not captured here. Occurrence probability of gen-
eralist species with broad geographic ranges is particularly difficult
to model effectively (Hernandez et al., 2006; Razgour et al., 2016).
Predictive maps and all aspects of underlying models for such spe-
cies (e.g. M. lucifugus and P. subflavus), which have lower predictive
performance, should be interpreted with caution. Still, we expect
that these maps can be useful for considering the potential occur-
rence of the focal species in areas predicted to be suitable beyond
their coarsely mapped range extents, which are likely inaccurate or
out of date in some areas. Places that are predicted to have low oc-
currence probability may in fact be unlikely to support hibernacula,
or they may simply have attributes not well represented in our pres-
ence data. These areas should be considered in the context of exist-
ing knowledge of the focal species and their hibernation patterns: Do
these places lack karst or mine features, topographic relief, or trees
to shelter hibernating bats? Or are they simply remote and charac-
terised by rare landscape features that were underrepresented in
our sample? It is also important to recognise that mapped occurrence
probabilities are relative values. We cannot estimate absolute occur-
rence probability from the available data, and our estimates may not
be strictly proportional to absolute probability. The predicted values
should be interpreted as rank probabilities, as reflected by the quan-
tile symbology used in our maps (Figure 3).

These are complex models based on relatively small sam-
ple sizes, so uncertainty remains and portions of the predictor
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FIGURE 3 Predicted relative probability of occurrence of (a) Corynorhinus townsendii (deviance explained = 65.2%, AUC = 0.867); (b)
Myotis californicus (deviance explained = 62.8%, AUC = 0.853) across the western United States and British Columbia; (c) Myotis velifer
(deviance explained = 71.7%, AUC = 0.873) across the southwestern United States; (d) Myotis lucifugus (deviance explained = 64.2%,

AUC = 0.839) across the United States and Canada (below the Arctic Circle) and (e) Perimyotis subflavus (deviance explained = 54.7%,
AUC = 0.814) across the eastern and central United States and eastern Canada. Each species’ current range extent (turquoise outline)

and winter occurrence locations used to fit the model are overlaid (turquoise points). Occurrence probability is scaled using a quantile
symbolisation to reflect the fact that predictions represent relative occurrence probability; whilst absolute values cannot be reliably
interpreted relative to one another, percentile ranking is permitted (i.e. yellow areas of the maps represent the 10% by area of the mapped
landscape with the highest occurrence probability, regardless of the underlying distribution of values). All maps use the USA Contiguous

Albers Equal Area Conic projection

space are undersampled. We may also be missing key predic-
tors that we simply do not yet understand to be important for
hibernaculum selection or cannot map continuously with cur-
rently available spatial data. Furthermore, varying degrees of
temporal mismatch between occurrence records (mid-century
to present) and climate and land cover variables (recent av-
erage conditions to temporally align all predictors) mean that
conditions for older records may not be fully and accurately
captured. This may have contributed to low predictive influ-
ence of climate variables (e.g. precipitation and snow). Future
efforts to improve on these models would benefit from addi-
tional winter location data (particularly for species other than
C. townsendii and M. lucifugus). Not only could spatial coverage

be improved but additional recent records would allow exclu-
sion of older records without resulting in prohibitively small
sample sizes. Future survey efforts could perhaps target places
predicted to be highly suitable but where no occurrence data
exist (e.g. M. californicus in the Great Salt Lake region, M. velifer
in south Texas and northeast Arizona) or places with landscape
characteristics not well represented in the current sample.
Underrepresented characteristics are evident in the ‘flat’ por-
tions of the partial dependence plots and ‘empty’ portions of
associated rug plots shown in Figure A3 (e.g. high elevations,
high ruggedness, high number of snow days and high percent
surface water). Absence data would improve the robustness of
distribution models considerably (e.g. in comprehensive survey
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and monitoring efforts, which species were searched for but
not found?), although reliable absences would be extremely
difficult to obtain (due to low detection probabilities that vary
with survey techniques and site characteristics).

Winter hibernation is clearly a critical part of temperate bats’ an-
nual cycle, yet it is largely a black box for many species; we have only
limited knowledge of where these widely distributed species go for
approximately half the year or what drives them there. This lack of un-
derstanding of the ecology of these species hinders conservation and
management responses to ongoing and future threats to their per-
sistence. Insights from SDMs are valuable for locating, studying and
managing species with low detectability (Razgour et al., 2016). SDMs
may also help to define winter critical habitat for bats, as they have for
other species (Brotons et al., 2004; Heinrichs et al., 2010). Unlike the
East, there has simply not been a ‘where’ on which to focus conser-
vation policy in the West; models like ours could begin to fill this gap.

Our study also paves the way for assessment of the potential
impacts of WNS and climate change on western bats, as well as their
interactions. Prediction of species distributions under altered spa-
tial patterns of winter survivorship in the presence of P. destructans
and future climate conditions may help to identify species and places
most threatened by these stressors. We expect these predictions to
have important implications for bat conservation and management
in the West, such as informing placement of passive acoustic detec-
tors for monitoring or understanding the distribution of at-risk and
stable hibernacula across federal, state and private lands to guide
engagement strategies for conservation.

Significance Statement.

Bats are threatened worldwide by human impacts. In North
America, WNS, caused by an introduced fungal pathogen, deci-
mates hibernating bats and is rapidly spreading westward. Bat di-
versity is highest in the West, yet we know little about where these
species go in winter or why, hindering conservation responses. We
estimate winter occurrence probability across five western bat spe-
cies’ ranges by integrating mechanistic understanding of hibernat-
ing bats’ physiological responses to climate conditions into SDMs.
This work can inform targeted monitoring and management and
provide a baseline for assessing impacts of advancing WNS and cli-

mate change on bats.
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