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Abstract 

Defect diffusion in concentrated alloys plays a key role on governing their unique 
mechanical and physical properties. In such alloys, defect diffusion depends on its complex local 
atomic environment and varies from site to site due to the chemical disorder. On-the-fly 
determination of the defect migration barrier at every site using the standard nudged elastic band 
(NEB) method is computationally expensive and often impractical. In this work, we couple 
machine learning and kinetic Monte Carlo (KMC) to study vacancy-mediated sluggish diffusion 
in concentrated Ni-Fe model alloys. Based on about 32,000 pre-calculated NEB barriers, an 
artificial neural network (ANN) based machine learning model is developed to accurately predict 
the vacancy migration barriers for arbitrary local atomic environments, including both random 
solution configurations and alloys with short-range orders. The ANN model is then coupled with 
KMC (ANN-KMC) to determine the vacancy migration barriers on-the-fly, enabling an efficient 
study of the vacancy diffusion in the full composition range at a wide range of temperatures. In 
addition, a composition and temperature dependent jump attempt frequency model is developed. 
Upon calibration, the ANN-KMC modeling can predict nearly identical vacancy diffusivities as 
those obtained from independent molecular dynamics (MD) and temperature accelerated 
dynamics (TAD) simulations at their accessible temperatures. The sluggish diffusion 
mechanisms in this specific alloy system at both high and low temperatures are discussed based 
on the ANN-KMC results. 
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1. Introduction  

Compositionally disordered alloys including high-entropy alloys, also known as multi-
component solid solution concentrated alloys (CSAs), have been attracting significant interest in 
recent years because of their unique properties, such as excellent mechanical properties at both 
low and high temperatures [1, 2], good corrosion resistance [3], and enhanced radiation tolerance 
[4, 5]. Of particular interest is the concept of “sluggish diffusion” in CSAs because defect or 
solute diffusion kinetics is directly related to these unique material properties. However, the 
existence or the extent of sluggish diffusion in concentrated alloys is still under debate and 
contradictory results have been reported in literature. For instance, some experimental studies 
showed evidence of “sluggish diffusion” [6-8], whereas some others raised questions about this 
phenomenon [9-11]. On the modeling side, many atomistic simulations [12-15] have been 
conducted with the aim of understanding the mechanisms of atomic diffusion in such chemically 
disordered structures. Similar as in experimental studies, both existence and non-existence of 
sluggish diffusion have been reported, depending on the chosen simulation systems. In many 
studies, it is assumed that the alloying elements are randomly distributed within CSAs and the 
alloys form a single-phase (such as face-centered-cubic (fcc) or body-centered-cubic (bcc) 
structures) solid solution. However, numerous experimental observations have demonstrated that 
CSAs may contain some extent of short-range orders (SROs) or other ordered phases, and these 
ordered structures cannot be overlooked [16-18].  

Computer modeling is a powerful tool for understanding and predicting the defect/solute 
diffusion in materials. However, there are some challenges for modeling CSAs. For example, 
some theoretical models such as multi-frequency models [19] can be used for predicting the 
atomic diffusion. However, these analytical models are typically applicable to dilute alloys [20, 
21]. Given the uncountable number of nonequivalent atomic configurations in CSAs, these 
models may not be easily generalized to concentrated alloys. An alternative tool for studying 
atomic-level defect diffusion is the molecular dynamics (MD) method [13, 14, 22], in which 
optimal diffusion paths are automatically chosen based on the local potential energy landscape, 
provided suitable and accurate interatomic potentials are available. If a simulated trajectory is 
sufficiently long to ensure the statistics of defect or solute jumps, MD can accurately simulate 
their diffusion events. However, MD is limited by its inherently short timescale, typically up to a 
few tens of nanoseconds. As a result, many slow but important diffusion processes (e.g., rare 
events) that happen at low temperatures of interest may not be captured by MD. The kinetic 
Monte-Carlo (KMC) method, which implicitly treats atomic vibrations and only considers the 
kinetics of defects or solutes, can extend the atomic-level simulation to the experimentally 
accessible timescale [23, 24]. In the conventional rigid-lattice KMC, atoms are restricted to the 
predefined positions such as fcc lattice sites. The reliability of KMC modeling depends heavily 
on the accurate description of migration barriers of defect jumps, 𝐸!, which need to be provided 
to the model as a priori knowledge. However, in CSAs the defect migration barrier changes from 
site to site due to the varying local atomic environment. Therefore, it is nearly impossible to 
determine all the migration barriers beforehand and provide the complete event table to KMC. 
On the other hand, it is possible to use the off-lattice KMC [25] such as the kinetic activation-
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relaxation technique (k-ART) [26, 27] to determine the migration barriers on-the-fly in CSAs, as 
demonstrated by Osetsky et al. [28]. However, the on-the-fly determination of migration barriers 
using the nudged elastic band (NEB) method [29-31] or the activation relaxation technique 
nouveau (ARTn) [32] entails a high computational cost.  

Recently, machine learning techniques such as the artificial neural networks (ANNs) 
have attracted researchers’ significant interests for studying various materials science problems 
[33-37]. Machine learning is a powerful tool for analyzing high-dimensional and complex 
problems to identify the underlying correlations with some material features or descriptors, if 
sufficient and accurate training data are available. For the defect or solute diffusion in CSAs that 
is the focus of this work, it is envisioned that one may develop an advanced regression algorithm 
or machine learning model for predicting the migration barriers in CSAs based on the local 
atomic configurations (LACs) around a defect or solute, because its migration barrier strongly 
depends on its neighboring chemical species as well as its jumping pathway. After such a model 
is established, one may replace the computationally expensive on-the-fly calculation of migration 
barriers in KMC with such a more computationally efficient model.  

In this work, we aim to develop an ANN model to predict vacancy migration barriers for 
arbitrary atomic configurations in CSAs and couple it with the conventional KMC to study the 
vacancy diffusion at a wide range of alloy compositions and temperatures. The concentrated fcc 
Ni1-xFex (x = 0 – 1) alloy system is used as a model system because it has been shown to have 
strongest sluggish diffusion at the percolation threshold of xFe ≈ 0.2 [28]. Two types of atomic 
configurations are considered: fully random distribution of alloying elements (a chemically 
disordered structure) as in previous MD studies [13, 28], and the Metropolis Monte-Carlo (MMC) 
optimized structures that encompass local SROs as characterized by the Warren-Cowley SRO 
parameter [38]. A finite number of NEB calculations are conducted to obtain necessary training 
data for the ANN-based machine learning model. The trained ANN model is then coupled with 
KMC to predict the vacancy migration barrier on-the-fly and calculate the effective vacancy 
diffusivity in this alloy system. A composition- and temperature-dependent jump attempt 
frequency model, rather than a fixed frequency that is commonly used in many KMC studies [28, 
39], is also developed. The calibrated ANN-KMC model can predict similar vacancy diffusivities 
as independent results by MD at high temperatures and by temperature accelerated dynamics 
(TAD) [40] at moderate temperatures, demonstrating that the approach can achieve very high 
computational efficiency without compromising its accuracy. The approach thus enables us to 
study defect diffusion in CSAs at low temperatures that may not be accessible by other atomistic 
simulation methods.  

 

2. Methods 

 A number of complementary simulation methods are used in this work: NEB, ANN based 
machine learning, KMC, MMC, MD, and TAD. For the NEB, MMC, MD, and TAD, the Ni-Fe 
interatomic potential developed by Bonny et al. [41] is used. These methods are briefly described 
as follows.  
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2.1. Alloy structures and NEB database of vacancy migration barriers 

As mentioned earlier, two groups of atomic configurations for the Ni1-xFex (x = 0 – 1) fcc 
alloys are considered: random distribution of alloying elements and MMC-optimized structures 
that contain SROs. In each group, eight compositions are studied: xFe = 10%, 20%, 25%, 35%, 
50%, 65%, 80%, 90%. To create the first group (denoted as the “Random” group), Ni and Fe 
atoms are randomly mixed in a 10a0 ´ 10a0 ´ 10a0 fcc lattice containing 4,000 atoms at each 
composition. To create the second group (denoted as “MMC” group), the hybrid MC+MD 
method implemented in the LAMMPS package [42] is applied to optimize each generated 
random structure. During the optimization, a randomly selected Ni is swapped with a randomly 
selected Fe atom, and the acceptance probability of this swap depends on the change of the 
system potential energy. Following every swap, a short (0.01 ps or 5 timesteps) MD simulation is 
performed in an NVT (constant number of atoms, volume, and temperature) ensemble at 300 K 
to relax the system. This procedure is repeated for a total of 400,000 MMC steps. The resulting 
alloy structures in the MMC group have much lower potential energies than the counterparts in 
the Random group and an example is shown in Fig. 1(a). The MMC-optimized structures exhibit 
some extent of short-range orders. To quantify the degree of ordering, the Warren-Cowley SRO 
parameter [38] is calculated up to four nearest neighboring (nn) shells for each composition, as 
shown in Fig. 1(b). Clearly, the Random structures have no discernible ordering because the 
SRO values of all shells are nearly zero, while the MMC structures have distinctive ordering, as 
indicated by the large positive (clustering of Ni-Ni or Fe-Fe pairs) or negative (clustering of Ni-
Fe pairs) SRO values in the second and third shells.  

 

 
Fig. 1 (a) Potential energy change during a hybrid MC + MD simulation (denoted as MMC 
optimization) in an Ni80Fe20 alloy that has an initially random atomic configuration. (b) Warren-
Cowley SRO values up to the 4th nn for both Random and MMC structures at different 
compositions. 
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After both Random and MMC structures are created, the NEB method [30, 31] 
implemented in LAMMPS is used to calculate the vacancy migration barriers (𝐸!) for different 
atomic environments. At each Ni-Fe composition, a vacancy is created at every lattice site, one at 
a time. At each vacancy site, the vacancy migration path is randomly chosen between the 
vacancy and one of its twelve 1st nn atoms and the corresponding migration barrier (𝐸!) is 
calculated. This results in 4,000 barriers at each composition and 32,000 barriers in each 
structural group (because there are eight compositions in each group). In all NEB calculations, 
the number of NEB images (including the initial and final states) is 13 and the spring constant is 
set to 1.0 eV/Å2. 

 

2.2. LAC definition and ANN model 

In an Ni1-xFex fcc alloy, a vacancy can diffuse to one of its 12 nearest neighbor sites, as 
schematically illustrated in Fig. 2(a). The vacancy migration barrier of each pathway depends on 
not only the atom type at the neighboring site along that pathway, but also the local atomic 
configuration (LAC) around that neighboring site. Therefore, a well-defined LAC is a premise 
for an ANN model that can accurately predict the vacancy migration barrier (𝐸!). Figure 2(b) 
schematically shows two possible vacancy migration pathways between the vacancy “V” and 
atom “Ai = 1, 2”.  The LAC of an atom “Ai” includes all atoms as well as the vacancy site within a 
cutoff radius (large dash circle) from Ai. In the relaxed Ni1-xFex alloys, atoms can have small 
displacements from the perfect fcc lattice sites due to the mixing effect. Although the NEB 
calculations include all local chemistry and lattice distortion, the migration events in the 
conventional KMC are still described in a rigid lattice framework. To keep this advantageous 
simplicity of the KMC model, the small off-site displacement of an atom in the equilibrium state 
is neglected in our ANN model if it stays within the original Wigner-Seitz cell [43] (see Fig. 
2(b)). Therefore, all sites in the same nearest neighboring shell have the same distance from the 
central atom/site. The description of a LAC is represented by a string of integers for each 
neighboring shell in consideration, e.g., 1 for Ni, 2 for Fe and 0 for vacancy. Four neighboring 
shells are taken into consideration for constructing LAC vectors. A closer shell is endowed with 
a higher weight. For example, the first two neighboring shells around a moving atom “Ai” can be 
defined as,  

1𝑛𝑛	𝐿𝐴𝐶 = 𝑊"##[0, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1], 

2𝑛𝑛	𝐿𝐴𝐶 = 𝑊$##[1, 2, 2, 2, 1, 1], 

where 𝑊"##,  𝑊$## are the weights for 1st and 2nd neighboring shells, respectively, and 𝑊"## > 
𝑊$##.  
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Fig. 2 (a) Schematic illustration of vacancy migration pathways in the potential energy landscape. 
(b) 2D schematic illustration of two possible vacancy migration pathways (from “V” to “Ai=1, 2”) 
in a rigid lattice approximation of a distorted crystal structure. Hexagons represent Wigner-Seitz 
cells, within which small dash circles denote real equilibrium positions of atoms and filled 
circles are rigid lattice sites. Here “Ai” represents the moving atom (Ni or Fe), “V” is the 
vacancy site and "de

i" represents the atom movement direction of the pathway. The large dash 
circle around each Ai shows the cutoff radius within which all neighboring sites are included in 
constructing its LAC. 

 

 
Fig. 3 Schematic of the ANN architecture. There are three neurons (solid circles) in the hidden 
layers 1 and 2 for each input shell vector to integrate all information to predict 𝐸! values. 
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The ANN architecture is shown in Fig. 3. The training logic is: (i) The LAC input 
features from the 1st nn to 4th nn shells are separately connected to the first hidden layer; (ii) The 
first hidden layer is implemented to integrate the information for each shell; (iii) The second 
hidden layer desegregate the information passed by the first hidden layer to give the predicted 
𝐸!. The number of neurons and layers are determined empirically by trial-and-error. The 
training algorithm uses the Levenberg-Marquardt method [44], a hybrid technique that uses both 
Gauss-Newton update and gradient descent to converge to an optimal solution, and its superior 
performance for similar applications has been demonstrated [45, 46].  

 

2.3. ANN-KMC modeling 

The trained ANN model is coupled with the rigid-lattice KMC using the KMCLib 
package [47] to simulate the vacancy diffusion in Ni1-xFex alloys for both MMC and Random 
groups. In the lattice KMC model, atom diffusion is solely driven by the thermally activated 
migration jumps that a single vacancy takes. The rate of a vacancy jump event from an initial 
position i to one of its neighboring sites j is expressed by the standard transition state theory, 

Γ%& =	𝑣' exp 4−
𝐸!,%&
𝑘)𝑇

8 ,																																																													(1) 

where 𝑣' is the jump attempt frequency, 𝑘) is the Boltzmann’s constant, T is the absolute 
temperature, and 𝐸!,%& is the vacancy migration barrier from site i to j. At each KMC step, the 
ANN model predicts 𝐸!,%& for all 12 possible jumping pathways on-the-fly with a negligible 
computational cost. A random number r1 in the range of (0, 1] will pick a path s among 12 
possible pathways following, 

;Γ%& > 𝑟" ∙
*

&+"

;Γ%&

"$

&+"

,																																																													(2) 

 

and the system evolves into a new state by the path s. The time elapsed is calculated by another 
random r2 in the range of (0, 1] according to the residence time algorithm [24],  

∆𝑡 = 	−
ln(𝑟$)
∑ Γ%&"$
&+"

.																																																																					(3) 

In this work, 10,000 – 30,000 KMC steps are conducted for each simulation. The diffusion 
coefficient is calculated using the Einstein relation [48],  

                                           𝐷	 = 	 ∆-!
"(/)
1/

                                                                  (4) 

where  ∆𝑟*$(𝑡) is the sum of the atomic square displacements (ASDs) of all atoms (for total 
diffusivity) or individual type of atoms (for partial diffusivity) in 3D, and t is the simulation time. 
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To obtain reliable statistics, six independent simulations are conducted at each condition and the 
average diffusivities are reported in this work.  

Regarding the jump attempt frequency (𝑣'), it was typically set to a fixed value close to 
the phonon frequency (1012 ~ 1013 s-1) in many previous KMC simulations [49, 50]. However, it 
could be affected by both temperature and composition. For example, in some studies it was 
found to be two orders of magnitude higher or lower than the phonon frequency [51, 52]. In this 
work, a temperature- and composition-dependent 𝑣' is developed because a constant 𝑣' leads to 
unsatisfactory results. The details are discussed in the Results section.  

 

2.4. MD simulations  

 To compare with ANN-KMC results at high temperatures, MD simulations of vacancy 
diffusion in the Ni1-xFex alloys are conducted at 900 – 1300 K using LAMMPS [42]. The 
structures in both Random and MMC groups are studied. The effects of atomic configurations 
and other material properties on the vacancy diffusivities will be presented in detail elsewhere. 
Here only the calculated diffusivities are reported, which are used to validate ANN-KMC results. 
The MD simulations are conducted in an NPT ensemble (constant number of atoms, pressure, 
and temperature). The Nose-Hoover thermostat and barostat [53] are used to control the system 
temperature and pressure (at zero bar), respectively. The time step is set to 2 fs. The simulations 
at lower temperatures, such as 900 K and 1000 K, are conducted up to 100 ns each for ten 
independent simulations to improve the statistics at each condition; Whereas the simulations at 
higher temperatures (> 1000 K), which have faster diffusivities, are completed over 40 ns each 
for six independent simulations. Same as in KMC, the total and partial diffusion coefficients are 
calculated from the atomic square displacements (Eq. 4).   

 

2.5. TAD simulations  

The vacancy diffusivities calculated by MD are limited to high temperatures. In order to 
obtain diffusivities at a moderate temperature (800 K) for further validating the KMC results, the 
TAD method [40] implemented in LAMMPS is used. TAD is one type of accelerated molecular 
dynamics (AMD) methods [54, 55], and has the ability to reach much longer timescale than MD 
but still maintains the full atomic fidelity as MD [56, 57]. TAD conducts basin-constrained MD 
at a high temperature to accelerate the search of many candidate transition events from the 
current state (basin). Unlike in the rigid-lattice KMC, TAD does not require a priori knowledge 
of these candidate transition paths or mechanisms. Once a candidate transition event is detected, 
the NEB method is used to calculate the transition barrier on-the-fly. The system is then brought 
back to the current basin and new searches continue, until a stopping criterion is met. For a 
candidate transition event j, the time at the low temperature of interest (tLow,j) is extrapolated from 
its high-temperature MD time (tHigh,j) based on the transition state theory,  

                        𝑡2'3,& 	= 	 𝑡4%56,&𝑒𝑥𝑝 J𝐸!,& 4
"

7#8$%&
	− 	 "

7#8'()*
8K,                                (5) 
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where 𝐸!,& is the transition barrier obtained by NEB (e.g., the vacancy migration barrier in this 
work) along the path j, TLow is the low temperature of interest, and THigh is the high temperature 
for accelerating the transition. Among the detected candidate events after the stopping criterion is 
met, the event with the shortest time at TLow is accepted. Therefore, the candidate events that 
should not happen at TLow are filtered out. Then the system advances to a new basin and the 
process repeats. In this work, THigh and TLow are set to 1600 K and 800 K, respectively. The 
simulation system contains 864 atoms of different compositions in a 6a0 ´ 6a0 ´ 6a0 fcc lattice. 
The time step for the high-temperature MD is 2 fs. A transition is defined when the displacement 
of any atom is greater than 0.6 Å and the transition is checked every 50 steps. The desired 
confidence level for stopping criterion is set to d=0.05. The minimum pre-exponential factor is 
set to nmin = 2´1012 s-1 (or tmax = 0.5 ps). The simulation time is over 60 ns at THigh, which results in 
µs-scale time at TLow. Same as in KMC and MD, the atomic square displacements (Eq. 4) are 
used to calculate the diffusion coefficients. In addition, the transition barriers of all accepted 
events during the vacancy diffusion are recorded by TAD, which will be presented in the Results 
section.  

 

3. Results  

3.1 ANN model for vacancy migration barriers  

To train the ANN model of vacancy migration barriers (𝐸!), the two groups (Random 
and MMC) of databases mentioned above are not identically utilized. In this work, the barriers in 
the MMC group, which contain some SROs, are used to train the ANN model. Specifically, the 
data in the MMC group are split to serve the functions of training, validation, and testing with a 
ratio of 70%:15%:15%. Once an ANN model has been adequately trained, e.g., obtained a 
satisfactory performance on the testing set, the data in the Random group, equivalent to unseen 
data to the trained ANN model, are tested to verify the transferability of the ANN model. The 
trained ANN model is accepted when it also reaches satisfactory performances on the data in the 
Random group. Figure 4(a) shows a good correlation between ANN predicted and NEB 
calculated 𝐸! on the MMC group dataset. It is adequately accurate with the average prediction 
error within 0.040 eV, and 𝑅$ of ~95%. Figure 4(b) presents an average error of 0.043 eV and 
𝑅$ of 93% on the Random group dataset. Some outliers do exist, possibly related to the rigid 
lattice approximation. However, the accuracy of the KMC model is not affected by these extreme 
and rare cases because they make little difference to the statistics. 
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Fig. 4 (a) The trained ANN model of vacancy migration barriers that only uses the MMC group's 
data. Four plots indicate regression accuracies on training, validation, testing, and overall dataset. 
(b) The performance of the trained ANN model in (a) on the unseen data from the Random group. 

 

3.2 ANN-KMC results of the MMC group 

 The ANN model developed in the previous section is coupled with KMC to calculate the 
vacancy diffusivities in the MMC-group structures that contain SROs. The first test is using a 
fixed jump attempt frequency, 𝑣' = 1013 s-1, as in many previous studies [28, 39]. The calculated 
diffusion coefficients are compared with the MD results as a function of alloy composition at 
1300 K, as shown in Fig. 5(a). Clearly, there is a large discrepancy between ANN-KMC and MD 
results when the Fe concentration 𝑥9: < 80%. The most distinctive difference is the pure Ni, 
which is independent of the ANN model because it only has a single vacancy migration barrier. 
Therefore, the fixed 𝑣' value is likely the reason that induces such discrepancies. To solve this 
problem, in this work 𝑣' is treated as both composition- and temperature-dependent. According 
to Kong and Lewis [58], the temperature-dependent attempt frequency has the form, 

𝑣' =	
𝑘)𝑇
ℎ exp 4

−∆𝐹;%<
𝑘)𝑇

8,																																																											(6) 

where h is the Planck’s constant, ∆𝐹;%< is the vibrational free energy difference between the 
transition state and the initial state. For simplicity, the exponential term in Eq. (6) is replaced by 
a polynomial function of composition, 

𝑣' =	
𝑘)𝑇
ℎ 𝑓(𝑥9:),																																																																		(7) 

where 𝑓(𝑥9:) will be calibrated with the MD diffusivity data, as discussed below.  
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 To determine	𝑓(𝑥9:), the 𝑣' values are obtained by fitting to the MD data at 1300 K for 
all compositions, as shown in Fig. 5(b). At this temperature, the coefficient 7#8

6
 = 2.71´1013 s-1, 

and a 4th order polynomial function is used to fit 𝑓(𝑥9:),   

𝑓(𝑥9: = 𝑥) = 	1.764 − 8.92 × 10=>𝑥 + 3.96 × 10=?𝑥$ − 4.16 × 10=1𝑥> + 3.2 × 10=@𝑥A.   (8) 

To determine 𝑣' for other temperatures T, Eqs. (7-8) are directly used and no other fitting is 
needed. Essentially this scales the 𝑣' values at 1300 K with a factor of T/1300, i.e., 𝑣',8 = 
8

">BB
𝑣',">BBC 	 for the corresponding compositions. It should be noted that the MD data at 𝑥9: = 

25% (i.e., Ni75Fe25) is not included in the fitting but 𝑓(𝑥9:) still works well for this composition. 
Also noted that although 𝑓(𝑥9:) is only fitted to the MD data of the MMC group at 1300 K, it 
works well at other temperatures for both MMC and Random groups, as shown below.  

 

 
Fig. 5 (a) Total diffusion coefficients obtained from ANN-KMC at 1300 K using a constant jump 
attempt frequency, 𝑣' = 1013 s-1, which show large discrepancies with the MD results at xFe < 
80%. (b) The fitted 𝑣' values (filled circles) against the MD data at 1300 K. The solid line shows 
the fitted 4th order polynomial function (Eqs. (7 – 8)). 

 

 Figure 5(b) shows that 𝑣' decreases monotonically with increasing Fe concentration. It 
also shows that 𝑣' in pure Ni is about 5 times higher than in pure Fe, even though they both have 
an fcc structure in this work, consistent with many previous studies that it is material dependent 
[58]. After the composition-dependent 𝑣' is calibrated at 1300 K, it is used in ANN-KMC to 
predict the vacancy diffusivities at lower temperatures. Figure 6(a) shows a complete comparison 
of vacancy diffusivities obtained via ANN-KMC and MD simulations for temperatures from 900 
K to 1300 K. The error bar of each MD data point represents the standard deviation from 6 – 10 
independent simulations. Each diffusivity value from ANN-KMC is averaged from 6 
independent simulations, and its error bar is ignored due to very small variance. Clearly, the 
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ANN-KMC predicts nearly identical vacancy diffusivities as the MD results in a wide range of 
compositions and temperatures, even though 𝑣' is merely fitted to the MD data at 1300 K. There 
are some discrepancies under some conditions, primarily at low temperatures (e.g., Ni65Fe35 at 
900 K).  This is likely due to the insufficient statistics in MD simulations because the short 
timescale in MD poses an inherent challenge for studying the slow diffusion kinetics at low 
temperatures. At all temperatures, the vacancy diffusivity first decreases then increases with the 
increasing Fe concentration, consistent with Osetsky et al.’s work [28]. The two end points (i.e., 
pure Ni and pure Fe) at each temperature indicate that Fe is a faster diffuser than Ni. The 
minimum diffusivity occurs around 𝑥9: = 25~35% for the structures of the MMC group in this 
work, slightly different from ~20% (which is the Fe percolation threshold) in Osetsky et al.’s 
work [28].  

 
Fig. 6 (a) Total vacancy diffusivities as a function of composition in the MMC-optimized Ni1-

xFex model alloys calculated from ANN-KMC and MD simulations at 900 – 1300 K. Note only 
the MD data at 1300 K are used to calibrate the 𝑣' in ANN-KMC. Solid lines with filled symbols 
are MD data, and dashed lines with unfilled symbols are ANN-KMC data. Each error bar 
represents the standard deviation of 6 – 10 MD results. The error bars in ANN-KMC results are 
ignored due to the negligible variances. (b) Partial diffusivities as a function of alloy composition 
from ANN-KMC results at different temperatures. (c) Jump fractions of Ni and Fe as a function 
of composition at 1200 K. 

 

  Figure 6(b) shows the partial diffusion coefficients of Ni and Fe from the ANN-KMC 
modeling. At all temperatures, Ni diffusivity (𝐷D%EEF) decreases while Fe diffusivity (𝐷9:EEF) 
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increases with increasing Fe concentration, because Fe is a faster diffuser. The intersection 
between 𝐷D%EEF  and 𝐷9:EEF  is located at 𝑥9: = 20 ~ 25% and slightly shifts rightward (to higher 
𝑥9:) with the increasing temperature. This crossover Fe concentration is slightly lower than that 
for the minimal total diffusivity in Fig. 6(a), which is in the range of 𝑥9: = 25~35%. At 𝑥9: = 
20% (in the Ni80Fe20 alloy), the ratio of 𝐷9:EEF  / 𝐷D%EEF  is 0.79, 0.72, 0.65, 0.58, 0.55 for 900 ~ 
1300 K, respectively. This indicates that the contribution from the faster diffuser Fe increases as 
the temperature decreases. Figure 6(c) shows the fractions of vacancy jump types (i.e., a vacancy 
jump via Ni or Fe atom) as a function of Fe concentration at 1200 K. It can be seen that the 
dominant vacancy jump type changes from Ni to Fe in the range of 𝑥9: = 20 ~ 25% (about 𝑥9:= 
22%), similar to the crossover concentration for the partial diffusivities in Fig. 6(b). After the 
crossover, the jump via Fe becomes more and more dominant. When 𝑥9: > 65%, the Fe jumps 
dominate completely and there are almost no Ni jumps.    

 

The excellent agreement between ANN-KMC and MD results at 900 ~ 1300 K suggests 
that ANN-KMC may be used to predict the diffusivities at low temperatures. However, as 
mentioned earlier the events that happen at high temperatures in MD may not happen at the 
lower temperatures of interest. Therefore, to further validate the ANN-KMC model, the TAD  
method is used to calculate the total vacancy diffusivities in the Ni1-xFex alloy at a moderate 
temperature, T = 800 K. The comparison between TAD and ANN-KMC results at different 
compositions at 800 K is shown in Fig. 7(a). Note that the TAD results are completely 
independent (blind) to the ANN-KMC model because the system size in TAD is different from 
that in ANN-KMC and the simulated structures are also different. Nevertheless, the agreement 
between ANN-KMC and TAD results is reasonably good. Even though there are slight 
discrepancies, the error bars (standard deviations) in TAD results overlap with ANN-KMC 
results at many compositions. Both TAD and ANN-KMC give similar minimal diffusivities at 
𝑥9: =	20 ~ 25%, which is slightly different from the minimum diffusivities occurring at 𝑥9: =
	25 ~ 35% at higher temperatures (900 – 1300 K) shown in Fig. 6(a). Since ANN-KMC results 
have good agreement with MD and TAD results at both high and moderate temperatures, the 
ANN-KMC is used to predict the total vacancy diffusivities at a low temperature (T = 500 K) 
that is inaccessible to MD, as shown in Fig. 7(a). Again, the minimal diffusivity happens at 
𝑥9: =	20 ~ 25%, similar as at T = 800 K. It should be noted that the sluggish diffusion effect at 
this composition is more pronounced than at high temperatures (Fig. 6(a)) because the minimum 
vacancy diffusivity at 500 K is about one and five orders of magnitude than the diffusivities in 
pure Ni and Fe, respectively.  
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Fig.7 (a) Comparison of the total diffusivities in the MMC group alloys obtained by TAD and 
ANN-KMC at 800K as a function of composition. The ANN-KMC results at a low temperature 
(500 K) that is unreachable to MD is also shown. (b) Two methods for estimating the effective 
vacancy migration energies at different compositions: Arrhenius fitting of ANN-KMC 
diffusivities at 500, 800 – 1300 K; The average of the migration barriers from executed (accepted) 
jumps during ANN-KMC and TAD simulations. For comparison, the average of the static NEB 
barriers at 0 K is also shown at each composition. (c) The migration barrier distributions from 
static NEB calculations at 0 K, and the ANN-KMC simulations at 500K, 800K, and 1200K for 
the Ni80Fe20 alloy. 

 

Here, two methods are used to present the effective migration energies. The first is the 
activation energy extracted from an Arrhenius-type treatment of ANN-KMC diffusivities at all 
temperatures, Eact, as seen in previous studies [28, 59], and the second is to record each executed 
migration barrier in ANN-KMC and TAD, and the averaged value is displayed as 𝐸!∗ , shown in 
Fig. 7(b). In addition, the average of all static NEB barriers at 0 K is shown as function of 
composition, even though many of them may have never been visited during the vacancy 
diffusion. Figure 7(b) shows that Eact increases initially and reaches a maximum value at the 
percolation threshold 𝑥9: =	20%, which was claimed in Ref. [28] to be one of the reasons for the 
sluggish diffusion in Ni-Fe alloys. The Eact trend is similar as the average of the NEB barriers, 
although for the later the maximum barrier occurs at a higher Fe concentration (𝑥9:~	35%). 
However, the 𝐸!∗  values based on the average of accepted barriers either from ANN-KMC or 
TAD simulations do not show a clear maximum. Instead, they exhibit a monotonically 
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decreasing trend. Closer examination also shows that both KMC and TAD result in higher 𝐸!∗  
values at higher temperatures at each composition. Figure 7(c) presents the distribution of 
executed migration barriers in the Ni80Fe20 alloy (which shows significant sluggish diffusion) at 
500 K, 800 K, and 1200 K from KMC simulations, as well as the distribution of the static NEB 
barriers. Each spectrum is fitted to a Gaussian function in which the vertical dash line indicates 
its mean value. It shows apparent decline in the average migration energy as well as the 
distribution variance as the temperature decreases. Therefore, at low temperatures vacancy jumps 
are primarily along the low-barrier paths, and many of them are through the fast diffuser, Fe. At 
𝑥9: =	20%, however, there are only limited number of percolated paths that enable the long-
range Fe diffusion. Therefore, vacancy diffusion may be trapped by Fe and sluggish diffusion 
occurs.   

 

3.3 ANN-KMC results of the Random group 

To exclude the statistical errors potentially induced by different atomic configurations, 
first the random configurations in ANN-KMC simulations are created as same as those used in 
the MD (note the small off-lattice distortions presented in the MD structures are ignored in 
ANN-KMC). In the next section, our further tests demonstrate that the choice of random 
configurations has a negligible effect on the diffusivities predicted by ANN-KMC. Figure 8(a) 
shows the total vacancy diffusivities of the Random group at different compositions predicted by 
the ANN-KMC from 900 K – 1300 K. The MD results are also shown for comparison. It should 
be noted that the ANN-KMC results are independent to the MD data because the jump attempt 
frequencies are the same as those in the Section 4.2 (for the MMC group) and no new fitting has 
been conducted. Nevertheless, ANN-MKC predicts vacancy diffusivities very close to the 
independent MD results, demonstrating the robustness and transferability of the ANN-KMC 
model. The minimum diffusivity happens at 𝑥9: = 20 ~ 25% at these temperatures, which is 
slightly lower than the MMC group (Fig. 6(a)). Similar to the partial diffusivities in the MMC 
group (Fig. 6(b)), in the Random group 𝐷D%-H#I'! and 𝐷9:-H#I'!	 also intersect at 𝑥9: = 20 ~ 25% 
and the cross-over composition slightly shifts rightward (to higher Fe concentrations) as the 
temperature increases, as shown in Fig. 8(b). The cross-over compositions are also close to the 
minimum diffusivities in Fig. 8(a). Figure 8(c) shows the jump fractions of Ni and Fe at different 
compositions at 1200 K. Again the Fe fraction increases while Ni fraction decreases with the 
increasing Fe concentration. The cross-over composition is at 𝑥9: = 20 ~ 25%, which is the same 
as that for the minimum total diffusivities shown in Fig. 8(a) and the cross-over composition for 
𝐷D%-H#I'! and 𝐷9:-H#I'! shown in Fig. 8(b).  
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Fig. 8 (a) Total vacancy diffusivities at different Fe concentrations for the Random group alloys 
calculated from ANN-KMC. The independent MD results are also shown for comparison. Solid 
lines are MD results, and dash lines are ANN-KMC results. Each error bar represents the 
standard deviation of 6 – 10 MD simulations. The error bars in ANN-KMC results are ignored 
due to the negligible variances. (b) Partial diffusivities of Ni and Fe as a function of Fe 
concentration from the ANN-KMC simulations at different temperatures. (c) Jump fractions of 
Ni and Fe at different Fe concentrations from the ANN-KMC simulations at 1200 K. 

 

TAD simulations are also conducted to study the vacancy diffusivities in the Random 
alloys. Figure 9(a) shows the good agreement between ANN-KMC and independent TAD results 
at all compositions at 800 K, where the minimum total diffusivity is observed at 𝑥9: = 20%.  The 
ANN-KMC is also used to calculate the total diffusivities of Random group alloys at 500 K. In 
comparison to the results at 500 K in the MMC group alloys shown in Fig. 7(a), the sluggish 
diffusion is less pronounced, indicating that the atomic configuration or SRO can be another 
important factor for affecting the sluggish diffusion. The ANN-KMC results in the Random 
alloys at 500 K are also compared with the work of on-the-fly KMC coupled with k-ART by 
Osetsky et al. [28], in which a constant 𝑣' of 1013 s-1 was used for all compositions. Although the 
overall trend is similar between the two studies, the diffusivities in our work are about 5 times 
faster than in their work. The discrepancies could be due to different 𝑣' values as well as the 
different methodologies for calculating vacancy migration energies in the two studies. Similar to 
the analysis for the MMC group (Fig. 7(b)), the Arrhenius-type treatment of activation energy 
(Eact) and the average migration energies (𝐸!∗ ) from the accepted events in ANN-KMC and TAD 
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simulations at different compositions are shown in Fig. 9(b). Again, while the Eact curve has a 
convex shape with a maximal value at about 𝑥9: = 20%, the 𝐸!∗  curves for both ANN-KMC and 
TAD simulations decrease monotonically with 𝑥9:. Both Eact and 𝐸!∗  are different from the 
average of the static NEB barriers at 0 K. Figure 9(c) shows the distribution of the accepted 
migration energies in the Ni80Fe20 alloy obtained by ANN-KMC at 500 K, 800 K, and 1200 K, 
along with the distribution of the static NEB barriers. It can be clearly seen that many high-
energy NEB barriers have never been visited by the ANN-KMC. In addition, the average 
migration energy of executed events (𝐸!∗ ) decreases as temperature decreases. For example, 𝐸!∗  
= 1.16 eV at 1200 K while 𝐸!∗  = 1.07 eV at 500 K. Again, the results indicate that vacancy 
diffusion is mainly through low-barrier paths at low temperatures. If the number of such low-
barrier paths is limited (e.g., at 𝑥9: = 20%), sluggish diffusion occurs.  

 

 
Fig. 9 (a) Comparison of the total diffusivities in the Random alloys obtained by TAD and ANN-
KMC at 800 K at different compositions. The ANN-KMC results at 500 K are compared with a 
previous on-the-fly k-ART + KMC study [28]. (b) Two methods for estimating the effective 
vacancy migration energies at different compositions: Arrhenius-like treatment of ANN-KMC 
diffusivities at 500, 800 – 1300 K; The average of migration barriers from executed jumps during 
ANN-KMC and TAD simulations. For comparison, the average of the static NEB barriers at 0 K 
is also shown at each composition. (c) Migration barrier spectra of the static NEB barriers at 0 K 
and from the ANN-KMC simulations at 500K, 800K, and 1200K in the Ni80Fe20 random alloy. 
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4. Discussion 

A comparison of the results from two structural groups reveals some commonalities and 
discrepancies. First, both MMC and Random structures have partial diffusivities and jump 
fractions crossing at 𝑥9: = 20~25%, which is close to the percolation threshold of Fe at 𝑥9: = 
20%. However, while these cross-over values are identical to the minimal diffusivities in 
Random structures, MMC structures have the minimal diffusivities at 𝑥9: = 25~35%. The main 
factor that causes this discrepancy could be the presence of SROs in MMC structures, which can 
be a non-eligible factor in diffusion processes. For example, Zhao et al. have shown that the 
existence of ordered phases in concentrated alloys resulted in a significant delay in defect 
evolution [60]. As shown in Fig. 1(b), the MMC-optimized Ni65Fe35 (𝑥9: = 35%) alloy has the 
largest extent of SROs. The SROs may hinder the vacancy diffusion, changing the minimum 
diffusivity from	𝑥9: = 20~25% in Random structures to 25~35% in the MMC structures. Second, 
both MMC and Random structures have a convex-shape curve of the effective migration energy 
(Eact) from the Arrhenius-type treatment, and the maximum value occurs at 𝑥9: = 20% in both 
cases, which coincides with the cross-over compositions for the partial diffusivities and jump 
fractions discussed above. The MMC and Random structures, therefore, may have a similar site 
percolation threshold around 𝑥9: = 20%, even though the MMC structures contain significant 
SROs. Third, the average migration barrier (𝐸!∗ ) for both MMC and Random structures, obtained 
by averaging the accepted migration barriers in ANN-KMC and TAD simulations, decreases 
monotonically with the increasing 𝑥9: or decreasing temperature. In addition, the 𝐸!∗  values are 
lower than the NEB and Eact counterparts for the same composition. Similar trends were also 
observed in Ref. [28] in which 𝐸!∗  from k-ART was 0.96 eV for Ni50Fe50 at 500 K while Eact and 
NEB values were 1.08 eV and 1.20 eV, respectively. The discrepancy between the average of the 
accepted barriers and the average of all NEB barriers indicates that only a fraction of NEB 
barriers are actually visited during vacancy diffusion, and most of the accepted barriers are at the 
smaller barrier side. Many of these smaller barriers are related to the jump of faster diffuser, Fe. 
When there are sufficient diffusion paths for Fe such as at high 𝑥9:, the overall diffusivity is high. 
However, if the Fe diffusion paths are limited such as near the Fe percolation threshold (𝑥9: = 
20%), the vacancy diffusion may be trapped by these local and disconnected small-barrier events, 
which leads to sluggish diffusion. As discussed earlier, however, this work also suggests that the 
percolation threshold may not be the sole factor for determining sluggish diffusion. Other factors 
including the presence of SROs can also influence it.  

This work demonstrates that the combination of lattice KMC model and ANN-based on-
the-fly determination of vacancy migration energy can achieve accurate results with high 
computational efficiency. However, the accuracy of the on-the-fly KMC is highly dependent on 
the quality of the ANN model. Here, the ANN-KMC approach is tested from three perspectives 
in order to evaluate its transferability, reliability, and practicality. First, the ANN model should 
be capable of predicting the migration energies for arbitrarily random configurations in a robust 
manner. Second, the accuracy of the ANN-KMC model should not be affected by the size of 
simulating system. Third, the effort required to obtain a database for training an ANN model 
should be feasible from a computational standpoint. To address the first concern, a set of random 
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structures with the same compositions and number of atoms (4,000 atoms) as those in Section 
4.3, but with different random arrangements of elements, are created. Regarding the second 
concern, a set of larger Ni-Fe random alloy system consisting of 108,000 atoms are created. 
Figure 10 shows the total diffusivities calculated by ANN-KMC for the two new sets of alloys at 
1000 K, along with the results for the original random alloys studied in Section 4.3. Clearly, both 
new sets of alloys have nearly the same diffusivities as those reported in Section 4.3 over the 
entire composition range, while the slight discrepancies are likely caused by the statistical errors. 
The results indicate that the ANN-KMC model is able to predict robust results for Ni-Fe alloys 
of different atomic configurations and sizes.  

 
Fig. 10. Total vacancy diffusivities for two new sets of random structures of different system 
sizes (4,000 and 108,000) calculated by ANN-KMC at 1000 K. The results are compared with 
the diffusivities for the original Random structures reported in Section 4.3 at all compositions. 

 

To address the third concern, a fraction of the NEB barrier database rather than the entire 
database (i.e., 32,000 data points in the MMC group) is chosen to complete the training, 
validation, and testing for obtaining an ANN model. Figure 11(a) illustrates the relationship 
between the ANN performance (using R2 as the performance metrics) and the percentage of the 
database used. A two-fold effect is observed: On the one hand, the performance of the ANN 
model improves with the increasing percentage of database usage, as expected; On the other 
hand, the improvement is only significant at the early stage (for instance, from 10% to 20%); 
After that, the improvement is unremarkable. Next, the two ANN models that are trained with 10% 
and 20% of the database, respectively, are coupled with KMC to calculate total diffusivities in a 
random Ni-Fe system. The results are compared with the original ANN-KMC model that is 
based on the whole database in Section 4.3, as shown in Fig. 11(b). It is evident that the 
diffusivities obtained from these two new models only differ slightly from those obtained from 
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the original full model, and the discrepancies are more evident for the ANN model using the 10% 
of database. Despite of this, both models yield similar trends in diffusivity, with an overall 
deviation less than 20% from the full model (note the large deviation mainly appears in the 10% 
case), which can be considered acceptable in practice. Such a trade-off could be useful when the 
computational cost for obtaining the NEB barriers is high, for example, in density functional 
theory (DFT) calculations.  

 A final remark is that to achieve an accurate prediction of Em  across all compositions, 
the ANN model should be trained on the NEB data that cover different compositions. For 
example, it is found that training an ANN model with only Ni50Fe50 data is not able to predict Em 
accurately across all compositions. Thus, a good strategy for building the database is to use a 
subset of data from each composition and include many different compositions.  

 

 
Fig. 11. (a) The R2 performance of the ANN model using different percentages of the NEB 
database for obtaining an ANN model. (b) Total diffusivities predicted by the ANN-KMC 
models using 10%, 20%, and 100% of NEB database, respectively.  

 

5. Conclusions 

In this work, the ANN based machine learning method is coupled with KMC to study the 
sluggish vacancy diffusion in an fcc Ni1-xFex (x = 0 – 1) concentrated model alloy system, in 
which the atomic-environment-dependent vacancy migration energy is determined by the ANN 
model on-the-fly. Two different groups of atomic configurations are studied: MMC-optimized 
structures that contain SROs and Random structures with randomly distributed Ni and Fe atoms. 
Using only the NEB migration barriers from the MMC structures for training, the ANN model 
can predict the vacancy migration barriers in the Random structures with satisfactory accuracy. 
A composition- and temperature-dependent jump attempt frequency model is also developed in 
this work, which is calibrated only using the MD data of the MMC structures at 1300 K. Using 
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this new jump attempt frequency model, the ANN-KMC model can predict the vacancy 
diffusivities in excellent agreement with independent MD and TAD results at both high and 
moderate temperatures, for both MMC-optimized and Random structures, and across all 
compositions, indicating the model has good robustness and transferability. This novel and 
computationally efficient ANN-KMC approach enables the simulation of vacancy diffusion at 
low temperatures and long timescale that are unreachable by other methods such as MD. This 
study also evaluates the practicability of the ANN-KMC approach by using a subset of database. 
The results indicate that using 20% of training data can result in a satisfactory accuracy. 
Therefore, the ANN-KMC approach may be applied to other studies in which the collection of 
the NEB barrier database is computationally expensive, such as in DFT calculations. Although 
this work uses a binary fcc concentrated alloy system as a model system, it is expected that the 
ANN-KMC approach can be generalized to other concentrated alloys with more components 
such as high-entropy alloys as well as other crystal structures. 

For the Ni1-xFex (x = 0 – 1) concentrated model alloy system studied in this work, a 
"sluggish diffusion" phenomenon is observed, with the lowest diffusivity being 𝑥9: = 20~25% 
for Random structures while 𝑥9: = 25~35% for MMC-optimized structures that contain SROs. 
Although these results support the argument that the percolation threshold (𝑥9: = 20%) is an 
important factor for affecting sluggish diffusion, this work also shows that other factors such as 
SRO can influence the sluggish diffusion behavior. At low temperatures such as 500 K, the 
sluggish diffusion becomes more pronounced, particularly in the MMC-optimized structures. 
The average of the accepted migration barriers from ANN-KMC modeling is smaller than the 
average of all NEB barriers. In addition, it decreases with the decreasing temperature. The results 
indicate that smaller-barrier events, which are mainly related to the faster diffuser Fe, play 
significant roles on affecting the total diffusivity. When the Fe migration paths are limited and 
disconnected such as at 𝑥9: < 25%, the smaller-barrier events may trap the vacancy locally to 
inhibit its long-range diffusion and thus induce sluggish diffusion. When the Fe migration paths 
are abundant at high Fe concentrations, these smaller-barrier events can dominate the long-range 
diffusion and lead to fast diffusivities.  
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