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Abstract

Defect diffusion in concentrated alloys plays a key role on governing their unique
mechanical and physical properties. In such alloys, defect diffusion depends on its complex local
atomic environment and varies from site to site due to the chemical disorder. On-the-fly
determination of the defect migration barrier at every site using the standard nudged elastic band
(NEB) method is computationally expensive and often impractical. In this work, we couple
machine learning and kinetic Monte Carlo (KMC) to study vacancy-mediated sluggish diffusion
in concentrated Ni-Fe model alloys. Based on about 32,000 pre-calculated NEB barriers, an
artificial neural network (ANN) based machine learning model is developed to accurately predict
the vacancy migration barriers for arbitrary local atomic environments, including both random
solution configurations and alloys with short-range orders. The ANN model is then coupled with
KMC (ANN-KMC) to determine the vacancy migration barriers on-the-fly, enabling an efficient
study of the vacancy diffusion in the full composition range at a wide range of temperatures. In
addition, a composition and temperature dependent jump attempt frequency model is developed.
Upon calibration, the ANN-KMC modeling can predict nearly identical vacancy diffusivities as
those obtained from independent molecular dynamics (MD) and temperature accelerated
dynamics (TAD) simulations at their accessible temperatures. The sluggish diffusion
mechanisms in this specific alloy system at both high and low temperatures are discussed based
on the ANN-KMC results.
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1. Introduction

Compositionally disordered alloys including high-entropy alloys, also known as multi-
component solid solution concentrated alloys (CSAs), have been attracting significant interest in
recent years because of their unique properties, such as excellent mechanical properties at both
low and high temperatures [1, 2], good corrosion resistance [3], and enhanced radiation tolerance
[4, 5]. Of particular interest is the concept of “sluggish diffusion” in CSAs because defect or
solute diffusion kinetics is directly related to these unique material properties. However, the
existence or the extent of sluggish diffusion in concentrated alloys is still under debate and
contradictory results have been reported in literature. For instance, some experimental studies
showed evidence of “sluggish diffusion” [6-8], whereas some others raised questions about this
phenomenon [9-11]. On the modeling side, many atomistic simulations [12-15] have been
conducted with the aim of understanding the mechanisms of atomic diffusion in such chemically
disordered structures. Similar as in experimental studies, both existence and non-existence of
sluggish diffusion have been reported, depending on the chosen simulation systems. In many
studies, it is assumed that the alloying elements are randomly distributed within CSAs and the
alloys form a single-phase (such as face-centered-cubic (fcc) or body-centered-cubic (bcc)
structures) solid solution. However, numerous experimental observations have demonstrated that
CSAs may contain some extent of short-range orders (SROs) or other ordered phases, and these
ordered structures cannot be overlooked [16-18].

Computer modeling is a powerful tool for understanding and predicting the defect/solute
diffusion in materials. However, there are some challenges for modeling CSAs. For example,
some theoretical models such as multi-frequency models [19] can be used for predicting the
atomic diffusion. However, these analytical models are typically applicable to dilute alloys [20,
21]. Given the uncountable number of nonequivalent atomic configurations in CSAs, these
models may not be easily generalized to concentrated alloys. An alternative tool for studying
atomic-level defect diffusion is the molecular dynamics (MD) method [13, 14, 22], in which
optimal diffusion paths are automatically chosen based on the local potential energy landscape,
provided suitable and accurate interatomic potentials are available. If a simulated trajectory is
sufficiently long to ensure the statistics of defect or solute jumps, MD can accurately simulate
their diffusion events. However, MD is limited by its inherently short timescale, typically up to a
few tens of nanoseconds. As a result, many slow but important diffusion processes (e.g., rare
events) that happen at low temperatures of interest may not be captured by MD. The kinetic
Monte-Carlo (KMC) method, which implicitly treats atomic vibrations and only considers the
kinetics of defects or solutes, can extend the atomic-level simulation to the experimentally
accessible timescale [23, 24]. In the conventional rigid-lattice KMC, atoms are restricted to the
predefined positions such as fcc lattice sites. The reliability of KMC modeling depends heavily
on the accurate description of migration barriers of defect jumps, E,;,,, which need to be provided
to the model as a priori knowledge. However, in CSAs the defect migration barrier changes from
site to site due to the varying local atomic environment. Therefore, it is nearly impossible to
determine all the migration barriers beforehand and provide the complete event table to KMC.
On the other hand, it is possible to use the off-lattice KMC [25] such as the kinetic activation-



relaxation technique (k-ART) [26, 27] to determine the migration barriers on-the-fly in CSAs, as
demonstrated by Osetsky et al. [28]. However, the on-the-fly determination of migration barriers
using the nudged elastic band (NEB) method [29-31] or the activation relaxation technique
nouveau (ARTn) [32] entails a high computational cost.

Recently, machine learning techniques such as the artificial neural networks (ANNs)
have attracted researchers’ significant interests for studying various materials science problems
[33-37]. Machine learning is a powerful tool for analyzing high-dimensional and complex
problems to identify the underlying correlations with some material features or descriptors, if
sufficient and accurate training data are available. For the defect or solute diffusion in CSAs that
is the focus of this work, it is envisioned that one may develop an advanced regression algorithm
or machine learning model for predicting the migration barriers in CSAs based on the local
atomic configurations (LACs) around a defect or solute, because its migration barrier strongly
depends on its neighboring chemical species as well as its jumping pathway. After such a model
is established, one may replace the computationally expensive on-the-fly calculation of migration
barriers in KMC with such a more computationally efficient model.

In this work, we aim to develop an ANN model to predict vacancy migration barriers for
arbitrary atomic configurations in CSAs and couple it with the conventional KMC to study the
vacancy diffusion at a wide range of alloy compositions and temperatures. The concentrated fcc
Ni,Fe, (x =0 — 1) alloy system is used as a model system because it has been shown to have
strongest sluggish diffusion at the percolation threshold of xg. = 0.2 [28]. Two types of atomic
configurations are considered: fully random distribution of alloying elements (a chemically
disordered structure) as in previous MD studies [13, 28], and the Metropolis Monte-Carlo (MMC)
optimized structures that encompass local SROs as characterized by the Warren-Cowley SRO
parameter [38]. A finite number of NEB calculations are conducted to obtain necessary training
data for the ANN-based machine learning model. The trained ANN model is then coupled with
KMC to predict the vacancy migration barrier on-the-fly and calculate the effective vacancy
diffusivity in this alloy system. A composition- and temperature-dependent jump attempt
frequency model, rather than a fixed frequency that is commonly used in many KMC studies [28,
39], is also developed. The calibrated ANN-KMC model can predict similar vacancy diffusivities
as independent results by MD at high temperatures and by temperature accelerated dynamics
(TAD) [40] at moderate temperatures, demonstrating that the approach can achieve very high
computational efficiency without compromising its accuracy. The approach thus enables us to
study defect diffusion in CSAs at low temperatures that may not be accessible by other atomistic
simulation methods.

2. Methods

A number of complementary simulation methods are used in this work: NEB, ANN based
machine learning, KMC, MMC, MD, and TAD. For the NEB, MMC, MD, and TAD, the Ni-Fe
interatomic potential developed by Bonny et al. [41] is used. These methods are briefly described
as follows.



2.1. Alloy structures and NEB database of vacancy migration barriers

As mentioned earlier, two groups of atomic configurations for the Ni, Fe, (x =0 — 1) fcc
alloys are considered: random distribution of alloying elements and MMC-optimized structures
that contain SROs. In each group, eight compositions are studied: xg. = 10%, 20%, 25%, 35%,
50%, 65%, 80%, 90%. To create the first group (denoted as the “Random” group), Ni and Fe
atoms are randomly mixed in a 10a, x 10a, x 10a, fcc lattice containing 4,000 atoms at each
composition. To create the second group (denoted as “MMC” group), the hybrid MC+MD
method implemented in the LAMMPS package [42] is applied to optimize each generated
random structure. During the optimization, a randomly selected Ni is swapped with a randomly
selected Fe atom, and the acceptance probability of this swap depends on the change of the
system potential energy. Following every swap, a short (0.01 ps or 5 timesteps) MD simulation is
performed in an NVT (constant number of atoms, volume, and temperature) ensemble at 300 K
to relax the system. This procedure is repeated for a total of 400,000 MMC steps. The resulting
alloy structures in the MMC group have much lower potential energies than the counterparts in
the Random group and an example is shown in Fig. 1(a). The MMC-optimized structures exhibit
some extent of short-range orders. To quantify the degree of ordering, the Warren-Cowley SRO
parameter [38] is calculated up to four nearest neighboring (nn) shells for each composition, as
shown in Fig. 1(b). Clearly, the Random structures have no discernible ordering because the
SRO values of all shells are nearly zero, while the MMC structures have distinctive ordering, as
indicated by the large positive (clustering of Ni-Ni or Fe-Fe pairs) or negative (clustering of Ni-
Fe pairs) SRO values in the second and third shells.
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Fig. 1 (a) Potential energy change during a hybrid MC + MD simulation (denoted as MMC
optimization) in an NigFe,o alloy that has an initially random atomic configuration. (b) Warren-
Cowley SRO values up to the 4% nn for both Random and MMC structures at different
compositions.



After both Random and MMC structures are created, the NEB method [30, 31]
implemented in LAMMPS is used to calculate the vacancy migration barriers (E,,) for different
atomic environments. At each Ni-Fe composition, a vacancy is created at every lattice site, one at
a time. At each vacancy site, the vacancy migration path is randomly chosen between the
vacancy and one of its twelve 1% nn atoms and the corresponding migration barrier (E,) is
calculated. This results in 4,000 barriers at each composition and 32,000 barriers in each
structural group (because there are eight compositions in each group). In all NEB calculations,
the number of NEB images (including the initial and final states) is 13 and the spring constant is
setto 1.0 eV/AZ,

2.2. LAC definition and ANN model

In an Ni, Fe, fcc alloy, a vacancy can diffuse to one of its 12 nearest neighbor sites, as
schematically illustrated in Fig. 2(a). The vacancy migration barrier of each pathway depends on
not only the atom type at the neighboring site along that pathway, but also the local atomic
configuration (LAC) around that neighboring site. Therefore, a well-defined LAC is a premise
for an ANN model that can accurately predict the vacancy migration barrier (E,,). Figure 2(b)
schematically shows two possible vacancy migration pathways between the vacancy “V” and
atom “A;_,,”. The LAC of an atom “A;” includes all atoms as well as the vacancy site within a
cutoff radius (large dash circle) from A,. In the relaxed Ni,Fe, alloys, atoms can have small
displacements from the perfect fcc lattice sites due to the mixing effect. Although the NEB
calculations include all local chemistry and lattice distortion, the migration events in the
conventional KMC are still described in a rigid lattice framework. To keep this advantageous
simplicity of the KMC model, the small off-site displacement of an atom in the equilibrium state
is neglected in our ANN model if it stays within the original Wigner-Seitz cell [43] (see Fig.
2(b)). Therefore, all sites in the same nearest neighboring shell have the same distance from the
central atom/site. The description of a LAC is represented by a string of integers for each
neighboring shell in consideration, e.g., 1 for Ni, 2 for Fe and 0 for vacancy. Four neighboring
shells are taken into consideration for constructing LAC vectors. A closer shell is endowed with
a higher weight. For example, the first two neighboring shells around a moving atom “A,” can be
defined as,

1nn LAC = Wy,,[0,1,2,1,2,1,1,1,2,1,1, 1],
2nn LAC = W,,,[1,2,2,2,1,1],

where W, ., Wan, are the weights for 1%t and 2™ neighboring shells, respectively, and W, >
WZnn'
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Fig. 2 (a) Schematic illustration of vacancy migration pathways in the potential energy landscape.
(b) 2D schematic illustration of two possible vacancy migration pathways (from “V” to “A,.; ,”
in a rigid lattice approximation of a distorted crystal structure. Hexagons represent Wigner-Seitz
cells, within which small dash circles denote real equilibrium positions of atoms and filled
circles are rigid lattice sites. Here “A;” represents the moving atom (Ni or Fe), “V” is the
vacancy site and "d,”" represents the atom movement direction of the pathway. The large dash
circle around each A; shows the cutoff radius within which all neighboring sites are included in
constructing its LAC.
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Fig. 3 Schematic of the ANN architecture. There are three neurons (solid circles) in the hidden
layers 1 and 2 for each input shell vector to integrate all information to predict E,,, values.



The ANN architecture is shown in Fig. 3. The training logic is: (i) The LAC input
features from the 1*'nn to 4" nn shells are separately connected to the first hidden layer; (ii) The
first hidden layer is implemented to integrate the information for each shell; (iii) The second
hidden layer desegregate the information passed by the first hidden layer to give the predicted
E,,. The number of neurons and layers are determined empirically by trial-and-error. The
training algorithm uses the Levenberg-Marquardt method [44], a hybrid technique that uses both
Gauss-Newton update and gradient descent to converge to an optimal solution, and its superior
performance for similar applications has been demonstrated [45, 46].

2.3. ANN-KMC modeling

The trained ANN model is coupled with the rigid-lattice KMC using the KMCLib
package [47] to simulate the vacancy diffusion in Ni,Fe, alloys for both MMC and Random
groups. In the lattice KMC model, atom diffusion is solely driven by the thermally activated
migration jumps that a single vacancy takes. The rate of a vacancy jump event from an initial
position i to one of its neighboring sites j is expressed by the standard transition state theory,

Enij

[ = v, exp (—

where v, is the jump attempt frequency, kp is the Boltzmann’s constant, 7 is the absolute
temperature, and E,, ;; is the vacancy migration barrier from site i to j. At each KMC step, the
ANN model predicts E;, ;; for all 12 possible jumping pathways on-the-fly with a negligible

computational cost. A random number r, in the range of (0, 1] will pick a path s among 12
possible pathways following,

N 12
Zrij>rl'zrij, (2)
j=1 j=1

and the system evolves into a new state by the path s. The time elapsed is calculated by another
random r; in the range of (0, 1] according to the residence time algorithm [24],

In(r,)
X2 Ty
In this work, 10,000 — 30,000 KMC steps are conducted for each simulation. The diffusion
coefficient is calculated using the Einstein relation [48],

At = 3)

Ard(t)
6t

D = @)

where ArZ2(t)is the sum of the atomic square displacements (ASDs) of all atoms (for total
diffusivity) or individual type of atoms (for partial diffusivity) in 3D, and ¢ is the simulation time.



To obtain reliable statistics, six independent simulations are conducted at each condition and the
average diffusivities are reported in this work.

Regarding the jump attempt frequency (v, ), it was typically set to a fixed value close to
the phonon frequency (102 ~ 10" s'') in many previous KMC simulations [49, 50]. However, it
could be affected by both temperature and composition. For example, in some studies it was
found to be two orders of magnitude higher or lower than the phonon frequency [51, 52]. In this
work, a temperature- and composition-dependent v, is developed because a constant v, leads to
unsatisfactory results. The details are discussed in the Results section.

2.4. MD simulations

To compare with ANN-KMC results at high temperatures, MD simulations of vacancy
diffusion in the Ni, Fe, alloys are conducted at 900 — 1300 K using LAMMPS [42]. The
structures in both Random and MMC groups are studied. The effects of atomic configurations
and other material properties on the vacancy diffusivities will be presented in detail elsewhere.
Here only the calculated diffusivities are reported, which are used to validate ANN-KMC results.
The MD simulations are conducted in an NPT ensemble (constant number of atoms, pressure,
and temperature). The Nose-Hoover thermostat and barostat [53] are used to control the system
temperature and pressure (at zero bar), respectively. The time step is set to 2 fs. The simulations
at lower temperatures, such as 900 K and 1000 K, are conducted up to 100 ns each for ten
independent simulations to improve the statistics at each condition; Whereas the simulations at
higher temperatures (> 1000 K), which have faster diffusivities, are completed over 40 ns each
for six independent simulations. Same as in KMC, the total and partial diffusion coefficients are
calculated from the atomic square displacements (Eq. 4).

2.5. TAD simulations

The vacancy diffusivities calculated by MD are limited to high temperatures. In order to
obtain diffusivities at a moderate temperature (800 K) for further validating the KMC results, the
TAD method [40] implemented in LAMMPS is used. TAD is one type of accelerated molecular
dynamics (AMD) methods [54, 55], and has the ability to reach much longer timescale than MD
but still maintains the full atomic fidelity as MD [56, 57]. TAD conducts basin-constrained MD
at a high temperature to accelerate the search of many candidate transition events from the
current state (basin). Unlike in the rigid-lattice KMC, TAD does not require a priori knowledge
of these candidate transition paths or mechanisms. Once a candidate transition event is detected,
the NEB method is used to calculate the transition barrier on-the-fly. The system is then brought
back to the current basin and new searches continue, until a stopping criterion is met. For a
candidate transition event j, the time at the low temperature of interest (7.,.,,) is extrapolated from
its high-temperature MD time (#4,;) based on the transition state theory,

tLow, = twignjexp [Em'j< 1 1 )], 5)

kBTLow kBTHigh



where Ey, ; is the transition barrier obtained by NEB (e.g., the vacancy migration barrier in this
work) along the path j, T}, is the low temperature of interest, and Ty, is the high temperature
for accelerating the transition. Among the detected candidate events after the stopping criterion is
met, the event with the shortest time at 7;,, is accepted. Therefore, the candidate events that
should not happen at T}, are filtered out. Then the system advances to a new basin and the
process repeats. In this work, Ty, and T3, are set to 1600 K and 800 K, respectively. The
simulation system contains 864 atoms of different compositions in a 6a, x 6a, x 6a, fcc lattice.
The time step for the high-temperature MD is 2 fs. A transition is defined when the displacement
of any atom is greater than 0.6 A and the transition is checked every 50 steps. The desired
confidence level for stopping criterion is set to 6=0.05. The minimum pre-exponential factor is
Set t0 Vi, = 2x102 57! (Or £,,0 = 0.5 ps). The simulation time is over 60 ns at T};,;,, which results in
ps-scale time at 7;,,. Same as in KMC and MD, the atomic square displacements (Eq. 4) are
used to calculate the diffusion coefficients. In addition, the transition barriers of all accepted
events during the vacancy diffusion are recorded by TAD, which will be presented in the Results
section.

3. Results
3.1 ANN model for vacancy migration barriers

To train the ANN model of vacancy migration barriers (E,,), the two groups (Random
and MMC) of databases mentioned above are not identically utilized. In this work, the barriers in
the MMC group, which contain some SROs, are used to train the ANN model. Specifically, the
data in the MMC group are split to serve the functions of training, validation, and testing with a
ratio of 70%:15%:15%. Once an ANN model has been adequately trained, e.g., obtained a
satisfactory performance on the testing set, the data in the Random group, equivalent to unseen
data to the trained ANN model, are tested to verify the transferability of the ANN model. The
trained ANN model is accepted when it also reaches satisfactory performances on the data in the
Random group. Figure 4(a) shows a good correlation between ANN predicted and NEB
calculated E,,, on the MMC group dataset. It is adequately accurate with the average prediction
error within 0.040 eV, and R? of ~95%. Figure 4(b) presents an average error of 0.043 eV and
R? of 93% on the Random group dataset. Some outliers do exist, possibly related to the rigid
lattice approximation. However, the accuracy of the KMC model is not affected by these extreme
and rare cases because they make little difference to the statistics.
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Fig. 4 (a) The trained ANN model of vacancy migration barriers that only uses the MMC group's
data. Four plots indicate regression accuracies on training, validation, testing, and overall dataset.
(b) The performance of the trained ANN model in (a) on the unseen data from the Random group.

3.2 ANN-KMC results of the MMC group

The ANN model developed in the previous section is coupled with KMC to calculate the
vacancy diffusivities in the MMC-group structures that contain SROs. The first test is using a
fixed jump attempt frequency, v, = 10" s, as in many previous studies [28, 39]. The calculated
diffusion coefficients are compared with the MD results as a function of alloy composition at
1300 K, as shown in Fig. 5(a). Clearly, there is a large discrepancy between ANN-KMC and MD
results when the Fe concentration xg, < 80%. The most distinctive difference is the pure Ni,
which is independent of the ANN model because it only has a single vacancy migration barrier.
Therefore, the fixed v, value is likely the reason that induces such discrepancies. To solve this
problem, in this work v, is treated as both composition- and temperature-dependent. According
to Kong and Lewis [58], the temperature-dependent attempt frequency has the form,
kgT <—AFW-,,)

Vo= T P Tk,

(6)

where & is the Planck’s constant, AF,;;, is the vibrational free energy difference between the
transition state and the initial state. For simplicity, the exponential term in Eq. (6) is replaced by
a polynomial function of composition,

kgT
Vy = Tf(xFe)» (7)

where f (xg,) will be calibrated with the MD diffusivity data, as discussed below.
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To determine f(xg,), the v, values are obtained by fitting to the MD data at 1300 K for
all compositions, as shown in Fig. 5(b). At this temperature, the coefficient k”% =2.71x108 s,

and a 4" order polynomial function is used to fit f (xg.),

flxpe = %) = 1.764 —8.92 x 1073x + 3.96 X 1075x% — 4.16 X 1075x3 + 3.2 x 10~8x*. (8)

To determine v, for other temperatures 7', Eqs. (7-8) are directly used and no other fitting is

needed. Essentially this scales the v, values at 1300 K with a factor of 7/1300, i.e.,v,r =
T

1300

25% (i.e., NissFe,s) is not included in the fitting but f(xg,) still works well for this composition.

Also noted that although f (xg.) is only fitted to the MD data of the MMC group at 1300 K, it
works well at other temperatures for both MMC and Random groups, as shown below.
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Fig. 5 (a) Total diffusion coefficients obtained from ANN-KMC at 1300 K using a constant jump
attempt frequency, v, = 1013 s!, which show large discrepancies with the MD results at xg <
80%. (b) The fitted v, values (filled circles) against the MD data at 1300 K. The solid line shows
the fitted 4 order polynomial function (Egs. (7 — 8)).

Figure 5(b) shows that v, decreases monotonically with increasing Fe concentration. It
also shows that v, in pure Ni is about 5 times higher than in pure Fe, even though they both have
an fcc structure in this work, consistent with many previous studies that it is material dependent
[58]. After the composition-dependent v, is calibrated at 1300 K, it is used in ANN-KMC to
predict the vacancy diffusivities at lower temperatures. Figure 6(a) shows a complete comparison
of vacancy diffusivities obtained via ANN-KMC and MD simulations for temperatures from 900
K to 1300 K. The error bar of each MD data point represents the standard deviation from 6 — 10
independent simulations. Each diffusivity value from ANN-KMC is averaged from 6
independent simulations, and its error bar is ignored due to very small variance. Clearly, the

11



ANN-KMC predicts nearly identical vacancy diffusivities as the MD results in a wide range of
compositions and temperatures, even though v, is merely fitted to the MD data at 1300 K. There
are some discrepancies under some conditions, primarily at low temperatures (e.g., NigFess at
900 K). This is likely due to the insufficient statistics in MD simulations because the short
timescale in MD poses an inherent challenge for studying the slow diffusion kinetics at low
temperatures. At all temperatures, the vacancy diffusivity first decreases then increases with the
increasing Fe concentration, consistent with Osetsky et al.’s work [28]. The two end points (i.e.,
pure Ni and pure Fe) at each temperature indicate that Fe is a faster diffuser than Ni. The
minimum diffusivity occurs around xg, = 25~35% for the structures of the MMC group in this
work, slightly different from ~20% (which is the Fe percolation threshold) in Osetsky et al.’s
work [28].
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Fig. 6 (a) Total vacancy diffusivities as a function of composition in the MMC-optimized Ni;.
«Fe, model alloys calculated from ANN-KMC and MD simulations at 900 — 1300 K. Note only
the MD data at 1300 K are used to calibrate the v, in ANN-KMC. Solid lines with filled symbols
are MD data, and dashed lines with unfilled symbols are ANN-KMC data. Each error bar
represents the standard deviation of 6 — 10 MD results. The error bars in ANN-KMC results are
ignored due to the negligible variances. (b) Partial diffusivities as a function of alloy composition
from ANN-KMC results at different temperatures. (c¢) Jump fractions of Ni and Fe as a function
of composition at 1200 K.

Figure 6(b) shows the partial diffusion coefficients of Ni and Fe from the ANN-KMC

modeling. At all temperatures, Ni diffusivity (Dy¢) decreases while Fe diffusivity (DMM¢
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increases with increasing Fe concentration, because Fe is a faster diffuser. The intersection
between DMMC and DMMC is located at xz, = 20 ~ 25% and slightly shifts rightward (to higher
Xre) With the increasing temperature. This crossover Fe concentration is slightly lower than that
for the minimal total diffusivity in Fig. 6(a), which is in the range of xz, = 25~35%. At xp, =
20% (in the NigFe,, alloy), the ratio of DMMC / pMMC is 0.79, 0.72, 0.65, 0.58, 0.55 for 900 ~
1300 K, respectively. This indicates that the contribution from the faster diffuser Fe increases as
the temperature decreases. Figure 6(c) shows the fractions of vacancy jump types (i.e., a vacancy
jump via Ni or Fe atom) as a function of Fe concentration at 1200 K. It can be seen that the
dominant vacancy jump type changes from Ni to Fe in the range of xp, = 20 ~ 25% (about xp,=
22%), similar to the crossover concentration for the partial diffusivities in Fig. 6(b). After the
crossover, the jump via Fe becomes more and more dominant. When xg, > 65%, the Fe jumps
dominate completely and there are almost no Ni jumps.

The excellent agreement between ANN-KMC and MD results at 900 ~ 1300 K suggests
that ANN-KMC may be used to predict the diffusivities at low temperatures. However, as
mentioned earlier the events that happen at high temperatures in MD may not happen at the
lower temperatures of interest. Therefore, to further validate the ANN-KMC model, the TAD
method is used to calculate the total vacancy diffusivities in the Ni, Fe, alloy at a moderate
temperature, T = 800 K. The comparison between TAD and ANN-KMC results at different
compositions at 800 K is shown in Fig. 7(a). Note that the TAD results are completely
independent (blind) to the ANN-KMC model because the system size in TAD is different from
that in ANN-KMC and the simulated structures are also different. Nevertheless, the agreement
between ANN-KMC and TAD results is reasonably good. Even though there are slight
discrepancies, the error bars (standard deviations) in TAD results overlap with ANN-KMC
results at many compositions. Both TAD and ANN-KMC give similar minimal diffusivities at
Xpe = 20 ~ 25%, which is slightly different from the minimum diffusivities occurring at xz, =
25 ~ 35% at higher temperatures (900 — 1300 K) shown in Fig. 6(a). Since ANN-KMC results
have good agreement with MD and TAD results at both high and moderate temperatures, the
ANN-KMC is used to predict the total vacancy diffusivities at a low temperature (T = 500 K)
that is inaccessible to MD, as shown in Fig. 7(a). Again, the minimal diffusivity happens at
Xpe = 20 ~ 25%, similar as at T = 800 K. It should be noted that the sluggish diffusion effect at
this composition is more pronounced than at high temperatures (Fig. 6(a)) because the minimum
vacancy diffusivity at 500 K is about one and five orders of magnitude than the diffusivities in
pure Ni and Fe, respectively.
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Fig.7 (a) Comparison of the total diffusivities in the MMC group alloys obtained by TAD and

ANN-KMC at 800K as a function of composition. The ANN-KMC results at a low temperature

(500 K) that is unreachable to MD is also shown. (b) Two methods for estimating the effective

vacancy migration energies at different compositions: Arrhenius fitting of ANN-KMC

diffusivities at 500, 800 — 1300 K; The average of the migration barriers from executed (accepted)
jumps during ANN-KMC and TAD simulations. For comparison, the average of the static NEB

barriers at 0 K is also shown at each composition. (c) The migration barrier distributions from

static NEB calculations at 0 K, and the ANN-KMC simulations at 500K, 800K, and 1200K for

the NigoFe, alloy.

Here, two methods are used to present the effective migration energies. The first is the
activation energy extracted from an Arrhenius-type treatment of ANN-KMC diffusivities at all
temperatures, E*!, as seen in previous studies [28, 59], and the second is to record each executed
migration barrier in ANN-KMC and TAD, and the averaged value is displayed as Ej,, shown in
Fig. 7(b). In addition, the average of all static NEB barriers at 0 K is shown as function of
composition, even though many of them may have never been visited during the vacancy
diffusion. Figure 7(b) shows that E* increases initially and reaches a maximum value at the
percolation threshold xz, = 20%, which was claimed in Ref. [28] to be one of the reasons for the
sluggish diffusion in Ni-Fe alloys. The E** trend is similar as the average of the NEB barriers,
although for the later the maximum barrier occurs at a higher Fe concentration (xp,~ 35%).
However, the Ej, values based on the average of accepted barriers either from ANN-KMC or
TAD simulations do not show a clear maximum. Instead, they exhibit a monotonically

14



decreasing trend. Closer examination also shows that both KMC and TAD result in higher Ej,
values at higher temperatures at each composition. Figure 7(c) presents the distribution of
executed migration barriers in the NigFey alloy (which shows significant sluggish diffusion) at
500 K, 800 K, and 1200 K from KMC simulations, as well as the distribution of the static NEB
barriers. Each spectrum is fitted to a Gaussian function in which the vertical dash line indicates
its mean value. It shows apparent decline in the average migration energy as well as the
distribution variance as the temperature decreases. Therefore, at low temperatures vacancy jumps
are primarily along the low-barrier paths, and many of them are through the fast diffuser, Fe. At
Xre = 20%, however, there are only limited number of percolated paths that enable the long-
range Fe diffusion. Therefore, vacancy diffusion may be trapped by Fe and sluggish diffusion
occurs.

3.3 ANN-KMC results of the Random group

To exclude the statistical errors potentially induced by different atomic configurations,
first the random configurations in ANN-KMC simulations are created as same as those used in
the MD (note the small off-lattice distortions presented in the MD structures are ignored in
ANN-KMC). In the next section, our further tests demonstrate that the choice of random
configurations has a negligible effect on the diffusivities predicted by ANN-KMC. Figure 8(a)
shows the total vacancy diffusivities of the Random group at different compositions predicted by
the ANN-KMC from 900 K — 1300 K. The MD results are also shown for comparison. It should
be noted that the ANN-KMC results are independent to the MD data because the jump attempt
frequencies are the same as those in the Section 4.2 (for the MMC group) and no new fitting has
been conducted. Nevertheless, ANN-MKC predicts vacancy diffusivities very close to the
independent MD results, demonstrating the robustness and transferability of the ANN-KMC
model. The minimum diffusivity happens at xz, = 20 ~ 25% at these temperatures, which is
slightly lower than the MMC group (Fig. 6(a)). Similar to the partial diffusivities in the MMC
group (Fig. 6(b)), in the Random group D}#"4°™ and DL"4o™ also intersect at Xz, = 20 ~ 25%
and the cross-over composition slightly shifts rightward (to higher Fe concentrations) as the
temperature increases, as shown in Fig. 8(b). The cross-over compositions are also close to the
minimum diffusivities in Fig. 8(a). Figure 8(c) shows the jump fractions of Ni and Fe at different
compositions at 1200 K. Again the Fe fraction increases while Ni fraction decreases with the
increasing Fe concentration. The cross-over composition is at xp, = 20 ~ 25%, which is the same
as that for the minimum total diffusivities shown in Fig. 8(a) and the cross-over composition for

Djamdom and prandom shown in Fig. 8(b).
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Fig. 8 (a) Total vacancy diffusivities at different Fe concentrations for the Random group alloys
calculated from ANN-KMC. The independent MD results are also shown for comparison. Solid
lines are MD results, and dash lines are ANN-KMC results. Each error bar represents the
standard deviation of 6 — 10 MD simulations. The error bars in ANN-KMC results are ignored
due to the negligible variances. (b) Partial diffusivities of Ni and Fe as a function of Fe
concentration from the ANN-KMC simulations at different temperatures. (c) Jump fractions of
Ni and Fe at different Fe concentrations from the ANN-KMC simulations at 1200 K.

TAD simulations are also conducted to study the vacancy diffusivities in the Random
alloys. Figure 9(a) shows the good agreement between ANN-KMC and independent TAD results
at all compositions at 800 K, where the minimum total diffusivity is observed at xz, = 20%. The
ANN-KMC is also used to calculate the total diffusivities of Random group alloys at 500 K. In
comparison to the results at 500 K in the MMC group alloys shown in Fig. 7(a), the sluggish
diffusion is less pronounced, indicating that the atomic configuration or SRO can be another
important factor for affecting the sluggish diffusion. The ANN-KMC results in the Random
alloys at 500 K are also compared with the work of on-the-fly KMC coupled with k-ART by
Osetsky et al. [28], in which a constant v, of 10" s'! was used for all compositions. Although the
overall trend is similar between the two studies, the diffusivities in our work are about 5 times
faster than in their work. The discrepancies could be due to different v, values as well as the
different methodologies for calculating vacancy migration energies in the two studies. Similar to
the analysis for the MMC group (Fig. 7(b)), the Arrhenius-type treatment of activation energy
(E*t) and the average migration energies (Ey,) from the accepted events in ANN-KMC and TAD
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simulations at different compositions are shown in Fig. 9(b). Again, while the E*' curve has a
convex shape with a maximal value at about xp, = 20%, the Ej,, curves for both ANN-KMC and
TAD simulations decrease monotonically with xg,. Both E*t and Ej, are different from the
average of the static NEB barriers at 0 K. Figure 9(c) shows the distribution of the accepted
migration energies in the NigFey, alloy obtained by ANN-KMC at 500 K, 800 K, and 1200 K,
along with the distribution of the static NEB barriers. It can be clearly seen that many high-
energy NEB barriers have never been visited by the ANN-KMC. In addition, the average
migration energy of executed events (Ey,) decreases as temperature decreases. For example, E;,
= 1.16 eV at 1200 K while E;;, = 1.07 eV at 500 K. Again, the results indicate that vacancy
diffusion is mainly through low-barrier paths at low temperatures. If the number of such low-
barrier paths is limited (e.g., at xz, = 20%), sluggish diffusion occurs.
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Fig. 9 (a) Comparison of the total diffusivities in the Random alloys obtained by TAD and ANN-
KMC at 800 K at different compositions. The ANN-KMC results at 500 K are compared with a
previous on-the-fly k-ART + KMC study [28]. (b) Two methods for estimating the effective
vacancy migration energies at different compositions: Arrhenius-like treatment of ANN-KMC
diffusivities at 500, 800 — 1300 K; The average of migration barriers from executed jumps during
ANN-KMC and TAD simulations. For comparison, the average of the static NEB barriers at 0 K
is also shown at each composition. (¢) Migration barrier spectra of the static NEB barriers at 0 K
and from the ANN-KMC simulations at 500K, 800K, and 1200K in the NigFe,, random alloy.
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4. Discussion

A comparison of the results from two structural groups reveals some commonalities and
discrepancies. First, both MMC and Random structures have partial diffusivities and jump
fractions crossing at xp, = 20~25%, which is close to the percolation threshold of Fe at xp, =
20%. However, while these cross-over values are identical to the minimal diffusivities in
Random structures, MMC structures have the minimal diffusivities at xp, = 25~35%. The main
factor that causes this discrepancy could be the presence of SROs in MMC structures, which can
be a non-eligible factor in diffusion processes. For example, Zhao et al. have shown that the
existence of ordered phases in concentrated alloys resulted in a significant delay in defect
evolution [60]. As shown in Fig. 1(b), the MMC-optimized NigsFess (xp, = 35%) alloy has the
largest extent of SROs. The SROs may hinder the vacancy diffusion, changing the minimum
diffusivity from xg, = 20~25% in Random structures to 25~35% in the MMC structures. Second,
both MMC and Random structures have a convex-shape curve of the effective migration energy
(E*Y) from the Arrhenius-type treatment, and the maximum value occurs at xp, = 20% in both
cases, which coincides with the cross-over compositions for the partial diffusivities and jump
fractions discussed above. The MMC and Random structures, therefore, may have a similar site
percolation threshold around xr, = 20%, even though the MMC structures contain significant
SROs. Third, the average migration barrier (E},) for both MMC and Random structures, obtained
by averaging the accepted migration barriers in ANN-KMC and TAD simulations, decreases
monotonically with the increasing xg, or decreasing temperature. In addition, the Ey, values are
lower than the NEB and E*counterparts for the same composition. Similar trends were also
observed in Ref. [28] in which E;,, from k-ART was 0.96 eV for Nis,Fes, at 500 K while E*tand
NEB values were 1.08 eV and 1.20 eV, respectively. The discrepancy between the average of the
accepted barriers and the average of all NEB barriers indicates that only a fraction of NEB
barriers are actually visited during vacancy diffusion, and most of the accepted barriers are at the
smaller barrier side. Many of these smaller barriers are related to the jump of faster diffuser, Fe.
When there are sufficient diffusion paths for Fe such as at high x,, the overall diffusivity is high.
However, if the Fe diffusion paths are limited such as near the Fe percolation threshold (xz, =
20%), the vacancy diffusion may be trapped by these local and disconnected small-barrier events,
which leads to sluggish diffusion. As discussed earlier, however, this work also suggests that the
percolation threshold may not be the sole factor for determining sluggish diffusion. Other factors
including the presence of SROs can also influence it.

This work demonstrates that the combination of lattice KMC model and ANN-based on-
the-fly determination of vacancy migration energy can achieve accurate results with high
computational efficiency. However, the accuracy of the on-the-fly KMC is highly dependent on
the quality of the ANN model. Here, the ANN-KMC approach is tested from three perspectives
in order to evaluate its transferability, reliability, and practicality. First, the ANN model should
be capable of predicting the migration energies for arbitrarily random configurations in a robust
manner. Second, the accuracy of the ANN-KMC model should not be affected by the size of
simulating system. Third, the effort required to obtain a database for training an ANN model
should be feasible from a computational standpoint. To address the first concern, a set of random
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structures with the same compositions and number of atoms (4,000 atoms) as those in Section
4.3, but with different random arrangements of elements, are created. Regarding the second
concern, a set of larger Ni-Fe random alloy system consisting of 108,000 atoms are created.
Figure 10 shows the total diffusivities calculated by ANN-KMC for the two new sets of alloys at
1000 K, along with the results for the original random alloys studied in Section 4.3. Clearly, both
new sets of alloys have nearly the same diffusivities as those reported in Section 4.3 over the
entire composition range, while the slight discrepancies are likely caused by the statistical errors.
The results indicate that the ANN-KMC model is able to predict robust results for Ni-Fe alloys
of different atomic configurations and sizes.

—Jl-original random structure (4000 atoms)
new random structure 1 (4000 atoms)
—W¥—new random structure 2 (108000 atoms)
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Fig. 10. Total vacancy diffusivities for two new sets of random structures of different system
sizes (4,000 and 108,000) calculated by ANN-KMC at 1000 K. The results are compared with
the diffusivities for the original Random structures reported in Section 4.3 at all compositions.

To address the third concern, a fraction of the NEB barrier database rather than the entire
database (i.e., 32,000 data points in the MMC group) is chosen to complete the training,
validation, and testing for obtaining an ANN model. Figure 11(a) illustrates the relationship
between the ANN performance (using R? as the performance metrics) and the percentage of the
database used. A two-fold effect is observed: On the one hand, the performance of the ANN
model improves with the increasing percentage of database usage, as expected; On the other
hand, the improvement is only significant at the early stage (for instance, from 10% to 20%);
After that, the improvement is unremarkable. Next, the two ANN models that are trained with 10%
and 20% of the database, respectively, are coupled with KMC to calculate total diffusivities in a
random Ni-Fe system. The results are compared with the original ANN-KMC model that is
based on the whole database in Section 4.3, as shown in Fig. 11(b). It is evident that the
diffusivities obtained from these two new models only differ slightly from those obtained from
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the original full model, and the discrepancies are more evident for the ANN model using the 10%
of database. Despite of this, both models yield similar trends in diffusivity, with an overall
deviation less than 20% from the full model (note the large deviation mainly appears in the 10%
case), which can be considered acceptable in practice. Such a trade-off could be useful when the
computational cost for obtaining the NEB barriers is high, for example, in density functional
theory (DFT) calculations.

A final remark is that to achieve an accurate prediction of E,, across all compositions,
the ANN model should be trained on the NEB data that cover different compositions. For
example, it is found that training an ANN model with only NisoFes, data is not able to predict E,,
accurately across all compositions. Thus, a good strategy for building the database is to use a
subset of data from each composition and include many different compositions.
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Fig. 11. (a) The R? performance of the ANN model using different percentages of the NEB
database for obtaining an ANN model. (b) Total diffusivities predicted by the ANN-KMC
models using 10%, 20%, and 100% of NEB database, respectively.

5. Conclusions

In this work, the ANN based machine learning method is coupled with KMC to study the
sluggish vacancy diffusion in an fcc Ni;Fe, (x = 0 — 1) concentrated model alloy system, in
which the atomic-environment-dependent vacancy migration energy is determined by the ANN
model on-the-fly. Two different groups of atomic configurations are studied: MMC-optimized
structures that contain SROs and Random structures with randomly distributed Ni and Fe atoms.
Using only the NEB migration barriers from the MMC structures for training, the ANN model
can predict the vacancy migration barriers in the Random structures with satisfactory accuracy.
A composition- and temperature-dependent jump attempt frequency model is also developed in
this work, which is calibrated only using the MD data of the MMC structures at 1300 K. Using
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this new jump attempt frequency model, the ANN-KMC model can predict the vacancy
diffusivities in excellent agreement with independent MD and TAD results at both high and
moderate temperatures, for both MMC-optimized and Random structures, and across all
compositions, indicating the model has good robustness and transferability. This novel and
computationally efficient ANN-KMC approach enables the simulation of vacancy diffusion at
low temperatures and long timescale that are unreachable by other methods such as MD. This
study also evaluates the practicability of the ANN-KMC approach by using a subset of database.
The results indicate that using 20% of training data can result in a satisfactory accuracy.
Therefore, the ANN-KMC approach may be applied to other studies in which the collection of
the NEB barrier database is computationally expensive, such as in DFT calculations. Although
this work uses a binary fcc concentrated alloy system as a model system, it is expected that the
ANN-KMC approach can be generalized to other concentrated alloys with more components
such as high-entropy alloys as well as other crystal structures.

For the Ni,,Fe, (x = 0 — 1) concentrated model alloy system studied in this work, a
"sluggish diffusion" phenomenon is observed, with the lowest diffusivity being xz, = 20~25%
for Random structures while x, = 25~35% for MMC-optimized structures that contain SROs.
Although these results support the argument that the percolation threshold (xz, = 20%) is an
important factor for affecting sluggish diffusion, this work also shows that other factors such as
SRO can influence the sluggish diffusion behavior. At low temperatures such as 500 K, the
sluggish diffusion becomes more pronounced, particularly in the MMC-optimized structures.
The average of the accepted migration barriers from ANN-KMC modeling is smaller than the
average of all NEB barriers. In addition, it decreases with the decreasing temperature. The results
indicate that smaller-barrier events, which are mainly related to the faster diffuser Fe, play
significant roles on affecting the total diffusivity. When the Fe migration paths are limited and
disconnected such as at xz, < 25%, the smaller-barrier events may trap the vacancy locally to
inhibit its long-range diffusion and thus induce sluggish diffusion. When the Fe migration paths
are abundant at high Fe concentrations, these smaller-barrier events can dominate the long-range
diffusion and lead to fast diffusivities.
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