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1  |  INTRODUC TION

Globally, bats are threatened by a wide range of human impacts, in-
cluding habitat loss and fragmentation, mortality due to roads and 
energy development, loss of water sources, exploitation and intro-
duction of disease (Voigt & Kingston, 2016). In North America, one of 
the most pressing threats is white- nose syndrome (WNS), caused by a 
fungal pathogen introduced to New York state in 2006 that is rapidly 
spreading across the continent with dire consequences for hibernating 
bat populations (Frick et al., 2015; Leopardi et al., 2015). In response 
to this novel threat, hibernating bats have been studied intensively 
in eastern North America. In western North America (an arbitrary 
distinction often defined as west of the Mississippi River, herein the 
West), where WNS has only recently begun to appear (United States 
Fish & Wildlife Service, 2021), bat hibernation is far less understood. 
The West harbours considerably higher bat diversity than the East 
(Harvey et al., 2013), and western bats hibernate differently (Weller 
et al., 2018). Western bats generally do not form large colonies of 
thousands of individuals but instead hibernate in much smaller num-
bers distributed widely across the landscape (Adams, 2003; Weller 
et al., 2018). This hibernation behaviour, along with the ruggedness 
and remoteness of much of the West, renders bats more difficult to 
study than in the East. This is important as WNS begins to reach the 
West (United States Fish & Wildlife Service, 2021) and as climate 
change impacts bat populations (Sherwin et al., 2013), potentially in-
teracting with the effects of WNS. Researchers and managers need 
new tools to understand how these combined stressors are likely to 
impact western bats and how to allocate monitoring and management 
resources to minimise impacts to vulnerable populations.

When species ecology is poorly understood, species distribu-
tion models (SDMs) help fill a wide variety of information needs 
(Rodríguez et al., 2007). A first, necessary step in building knowl-
edge about these species and anticipating conservation needs is 
understanding where they are most likely to occur so that they 
can be better studied, monitored and managed. SDMs use what 
we know about where a species occurs to predict where it is likely 
to occur over a broader area. These models can then serve many 
practical purposes, including (1) informing sampling and monitoring 
efforts (Hauser & McCarthy, 2009; Jarnevich et al., 2006; Williams 
et al., 2009); (2) elucidating movement patterns and metapopula-
tion dynamics (Frey et al., 2012; Lawler et al., 2013; McClure et al., 
2017); (3) reconstructing or predicting changes in distribution over 
time (Beans et al., 2012; Svenning et al., 2011); (4) assessing op-
portunities for reintroduction or assisted migration (Hällfors et al., 
2016; Miranda et al., 2019) and (5) anticipating how the species 
may be impacted by climate change, land use change and other 
stressors (Doherty et al., 2008; Johnston et al., 2012; La Manna 
et al., 2008).

Modeling species distributions is particularly challenging for 
subterranean species because observations tend to be rare and 
habitat selection is likely driven by landscape features that are not 
well- represented in existing geodatabases. To estimate the degree to 
which a species is associated with particular landscape characteris-
tics, SDMs typically quantify the characteristics of sites where a spe-
cies has been observed, often comparing them to those of sites where 
the species has not been observed or to random sites across an area 
of interest (Elith & Leathwick, 2009). These models often use readily 
available data describing climate, land cover and water availability, 
as these attributes are critical for defining species’ physiological and 
ecological limits. However, the landscape attributes to which bats re-
spond when selecting hibernacula (i.e. shelters in which to hibernate, 
such as caves) are largely unknown, and because key subterranean 
habitat attributes are not visible to remote sensing platforms, contin-
uous data over large extents are rarely available. Efforts to model bat 
distributions, space use and habitat selection have increased rapidly 
in recent years (e.g. Burke et al., 2019; Delgado- Jaramillo et al., 2020; 
Razgour et al., 2016; Zamora- Gutierrez et al., 2018). Few, however, 
have attempted to model distributions of winter hibernacula (but 
see Russell et al., 2014; Smeraldo et al., 2018; Weller et al., 2018) or 
focused on western North America (but see Rodhouse et al., 2012, 
2015; Weller et al., 2018). None to our knowledge have predictively 
mapped occurrence probability or abundance in the West.

Climate is expected to be an important driver of bat winter dis-
tributions given that hibernaculum temperature and winter duration 
dictate the length of time that hibernating bats can survive on their 
fat stores (Speakman & Thomas, 2003; Thomas et al., 1990). Climate 
metrics (e.g. mean annual temperature and annual precipitation) 
are often included as predictors in SDMs (e.g. Kadmon et al., 2003; 
Peterson & Vieglais, 2001; Phillips et al., 2006). Yet recent intensive 
study of bat hibernation physiology offers a far more detailed mech-
anistic understanding of how temperature and humidity affect bat 
metabolic rates and their ability to survive winter. Moreover, we now 
understand (and can predict) how bat physiology is affected when 
they are infected by Pseudogymnoascus destructans, the fungus that 
causes WNS (Haase et al., 2019; Hayman et al., 2016; Johnson et al., 
2014; Langwig et al., 2012, 2016). We suggest that more fully and 
precisely integrating the relationship between climate and winter 
survivorship in SDMs can enhance our ability to model winter bat 
distributions and understand how they may be impacted by WNS.

Buckley et al., (2010, 2011) pioneered the concept of SDMs that 
integrate mechanistic understanding of how species respond physi-
ologically to environmental conditions. They fit correlative SDMs to 
relate observed locations of butterflies to empirically derived numbers 
of degree- days required for each species’ growth and survival (Buckley 
et al., 2011). They found that species- specific degree- day measures 
outperformed a fixed degree- day metric in predicting the current 
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distribution of each species. However, the difference in performance 
was modest, suggesting that more detailed models and/or additional 
predictors may be helpful in refining predicted distributions. These 
hybrid correlative- mechanistic models, which integrate a mechanistic 
understanding of how a species responds to its environment into a 
more traditional correlative framework, allow incorporation of addi-
tional landscape attributes to which the species is likely to respond 
alongside physiology (e.g. Martínez et al., 2015; McClure et al., 2015).

Here, we integrated a bioenergetic model of bat hibernation 
(Haase et al., 2019; Hayman et al., 2016; Hranac et al., 2021) into a 
correlative species distribution modeling approach to predict winter 
distributions of bat species whose ranges extend into the West. The 
bioenergetic model makes species- specific predictions of remaining 
fat stores and thus the likelihood of survival at the end of winter in a 
given location. Bringing bioenergetic model predictions into our anal-
ysis makes full use of what we know about bat hibernation physiology. 
We compiled bat winter occurrence data for five representative spe-
cies from a variety of sources to inform our models. We used spatial 
predictions of winter survivorship from this mechanistic model as one 
predictor of bat occurrence probability (or habitat suitability) across 
the areas encompassing our focal species’ known range extents. We 
included this along with other landscape attributes (e.g. topography, 
vegetation cover and karst and mines) to fit SDMs using a boosted re-
gression tree (BRT) approach (Elith et al., 2008). Our objective was to 
better understand the distribution of suitable bat hibernacula across 
the West to inform targeted monitoring and management practices 
and provide a baseline for estimating which species and populations 
may be hardest hit by the advance of WNS and climate change.

2  |  MATERIAL S AND METHODS

2.1  |  Winter occurrence data

We selected five focal species for our analyses: Corynorhinus 

townsendii1, Myotis californicus, Myotis lucifugus, Myotis velifer and 

Perimyotis subflavus. These species were chosen because occurrence 
data and field- measured metabolic parameters were available for 
estimating survivorship and because they were representative of 
variability in known habitat requirements amongst hibernating bats 
whose ranges lie in whole or in part in the West, defined here as 
west of the Mississippi River (Figure 1; National Atlas of the United 
States, 2011).

We compiled species occurrence data from multiple sources, 
including online databases of museum records (VertNet, National 
Science Foundation (NSF), 2016, Biodiversity Information Serving 
Our Nation, United States Geological Survey (USGS), 2012), online 
repositories of vetted public and scientific observations (Global 
Biodiversity Information Facility, GBIF.org, 2018, Bat Population 
Database, United States Geological Survey (USGS), 2003), data 

associated with published literature (Dubois & Monson, 2007; 
Kuenzi et al., 1999; Ports & Bradley, 1996), data obtained from mul-
tiple Natural Heritage Programs (NHP; Montana Natural Heritage 
Program, 2020; NatureServe, 2019) and data collected in our own 
field studies (unpublished data). We amassed thousands of occur-
rence records for each focal species, but the vast majority of records 
(>85%) were observed during summer or fall swarming, when bats 
are more readily observed. Even in bats that do not migrate season-
ally, selection of hibernaculum microclimates and the surrounding 
habitat mosaic is expected to differ from selection of summer roosts 
(Smeraldo et al., 2018). Moreover, due to the sensitivity of hibernac-
ulum locations to disturbance or exploitation, along with the diffi-
culty of detecting torpid bats in hibernacula, winter bat location data 
were difficult to come by and limited in number.

We included only in- hand or visual observations (i.e. no acous-
tic detections) with dates of record since 1948 with location error 
<5 km. Because we were interested only in winter distributions as-
sociated with hibernaculum use, we filtered the compiled dataset 
to observations recorded during what we defined as winter in a 
spatially explicit and hibernation- specific manner. We first used a 
generalised linear model informed by the timing of M. lucifugus im-
mergence and emergence observations at hibernacula throughout 
North America (Hranac et al., 2021, Supporting Information) to es-
timate winter duration for each 1 km raster cell across the United 
States and Canada. Then, to estimate the start and end date of win-
ter hibernation at a given grid cell, we centred this model- based win-
ter duration estimate on the winter solstice. Finally, we selected only 
occurrence records observed between these spatially explicit start 
and end dates. Lastly, we removed repeat observations (e.g. across 
multiple studies or survey dates), retaining a single record for a given 
site (with unique sites defined to the nearest thousandth of a degree 
of latitude and longitude).

2.2  |  Predictor variables

We identified landscape attributes that potentially influence hiber-
naculum conditions and selection from the published literature and 
our own knowledge (Table 1 and Figure SA1). We selected publicly 
available datasets representing these predictors with sufficient 
spatial extent to encompass our compiled occurrence data (United 
States and Canada south of the Arctic Circle). Where multiple candi-
date datasets were available, we chose those with the highest spatial 
resolution and/or temporal range that best encompassed our occur-
rence data. The scale at which bats perceive and respond to land-
scape attributes may vary amongst species, attributes and locales 
(see Bellamy et al., 2013; Ducci et al., 2015; Razgour et al., 2011). 
We therefore derived predictor variables at multiple spatial scales 
(i.e. different neighbourhood sizes or the radius around each focal 
raster cell across which predictor values were smoothed) where ap-
plicable for comparison (Table 1). Our selection of neighbourhood 
sizes, which included 500 m, 5 km, and 25 km, was guided by those to 
which bats were found to respond in previous studies of multiscale 

 1Excluding isolated subspecies C. townsendii ingens and virginianus found in the Ozark 
and Appalachian Mountains
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habitat selection (100 m to 10 km; Bellamy et al., 2013; Ducci et al., 
2015). However, these studies focused on response to the landscape 
during daily foraging bouts, and we felt it was important to consider 
a broader range of spatial scales for selection of a winter hibernacu-
lum. All smoothing of predictor variables using each of the selected 
neighbourhood sizes was performed at the native resolution of each 
variable prior to sampling. Thus, for a variable with native resolution 
of 30 m, we summarised values within 500 m, 5 km and 25 km of 
each focal 30- m cell. Each layer was then aggregated to two scales, 
1 and 10 km, for sampling. This step offered a means of exploring 
the scale of bats’ response to those variables to which we could not 
reasonably apply the above range of neighbourhood sizes, either due 
to the coarse native resolution of the variables or because applica-
tion of varying neighbourhood sizes did not make intuitive sense. All 

predictors were derived and/or sampled using Google Earth Engine, 
a cloud- based computing platform supporting large- scale analysis on 
an extensive catalogue of remotely sensed, climatological and other 
geospatial datasets (Gorelick et al., 2017). All final predictive maps 
were derived at a resolution of 1 km.

Survivorship. We estimated species- specific, spatially explicit win-
ter survivorship relative to the duration of winter. These estimates 
were based on an existing bioenergetic model of bat winter survivor-
ship, recently updated and parameterised for western bat species. 
Full details are elsewhere (Haase et al., 2019; Hranac et al., 2021), but 
briefly, the model uses the hypothesised energetic requirements of 
bats in torpor to dynamically model torpor bouts for the duration of a 
predicted winter under specified hibernaculum conditions. For M. lu-

cifugus, torpor consumes approximately 80 times less energy per unit 

F I G U R E  1  Current geographic range maps overlaid with winter presence locations available to inform species distribution models across 
the United States and Canada for five focal species (a) Corynorhinus townsendii, (b) Myotis californicus, (c) Myotis velifer, (d) Myotis lucifugus and 

(e) Perimyotis subflavus. The Mississippi River demarcating the West is shown in bold. All maps use the USA Contiguous Albers Equal Area 
Conic projection

(a) (b) (c)

(d) (e)
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time than euthermia, whereas the infrequent but periodic arousals to 
euthermic temperatures use the majority of energy stores, with each 
arousal consuming approximately 5% of total overwinter energetic 
costs (Thomas et al., 1990). In this model, ambient temperature and 
relative humidity were drivers of arousal frequency. Using gridded 

spatial data, we applied the model to values of each 1 km grid cell 
across the study extent to predict the fat mass expected to remain 
at the end of winter given mean ambient temperature and winter du-
ration at each 1 km2 raster cell. Higher, positive predicted values are 
expected to correspond to high survivorship, whilst low or negative 

TA B L E  1  Summary of predictors considered in winter species distribution models for bat species Corynorhinus townsendii, Myotis 

californicus, Myotis lucifugus, Myotis velifer and Perimyotis subflavus across the United States and Canada

Predictor Rationale (references) Source data Resolution

Neighbourhood 

size

Winter survivorship Defines physiological response to climate 
conditions, seasonality (Hayman et al., 2016)

(Haase et al., 2019; Hranac 
et al., 2021)

1 km — 

Distance to mines Hibernaculum availability (Weller et al., 2018) USGS MRDS1, BC MinFile2 1 km — 

Mine density Hibernaculum availability (Weller et al., 2018) USGS MRDS, BC MinFile 1 km 25 km

Karst Hibernaculum availability (Burke et al., 2019; 
Cooper- Bohannon et al., 2016; Russell et al., 
2014; Weller et al., 2018)

(Weary & Doctor, 2014; 
Forest Analysis & 
Inventory, 2019)

1 km — 

Elevation Affects local climate, vegetationa  (Burke et al., 
2019; Cooper- Bohannon et al., 2016; 
Delgado- Jaramillo et al., 2020; Smeraldo 
et al., 2018; Weller et al., 2018)

ALOS3 Digital Surface Model 

v2 (Tadono et al., 2014)
30 m — 

Ruggedness Proxy for availability of crevices/caves, diverse 
exposure conditions (Perry et al., 2013)

ALOS Digital Surface Model 

v2 (Tadono et al., 2014)
30 m 500 m, 5 km, 

25 km, 
multiscale

Topographic position Affects local climate norms and variability (cold 
sinks, inversions; Perry et al., 2013)

ALOS Digital Surface Model 

v2 (Tadono et al., 2014)
30 m 500 m, 5 km, 

25 km, 
multiscale

Solar insolation Affects local climate norms & variability (de 
Boer et al., 2013; Perry et al., 2013)

ALOS Digital Surface Model 

v2 (Theobald et al., 2015)
30 m 500 m, 5 km, 

25 km, 
multiscale

Annual precipitation Affects local climate, vegetation, water 
availability (Weller et al., 2018; Zamora- 
Gutierrez et al., 2018)

DayMet v3 (Thornton et al., 
2019)

1 km — 

Annual snow days Insulation effect, water availability (Burke 
et al., 2019; Perry et al., 2013; Smeraldo 
et al., 2018; Zamora- Gutierrez et al., 2018, 
precipitation seasonality)

MODIS4 Global Daily Snow 
Cover v6 (Hall et al., 
2016)

500 m — 

Percent water Water availability (Cooper- Bohannon et al., 
2016; de Boer et al., 2013; Razgour et al., 
2018; Smeraldo et al., 2018, distance from 
water)

JRC5 Yearly Water 
Classification v1 (Pekel 
et al., 2016)

30 m 500 m, 5 km, 
25 km, 
multiscale

Groundwater depth Proxy for potential water flow within caves/
mines (Perry et al., 2013)

(Fan et al., 2013) 1 km — 

Percent tree cover Shade effect, roost availability in active seasons 
(de Boer et al., 2013; Perry et al., 2013; 
Russell et al., 2014)

MODIS Vegetation 
Continuous Fields6 

(DiMiceli et al., 2019)

250 m 5 km, 25 km

Night lights Proxy for intensity of human development/
activity; some bats hibernate in human 
structures (de Boer et al., 2013, cover by 
built- up areas, Razgour et al., 2018, distance 
from urban)

DMSP Radiance- 
Calibrated OLS7 v48 

(National Oceanic 
and Atmospheric 
Administration (NOAA), 
2016)

30 arcsec — 

Note: The reasoning and precedence for consideration of each predictor are summarised under ‘Rationale’, noting (in parentheses) where cited 
studies used slightly different form of a predictor (e.g. percent water vs. distance from water).
aSurrounding vegetation composition may affect availability of insect prey and roost sites in active seasons. 1— United States Geological Survey 
Mineral Resources Data System; 2— British Columbia Mineral Inventory; 3— Advanced Land Observing Satellite; 4— Moderate Resolution Imaging 
Spectroradiometer; 5— Joint Research Centre; 6— National Aeronautics and Space Administration; 7— Defense Meteorological Satellite Program- 
Operational Linescan System; 8— National Oceanic and Atmospheric Administration.
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values indicate areas where bats are unlikely to survive. Further details 
regarding the bioenergetic model and spatial parameters are described 
in the Supporting Information.

2.2.1  |  Topography

We derived topographic covariates from the global ALOS Digital 
Surface Model (DSM version 2.2; Tadono et al., 2014) at 30- m 
resolution, including elevation, topographic ruggedness and topo-
graphic position. Topographic ruggedness was quantified as the 
standard deviation of elevation values within a given radius around 
each focal raster cell. Similarly, topographic position was quantified 
as the difference between the elevation of each focal raster cell 
and the mean of elevation values within a given radius, such that 
high values are associated with peaks and ridges and low values 
are associated with canyon bottoms (e.g. Dickson & Beier, 2007; 
Guisan et al., 1999). We also extracted Continuous Heat- Insolation 
Load Index, a surrogate for effects of solar insolation and topo-
graphic shading on evapotranspiration, also derived from the global 
ALOS DSM at 90- m resolution by Theobald et al., (2015). We used 
a moving window approach to derive topographic ruggedness and 
position at three spatial scales (diameter = 500 m, 5 km, 25 km), 
then the resulting values were averaged to create ‘multiscale’ met-
rics. We took the focal mean of solar insolation values over these 
multiple scales as well.

2.2.2  |  Surface attributes

We derived percent tree cover from the Terra MODIS Vegetation 
Continuous Fields product, which estimates subpixel- level sur-
face vegetation cover globally, including percent tree cover, on 
an annual basis (250- m resolution; DiMiceli et al., 2019). Because 
data were not available for the entire temporal range of our oc-
currence data, we used data for the most recent year available 
(2015). We estimated percent tree cover at two aggregated scales 
(diameter = 5 km, 25 km). We used global nighttime lights imagery 
from the Defense Meteorological Program Operational Line- Scan 
System (Radiance- Calibrated, V4) as a proxy for relative intensity of 
human development (30- arcsec resolution; National Oceanic and 
Atmospheric Administration (NOAA), 2016). We estimated avail-
ability of surface water based on the Joint Research Center Yearly 
Water Classification History (V1), which maps the location and sea-
sonality of surface water from Landsat 5, 7, and 8 imagery (30- m 
resolution; Pekel et al., 2016). We estimated the percent cover of 
seasonal or permanent surface water at three spatial scales (diam-
eter = 500 m, 5 km, 25 km), focusing on the most recent year for 
which data were available (2015) because the data do not span the 
entire temporal range of our occurrence dataset. We estimated the 
frequency of snow cover based on the MODIS Global Daily Snow 
Cover product (V6; Hall et al., 2016), which estimates percent snow 
cover of each 500- m pixel on a daily basis. We counted the average 

number of days per year with at least 10% snow cover over the 
5 year period from July 2013 to June 2018. We quantified precipi-
tation using the DayMet dataset (V3; Thornton et al., 2019), which 
provides gridded daily precipitation data at 1- km resolution. We 
estimated mean annual total precipitation by summing daily values 
annually then averaging the most recent five years available (2013– 
2018) for consistency with the temporal range of other available 
predictor data.

2.2.3  |  Below- ground attributes

To represent potential availability of karst features that may pro-
vide suitable hibernacula, we relied on a map of karst and pseu-
dokarst features across the United States produced by Weary 
and Doctor (2014) derived from State geological survey maps and 
USGS integrated geologic map databases (1:24,000 to 1:500,000 
resolution). We merged this with an equivalent dataset for British 
Columbia provided by the Ministry of Forests, Lands, Natural 
Resource Operations and Rural Development (1:250,000 resolu-
tion; Forest Analysis & Inventory, 2019). We did not differentiate 
amongst karst types and instead created a simple binary indicator 
of karst presence vs. absence in raster format (1 km resolution). 
We also estimated availability of mines as potential hibernacula, 
using mine site locations available from the USGS Prospect-  
and Mine- Related Features database (v4, available for all but 
northeastern states; Horton & San Juan, 2019) and the Mineral 
Resources Data System (MRDS, used for northeastern states; 
United States Geological Survey, 2016) and from the MINFILE 
Production Database for British Columbia (BC Geological Survey, 
2019). We included only mineral resource sites classified as mines 
(Mine- Related Features and MRDS) or as producing at one time 
(MINFILE). We derived two measures of mine availability: distance 
to the nearest mine and density of mines within 50 km of each 
focal raster cell (1- km resolution), calculated using a Gaussian ker-
nel density function (sigma = 25 km). Karst and mine data were not 
available for other Canadian provinces; these predictors were not 
included in models for M. lucifugus, whose range spans these areas. 
Finally, we estimated groundwater depth from a global water table 
depth model that gap- filled point observations with a mechanistic 
groundwater model (1- km resolution; Fan et al., 2013).

2.3  |  Model fitting

We estimated species- specific relative probability of occurrence 
(also interpretable as relative habitat suitability) during winter using 
boosted regression trees (BRT; De'Ath, 2007; Elith et al., 2008). A 
BRT (a.k.a. gradient boosting machine or stochastic gradient boost-
ing) is an ensemble approach that combines regression trees, which 
relate a response to predictors by recursive binary splits of the data 
and boosting, in which inference is drawn from the relative strength 
of many possible models rather than fitting a single parsimonious 

 1
3

6
5

2
6

9
9

, 2
0

2
1

, 1
0

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/jb
i.1

4
1

3
0

 b
y

 C
o

rn
ell U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

9
/0

1
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



    |  2435MCCLURE Et aL.

model. This method offers advantages over more traditional linear 
regression approaches in that a variety of response data and model 
forms can be accommodated (e.g. Gaussian, binomial and Poisson); 
different types of predictor variables (e.g. continuous, ordinal and 
categorical) can be included with no need for transformation or out-
lier removal; nonlinear relationships are easily captured; and interac-
tions between predictors are handled automatically. Furthermore, 
overfitting is well- controlled through the use of cross- validation 
as BRT models are ‘grown’ (Elith et al., ,2006, 2008). Importantly, 
a number of studies (e.g. Elith et al., 2006; Maiorano et al., 2013; 
Oppel et al., 2012; Wisz et al., 2008) have shown strong BRT predic-
tive performance relative to other SDM approaches (e.g. generalised 
linear models, generalised additive models (GAM), climatic envelope 
models ad maximum entropy).

We follow the approach detailed by Elith et al., (2008) for appli-
cation of BRT to species distribution modeling. One key difference 
in our application is that we make use of presence- background data 
rather than presence– absence data. Use of presence- background 
data, in which sites where the focal species was absent are not known 
with certainty, requires a shift in model assumptions and inference. 
Presence– absence models compare landscape attributes of sites at 
which the species was known to be present and absent to estimate 
the absolute probability of occurrence at any unobserved site given 
its climate and/or landscape characteristics (Guisan & Zimmermann, 
2000; Manly et al., 2007). Without absence data, attributes of pres-
ence locations must instead be compared to randomly sampled ‘back-
ground’ locations (e.g. Ferrier et al., 2002). In this case, presence is 
assessed relative to availability and the species’ absence at sampled 
background locations is not guaranteed. This shift in comparison fun-
damentally alters the inferences that can be made from the model: 
We cannot estimate the absolute probability of focal species occur-
rence (i.e. 80% probability of occurrence at a given site), but we can 
estimate, or rank, the relative probability of occurrence (Keating & 
Cherry, 2004; but see Phillips & Elith, 2011; Royle et al., 2012).

We sampled ‘background’ locations from geographic areas ex-
tending well beyond each species’ known range in the United States 
and Canada (16 western states and British Columbia for C. townsendii, 
M. californicus; all states and provinces for M. lucifugus; all US states for 
M. velifer, P. subflavus). This choice aimed to sufficiently capture the full 
range of environmental conditions limiting bats’ distributions (Razgour 
et al., 2016). Because bats were more likely to have been observed in 
locations already known to harbour bats and that are more accessi-
ble (e.g. closer to population centres, accessible by roads and in less 
rugged topography; Graham et al., 2004), we generated background 
points so as to replicate and thus control for this inherent spatial bias 
(after Hertzog et al., 2014). We first created a bias grid based on the 
kernel density of occurrence locations (Venables & Ripley, 2002) using 
the MASS package for R, then generated background points with 
probability dictated by occurrence density, such that areas with high 
density of occurrences had high probability of background sampling, 
but all locations within the sampling extent had nonzero probability 
of sampling (e.g. Figure SA2). Our background sample consisted of 
three background points per occurrence point as a balance between 

achieving good coverage of available habitat and not artificially inflat-
ing sample size. Finally, we sampled all candidate predictor variables at 
each presence and background location.

To identify the most appropriate scale for each predictor (i.e. the 
scale at which habitat selection was most evident), we first fit uni-
variate GAM (Yee & Mitchell, 1991) for each predictor. We chose 
GAM for this preliminary predictor selection step to not constrain 
the form of the response. We selected the best performing scale 
for each predictor, which was then included in the final multivari-
ate model (below), based on a comparison of Akaike's Information 
Criterion (AIC) scores across each scale at which the predictor was 
sampled. We then assessed pairwise correlations and variance infla-
tion factors across the resulting set of predictors and excluded those 
causing standard thresholds of 0.7 and 4.0, respectively, to be ex-
ceeded to avoid multicollinearity (Belsley, 1991; Booth et al., 1994). 
We also excluded mine density from further consideration due to its 
poorer AIC- based performance across all focal species compared to 
distance from mines.

We fit and calibrated each BRT model using the stepwise cross- 
validation process detailed by Elith et al., (2008) and accompanying 
R scripts (Appendix S3 in Elith et al., 2008). We adjusted the model 
learning rate to ensure that a minimum of 1,000 trees were fit, then 
calibrated the tree complexity (range: 3– 5) and bag fraction (range: 
0.5– 0.7) to minimise deviance. We tested for benefits of dropping 
uninformative model terms based on estimated reduction in de-
viance. We then used this ‘optimised’ model to assess the relative 
contribution of each predictor, plot the relationship between each 
predictor and relative occurrence probability and evaluate model 

performance. We evaluated the model's fit to the training data (it-
eratively partitioned in the cross- validation process) based on the 
mean proportion of deviance explained in each cross- validation 
iteration (D2), a pseudo- determination coefficient intended to be 
comparable to R2 (Mateo & Hanselman, 2014; Nieto & Melin, 2017). 
We also assess predictive performance based on the cross- validated 
area under the receiver operating curve (AUC). Although use of this 
metric to evaluate presence- background models is flawed by ‘con-
tamination’ of background sites with unobserved presence (Boyce 
et al., 2002; Escobar et al., 2018; Jimenez- Valverde, 2012), we report 
it here as an additional evaluation metric that supports comparison 
with other studies that frequently include it. As a final modeling 
step, we applied the optimised model to predictor values in each 
1- km cell of the extent of interest for each species to predict and 
map relative probability of occurrence (Appendix S3 in Elith et al., 
2008). We summarised the percentile ranks of occurrence probabil-
ity values predicted for presence and background locations as an ad-
ditional assessment of predictive performance. All model fitting and 
prediction were conducted in R (version 3.4.1; R Core Team, 2019).

3  |  RESULTS

After filtering the compiled dataset to unique winter locations, an 
average of 250 presence locations per species (range: 72– 442) was 
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available to fit SDMs (Table 2). Of the neighbourhood sizes com-
pared, moderate to large neighbourhoods (5- km, 25- km diameter) 
tended to capture the scale at which bats responded to landscape 
attributes better than a small neighbourhood (500 m), but scale of 
selection for each attribute varied amongst species (Table SA1). 
Sampling landscape predictors at finer resolution (1 km) tended to 
produce stronger relationships with bat occurrence than coarse- 
resolution sampling (10 km), and the tendency for each predictor to 
perform best at either a fine or coarse sampling resolution was fairly 
consistent across species (Table SA1).

Optimal BRT parameters varied amongst species, but higher tree 
complexity (4– 5) and higher bag fractions (0.6– 0.7) were favoured 
(Table 3). Model goodness of fit was fairly similar across species, 
with a mean of 54.7%– 71.7% of the total deviance in the training 
data explained. Performance standards vary by application; here we 
considered values between 50% and 75% to demonstrate moderate 
support. Predictive performance based on AUC ranged from 0.814 
to 0.873; scores between 0.8 and 0.9 are generally considered ex-
cellent (Hosmer & Lemeshow, 2000). The model for M. velifer had 
the best fit to the data (71.7% deviance explained) as well as the 
best predictive performance (0.873 AUC), followed by C. townsen-

dii (0.867 AUC). The model for P. subflavus had the poorest perfor-
mance in terms of both fit (54.7% deviance explained) and predictive 
performance (0.814 AUC).

We found considerable interspecific differences in the relative 
influence of each predictor on occurrence probability (Figure 2). 
Ruggedness, distance to mines, winter survivorship and percent 
tree cover were amongst the strongest contributors, based on mean 
relative influence across species (12.0%, 9.9%, 9.8% and 9.2%, re-
spectively). Whilst the influence of ruggedness and percent tree 
cover was consistently quite high across species, distance to mines 
and winter survivorship had far more variable influence (Figure 2). 
Winter survivorship was the strongest predictor of M. californicus 

winter distributions but the second weakest predictor for M. velifer. 

On average, winter survivorship was the third strongest predictor 
(out of 11 to 13 predictors considered for each species). Karst had 

the lowest influence overall (mean 3.7%, though it was not consid-
ered in the M. lucifugus model).

Consistency in a predictor's degree of influence across species 
did not necessarily correspond to similar relationships between 
that predictor and relative occurrence probability amongst species 
(Figure SA3). The effect of ruggedness was fairly consistent amongst 
species, with low relative occurrence probability predicted in very 
flat, open areas (very low ruggedness). M. velifer and particularly P. 

subflavus appeared to favour low topographic positions (i.e. can-
yon bottoms); M. lucifugus also showed this pattern, in addition to 
an avoidance of open, flat topography (topographic position ~0). 
Relationships with solar insolation and elevation varied widely. For 
example, C. townsendii showed some preference for low elevations 
with high insolation, whilst M. velifer selected for low elevation, low 
insolation sites and P. subflavus preferred higher elevations (eleva-
tion was excluded from models for M. californicus and M. lucifugus 

due to high collinearity with other predictors). Occurrence proba-
bility generally increased with predicted winter survivorship, as 
expected, particularly in species for which survivorship had strong 
influence (M. californicus, M. lucifugus and P. subflavus). Similarly, oc-
currence probability was generally higher with greater tree cover 
and fewer days of snow annually. The shape and direction of re-
sponses to groundwater depth, surface water and annual precipi-
tation (excluded from C. townsendii and M. californicus models due 
to collinearity) were highly variable. In preliminary models that did 
not correct for bias in presence locations (unpublished data), night 
lights were a strong predictor of most species’ occurrence, but this 
relationship primarily reflected the distribution of sampling effort, 
not distribution of the species of interest. Still, even after correcting 
for sampling bias closer to human habitation, all species had very 
low relative probability of occurrence where night light intensity 
was lowest (darkest). However, in all species the rest of the response 
curve is quite flat, indicating minimal lingering effect of night lights 
in the models. Similarly, occurrence probability tended to be highest 
very close to mines, but beyond a minimum distance, the presence 
of mines had little effect on species distributions. Three species 
showed evidence of a preference for karst features (karst could not 
be considered for M. lucifugus due to missing karst data in portions 
of the species’ range).

We observed high relative probability of occurrence at presence 
locations compared to background locations, as expected (Table 3 
and Figure SA4). The mean percentile rank of predicted occurrence 
probability at presence locations ranged from 80.3 (M. lucifugus, 
M. velifer) to 94.8 (M. californicus), 29.9– 45 percentile points higher 
than the mean values predicted for background locations. In some 
cases, conspicuous exclusions and inclusions evident in existing spe-
cies range extents (e.g. exclusion of Great Plains for C. townsendii, 
exclusion of Texas panhandle and mid- Atlantic coast for M. luci-

fugus, inclusion of Great Salt Lake area for M. californicus, inclusion 
of Arizona's Sky Islands for M. velifer) are mirrored by low and high 
predicted probabilities, respectively. Often, areas outside the focal 
species’ known ranges have high predicted occurrence probability, 
reflecting the similarity of landscape attributes in these areas to 

TA B L E  2  Occurrence data available to inform winter species 
distribution models for five bat species across the United States 
and Canada after filtering to unique winter locations

Species Total Winter Unique

Corynorhinus townsendii 8,959 1,637 355

Myotis californicus 5,920 596 97

Myotis lucifugus 14,946 2,113 442

Myotis velifer 11,152 1,688 72

Perimyotis subflavus 7,024 2,722 284

Note: Total records include all raw observations compiled from multiple 
sources. Winter records were selected based on a spatially explicit 
model of winter duration informed by bat immergence and emergence 

observations (Hranac et al., 2021, Supporting Information). Unique 
records were counted after dissolving repeat winter observations (e.g. 
across multiple studies or survey dates) at a given location.
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those of known presence locations. Conversely, areas with low oc-
currence probability often occur within the species’ known ranges, 
highlighting the generalised nature of simple polygon range extent 
estimates.

4  |  DISCUSSION

This study provides insights into the drivers and spatial patterns of 
bat hibernaculum selection in western North America (the West)— a 
topic that is poorly understood, yet critical for advancing bat re-
search, conservation and management of WNS impacts. We demon-
strate that the nature and scale of bats’ responses to the landscape 
when selecting hibernacula varies amongst species and across dif-
ferent landscape attributes. Our results point to ranges of landscape 
attribute values where each focal species may be most likely to hi-
bernate and highlight the importance of protecting mine features as 
hibernacula for multiple species. Importantly, our findings indicate 
that topographic attributes are important predictors of hibernacu-
lum selection, suggesting that bat winter occurrence can, in part, 
be predicted from readily mapped above- ground features. We also 
found that our mechanistic estimate of winter survivorship contrib-
uted to prediction of winter occurrence probability for all focal spe-
cies; in one case (M. californicus), it was the strongest predictor.

Because so little is known about how bats choose winter hiber-
nacula and bat winter distributions in the West have never been 
modeled, we felt it was important to use methods that allow for flex-
ible, nonlinear relationships between predictors and relative proba-
bility of occurrence. Peaks in our modeled response curves may help 
to identify ranges of preferred attributes (e.g. preferred elevation 
bands or density of forest cover). Flat portions of response curves 
may indicate an absence of selection (e.g. beyond a threshold dis-
tance, bats do not care how far they are from the nearest mine) or 
they may indicate ranges of attribute values where we simply have 
no data (see wide gaps in decile rug plots on response curves, Figure 
A3). Our use of bias correction when generating background loca-
tions (Hertzog et al., 2014) was important given the opportunistic 
sampling of winter bat locations reflected in the public databases 
we relied on. Preliminary models that did not include bias correc-
tion (unpublished data) pointed to night lights as a strong predictor 
of most species’ occurrence probability and suggested a preference 
for more intense night lights, but this uncorrected result would have 
reflected the distribution of sampling effort rather than the ecology 
of the focal species.

Although topographic attributes were often strong predictors of 
hibernaculum selection, preferred topographic characteristics (e.g. 
high versus low topographic position) varied amongst species. Karst 
presence was a weak predictor, perhaps because we did not consider 
differential selection amongst different types or depths of karst or 
because the available map of karst features does not necessarily 
indicate where karst features are accessible to bats via caves or 
crevices. Mines were clearly important features for several species, 
and their relative influence appeared to scale sensibly with species’ T

A
B

L
E

 3
 

Fi
na

l b
oo

st
ed

 re
gr

es
si

on
 tr

ee
 (B

RT
) m

od
el

 p
ar

am
et

er
s 

an
d 

pe
rf

or
m

an
ce

 m
et

ric
s 

fo
r w

in
te

r s
pe

ci
es

 d
is

tr
ib

ut
io

n 
m

od
el

s 
fo

r b
at

 s
pe

ci
es

 C
o

ry
n

o
rh

in
u

s 
to

w
n

se
n

d
ii
, M

y
o

ti
s 

c
a

li
fo

rn
ic

u
s, 

M
y

o
ti

s 
lu

c
if

u
g

u
s, 

M
y

o
ti

s 
v

e
li

fe
r 

a
n

d
 P

e
ri

m
y

o
ti

s 
su

b
fl

a
v

u
s a

cr
os

s 
th

e 
U

ni
te

d 
St

at
es

 a
nd

 C
an

ad
a

S
p

e
c

ie
s

T
re

e
 c

o
m

p
le

x
it

y
B

a
g

 f
ra

c
ti

o
n

N
 

tr
e

e
s

M
e

a
n

 t
o

ta
l 

d
e

v
ia

n
c

e

M
e

a
n

 r
e

si
d

u
a

l 

d
e

v
ia

n
c

e

M
e

a
n

 d
e

v
ia

n
c

e
 

e
x

p
la

in
e

d
 (
D

2
)

C
ro

ss
- v

a
li

d
a

te
d

 

AU
C

M
e

a
n

 p
re

d
ic

te
d

 

p
e

rc
e

n
ti

le
 (

p
re

se
n

c
e

)

M
e

a
n

 p
re

d
ic

te
d

 

p
e

rc
e

n
ti

le
 (

b
a

c
k

g
ro

u
n

d
)

C
. 

to
w

n
se

n
d

ii
5

0
.7

3
4

0
0

1
.1

2
2

0
.3

9
1

6
5

.2
0

.8
6

7
8

9
.4

5
3

.6

M
. 

c
a

li
fo

rn
ic

u
s

4
0

.7
1

1
0

0
1

.1
1

6
0

.4
1

5
6

2
.8

0
.8

5
3

9
4

.8
5

5
.9

M
. 

lu
c
if

u
g

u
s

5
0

.6
4

5
0

0
1

.1
4

1
0

.4
0

9
6

4
.2

0
.8

3
9

8
0

.3
4

3
.4

M
. 

v
e

li
fe

r
3

0
.6

1
8

0
0

1
.1

2
5

0
.3

1
8

7
1

.7
0

.8
7

3
8

3
.7

3
8

.7

P
. 

su
b

fl
a

v
u

s
5

0
.5

2
3

0
0

1
.1

2
6

0
.5

1
5

4
.7

0
.8

1
4

8
8

.0
5

8
.1

 1
3

6
5

2
6

9
9

, 2
0

2
1

, 1
0

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/jb
i.1

4
1

3
0

 b
y

 C
o

rn
ell U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

9
/0

1
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



2438  |    MCCLURE Et aL.

tendency to use mines: influence was lowest for M. velifer (Cave my-
otis), which is more frequently found in caves. Our models suggest 
the importance of generating and making public spatial karst and 
mine datasets in other Canadian provinces to better predict occur-
rence for M. lucifugus and other species frequently found in mines 
in these regions. Our results support the preservation of western 
mines as critical winter habitat for which there are significant op-
portunities to enhance existing protected area status (Weller et al., 
2018).

Our mechanistic winter survivorship estimate (Hranac et al., 
2021) contributed to all species’ predicted occurrence, but to vary-
ing degrees. The direction of the relationship between survivorship 
and relative occurrence probability was positive overall, as expected, 
and survivorship was the third strongest predictor of occurrence 
overall (9.8% mean influence), but its influence varied considerably 
amongst species (4%– 21.5%, Figure 2). This interspecies variability 
is likely to reflect some real ecological differences in the degree to 
which species distribution limits are defined by the physiological re-
sponse to ambient temperature and winter duration captured in our 
winter survivorship model. Winter survivorship was a poor predictor 
of winter distribution for M. velifer, whose U.S. distribution is limited 
to Texas and the desert southwest where winters are relatively short 
and winter temperatures are generally mild. In contrast, winter sur-
vivorship was the strongest predictor of the winter distribution of 
M. californicus, whose range encompasses strong latitudinal and ele-
vational gradients. Here, we would expect a strong ‘signal’ in terms 
of relative probability of occurrence of M. californicus along these 
gradients driving winter survivorship predictions.

This complex, model- based estimate of survivorship is unavoid-
ably subject to uncertainty, but it has greater direct relevance to 
winter bat distributions than generic climate metrics (e.g. mean 
surface temperature) with no mechanistic link to bat physiology. 
Future quantitative comparisons between predictions from this 
mechanistic predictor and those generated using standard, off- the- 
shelf climate predictors may be of interest. We also see worthwhile 
opportunities to continue honing this survivorship model as addi-
tional empirical data for parameterisation become available (e.g. for 

estimating species- specific, spatially explicit winter duration, better 
estimating subterranean temperatures and humidity experienced by 
hibernating bats and how they respond physiologically).

The maps of relative occurrence probability presented here 
(Figure 3) should help to guide future work to survey and monitor 
western bat populations, inform future conservation efforts and pro-
vide a baseline for understanding potential impacts of future change, 
namely, the spread of WNS through the West and climate change. 
These maps should be interpreted with care outside the known 
range of each species, as places with predictor values similar to those 
currently occupied will be highlighted but other limits on species dis-
tributions (e.g. historic spread processes, species interactions) may 
exist that were not captured here. Occurrence probability of gen-
eralist species with broad geographic ranges is particularly difficult 
to model effectively (Hernandez et al., 2006; Razgour et al., 2016). 
Predictive maps and all aspects of underlying models for such spe-
cies (e.g. M. lucifugus and P. subflavus), which have lower predictive 
performance, should be interpreted with caution. Still, we expect 
that these maps can be useful for considering the potential occur-
rence of the focal species in areas predicted to be suitable beyond 
their coarsely mapped range extents, which are likely inaccurate or 
out of date in some areas. Places that are predicted to have low oc-
currence probability may in fact be unlikely to support hibernacula, 
or they may simply have attributes not well represented in our pres-
ence data. These areas should be considered in the context of exist-
ing knowledge of the focal species and their hibernation patterns: Do 
these places lack karst or mine features, topographic relief, or trees 
to shelter hibernating bats? Or are they simply remote and charac-
terised by rare landscape features that were underrepresented in 
our sample? It is also important to recognise that mapped occurrence 
probabilities are relative values. We cannot estimate absolute occur-
rence probability from the available data, and our estimates may not 
be strictly proportional to absolute probability. The predicted values 
should be interpreted as rank probabilities, as reflected by the quan-
tile symbology used in our maps (Figure 3).

These are complex models based on relatively small sam-
ple sizes, so uncertainty remains and portions of the predictor 

F I G U R E  2  Final predictor influences 
in boosted regression tree (BRT) models 
estimating winter species distributions 
of bat species Corynorhinus. townsendii, 
Myotis. californicus, Myotis. lucifugus, 
Myotis. velifer and Perimyotis. subflavus 

across the United States and Canada. 
Brighter colours indicate higher influence; 
predictors that were dropped from a given 
model are shown in grey. Variables are 
ordered by their average influence across 
species (decreasing left to right)
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space are undersampled. We may also be missing key predic-
tors that we simply do not yet understand to be important for 
hibernaculum selection or cannot map continuously with cur-
rently available spatial data. Furthermore, varying degrees of 
temporal mismatch between occurrence records (mid- century 
to present) and climate and land cover variables (recent av-
erage conditions to temporally align all predictors) mean that 
conditions for older records may not be fully and accurately 
captured. This may have contributed to low predictive influ-
ence of climate variables (e.g. precipitation and snow). Future 
efforts to improve on these models would benefit from addi-
tional winter location data (particularly for species other than 
C. townsendii and M. lucifugus). Not only could spatial coverage 

be improved but additional recent records would allow exclu-
sion of older records without resulting in prohibitively small 
sample sizes. Future survey efforts could perhaps target places 
predicted to be highly suitable but where no occurrence data 
exist (e.g. M. californicus in the Great Salt Lake region, M. velifer 

in south Texas and northeast Arizona) or places with landscape 
characteristics not well represented in the current sample. 
Underrepresented characteristics are evident in the ‘flat’ por-
tions of the partial dependence plots and ‘empty’ portions of 
associated rug plots shown in Figure A3 (e.g. high elevations, 
high ruggedness, high number of snow days and high percent 
surface water). Absence data would improve the robustness of 
distribution models considerably (e.g. in comprehensive survey 

F I G U R E  3  Predicted relative probability of occurrence of (a) Corynorhinus townsendii (deviance explained = 65.2%, AUC = 0.867); (b) 
Myotis californicus (deviance explained = 62.8%, AUC = 0.853) across the western United States and British Columbia; (c) Myotis velifer 

(deviance explained = 71.7%, AUC = 0.873) across the southwestern United States; (d) Myotis lucifugus (deviance explained = 64.2%, 
AUC = 0.839) across the United States and Canada (below the Arctic Circle) and (e) Perimyotis subflavus (deviance explained = 54.7%, 
AUC = 0.814) across the eastern and central United States and eastern Canada. Each species’ current range extent (turquoise outline) 
and winter occurrence locations used to fit the model are overlaid (turquoise points). Occurrence probability is scaled using a quantile 
symbolisation to reflect the fact that predictions represent relative occurrence probability; whilst absolute values cannot be reliably 
interpreted relative to one another, percentile ranking is permitted (i.e. yellow areas of the maps represent the 10% by area of the mapped 
landscape with the highest occurrence probability, regardless of the underlying distribution of values). All maps use the USA Contiguous 
Albers Equal Area Conic projection

(a) (b) (c)

(e)(d)
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and monitoring efforts, which species were searched for but 
not found?), although reliable absences would be extremely 
difficult to obtain (due to low detection probabilities that vary 
with survey techniques and site characteristics).

Winter hibernation is clearly a critical part of temperate bats’ an-
nual cycle, yet it is largely a black box for many species; we have only 
limited knowledge of where these widely distributed species go for 
approximately half the year or what drives them there. This lack of un-
derstanding of the ecology of these species hinders conservation and 
management responses to ongoing and future threats to their per-
sistence. Insights from SDMs are valuable for locating, studying and 
managing species with low detectability (Razgour et al., 2016). SDMs 
may also help to define winter critical habitat for bats, as they have for 
other species (Brotons et al., 2004; Heinrichs et al., 2010). Unlike the 
East, there has simply not been a ‘where’ on which to focus conser-
vation policy in the West; models like ours could begin to fill this gap.

Our study also paves the way for assessment of the potential 
impacts of WNS and climate change on western bats, as well as their 
interactions. Prediction of species distributions under altered spa-
tial patterns of winter survivorship in the presence of P. destructans 

and future climate conditions may help to identify species and places 
most threatened by these stressors. We expect these predictions to 
have important implications for bat conservation and management 
in the West, such as informing placement of passive acoustic detec-
tors for monitoring or understanding the distribution of at- risk and 
stable hibernacula across federal, state and private lands to guide 
engagement strategies for conservation.

Significance Statement.

Bats are threatened worldwide by human impacts. In North 
America, WNS, caused by an introduced fungal pathogen, deci-
mates hibernating bats and is rapidly spreading westward. Bat di-
versity is highest in the West, yet we know little about where these 
species go in winter or why, hindering conservation responses. We 
estimate winter occurrence probability across five western bat spe-
cies’ ranges by integrating mechanistic understanding of hibernat-
ing bats’ physiological responses to climate conditions into SDMs. 
This work can inform targeted monitoring and management and 
provide a baseline for assessing impacts of advancing WNS and cli-
mate change on bats.
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